1
|
Baltazar M, Castro I, Gonçalves B. Adaptation to Climate Change in Viticulture: The Role of Varietal Selection-A Review. PLANTS (BASEL, SWITZERLAND) 2025; 14:104. [PMID: 39795365 PMCID: PMC11722912 DOI: 10.3390/plants14010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/29/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025]
Abstract
Viticulture faces unprecedented challenges due to the rapidly changing climate, particularly in regions like the Mediterranean Basin. Consequently, climate change adaptation strategies are crucial in viticulture, with short-term strategies being widely used despite increasing concerns about their sustainability, and long-term strategies considered promising, though costly. A promising but understudied strategy is varietal selection, as grapevines exhibit vast intervarietal diversity with untapped potential for climate-resilient varieties. By integrating research across plant physiology, biochemistry, histology, and genetics, we can better understand the traits behind the grapevine's capability for adaptation. Several traits, including morphological, physiological, and molecular aspects, have been shown to be crucial in adapting to environmental stresses such as drought and heat. By studying the abundant grapevine intervarietal diversity, the potential for viticulture adaptation to climate change through varietal selection is immense. This review article focuses on the potential of varietal selection in the adaptation of viticulture to climate change. For this, we will delve into the research regarding how climate affects grapevine growth and grape quality and how the grapevine responds to stress conditions, followed by a summary of different climate change adaptation strategies of viticulture. Finally, we will focus on varietal selection, discussing and summarizing different studies surrounding grapevine variety behaviour.
Collapse
Affiliation(s)
- Miguel Baltazar
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (I.C.); (B.G.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Isaura Castro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (I.C.); (B.G.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Berta Gonçalves
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (I.C.); (B.G.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Biology and Environment, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
2
|
Morales-Vargas AT, López-Ramírez V, Álvarez-Mejía C, Vázquez-Martínez J. Endophytic Fungi for Crops Adaptation to Abiotic Stresses. Microorganisms 2024; 12:1357. [PMID: 39065124 PMCID: PMC11279104 DOI: 10.3390/microorganisms12071357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 07/28/2024] Open
Abstract
Endophytic fungi (EFs) have emerged as promising modulators of plant growth and stress tolerance in agricultural ecosystems. This review synthesizes the current knowledge on the role of EFs in enhancing the adaptation of crops to abiotic stress. Abiotic stresses, such as drought, salinity, and extreme temperatures, pose significant challenges to crop productivity worldwide. EFs have shown remarkable potential in alleviating the adverse effects of these stresses. Through various mechanisms, including the synthesis of osmolytes, the production of stress-related enzymes, and the induction of plant defense mechanisms, EFs enhance plant resilience to abiotic stressors. Moreover, EFs promote nutrient uptake and modulate the hormonal balance in plants, further enhancing the stress tolerance of the plants. Recent advancements in molecular techniques have facilitated the identification and characterization of stress-tolerant EF strains, paving the way for their utilization in agricultural practices. Furthermore, the symbiotic relationship between EFs and plants offers ecological benefits, such as improved soil health and a reduced dependence on chemical inputs. However, challenges remain in understanding the complex interactions between EFs and host plants, as well as in scaling up their application in diverse agricultural systems. Future research should focus on elucidating the mechanisms underlying endophytic-fungal-mediated stress tolerance and developing sustainable strategies for harnessing their potential in crop production.
Collapse
Affiliation(s)
- Adan Topiltzin Morales-Vargas
- Programa de Ingeniería en Biotecnología, Campus Celaya-Salvatierra, Universidad de Guanajuato, Mutualismo #303, Col. La Suiza, Celaya 36060, Mexico
| | - Varinia López-Ramírez
- Departamento de Ingeniería Bioquímica, TecNM/ITS Irapuato, Silao-Irapuato km 12.5, El Copal, Irapuato 36821, Mexico
| | - Cesar Álvarez-Mejía
- Coordinación de Ingeniería Ambiental, TecNM/ITS Abasolo, Cuitzeo de los Naranjos #401, Col. Cuitzeo de los Naranjos, Abasolo 36976, Mexico
| | - Juan Vázquez-Martínez
- Departamento de Ingeniería Química, TecNM/ITS Irapuato, Silao-Irapuato km 12.5, El Copal, Irapuato 36821, Mexico
| |
Collapse
|
3
|
Carvalho A, Dinis LT, Luzio A, Bernardo S, Moutinho-Pereira J, Lima-Brito J. Cytogenetic and Molecular Effects of Kaolin's Foliar Application in Grapevine ( Vitis vinifera L.) under Summer's Stressful Growing Conditions. Genes (Basel) 2024; 15:747. [PMID: 38927683 PMCID: PMC11202698 DOI: 10.3390/genes15060747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Grapevine varieties from "Douro Superior" (NE Portugal) experience high temperatures, solar radiation, and water deficit during the summer. This summer's stressful growing conditions induce nucleic acids, lipids, and protein oxidation, which cause cellular, physiological, molecular, and biochemical changes. Cell cycle anomalies, mitosis delay, or cell death may occur at the cellular level, leading to reduced plant productivity. However, the foliar application of kaolin (KL) can mitigate the impact of abiotic stress by decreasing leaf temperature and enhancing antioxidant defence. Hence, this study hypothesised that KL-treated grapevine plants growing in NE Portugal would reveal, under summer stressful growing conditions, higher progression and stability of the leaf mitotic cell cycle than the untreated (control) plants. KL was applied after veraison for two years. Leaves, sampled 3 and 5 weeks later, were cytogenetically, molecularly, and biochemically analysed. Globally, integrating these multidisciplinary data confirmed the decreased leaf temperature and enhanced antioxidant defence of the KL-treated plants, accompanied by an improved regularity and completion of the leaf cell cycle relative to the control plants. Nevertheless, the KL efficacy was significantly influenced by the sampling date and/or variety. In sum, the achieved results confirmed the hypothesis initially proposed.
Collapse
Affiliation(s)
- Ana Carvalho
- Plant Cytogenomics Laboratory, Department of Genetics and Biotechnology, Laboratorial Complex, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (L.-T.D.); (A.L.); (S.B.); (J.M.-P.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Lia-Tânia Dinis
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (L.-T.D.); (A.L.); (S.B.); (J.M.-P.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Ana Luzio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (L.-T.D.); (A.L.); (S.B.); (J.M.-P.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Sara Bernardo
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (L.-T.D.); (A.L.); (S.B.); (J.M.-P.)
| | - José Moutinho-Pereira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (L.-T.D.); (A.L.); (S.B.); (J.M.-P.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - José Lima-Brito
- Plant Cytogenomics Laboratory, Department of Genetics and Biotechnology, Laboratorial Complex, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (L.-T.D.); (A.L.); (S.B.); (J.M.-P.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| |
Collapse
|
4
|
Zarrouk O, Pinto C, Alarcón MV, Flores-Roco A, Santos L, David TS, Amancio S, Lopes CM, Carvalho LC. Canopy Architecture and Sun Exposure Influence Berry Cluster-Water Relations in the Grapevine Variety Muscat of Alexandria. PLANTS (BASEL, SWITZERLAND) 2024; 13:1500. [PMID: 38891309 PMCID: PMC11174960 DOI: 10.3390/plants13111500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Climate-change-related increases in the frequency and intensity of heatwaves affect viticulture, leading to losses in yield and grape quality. We assessed whether canopy-architecture manipulation mitigates the effects of summer stress in a Mediterranean vineyard. The Vitis vinifera L variety Muscat of Alexandria plants were monitored during 2019-2020. Two canopy shoot-positioning treatments were applied: vertical shoot positioning (VSP) and modulated shoot positioning (MSP). In MSP, the west-side upper foliage was released to promote partial shoot leaning, shading the clusters. Clusters were sampled at pea size (PS), veraison (VER), and full maturation (FM). Measurements included rachis anatomy and hydraulic conductance (Kh) and aquaporins (AQP) and stress-related genes expression in cluster tissues. The results show significant seasonal and interannual differences in Kh and vascular anatomy. At VER, the Kh of the rachis and rachis+pedicel and the xylem diameter decreased but were unaffected by treatments. The phloem-xylem ratio was either increased (2019) or reduced (2020) in MSP compared to VSP. Most AQPs were down-regulated at FM in pedicels and up-regulated at VER in pulp. A potential maturation shift in MSP was observed and confirmed by the up-regulation of several stress-related genes in all tissues. The study pinpoints the role of canopy architecture in berry-water relations and stress response during ripening.
Collapse
Affiliation(s)
- Olfa Zarrouk
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal (S.A.); (C.M.L.)
- IRTA—Institute of Agrifood Research and Technology, Torre Marimon, 08140 Barcelona, Spain
| | - Clara Pinto
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, I.P. Avenida da República, Quinta do Marquês, 2780-159 Oeiras, Portugal; (C.P.); (T.S.D.)
- CEF—Forest Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Maria Victoria Alarcón
- Area of Agronomy of Woody and Horticultural Crops, Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), 06187 Badajoz, Spain; (M.V.A.); (A.F.-R.)
| | - Alicia Flores-Roco
- Area of Agronomy of Woody and Horticultural Crops, Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), 06187 Badajoz, Spain; (M.V.A.); (A.F.-R.)
| | - Leonardo Santos
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal (S.A.); (C.M.L.)
| | - Teresa S. David
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, I.P. Avenida da República, Quinta do Marquês, 2780-159 Oeiras, Portugal; (C.P.); (T.S.D.)
- CEF—Forest Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Sara Amancio
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal (S.A.); (C.M.L.)
| | - Carlos M. Lopes
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal (S.A.); (C.M.L.)
| | - Luisa C. Carvalho
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal (S.A.); (C.M.L.)
| |
Collapse
|
5
|
Carvalho LC, Ramos MJN, Faísca-Silva D, Marreiros P, Fernandes JC, Egipto R, Lopes CM, Amâncio S. Modulation of the Berry Skin Transcriptome of cv. Tempranillo Induced by Water Stress Levels. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091778. [PMID: 37176836 PMCID: PMC10180983 DOI: 10.3390/plants12091778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023]
Abstract
Climate change in the Mediterranean area is making summers warmer and dryer. Grapevine (Vitis vinifera L.) is mostly important for wine production in Mediterranean countries, and the variety Tempranillo is one of the most cultivated in Spain and Portugal. Drought decreases yield and quality and causes important economic losses. As full irrigation has negative effects on quality and water is scarce in this region, deficit irrigation is often applied. In this research, we studied the effects of two deficit irrigation treatments, Sustained Deficit Irrigation (SDI) and Regulated Deficit Irrigation (RDI), on the transcriptome of grape berries at full maturation, through RNAseq. The expression of differentially regulated genes (DEGs) was also monitored through RT-qPCR along berry development. Most transcripts were regulated by water stress, with a similar distribution of up- and down-regulated transcripts within functional categories (FC). Primary metabolism was the more severely affected FC under water stress, followed by signaling and transport. Almost all DEGs monitored were significantly up-regulated by severe water stress at veraison. The modulation of an auxin response repression factor, AUX22D, by water stress indicates a role of this gene in the response to drought. Further, the expression of WRKY40, a TF that regulates anthocyanin biosynthesis, may be responsible for changes in grape quality under severe water stress.
Collapse
Affiliation(s)
- Luísa C Carvalho
- Linking Landscape, Environment, Agriculture and Food Research Centre (LEAF), Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, 1649-004 Lisboa, Portugal
| | - Miguel J N Ramos
- Linking Landscape, Environment, Agriculture and Food Research Centre (LEAF), Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, 1649-004 Lisboa, Portugal
| | - David Faísca-Silva
- Linking Landscape, Environment, Agriculture and Food Research Centre (LEAF), Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, 1649-004 Lisboa, Portugal
| | - Pedro Marreiros
- Linking Landscape, Environment, Agriculture and Food Research Centre (LEAF), Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, 1649-004 Lisboa, Portugal
| | - João C Fernandes
- Linking Landscape, Environment, Agriculture and Food Research Centre (LEAF), Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, 1649-004 Lisboa, Portugal
| | - Ricardo Egipto
- INIAV-Instituto Nacional de Investigação Agrária e Veterinária, Polo de Inovação de Dois Portos, 2565-191 Dois Portos, Portugal
| | - Carlos M Lopes
- Linking Landscape, Environment, Agriculture and Food Research Centre (LEAF), Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, 1649-004 Lisboa, Portugal
| | - Sara Amâncio
- Linking Landscape, Environment, Agriculture and Food Research Centre (LEAF), Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, 1649-004 Lisboa, Portugal
| |
Collapse
|
6
|
Bianchi D, Ricciardi V, Pozzoli C, Grossi D, Caramanico L, Pindo M, Stefani E, Cestaro A, Brancadoro L, De Lorenzis G. Physiological and Transcriptomic Evaluation of Drought Effect on Own-Rooted and Grafted Grapevine Rootstock (1103P and 101-14MGt). PLANTS (BASEL, SWITZERLAND) 2023; 12:1080. [PMID: 36903939 PMCID: PMC10005690 DOI: 10.3390/plants12051080] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Grapevines worldwide are grafted onto Vitis spp. rootstocks in order to improve their tolerance to biotic and abiotic stresses. Thus, the response of vines to drought is the result of the interaction between the scion variety and the rootstock genotype. In this work, the responses of genotypes to drought were evaluated on 1103P and 101-14MGt plants, own-rooted and grafted with Cabernet Sauvignon, in three different water deficit conditions (80, 50, and 20% soil water content, SWC). Gas exchange parameters, stem water potential, root and leaf ABA content, and root and leaf transcriptomic response were investigated. Under well-watered conditions, gas exchange and stem water potential were mainly affected by the grafting condition, whereas under sever water deficit they were affected by the rootstock genotype. Under severe stress conditions (20% SWC), 1103P showed an "avoidance" behavior. It reduced stomatal conductance, inhibited photosynthesis, increased ABA content in the roots, and closed the stomata. The 101-14MGt maintained a high photosynthetic rate, limiting the reduction of soil water potential. This behavior results in a "tolerance" strategy. An analysis of the transcriptome showed that most of the differentially expressed genes were detected at 20% SWC, and more significantly in roots than in leaves. A core set of genes has been highlighted on the roots as being related to the root response to drought that are not affected by genotype nor grafting. Genes specifically regulated by grafting and genes specifically regulated by genotype under drought conditions have been identified as well. The 1103P, more than the 101-14MGt, regulated a high number of genes in both own-rooted and grafted conditions. This different regulation revealed that 1103P rootstock readily perceived the water scarcity and rapidly faced the stress, in agreement with its avoidance strategy.
Collapse
Affiliation(s)
- Davide Bianchi
- Dipartimento di Scienze Agrarie e Ambientali-Produzione Territorio e Agroenergia, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milano, Italy
| | - Valentina Ricciardi
- Dipartimento di Scienze Agrarie e Ambientali-Produzione Territorio e Agroenergia, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milano, Italy
| | - Carola Pozzoli
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Daniele Grossi
- Dipartimento di Scienze Agrarie e Ambientali-Produzione Territorio e Agroenergia, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milano, Italy
| | - Leila Caramanico
- Dipartimento di Scienze Agrarie e Ambientali-Produzione Territorio e Agroenergia, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milano, Italy
| | - Massimo Pindo
- Fondazione E. Mach, Centro Ricerca e Innovazione, Via E. Mach 1, 38010 San Michele all’Adige, TN, Italy
| | - Erika Stefani
- Fondazione E. Mach, Centro Ricerca e Innovazione, Via E. Mach 1, 38010 San Michele all’Adige, TN, Italy
| | - Alessandro Cestaro
- Fondazione E. Mach, Centro Ricerca e Innovazione, Via E. Mach 1, 38010 San Michele all’Adige, TN, Italy
| | - Lucio Brancadoro
- Dipartimento di Scienze Agrarie e Ambientali-Produzione Territorio e Agroenergia, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milano, Italy
| | - Gabriella De Lorenzis
- Dipartimento di Scienze Agrarie e Ambientali-Produzione Territorio e Agroenergia, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milano, Italy
| |
Collapse
|
7
|
Fernandez O, Lemaître-Guillier C, Songy A, Robert-Siegwald G, Lebrun MH, Schmitt-Kopplin P, Larignon P, Adrian M, Fontaine F. The Combination of Both Heat and Water Stresses May Worsen Botryosphaeria Dieback Symptoms in Grapevine. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12040753. [PMID: 36840101 PMCID: PMC9961737 DOI: 10.3390/plants12040753] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 06/12/2023]
Abstract
(1) Background: Grapevine trunk diseases (GTDs) have become a global threat to vineyards worldwide. These diseases share three main common features. First, they are caused by multiple pathogenic micro-organisms. Second, these pathogens often maintain a long latent phase, which makes any research in pathology and symptomatology challenging. Third, a consensus is raising to pinpoint combined abiotic stresses as a key factor contributing to disease symptom expression. (2) Methods: We analyzed the impact of combined abiotic stresses in grapevine cuttings artificially infected by two fungi involved in Botryosphaeria dieback (one of the major GTDs), Neofusicoccum parvum and Diplodia seriata. Fungal-infected and control plants were subjected to single or combined abiotic stresses (heat stress, drought stress or both). Disease intensity was monitored thanks to the measurement of necrosis area size. (3) Results and conclusions: Overall, our results suggest that combined stresses might have a stronger impact on disease intensity upon infection by the less virulent pathogen Diplodia seriata. This conclusion is discussed through the impact on plant physiology using metabolomic and transcriptomic analyses of leaves sampled for the different conditions.
Collapse
Affiliation(s)
- Olivier Fernandez
- Unité Résistance Induite et Bioprotection des Plantes EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | | | - Aurélie Songy
- Unité Résistance Induite et Bioprotection des Plantes EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | | | - Marc-Henri Lebrun
- Research Group Genomics of Plant-Pathogen Interactions, Research Unit Biologie et Gestion des Risques en Agriculture, UR 1290 BIOGER, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Philippe Schmitt-Kopplin
- Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | | | - Marielle Adrian
- Agroécologie, Institut Agro Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Florence Fontaine
- Unité Résistance Induite et Bioprotection des Plantes EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, Université de Reims Champagne-Ardenne, 51100 Reims, France
| |
Collapse
|
8
|
Carvalho LC, Ramos MJN, Faísca-Silva D, van der Kellen D, Fernandes JC, Egipto R, Lopes CM, Amâncio S. Developmental Regulation of Transcription in Touriga Nacional Berries under Deficit Irrigation. PLANTS 2022; 11:plants11060827. [PMID: 35336709 PMCID: PMC8955924 DOI: 10.3390/plants11060827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022]
Abstract
Grapevine (Vitis vinifera L.) is one of the most economically important crops worldwide, especially due to the economic relevance of wine production. Abiotic stress, such as drought, may contribute to low yield, shifts in quality, and important economic loss. The predicted climate change phenomena point to warmer and dryer Mediterranean environmental conditions; as such, it is paramount to study the effects of abiotic stress on grapevine performance. Deficit irrigation systems are applied to optimize water use efficiency without compromising berry quality. In this research, the effect of two deficit irrigation strategies, sustained deficit irrigation (SDI) and regulated deficit irrigation (RDI), in the grape berry were assessed. The effects of different levels of drought were monitored in Touriga Nacional at key stages of berry development (pea size, véraison, and full maturation) through RNA-Seq transcriptome analysis and by specific differentially expressed genes (DEGs) monitoring through RT-qPCR. Handy datasets were obtained by bioinformatics analysis of raw RNA-Seq results. The dominant proportion of transcripts was mostly regulated by development, with véraison showing more upregulated transcripts. Results showed that primary metabolism is the functional category more severely affected under water stress. Almost all DEGs selected for RT-qPCR were significantly upregulated in full maturation and showed the highest variability at véraison and the lowest gene expression values in the pea size stage.
Collapse
|
9
|
Strack T, Stoll M. Implication of Row Orientation Changes on Fruit Parameters of Vitis vinifera L. cv. Riesling in Steep Slope Vineyards. Foods 2021; 10:foods10112682. [PMID: 34828961 PMCID: PMC8623038 DOI: 10.3390/foods10112682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 01/01/2023] Open
Abstract
Row orientation, among others, is a crucial factor in determining grapevine performance and health status, thus affecting berry components that form the basis of the later wine profile. However, the literature about the impact of changes in row orientation at steep slope sites on grapevine fruit composition as well as the differentiation between canopy sides hardly exists. Thus, the aim of this work was to gain knowledge about the impact of row orientation in steep slope vineyards on selected primary and secondary metabolites in berries of Vitis vinifera L. cv. Riesling. Samples were taken from both canopy sides of different row orientations of terraced and downslope vineyards in steep slopes. Free amino acids in the juice and flavonols in the berry skin had a positive correlation to sunlight exposure. Furthermore, grapevines showed adaptations to constantly higher light conditions, e.g., physiologically in reduction in chlorophyll content or protective mechanisms resulting in a lower susceptibility to sunburn damage. Thus, grapevine fruit parameters are affected by row orientation change in steep slopes.
Collapse
|
10
|
Campayo A, Savoi S, Romieu C, López-Jiménez AJ, Serrano de la Hoz K, Salinas MR, Torregrosa L, Alonso GL. The application of ozonated water rearranges the Vitis vinifera L. leaf and berry transcriptomes eliciting defence and antioxidant responses. Sci Rep 2021; 11:8114. [PMID: 33854120 PMCID: PMC8046768 DOI: 10.1038/s41598-021-87542-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/25/2021] [Indexed: 12/17/2022] Open
Abstract
Ozonated water has become an innovative, environmentally friendly tool for controlling the development of fungal diseases in the vineyard or during grape postharvest conservation. However, little information is currently available on the effects of ozonated water sprayings on the grapevine physiology and metabolism. Using the microvine model, we studied the transcriptomic response of leaf and fruit organs to this treatment. The response to ozone was observed to be organ and developmental stage-dependent, with a decrease of the number of DEGs (differentially expressed genes) in the fruit from the onset of ripening to later stages. The most highly up-regulated gene families were heat-shock proteins and chaperones. Other up-regulated genes were involved in oxidative stress homeostasis such as those of the ascorbate-glutathione cycle and glutathione S-transferases. In contrast, genes related to cell wall development and secondary metabolites (carotenoids, terpenoids, phenylpropanoids / flavonoids) were generally down-regulated after ozone treatment, mainly in the early stage of fruit ripening. This down-regulation may indicate a possible carbon competition favouring the re-establishment and maintenance of the redox homeostasis rather than the synthesis of secondary metabolites at the beginning of ripening, the most ozone responsive developmental stage.
Collapse
Affiliation(s)
- Ana Campayo
- Cátedra de Química Agrícola, E.T.S.I. Agrónomos y de Montes, Universidad de Castilla-La Mancha, Avda. de España s/n, 02071, Albacete, Spain
- BetterRID (Better Research, Innovation and Development, S.L.), Carretera de Las Peñas (CM-3203), Km 3.2, Campo de Prácticas-UCLM, 02071, Albacete, Spain
| | - Stefania Savoi
- AGAP, CIRAD, INRAe, Institut Agro-Montpellier SupAgro, Montpellier University, 34060, Montpellier, France
| | - Charles Romieu
- AGAP, CIRAD, INRAe, Institut Agro-Montpellier SupAgro, Montpellier University, 34060, Montpellier, France
| | - Alberto José López-Jiménez
- Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071, Albacete, Spain
| | - Kortes Serrano de la Hoz
- BetterRID (Better Research, Innovation and Development, S.L.), Carretera de Las Peñas (CM-3203), Km 3.2, Campo de Prácticas-UCLM, 02071, Albacete, Spain
| | - M Rosario Salinas
- Cátedra de Química Agrícola, E.T.S.I. Agrónomos y de Montes, Universidad de Castilla-La Mancha, Avda. de España s/n, 02071, Albacete, Spain
| | - Laurent Torregrosa
- AGAP, CIRAD, INRAe, Institut Agro-Montpellier SupAgro, Montpellier University, 34060, Montpellier, France.
| | - Gonzalo L Alonso
- Cátedra de Química Agrícola, E.T.S.I. Agrónomos y de Montes, Universidad de Castilla-La Mancha, Avda. de España s/n, 02071, Albacete, Spain
| |
Collapse
|
11
|
Gambetta JM, Holzapfel BP, Stoll M, Friedel M. Sunburn in Grapes: A Review. FRONTIERS IN PLANT SCIENCE 2021; 11:604691. [PMID: 33488654 PMCID: PMC7819898 DOI: 10.3389/fpls.2020.604691] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/04/2020] [Indexed: 05/04/2023]
Abstract
Sunburn is a physiological disorder that affects the visual and organoleptic properties of grapes. The appearance of brown and necrotic spots severely affects the commercial value of the fruit, and in extreme cases, significantly decreases yield. Depending on the severity of the damage and the driving factors, sunburn on grapes can be classified as sunburn browning (SB) or as sunburn necrosis (SN). Sunburn results from a combination of excessive photosynthetically active radiation (PAR) and UV radiation and temperature that can be exacerbated by other stress factors such as water deficit. Fruit respond to these by activating antioxidant defense mechanisms, de novo synthesis of optical screening compounds and heat-shock proteins as well as through morphological adaptation. This review summarizes the current knowledge on sunburn in grapes and compares it with relevant literature on other fruits. It also discusses the different factors affecting the appearance and degree of sunburn, as well as the biochemical response of grapes to this phenomenon and different potential mitigation strategies. This review proposes further directions for research into sunburn in grapes.
Collapse
Affiliation(s)
- Joanna M. Gambetta
- School of Agricultural and Wine Sciences, National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Bruno P. Holzapfel
- Department of Primary Industries, National Wine and Grape Industry Centre, Wagga Wagga, NSW, Australia
| | - Manfred Stoll
- Department of General and Organic Viticulture, Hochschule Geisenheim University, Geisenheim, Germany
| | - Matthias Friedel
- Department of General and Organic Viticulture, Hochschule Geisenheim University, Geisenheim, Germany
| |
Collapse
|
12
|
Ye Q, Yu J, Zhang Z, Hou L, Liu X. VvBAP1, a Grape C2 Domain Protein, Plays a Positive Regulatory Role Under Heat Stress. FRONTIERS IN PLANT SCIENCE 2020; 11:544374. [PMID: 33240290 PMCID: PMC7680865 DOI: 10.3389/fpls.2020.544374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Temperature is considered one of the critical factors directly influencing grapevine during the three primary growth and development stages: sprout, flowering, and fruit-coloring, which is strongly correlated to the yield and quality of the grape. The grapevine is frequently exposed to high-temperature conditions that are detrimental to growth. However, the mechanisms of the heat stress response and adaptation in grapevine are not adequately studied. The Arabidopsis copine gene AtBON1 encodes a highly conserved protein containing two C2 domains at the amino terminus, participation in cell death regulation and defense responses. Previously, we showed that a BON1 association protein from the grapevine, VvBAP1, plays a positive role in cold tolerance. Similarly, the involvement of VvBAP1 in the resistance to heat stress was also found in the present study. The results indicated VvBAP1 was significantly induced by high temperature, and the elevated expression of VvBAP1 was significantly higher in the resistant cultivars than the sensitive cultivars under heat stress. Seed germination and phenotypic analysis results indicated that overexpression of VvBAP1 improved Arabidopsis thermoresistance. Compared with the wild type, the chlorophyll content and net photosynthetic rate in VvBAP1 overexpressing Arabidopsis plants were markedly increased under heat stress. At high temperatures, overexpression of VvBAP1 also enhanced antioxidant enzyme activity as well as their corresponding gene transcription levels, to reduce the accumulation of reactive oxygen species and lipid peroxidation. Besides, the transcriptional activities of HSP70, HSP101, HSFA2, and HSFB1 in VvBAP1 overexpressing Arabidopsis plants were significantly up-regulated compare to the wild type. In summary, we propose that VvBAP1 may play a potential important role in enhanced grapevine thermoresistance, primarily through the enhancement of antioxidant enzyme activity and promoted heat stress response genes expression.
Collapse
|
13
|
Songy A, Fernandez O, Clément C, Larignon P, Fontaine F. Grapevine trunk diseases under thermal and water stresses. PLANTA 2019; 249:1655-1679. [PMID: 30805725 DOI: 10.1007/s00425-019-03111-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/12/2019] [Indexed: 05/08/2023]
Abstract
Heat and water stresses, individually or combined, affect both the plant (development, physiology, and production) and the pathogens (growth, morphology, dissemination, distribution, and virulence). The grapevine response to combined abiotic and biotic stresses is complex and cannot be inferred from the response to each single stress. Several factors might impact the response and the recovery of the grapevine, such as the intensity, duration, and timing of the stresses. In the heat/water stress-GTDs-grapevine interaction, the nature of the pathogens, and the host, i.e., the nature of the rootstock, the cultivar and the clone, has a great importance. This review highlights the lack of studies investigating the response to combined stresses, in particular molecular studies, and the misreading of the relationship between rootstock and scion in the relationship GTDs/abiotic stresses. Grapevine trunk diseases (GTDs) are one of the biggest threats to vineyard sustainability in the next 30 years. Although many treatments and practices are used to manage GTDs, there has been an increase in the prevalence of these diseases due to several factors such as vineyard intensification, aging vineyards, or nursery practices. The ban of efficient treatments, i.e., sodium arsenite, carbendazim, and benomyl, in the early 2000s may be partly responsible for the fast spread of these diseases. However, GTD-associated fungi can act as endophytes for several years on, or inside the vine until the appearance of the first symptoms. This prompted several researchers to hypothesise that abiotic conditions, especially thermal and water stresses, were involved in the initiation of GTD symptoms. Unfortunately, the frequency of these abiotic conditions occurring is likely to increase according to the recent consensus scenario of climate change, especially in wine-growing areas. In this article, following a review on the impact of combined thermal and water stresses on grapevine physiology, we will examine (1) how this combination of stresses might influence the lifestyle of GTD pathogens, (2) learnings from grapevine field experiments and modelling aiming at studying biotic and abiotic stresses, and (3) what mechanistic concepts can be used to explain how these stresses might affect the grapevine plant status.
Collapse
Affiliation(s)
- A Songy
- SFR Condorcet FR CNRS 3417, Université de Reims Champagne-Ardenne, Résistance Induite et Bioprotection des Plantes EA 4707, BP 1039, 51687, Reims Cedex 2, France
| | - O Fernandez
- SFR Condorcet FR CNRS 3417, Université de Reims Champagne-Ardenne, Résistance Induite et Bioprotection des Plantes EA 4707, BP 1039, 51687, Reims Cedex 2, France
| | - C Clément
- SFR Condorcet FR CNRS 3417, Université de Reims Champagne-Ardenne, Résistance Induite et Bioprotection des Plantes EA 4707, BP 1039, 51687, Reims Cedex 2, France
| | - P Larignon
- Institut Français de la Vigne et du Vin Pôle Rhône-Méditerranée, France, 7 avenue Cazeaux, 30230, Rodilhan, France
| | - F Fontaine
- SFR Condorcet FR CNRS 3417, Université de Reims Champagne-Ardenne, Résistance Induite et Bioprotection des Plantes EA 4707, BP 1039, 51687, Reims Cedex 2, France.
| |
Collapse
|
14
|
Catacchio CR, Alagna F, Perniola R, Bergamini C, Rotunno S, Calabrese FM, Crupi P, Antonacci D, Ventura M, Cardone MF. Transcriptomic and genomic structural variation analyses on grape cultivars reveal new insights into the genotype-dependent responses to water stress. Sci Rep 2019; 9:2809. [PMID: 30809001 PMCID: PMC6391451 DOI: 10.1038/s41598-019-39010-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/12/2018] [Indexed: 12/29/2022] Open
Abstract
Grapevine (Vitis vinifera L.) is importantly cultivated worldwide for table grape and wine production. Its cultivation requires irrigation supply, especially in arid and semiarid areas. Water deficiency can affect berry and wine quality mostly depending on the extent of plant perceived stress, which is a cultivar-specific trait. We tested the physiological and molecular responses to water deficiency of two table grape cultivars, Italia and Autumn royal, and we highlighted their different adaptation. Microarray analyses revealed that Autumn royal reacts involving only 29 genes, related to plant stress response and ABA/hormone signal transduction, to modulate the response to water deficit. Instead, cultivar Italia orchestrates a very broad response (we found 1037 differentially expressed genes) that modifies the cell wall organization, carbohydrate metabolism, response to reactive oxygen species, hormones and osmotic stress. For the first time, we integrated transcriptomic data with cultivar-specific genomics and found that ABA-perception and -signalling are key factors mediating the varietal-specific behaviour of the early response to drought. We were thus able to isolate candidate genes for the genotype-dependent response to drought. These insights will allow the identification of reliable plant stress indicators and the definition of sustainable cultivar-specific protocols for water management.
Collapse
Affiliation(s)
- C R Catacchio
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - F Alagna
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Centro di ricerca Viticoltura ed Enologia, Turi (BA), Italy
- ENEA, Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile, Centro Ricerche Trisaia, Rotondella (MT), Italy
| | - R Perniola
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Centro di ricerca Viticoltura ed Enologia, Turi (BA), Italy
| | - C Bergamini
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Centro di ricerca Viticoltura ed Enologia, Turi (BA), Italy
| | - S Rotunno
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Centro di ricerca Viticoltura ed Enologia, Turi (BA), Italy
| | - F M Calabrese
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - P Crupi
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Centro di ricerca Viticoltura ed Enologia, Turi (BA), Italy
| | - D Antonacci
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Centro di ricerca Viticoltura ed Enologia, Turi (BA), Italy
| | - M Ventura
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", Bari, Italy.
| | - M F Cardone
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Centro di ricerca Viticoltura ed Enologia, Turi (BA), Italy.
| |
Collapse
|
15
|
Evolutionary, interaction and expression analysis of floral meristem identity genes in inflorescence induction of the second crop in two-crop-a-year grape culture system. J Genet 2018. [DOI: 10.1007/s12041-018-0929-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
16
|
Wang P, Su L, Gao H, Jiang X, Wu X, Li Y, Zhang Q, Wang Y, Ren F. Genome-Wide Characterization of bHLH Genes in Grape and Analysis of their Potential Relevance to Abiotic Stress Tolerance and Secondary Metabolite Biosynthesis. FRONTIERS IN PLANT SCIENCE 2018; 9:64. [PMID: 29449854 PMCID: PMC5799661 DOI: 10.3389/fpls.2018.00064] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 01/12/2018] [Indexed: 05/17/2023]
Abstract
Basic helix-loop-helix (bHLH) transcription factors are involved in many abiotic stress responses as well as flavonol and anthocyanin biosynthesis. In grapes (Vitis vinifera L.), flavonols including anthocyanins and condensed tannins are most abundant in the skins of the berries. Flavonols are important phytochemicals for viticulture and enology, but grape bHLH genes have rarely been examined. We identified 94 grape bHLH genes in a genome-wide analysis and performed Nr and GO function analyses for these genes. Phylogenetic analyses placed the genes into 15 clades, with some remaining orphans. 41 duplicate gene pairs were found in the grape bHLH gene family, and all of these duplicate gene pairs underwent purifying selection. Nine triplicate gene groups were found in the grape bHLH gene family and all of these triplicate gene groups underwent purifying selection. Twenty-two grape bHLH genes could be induced by PEG treatment and 17 grape bHLH genes could be induced by cold stress treatment including a homologous form of MYC2, VvbHLH007. Based on the GO or Nr function annotations, we found three other genes that are potentially related to anthocyanin or flavonol biosynthesis: VvbHLH003, VvbHLH007, and VvbHLH010. We also performed a cis-acting regulatory element analysis on some genes involved in flavonoid or anthocyanin biosynthesis and our results showed that most of these gene promoters contained G-box or E-box elements that could be recognized by bHLH family members.
Collapse
|
17
|
Zhao Q, Chen W, Bian J, Xie H, Li Y, Xu C, Ma J, Guo S, Chen J, Cai X, Wang X, Wang Q, She Y, Chen S, Zhou Z, Dai S. Proteomics and Phosphoproteomics of Heat Stress-Responsive Mechanisms in Spinach. FRONTIERS IN PLANT SCIENCE 2018; 9:800. [PMID: 29997633 PMCID: PMC6029058 DOI: 10.3389/fpls.2018.00800] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/24/2018] [Indexed: 05/02/2023]
Abstract
Elevated temperatures limit plant growth and reproduction and pose a growing threat to agriculture. Plant heat stress response is highly conserved and fine-tuned in multiple pathways. Spinach (Spinacia oleracea L.) is a cold tolerant but heat sensitive green leafy vegetable. In this study, heat adaptation mechanisms in a spinach sibling inbred heat-tolerant line Sp75 were investigated using physiological, proteomic, and phosphoproteomic approaches. The abundance patterns of 911 heat stress-responsive proteins, and phosphorylation level changes of 45 phosphoproteins indicated heat-induced calcium-mediated signaling, ROS homeostasis, endomembrane trafficking, and cross-membrane transport pathways, as well as more than 15 transcription regulation factors. Although photosynthesis was inhibited, diverse primary and secondary metabolic pathways were employed for defense against heat stress, such as glycolysis, pentose phosphate pathway, amino acid metabolism, fatty acid metabolism, nucleotide metabolism, vitamin metabolism, and isoprenoid biosynthesis. These data constitute a heat stress-responsive metabolic atlas in spinach, which will springboard further investigations into the sophisticated molecular mechanisms of plant heat adaptation and inform spinach molecular breeding initiatives.
Collapse
Affiliation(s)
- Qi Zhao
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
- Key Laboratory of Forest Plant Ecology, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Wenxin Chen
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Jiayi Bian
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Hao Xie
- Key Laboratory of Forest Plant Ecology, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
| | - Ying Li
- Key Laboratory of Forest Plant Ecology, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
| | - Chenxi Xu
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Jun Ma
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China
| | - Siyi Guo
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng, China
| | - Jiaying Chen
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Xiaofeng Cai
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Xiaoli Wang
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Quanhua Wang
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Yimin She
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China
| | - Sixue Chen
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
- Plant Molecular and Cellular Biology Program, Department of Biology, Genetics Institute, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, United States
| | - Zhiqiang Zhou
- Key Laboratory of Forest Plant Ecology, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
- *Correspondence: Shaojun Dai, Zhiqiang Zhou,
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
- Key Laboratory of Forest Plant Ecology, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
- *Correspondence: Shaojun Dai, Zhiqiang Zhou,
| |
Collapse
|
18
|
Shen C, Wang J, Shi X, Kang Y, Xie C, Peng L, Dong C, Shen Q, Xu Y. Transcriptome Analysis of Differentially Expressed Genes Induced by Low and High Potassium Levels Provides Insight into Fruit Sugar Metabolism of Pear. FRONTIERS IN PLANT SCIENCE 2017; 8:938. [PMID: 28620410 PMCID: PMC5450510 DOI: 10.3389/fpls.2017.00938] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/19/2017] [Indexed: 05/14/2023]
Abstract
Potassium (K) deficiency is a common abiotic stress that can inhibit the growth of fruit and thus reduce crop yields. Little research has been conducted on pear transcriptional changes under low and high K conditions. Here, we performed an experiment with 7-year-old pot-grown "Huangguan" pear trees treated with low, Control or high K levels (0, 0.4, or 0.8 g·K2O/kg soil, respectively) during fruit enlargement and mature stages. We identified 36,444 transcripts from leaves and fruit using transcriptome sequencing technology. From 105 days after full blooming (DAB) to 129 DAB, the number of differentially expressed genes (DEGs) in leaves and fruit in response to low K increased, while in response to high K, the number of DEGs in leaves and fruit decreased. We selected 17 of these DEGs for qRT-PCR analysis to confirm the RNA sequencing results. Based on GO enrichment and KEGG pathway analysis, we found that low-K treatment significantly reduced K nutrient and carbohydrate metabolism of the leaves and fruit compared with the Control treatment. During the fruit development stages, AKT1 (gene39320) played an important role on K+ transport of the leaves and fruit response to K stress. At maturity, sucrose and acid metabolic pathways were inhibited by low K. The up-regulation of the expression of three SDH and two S6PDH genes involved in sorbitol metabolism was induced by low K, promoting the fructose accumulation. Simultaneously, higher expression was found for genes encoding amylase under low K, promoting the decomposition of the starch and leading the glucose accumulation. High K could enhance leaf photosynthesis, and improve the distribution of the nutrient and carbohydrate from leaf to fruit. Sugar components of the leaves and fruit under low K were regulated by the expression of genes encoding 8 types of hormone signals and reactive oxygen species (ROS). Our data revealed the gene expression patterns of leaves and fruit in response to different K levels during the middle and late stages of fruit development as well as the molecular mechanism of improvement of fruit sugar levels by K and provided a scientific basis for improving fruit quality with supplemental K fertilizers.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Caixia Dong
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Jiangsu Key Laboratory of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Science, Nanjing Agricultural UniversityNanjing, China
| | | | | |
Collapse
|
19
|
Carvalho LC, Silva M, Coito JL, Rocheta MP, Amâncio S. Design of a Custom RT-qPCR Array for Assignment of Abiotic Stress Tolerance in Traditional Portuguese Grapevine Varieties. FRONTIERS IN PLANT SCIENCE 2017; 8:1835. [PMID: 29118776 PMCID: PMC5660995 DOI: 10.3389/fpls.2017.01835] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 10/10/2017] [Indexed: 05/21/2023]
Abstract
Widespread agricultural losses attributed to drought, often combined with high temperatures, frequently occur in the field, namely in Mediterranean climate areas, where the existing scenarios for climate change indicate an increase in the frequency of heat waves and severe drought events in summer. Grapevine (Vitis vinifera L.) is the most cultivated fruit species in the world and the most valuable one and is a traditional Mediterranean species. Currently, viticulture must adjust to impending climate changes that are already pushing vine-growers toward the use of ancient and resilient varieties. Portugal is very rich in grapevine biodiversity, however, currently, 90% of the total producing area is planted with only 16 varieties. There is a pressing need to understand the existing genetic diversity and the physiological potential of the varieties/genotypes available to be able to respond to climate changes. With the above scenario in mind, an assembly of 65 differentially expresses genes (DEGs) previously identified as responsive to abiotic stresses in two well studied genotypes, 'Touriga Nacional' and 'Trincadeira,' was designed to scan the gene expression of leaf samples from 10 traditional Portuguese varieties growing in two regions with distinct environmental conditions. Forty-five of those DEGs proved to be associated to "abiotic stress" and were chosen to build a custom qPCR array to identify uncharacterized genotypes as sensitive or tolerant to abiotic stress. According to the experimental set-up behind the array design these DEGs can also be used as indicators of the main abiotic stress that the plant is subjected and responding to (drought, heat, or excess light).
Collapse
|
20
|
Lecourieux F, Kappel C, Pieri P, Charon J, Pillet J, Hilbert G, Renaud C, Gomès E, Delrot S, Lecourieux D. Dissecting the Biochemical and Transcriptomic Effects of a Locally Applied Heat Treatment on Developing Cabernet Sauvignon Grape Berries. FRONTIERS IN PLANT SCIENCE 2017; 8:53. [PMID: 28197155 PMCID: PMC5281624 DOI: 10.3389/fpls.2017.00053] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/10/2017] [Indexed: 05/20/2023]
Abstract
Reproductive development of grapevine and berry composition are both strongly influenced by temperature. To date, the molecular mechanisms involved in grapevine berries response to high temperatures are poorly understood. Unlike recent data that addressed the effects on berry development of elevated temperatures applied at the whole plant level, the present work particularly focuses on the fruit responses triggered by direct exposure to heat treatment (HT). In the context of climate change, this work focusing on temperature effect at the microclimate level is of particular interest as it can help to better understand the consequences of leaf removal (a common viticultural practice) on berry development. HT (+ 8°C) was locally applied to clusters from Cabernet Sauvignon fruiting cuttings at three different developmental stages (middle green, veraison and middle ripening). Samples were collected 1, 7, and 14 days after treatment and used for metabolic and transcriptomic analyses. The results showed dramatic and specific biochemical and transcriptomic changes in heat exposed berries, depending on the developmental stage and the stress duration. When applied at the herbaceous stage, HT delayed the onset of veraison. Heating also strongly altered the berry concentration of amino acids and organic acids (e.g., phenylalanine, γ-aminobutyric acid and malate) and decreased the anthocyanin content at maturity. These physiological alterations could be partly explained by the deep remodeling of transcriptome in heated berries. More than 7000 genes were deregulated in at least one of the nine experimental conditions. The most affected processes belong to the categories "stress responses," "protein metabolism" and "secondary metabolism," highlighting the intrinsic capacity of grape berries to perceive HT and to build adaptive responses. Additionally, important changes in processes related to "transport," "hormone" and "cell wall" might contribute to the postponing of veraison. Finally, opposite effects depending on heating duration were observed for genes encoding enzymes of the general phenylpropanoid pathway, suggesting that the HT-induced decrease in anthocyanin content may result from a combination of transcript abundance and product degradation.
Collapse
Affiliation(s)
- Fatma Lecourieux
- Centre National de la Recherche Scientifique, Institut des Sciences de la Vigne et du Vin, UMR Ecophysiologie et Génomique Fonctionnelle de la VigneVillenave d'Ornon, France
| | - Christian Kappel
- Institut National de la Recherche Agronomique (INRA), Institut des Sciences de la Vigne et du Vin, UMR Ecophysiologie et Génomique Fonctionnelle de la VigneVillenave d'Ornon, France
| | - Philippe Pieri
- Institut National de la Recherche Agronomique (INRA), Institut des Sciences de la Vigne et du Vin, UMR Ecophysiologie et Génomique Fonctionnelle de la VigneVillenave d'Ornon, France
| | - Justine Charon
- Institut National de la Recherche Agronomique (INRA), Institut des Sciences de la Vigne et du Vin, UMR Ecophysiologie et Génomique Fonctionnelle de la VigneVillenave d'Ornon, France
| | - Jérémy Pillet
- Institut National de la Recherche Agronomique (INRA), Institut des Sciences de la Vigne et du Vin, UMR Ecophysiologie et Génomique Fonctionnelle de la VigneVillenave d'Ornon, France
| | - Ghislaine Hilbert
- Institut National de la Recherche Agronomique (INRA), Institut des Sciences de la Vigne et du Vin, UMR Ecophysiologie et Génomique Fonctionnelle de la VigneVillenave d'Ornon, France
| | - Christel Renaud
- Institut National de la Recherche Agronomique (INRA), Institut des Sciences de la Vigne et du Vin, UMR Ecophysiologie et Génomique Fonctionnelle de la VigneVillenave d'Ornon, France
| | - Eric Gomès
- Université de Bordeaux, Institut des Sciences de la Vigne et du Vin, UMR Ecophysiologie et Génomique Fonctionnelle de la VigneVillenave d'Ornon, France
| | - Serge Delrot
- Université de Bordeaux, Institut des Sciences de la Vigne et du Vin, UMR Ecophysiologie et Génomique Fonctionnelle de la VigneVillenave d'Ornon, France
| | - David Lecourieux
- Université de Bordeaux, Institut des Sciences de la Vigne et du Vin, UMR Ecophysiologie et Génomique Fonctionnelle de la VigneVillenave d'Ornon, France
- *Correspondence: David Lecourieux
| |
Collapse
|
21
|
Zhao F, Zhang D, Zhao Y, Wang W, Yang H, Tai F, Li C, Hu X. The Difference of Physiological and Proteomic Changes in Maize Leaves Adaptation to Drought, Heat, and Combined Both Stresses. FRONTIERS IN PLANT SCIENCE 2016; 7:1471. [PMID: 27833614 PMCID: PMC5080359 DOI: 10.3389/fpls.2016.01471] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/15/2016] [Indexed: 05/18/2023]
Abstract
At the eight-leaf stage, maize is highly sensitive to stresses such as drought, heat, and their combination, which greatly affect its yield. At present, few studies have analyzed maize response to combined drought and heat stress at the eight-leaf stage. In this study, we measured certain physical parameters of maize at the eight-leaf stage when it was exposed to drought, heat, and their combination. The results showed an increase in the content of H2O2 and malondialdehyde (MDA), and in the enzyme activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR), but a decrease in the quantum efficiency of photosystem II (ΦPSII). The most obvious increase or decrease in physical parameters was found under the combined stress condition. Moreover, to identify proteins differentially regulated by the three stress conditions at the eight-leaf stage, total proteins from the maize leaves were identified and quantified using multiplex iTRAQ-based quantitative proteomic and LC-MS/MS methods. In summary, the expression levels of 135, 65, and 201 proteins were significantly changed under the heat, drought and combined stress conditions, respectively. Of the 135, 65, and 201 differentially expressed proteins, 61, 28, and 16 responded exclusively to drought stress, heat stress, and combined stress, respectively. Bioinformatics analysis implied that chaperone proteins and proteases play important roles in the adaptive response of maize to heat stress and combined stress, and that the leaf senescence promoted by ethylene-responsive protein and ripening-related protein may play active roles in maize tolerance to combined drought and heat stress. The signaling pathways related to differentially expressed proteins were obviously different under all three stress conditions. Thus, the functional characterization of these differentially expressed proteins will be helpful for discovering new targets to enhance maize tolerance to stress.
Collapse
Affiliation(s)
- Feiyun Zhao
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural UniversityZhengzhou, China
| | - Dayong Zhang
- Provincial Key Laboratory of Agrobiology, Institute of Biotechnology, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Yulong Zhao
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural UniversityZhengzhou, China
| | - Wei Wang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural UniversityZhengzhou, China
| | - Hao Yang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural UniversityZhengzhou, China
| | - Fuju Tai
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural UniversityZhengzhou, China
| | - Chaohai Li
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural UniversityZhengzhou, China
| | - Xiuli Hu
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural UniversityZhengzhou, China
| |
Collapse
|
22
|
Rocheta M, Coito JL, Ramos MJN, Carvalho L, Becker JD, Carbonell-Bejerano P, Amâncio S. Transcriptomic comparison between two Vitis vinifera L. varieties (Trincadeira and Touriga Nacional) in abiotic stress conditions. BMC PLANT BIOLOGY 2016; 16:224. [PMID: 27733112 PMCID: PMC5062933 DOI: 10.1186/s12870-016-0911-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/28/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND Predicted climate changes announce an increase of extreme environmental conditions including drought and excessive heat and light in classical viticultural regions. Thus, understanding how grapevine responds to these conditions and how different genotypes can adapt, is crucial for informed decisions on accurate viticultural actions. Global transcriptome analyses are useful for this purpose as the response to these abiotic stresses involves the interplay of complex and diverse cascades of physiological, cellular and molecular events. The main goal of the present work was to evaluate the response to diverse imposed abiotic stresses at the transcriptome level and to compare the response of two grapevine varieties with contrasting physiological trends, Trincadeira (TR) and Touriga Nacional (TN). RESULTS Leaf transcriptomic response upon heat, high light and drought treatments in growth room controlled conditions, as well as full irrigation and non-irrigation treatments in the field, was compared in TR and TN using GrapeGene GeneChips®. Breakdown of metabolism in response to all treatments was evidenced by the functional annotation of down-regulated genes. However, circa 30 % of the detected stress-responsive genes are still annotated as «Unknown» function. Selected differentially expressed genes from the GrapeGene GeneChip® were analysed by RT-qPCR in leaves of growth room plants under the combination of individual stresses and of field plants, in both varieties. The transcriptomic results correlated better with those obtained after each individual stress than with the results of plants from field conditions. CONCLUSIONS From the transcriptomic comparison between the two Portuguese grapevine varieties Trincadeira and Touriga Nacional under abiotic stress main conclusions can be drawn: 1. A different level of tolerance to stress is evidenced by a lower transcriptome reprogramming in TN than in TR. Interestingly, this lack of response in TN associates with its higher adaptation to extreme conditions including environmental conditions in a changing climate; 2. A complex interplay between stress transcriptional cascades is evidenced by antagonistic and, in lower frequency, synergistic effects on gene expression when several stresses are imposed together; 3. The grapevine responses to stress under controlled conditions are not fully extrapolated to the complex vineyard scenario and should be cautiously considered for agronomic management decision purposes.
Collapse
Affiliation(s)
- Margarida Rocheta
- Instituto Superior de Agronomia, LEAF, Linking Landscape, Environment, Agriculture and Food, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - João L. Coito
- Instituto Superior de Agronomia, LEAF, Linking Landscape, Environment, Agriculture and Food, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Miguel J. N. Ramos
- Instituto Superior de Agronomia, LEAF, Linking Landscape, Environment, Agriculture and Food, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Luísa Carvalho
- Instituto Superior de Agronomia, LEAF, Linking Landscape, Environment, Agriculture and Food, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Jörg D. Becker
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Pablo Carbonell-Bejerano
- Instituto de Ciencias de la Vid y del Vino, CSIC-Universidad de La Rioja-Gobierno de la Rioja, 26007 Logroño, Spain
| | - Sara Amâncio
- Instituto Superior de Agronomia, LEAF, Linking Landscape, Environment, Agriculture and Food, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| |
Collapse
|
23
|
Exploring drought stress-regulated genes in senna (Cassia angustifolia Vahl.): a transcriptomic approach. Funct Integr Genomics 2016; 17:1-25. [PMID: 27709374 DOI: 10.1007/s10142-016-0523-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 09/02/2016] [Accepted: 09/05/2016] [Indexed: 01/08/2023]
Abstract
De novo assembly of reads produced by next-generation sequencing (NGS) technologies offers a rapid approach to obtain expressed gene sequences for non-model organisms. Senna (Cassia angustifolia Vahl.) is a drought-tolerant annual undershrub of Caesalpiniaceae, a subfamily of Fabaceae. There are insufficient transcriptomic and genomic data in public databases for understanding the molecular mechanism underlying the drought tolerance of senna. Therefore, the main purpose of this study was to know the transcriptome profile of senna, with special reference to drought stress. RNA from two different stages of leaf development was extracted and sequenced separately using the Illumina technology. A total of 200 million reads were generated, and a de novo assembly of processed reads in the pooled transcriptome using Trinity yielded 43,413 transcripts which were further annotated using NCBI BLAST with "green plant database (txid 33090)," Swiss Prot, Kyoto Encyclopedia of Genes and Genomes (KEGG), Clusters of Orthologous Groups (COG), and Gene Ontology (GO). Out of the total transcripts, 42,280 (95.0 %) were annotated by BLASTX against the green plant database of NCBI. Senna transcriptome showed the highest similarity to Glycine max (41 %), followed by Phaseolus vulgaris (16 %), Cicer arietinum (15 %), and Medicago trancatula (5 %). The highest number of GO terms were enriched for the molecular functions category; of these "catalytic activity" (GO: 0003824) (25.10 %) and "binding activity" (GO: 0005488) (20.10 %) were most abundantly represented. We used InterProscan to see protein similarity at domain level; a total of 33,256 transcripts were annotated against the Pfam domains. The transcripts were assigned with various KEGG pathways. Coding DNA sequences (CDS) encoding various drought stress-regulated pathways such as signaling factors, protein-modifying/degrading enzymes, biosynthesis of phytohormone, phytohormone signaling, osmotically active compounds, free radical scavengers, chlorophyll metabolism, leaf cuticular wax, polyamines, and protective proteins were identified through BLASTX search. The lucine-rich repeat kinase family was the most abundantly found group of protein kinases. Orphan, bHLH, and bZIP family TFs were the most abundantly found in senna. Six genes encoding MYC2 transcription factor, 9-cis-epoxycarotenoid dioxygenase (NCED), l -ascorbate peroxidase (APX), aminocyclopropane carboxylate oxidase (ACO), abscisic acid 8'-hydroxylase (ABA), and WRKY transcription factor were confirmed through reverse transcriptase-PCR (RT-PCR) and Sanger sequencing for the first time in senna. The potential drought stress-related transcripts identified in this study provide a good start for further investigation into the drought adaptation in senna. Additionally, our transcriptome sequences are the valuable resource for accelerated genomics-assisted genetic improvement programs and facilitate manipulation of biochemical pathways for developing drought-tolerant genotypes of crop plants.
Collapse
|
24
|
The emergence of molecular profiling and omics techniques in seagrass biology; furthering our understanding of seagrasses. Funct Integr Genomics 2016; 16:465-80. [DOI: 10.1007/s10142-016-0501-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 06/09/2016] [Accepted: 06/16/2016] [Indexed: 12/23/2022]
|
25
|
Hu Y, Han YT, Zhang K, Zhao FL, Li YJ, Zheng Y, Wang YJ, Wen YQ. Identification and expression analysis of heat shock transcription factors in the wild Chinese grapevine (Vitis pseudoreticulata). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 99:1-10. [PMID: 26689772 DOI: 10.1016/j.plaphy.2015.11.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 11/21/2015] [Accepted: 11/26/2015] [Indexed: 06/05/2023]
Abstract
Heat shock transcription factors (Hsfs) are known to play pivotal roles in the adaptation of plants to heat stress and other stress stimuli. While grapevine (Vitis vinifera L.) is one of the most important fruit crops worldwide, little is known about the Hsf family in Vitis spp. Here, we identified nineteen putative Hsf genes (VviHsfs) in Vitis spp based on the 12 × grape genome (V. vinifera L.). Phylogenetic analysis revealed three classes of grape Hsf genes (classes A, B, and C). Additional comparisons between grape and Arabidopsis thaliana demonstrated that several VviHsfs genes occurred in corresponding syntenic blocks of Arabidopsis. Moreover, we examined the expression profiles of the homologs of the VviHsfs genes (VpHsfs) in the wild Chinese Vitis pseudoreticulata accession Baihe-35-1, which is tolerant to various environmental stresses. Among the nineteen VpHsfs, ten VpHsfs displayed lower transcript levels under non-stress conditions and marked up-regulation during heat stress treatment; several VpHsfs also displayed altered expression levels in response to cold, salt, and hormone treatments, suggesting their versatile roles in response to stress stimuli. In addition, eight VpHsf-GFP fusion proteins showed differential subcellular localization in V. pseudoreticulata mesophyll protoplasts. Taken together, our data may provide an important reference for further studies of Hsf genes in Vitis spp.
Collapse
Affiliation(s)
- Yang Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, PR China
| | - Yong-Tao Han
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, PR China
| | - Kai Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, PR China
| | - Feng-Li Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, PR China
| | - Ya-Juan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, PR China
| | - Yi Zheng
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853, USA
| | - Yue-Jin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, PR China
| | - Ying-Qiang Wen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
26
|
Barat A, Sahoo PK, Kumar R, Goel C, Singh AK. Transcriptional response to heat shock in liver of snow trout (Schizothorax richardsonii)--a vulnerable Himalayan Cyprinid fish. Funct Integr Genomics 2016; 16:203-13. [PMID: 26810178 DOI: 10.1007/s10142-016-0477-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 01/10/2016] [Accepted: 01/14/2016] [Indexed: 12/15/2022]
Abstract
The snow trout (Schizothorax richardsonii) belonging to family Cyprinidae, is an endemic fish of the Himalayan region. The species is tagged as vulnerable species in the IUCN red list of threatened species. The fish thrives well in snowmelt water of several streams and rivers in the region but are occasionally exposed to more than 20 °C during the summer season. Therefore, we have used deep RNA sequencing to decipher the transcriptome of snow trout and characterize the genes and molecular pathways involved in heat shock response. In this study 72,601,298 and 65,428,283 raw reads for heat-shocked and control, respectively, were obtained by Illumina paired-end sequencing technology. The de novo assembled transcriptome was tested for differential gene expression across the treatment groups. The quality of assembly was high with N75 and N50 lengths of 461 and 1274 bases, respectively. A total of 65 unique transcripts were differentially expressed in liver under heat shock and control. Annotated blast matches reveal that differentially expressed transcripts correspond to critical chaperones and molecular pathways, previously shown to be important for thermal stress in other fish species. Eight randomly selected heat-stressed responsive transcripts were also observed to be upregulated during qRT-PCR analysis. This study is the preliminary step to understanding the responses during sudden environmental changes like heat shock. The reference transcriptome database would also aid further studies on biological and physiological aspects of the snow trout under abiotic stresses.
Collapse
Affiliation(s)
- Ashoktaru Barat
- Molecular Genetics Laboratory, ICAR-Directorate of Coldwater Fisheries Research, (Indian Council of Agricultural Research), Bhimtal-263136, Nainital, Uttarakhand, India.
| | - Prabhati Kumari Sahoo
- Molecular Genetics Laboratory, ICAR-Directorate of Coldwater Fisheries Research, (Indian Council of Agricultural Research), Bhimtal-263136, Nainital, Uttarakhand, India
| | - Rohit Kumar
- Molecular Genetics Laboratory, ICAR-Directorate of Coldwater Fisheries Research, (Indian Council of Agricultural Research), Bhimtal-263136, Nainital, Uttarakhand, India
| | - Chirag Goel
- Molecular Genetics Laboratory, ICAR-Directorate of Coldwater Fisheries Research, (Indian Council of Agricultural Research), Bhimtal-263136, Nainital, Uttarakhand, India
| | - Atul Kumar Singh
- Molecular Genetics Laboratory, ICAR-Directorate of Coldwater Fisheries Research, (Indian Council of Agricultural Research), Bhimtal-263136, Nainital, Uttarakhand, India
| |
Collapse
|
27
|
Díaz-Riquelme J, Zhurov V, Rioja C, Pérez-Moreno I, Torres-Pérez R, Grimplet J, Carbonell-Bejerano P, Bajda S, Van Leeuwen T, Martínez-Zapater JM, Grbic M, Grbic V. Comparative genome-wide transcriptome analysis of Vitis vinifera responses to adapted and non-adapted strains of two-spotted spider mite, Tetranyhus urticae. BMC Genomics 2016; 17:74. [PMID: 26801623 PMCID: PMC4724079 DOI: 10.1186/s12864-016-2401-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 01/18/2016] [Indexed: 12/22/2022] Open
Abstract
Background The two-spotted spider mite, Tetranychus urticae, is an extreme generalist plant pest. Even though mites can feed on many plant species, local mite populations form host races that do not perform equally well on all potential hosts. An acquisition of the ability to evade plant defenses is fundamental for mite’s ability to use a particular plant as a host. Thus, understanding the interactions between the plant and mites with different host adaptation status allows the identification of functional plant defenses and ways mites can evolve to avoid them. Results The grapevine genome-wide transcriptional responses to spider mite strains that are non-adapted and adapted to grapevine as a host were examined. Comparative transcriptome analysis of grapevine responses to these mite strains identified the existence of weak responses induced by the feeding of the non-adapted strain. In contrast, strong but ineffective induced defenses were triggered upon feeding of the adapted strain. A comparative meta-analysis of Arabidopsis, tomato and grapevine responses to mite feeding identified a core of 36 highly conserved genes involved in the perception, regulation and metabolism that were commonly induced in all three species by mite herbivory. Conclusions This study describes the genome-wide grapevine transcriptional responses to herbivory of mite strains that differ in their ability to use grapevine as a host. It raises hypotheses whose testing will lead to our understanding of grapevine defenses and mite adaptations to them. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2401-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jose Díaz-Riquelme
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, ON, N6A5B7, Canada. .,Instituto de Ciencias de la Vid y del Vino, 26006, Logroño, Spain.
| | - Vladimir Zhurov
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, ON, N6A5B7, Canada.
| | - Cristina Rioja
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, ON, N6A5B7, Canada. .,Instituto de Ciencias de la Vid y del Vino, 26006, Logroño, Spain.
| | | | | | - Jérôme Grimplet
- Instituto de Ciencias de la Vid y del Vino, 26006, Logroño, Spain.
| | | | - Sabina Bajda
- Department of Crop Protection, Ghent University, B-9000, Ghent, Belgium. .,Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands.
| | - Thomas Van Leeuwen
- Department of Crop Protection, Ghent University, B-9000, Ghent, Belgium. .,Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands.
| | | | - Miodrag Grbic
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, ON, N6A5B7, Canada. .,Instituto de Ciencias de la Vid y del Vino, 26006, Logroño, Spain.
| | - Vojislava Grbic
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, ON, N6A5B7, Canada. .,Instituto de Ciencias de la Vid y del Vino, 26006, Logroño, Spain.
| |
Collapse
|
28
|
Shiratake K, Suzuki M. Omics studies of citrus, grape and rosaceae fruit trees. BREEDING SCIENCE 2016; 66:122-38. [PMID: 27069397 PMCID: PMC4780796 DOI: 10.1270/jsbbs.66.122] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/01/2015] [Indexed: 05/06/2023]
Abstract
Recent advance of bioinformatics and analytical apparatuses such as next generation DNA sequencer (NGS) and mass spectrometer (MS) has brought a big wave of comprehensive study to biology. Comprehensive study targeting all genes, transcripts (RNAs), proteins, metabolites, hormones, ions or phenotypes is called genomics, transcriptomics, proteomics, metabolomics, hormonomics, ionomics or phenomics, respectively. These omics are powerful approaches to identify key genes for important traits, to clarify events of physiological mechanisms and to reveal unknown metabolic pathways in crops. Recently, the use of omics approach has increased dramatically in fruit tree research. Although the most reported omics studies on fruit trees are transcriptomics, proteomics and metabolomics, and a few is reported on hormonomics and ionomics. In this article, we reviewed recent omics studies of major fruit trees, i.e. citrus, grapevine and rosaceae fruit trees. The effectiveness and prospects of omics in fruit tree research will as well be highlighted.
Collapse
Affiliation(s)
- Katsuhiro Shiratake
- Graduate School of Bioagricultural Sciences, Nagoya University,
Chikusa, Nagoya, Aichi 464-8601,
Japan
- Corresponding author (e-mail: )
| | - Mami Suzuki
- Graduate School of Bioagricultural Sciences, Nagoya University,
Chikusa, Nagoya, Aichi 464-8601,
Japan
| |
Collapse
|
29
|
George IS, Pascovici D, Mirzaei M, Haynes PA. Quantitative proteomic analysis of cabernet sauvignon grape cells exposed to thermal stresses reveals alterations in sugar and phenylpropanoid metabolism. Proteomics 2015; 15:3048-60. [PMID: 25959233 DOI: 10.1002/pmic.201400541] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 04/13/2015] [Accepted: 05/07/2015] [Indexed: 11/07/2022]
Abstract
Grapes (Vitis vinifera) are a valuable fruit crop and wine production is a major industry. Global warming and expanded range of cultivation will expose grapes to more temperature stresses in future. Our study investigated protein level responses to abiotic stresses, with particular reference to proteomic changes induced by the impact of four different temperature stress regimes, including both hot and cold temperatures, on cultured grape cells. Cabernet Sauvignon cell suspension cultures grown at 26°C were subjected to 14 h of exposure to 34 and 42°C for heat stress, and 18 and 10°C for cold stress. Cells from the five temperatures were harvested in biological triplicates and label-free quantitative shotgun proteomic analysis was performed. A total of 2042 non-redundant proteins were identified from the five temperature points. Fifty-five proteins were only detected in extreme heat stress conditions (42°C) and 53 proteins were only detected at extreme cold stress conditions (10°C). Gene Ontology (GO) annotations of differentially expressed proteins provided insights into the metabolic pathways that are involved in temperature stress in grape cells. Sugar metabolism displayed switching between alternative and classical pathways during temperature stresses. Additionally, nine proteins involved in the phenylpropanoid pathway were greatly increased in abundance at extreme cold stress, and were thus found to be cold-responsive proteins. All MS data have been deposited in the ProteomeXchange with identifier PXD000977 (http://proteomecentral.proteomexchange.org/dataset/PXD000977).
Collapse
Affiliation(s)
- Iniga S George
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, Australia
| | - Dana Pascovici
- Australian Proteome Analysis Facility (APAF), Macquarie University, North Ryde, Australia
| | - Mehdi Mirzaei
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, Australia
| | - Paul A Haynes
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, Australia
| |
Collapse
|
30
|
Carvalho LC, Coito JL, Colaço S, Sangiogo M, Amâncio S. Heat stress in grapevine: the pros and cons of acclimation. PLANT, CELL & ENVIRONMENT 2015; 38:777-789. [PMID: 25211707 DOI: 10.1111/pce.12445] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 08/29/2014] [Accepted: 09/02/2014] [Indexed: 06/03/2023]
Abstract
Heat stress is a major limiting factor of grapevine production and quality. Acclimation and recovery are essential to ensure plant survival, and the recovery mechanisms can be independent of the heat response mechanisms. An experimental set up with and without acclimation to heat followed by recovery [stepwise acclimation and recovery (SAR) and stepwise recovery (SR), respectively] was applied to two grapevine varieties, Touriga Nacional (TN), and Trincadeira (TR), with different tolerance to abiotic stress. Major differences were found between leaves of SAR and SR, especially after recovery; in SAR, almost all parameters returned to basal levels while in SR they remained altered. Acclimation led to a swifter and short-term antioxidative response, affecting the plant to a lesser extent than SR. Significant differences were found among varieties: upon stress, TN significantly increased ascorbate and glutathione reduction levels, boosting the cell's redox-buffering capacity, while TR needed to synthesize both metabolites, its response being insufficient to keep the redox state at working levels. TR was affected by stress for a longer period and the up-regulation pattern of antioxidative stress genes was more obvious. In TN, heat shock proteins were significantly induced, but the canonical heat-stress gene signature was not evident probably because no shutdown of the housekeeping metabolism was needed.
Collapse
Affiliation(s)
- Luísa C Carvalho
- Centro de Botânica Aplicada à Agricultura, Departamento de Recursos Naturais, Ambiente e Território, Instituto Superior de Agronomia, Universidade de Lisboa, 1349 017, Lisboa, Portugal
| | | | | | | | | |
Collapse
|
31
|
Ashoub A, Baeumlisberger M, Neupaertl M, Karas M, Brüggemann W. Characterization of common and distinctive adjustments of wild barley leaf proteome under drought acclimation, heat stress and their combination. PLANT MOLECULAR BIOLOGY 2015; 87:459-71. [PMID: 25647426 DOI: 10.1007/s11103-015-0291-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 01/24/2015] [Indexed: 05/18/2023]
Abstract
In nature, plants are often exposed to combinations of different stresses at the same time, while in many laboratory studies of molecular stress induction phenomena, single stress responses are analyzed. This study aims to identify the common (i.e. more general stress-responsive) and the stress-specific adjustments of the leaf proteome of wild barley to two often co-occurring stress phenomena, i.e. in response to (long-term) drought acclimation (DA) or to (transient) heat stress (HS). In addition, we analyzed those alterations which are specific for the combination of both stresses. Leaf proteome analysis was performed using 2D difference gel electrophoresis followed by protein identification via mass spectrometry with a 1.5 threshold value of changes in relative protein contents. DA resulted in specific upregulation of proteins with cell detoxification functions, water homeostasis maintenance, amino acids synthesis and lipid metabolism and distinct forms of heat shock proteins (HSPs) and proteins with chaperon functions while proteins related to nitrogen metabolism were downregulated. This response was distinguished from the response to transient HS, which included upregulation of a broad range of HSP products. The common response to both stressors revealed upregulation of additional forms of HSPs and the downregulation of enzymes of the photosynthetic apparatus and chlorophyll binding proteins. The simultaneous exposure to both stress conditions resulted mostly in a combination of both stress responses and to unique abundance changes of proteins with yet unclear functions.
Collapse
Affiliation(s)
- Ahmed Ashoub
- Institute of Ecology, Evolution, and Diversity, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue Str. 13, 60438, Frankfurt am Main, Germany,
| | | | | | | | | |
Collapse
|
32
|
Tavares S, Wirtz M, Beier MP, Bogs J, Hell R, Amâncio S. Characterization of the serine acetyltransferase gene family of Vitis vinifera uncovers differences in regulation of OAS synthesis in woody plants. FRONTIERS IN PLANT SCIENCE 2015; 6:74. [PMID: 25741355 PMCID: PMC4330696 DOI: 10.3389/fpls.2015.00074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 01/28/2015] [Indexed: 05/08/2023]
Abstract
In higher plants cysteine biosynthesis is catalyzed by O-acetylserine(thiol)lyase (OASTL) and represents the last step of the assimilatory sulfate reduction pathway. It is mainly regulated by provision of O-acetylserine (OAS), the nitrogen/carbon containing backbone for fixation of reduced sulfur. OAS is synthesized by Serine acetyltransferase (SERAT), which reversibly interacts with OASTL in the cysteine synthase complex (CSC). In this study we identify and characterize the SERAT gene family of the crop plant Vitis vinifera. The identified four members of the VvSERAT protein family are assigned to three distinct groups upon their sequence similarities to Arabidopsis SERATs. Expression of fluorescently labeled VvSERAT proteins uncover that the sub-cellular localization of VvSERAT1;1 and VvSERAT3;1 is the cytosol and that VvSERAT2;1 and VvSERAT2;2 localize in addition in plastids and mitochondria, respectively. The purified VvSERATs of group 1 and 2 have higher enzymatic activity than VvSERAT3;1, which display a characteristic C-terminal extension also present in AtSERAT3;1. VvSERAT1;1 and VvSERAT2;2 are evidenced to form the CSC. CSC formation activates VvSERAT2;2, by releasing CSC-associated VvSERAT2;2 from cysteine inhibition. Thus, subcellular distribution of SERAT isoforms and CSC formation in cytosol and mitochondria is conserved between Arabidopsis and grapevine. Surprisingly, VvSERAT2;1 lack the canonical C-terminal tail of plant SERATs, does not form the CSC and is almost insensitive to cysteine inhibition (IC50 = 1.9 mM cysteine). Upon sulfate depletion VvSERAT2;1 is strongly induced at the transcriptional level, while transcription of other VvSERATs is almost unaffected in sulfate deprived grapevine cell suspension cultures. Application of abiotic stresses to soil grown grapevine plants revealed isoform-specific induction of VvSERAT2;1 in leaves upon drought, whereas high light- or temperature- stress hardly trigger VvSERAT2;1 transcription.
Collapse
Affiliation(s)
- Sílvia Tavares
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de LisboaLisbon, Portugal
- Plant Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de LisboaOeiras, Portugal
| | - Markus Wirtz
- Centre for Organismal Studies Heidelberg, University of HeidelbergHeidelberg, Germany
| | - Marcel P. Beier
- Centre for Organismal Studies Heidelberg, University of HeidelbergHeidelberg, Germany
| | - Jochen Bogs
- Centre for Organismal Studies Heidelberg, University of HeidelbergHeidelberg, Germany
- Studiengang Weinbau und Oenologie, Dienstleistungszentrum Laendlicher Raum RheinpfalzNeustadt, Germany
- Fachbereich 1, Life Sciences and Engineering, Fachhochschule BingenBingen am Rhein, Germany
| | - Rüdiger Hell
- Centre for Organismal Studies Heidelberg, University of HeidelbergHeidelberg, Germany
| | - Sara Amâncio
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de LisboaLisbon, Portugal
- *Correspondence: Sara Amâncio, Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal e-mail:
| |
Collapse
|
33
|
Rienth M, Torregrosa L, Luchaire N, Chatbanyong R, Lecourieux D, Kelly MT, Romieu C. Day and night heat stress trigger different transcriptomic responses in green and ripening grapevine (vitis vinifera) fruit. BMC PLANT BIOLOGY 2014; 14:108. [PMID: 24774299 PMCID: PMC4030582 DOI: 10.1186/1471-2229-14-108] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 04/11/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Global climate change will noticeably affect plant vegetative and reproductive development. The recent increase in temperatures has already impacted yields and composition of berries in many grapevine-growing regions. Physiological processes underlying temperature response and tolerance of the grapevine fruit have not been extensively investigated. To date, all studies investigating the molecular regulation of fleshly fruit response to abiotic stress were only conducted during the day, overlooking possible critical night-specific variations. The present study explores the night and day transcriptomic response of grapevine fruit to heat stress at several developmental stages. Short heat stresses (2 h) were applied at day and night to vines bearing clusters sequentially ordered according to the developmental stages along their vertical axes. The recently proposed microvine model (DRCF-Dwarf Rapid Cycling and Continuous Flowering) was grown in climatic chambers in order to circumvent common constraints and biases inevitable in field experiments with perennial macrovines. Post-véraison berry heterogeneity within clusters was avoided by constituting homogenous batches following organic acids and sugars measurements of individual berries. A whole genome transcriptomic approach was subsequently conducted using NimbleGen 090818 Vitis 12X (30 K) microarrays. RESULTS Present work reveals significant differences in heat stress responsive pathways according to day or night treatment, in particular regarding genes associated with acidity and phenylpropanoid metabolism. Precise distinction of ripening stages led to stage-specific detection of malic acid and anthocyanin-related transcripts modulated by heat stress. Important changes in cell wall modification related processes as well as indications for heat-induced delay of ripening and sugar accumulation were observed at véraison, an effect that was reversed at later stages. CONCLUSIONS This first day - night study on heat stress adaption of the grapevine berry shows that the transcriptome of fleshy fruits is differentially affected by abiotic stress at night. The present results emphasize the necessity of including different developmental stages and especially several daytime points in transcriptomic studies.
Collapse
Affiliation(s)
- Markus Rienth
- Fondation Jean Poupelain, 30 Rue Gâte Chien, Javrezac 16100, France
- Montpellier SupAgro-INRA, UMR AGAP-DAAV & UMT Genovigne, 2 place Pierre Viala, Montpellier 34060, France
| | - Laurent Torregrosa
- Montpellier SupAgro-INRA, UMR AGAP-DAAV & UMT Genovigne, 2 place Pierre Viala, Montpellier 34060, France
| | - Nathalie Luchaire
- Montpellier SupAgro-INRA, UMR AGAP-DAAV & UMT Genovigne, 2 place Pierre Viala, Montpellier 34060, France
- INRA, UMR LEPSE, 2 place Pierre Viala, Montpellier 34060, France
| | - Ratthaphon Chatbanyong
- Montpellier SupAgro-INRA, UMR AGAP-DAAV & UMT Genovigne, 2 place Pierre Viala, Montpellier 34060, France
| | - David Lecourieux
- INRA, ISVV, UMR EGFV 1287, 210 chemin de Levsotee, Villenave d’Ornon F-33140, France
| | - Mary T Kelly
- Laboratoire d’Oenologie, UMR1083, Faculté de Pharmacie, Université Montpellier 1, Montpellier 34093, France
| | - Charles Romieu
- INRA, UMR AGAP-DAAV, 2 place Pierre Viala, Montpellier, Cedex 02 34060, France
| |
Collapse
|