1
|
Zou Y, Wang Y, Ma X, Mu D, Zhong J, Ma C, Mao C, Yu S, Gao J, Qiu L. CSF and blood glial fibrillary acidic protein for the diagnosis of Alzheimer's disease: A systematic review and meta-analysis. Ageing Res Rev 2024; 101:102485. [PMID: 39236854 DOI: 10.1016/j.arr.2024.102485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
Recently included in the 2024 new revised diagnostic criteria of Alzheimer's disease (AD), glial fibrillary acidic protein (GFAP) has garnered significant attention. A systematic review and meta-analysis were performed to comprehensively evaluate the diagnostic, differential diagnostic, and prospective diagnostic performance of GFAP in cerebrospinal fluid (CSF) and blood for AD continuum. A literature search using common electronic databases, important websites and historical search way was performed from inception to the beginning of March 2023. The inclusion criteria was studies evaluating the diagnostic accuracy of GFAP in CSF and/or blood for the AD continuum patients, utilizing PET scans, CSF biomarkers and/or clinical criteria. The systematic review and meta-analysis were conducted referring to the Cochrane Handbook. In total, 34 articles were eventually included in the meta-analysis, 29 of which were published within the past three years. Blood GFAP exhibited good diagnostic accuracy across various AD continuum patients, and the summary area under curve for distinguishing PET positive and negative individuals, CSF biomarkers defined positive and negative individuals, clinically diagnosed AD and cognitive unimpaired controls, AD and/or mild cognitive impairment and other neurological diseases, and prospective cases and controls was 0.85[0.81-0.88], 0.77[0.73-0.81], 0.92[0.90-0.94], 0.80[0.77-0.84], and 0.79[0.75-0.82], respectively. Only several studies were recognized to evaluate the diagnostic accuracy of CSF GFAP, which was not as good as that of blood GFAP (paired mixed data: AUC = 0.86 vs. AUC = 0.77), but its accuracy remarkably increased to AUC = 0.91 when combined with other factors like sex, age, and ApoE genotype. In summary, GFAP, particularly in blood, shown good diagnostic, differential diagnostic, and prospective diagnostic accuracy for AD continuum patients, with improved accuracy when used alongside other basic indexes.
Collapse
Affiliation(s)
- Yutong Zou
- Department of Laboratory Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China; Department of Pathology and Lab Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan 250117, Shandong, China
| | - Yifei Wang
- Department of Laboratory Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiaoli Ma
- Department of Laboratory Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Danni Mu
- Department of Laboratory Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jian Zhong
- Department of Laboratory Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Chaochao Ma
- Department of Laboratory Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Chenhui Mao
- Department of Neurology, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Songlin Yu
- Department of Laboratory Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Jing Gao
- Department of Neurology, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ling Qiu
- Department of Laboratory Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
2
|
Wang XX, Dai J, Deng HW, Wang Q, Liu Y, Guo HJ. Effect of Intravenous Lidocaine on Postoperative Cognitive Dysfunction in Patients Undergoing General Anesthesia Surgery: A Systematic Review of a Randomized Controlled Trial. Clin Ther 2024:S0149-2918(24)00290-X. [PMID: 39482176 DOI: 10.1016/j.clinthera.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/16/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024]
Abstract
PURPOSE Postoperative cognitive dysfunction (POCD) is a common neurologic complication that occurs after surgery, which prolongs the hospital stay of patients to a certain extent, increases the occurrence of complications, and even leads to the patient's death. Intravenous lidocaine can reduce perioperative inflammatory response in patients undergoing surgery, but its effect on postoperative cognitive function has not been systematically evaluated. Notably, prior findings regarding the impact of intravenous lidocaine on postoperative cognitive function have been variable. Therefore, on this basis, this study explored the effects of intravenous lidocaine on postoperative cognitive function of patients undergoing general anesthesia through a systematic review and meta-analysis. METHODS Pubmed, Cochrane Library, Embase, Medline, Wanfang Medical Database, China Biomedical Literature Database, and China Academic Journals Full-Text Database were searched from inception to February 2024 for relevant studies that investigated effect of intravenous lidocaine on POCD in patients undergoing general anesthesia surgery. Key data obtained from the referenced literature included the prevalence of POCD, scores from the Mini-Mental State Examination (MMSE), and perioperative serum concentrations of neuron-specific enolase (NSE) and central nervous specific protein (S-100β) protein, serving as biomarkers for central nervous system specificity. Meta-analysis of data was performed using RevMan5.3 software. The software Trial Sequential Analysis (version 0.9) (TSA) was used to analyze high-quality literature focusing on POCD outcome indicators to explore the reliability of the results of meta-analysis. FINDINGS Twenty-five studies were included for quality evaluation and data analysis. The studies compared the effect of intravenous lidocaine on the incidence of POCD in patients undergoing surgery at different time points. Subgroup analysis was used to investigate the incidence of POCD at different time points. The results showed that intravenous lidocaine significantly reduced the incidence of POCD at 1, 3, 7, 9 days and 1 year after surgery compared with the control group (on the first day postoperatively: odds ratio (OR) = 0.48, 95% CI: 0.32-0.69, P < 0.001; postoperative day 3: OR = 0.42, 95% CI: 0.25-0.72, P = 0.002; postoperative day 7: OR = 0.34, 95% CI: 0.21-0.55, P < 0.001; postoperative day 9: OR = 0.32, 95% CI: 0.17-0.61, P < 0.001; 1 year postoperatively: OR = 0.39, 95% CI: 0.28-0.54, P < 0.001). The incidence of POCD in patients undergoing general anesthesia at postoperative day 1 with lidocaine was analyzed sequentially. The results showed that with the increase of the included sample size, the Z-curve still did not exceed the TSA boundary and did not reach the required information size. Fourteen studies compared MMSE scores before, 1, 2, 3, and 7 days after surgery between the 2 groups. The results showed that the MMSE score of lidocaine group was significantly higher than that of control group on the first and third postoperative day, with statistical significance (P < 0.05). Compared with the control group, the serum concentrations of neuron-specific enolase and central nervous specific protein in the lidocaine group significantly decreased postoperatively and on the first and third day postoperatively. IMPLICATIONS Perioperative intravenous lidocaine may improve postoperative cognitive function and reduce the incidence of POCD. However, limited to the current situation of low quality and small sample size, TSA analysis suggests the need for larger high-quality sample to confirm the accuracy of our findings. CLINICAL TRIAL NUMBER This is a systematic review, equivalent to a review, and does not require clinical trial registration. We have registered on PROSPERO. REGISTRATION NUMBER CRD42023493992.
Collapse
Affiliation(s)
- Xian-Xue Wang
- Department of Anesthesiology, Changde Hospital, Xiangya School of Medicine, Central South University (Department of Anesthesiology, The First People's Hospital of Changde city), Changde 415000, China.
| | - Jing Dai
- Department of Anesthesiology, Changde Hospital, Xiangya School of Medicine, Central South University (Department of Anesthesiology, The First People's Hospital of Changde city), Changde 415000, China
| | - Hui-Wei Deng
- Department of Anesthesiology, Changde Hospital, Xiangya School of Medicine, Central South University (Department of Anesthesiology, The First People's Hospital of Changde city), Changde 415000, China
| | - Qi Wang
- Department of Anesthesiology, Changde Hospital, Xiangya School of Medicine, Central South University (Department of Anesthesiology, The First People's Hospital of Changde city), Changde 415000, China
| | - Yun Liu
- Department of Anesthesiology, Changde Hospital, Xiangya School of Medicine, Central South University (Department of Anesthesiology, The First People's Hospital of Changde city), Changde 415000, China
| | - Hua-Jing Guo
- Department of Anesthesiology, Changde Hospital, Xiangya School of Medicine, Central South University (Department of Anesthesiology, The First People's Hospital of Changde city), Changde 415000, China
| |
Collapse
|
3
|
Cáceres E, Olivella JC, Di Napoli M, Raihane AS, Divani AA. Immune Response in Traumatic Brain Injury. Curr Neurol Neurosci Rep 2024:10.1007/s11910-024-01382-7. [PMID: 39467990 DOI: 10.1007/s11910-024-01382-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 10/30/2024]
Abstract
PURPOSE OF REVIEW This review aims to comprehensively examine the immune response following traumatic brain injury (TBI) and how its disruption can impact healing and recovery. RECENT FINDINGS The immune response is now considered a key element in the pathophysiology of TBI, with consequences far beyond the acute phase after injury. A delicate equilibrium is crucial for a healthy recovery. When this equilibrium is disrupted, chronic inflammation and immune imbalance can lead to detrimental effects on survival and disability. Globally, traumatic brain injury (TBI) imposes a substantial burden in terms of both years of life lost and years lived with disability. Although its epidemiology exhibits dynamic trends over time and across regions, TBI disproportionally affects the younger populations, posing psychosocial and financial challenge for communities and families. Following the initial trauma, the primary injury is succeeded by an inflammatory response, primarily orchestrated by the innate immune system. The inflammasome plays a pivotal role during this stage, catalyzing both programmed cell death pathways and the up-regulation of inflammatory cytokines and transcription factors. These events trigger the activation and differentiation of microglia, thereby intensifying the inflammatory response to a systemic level and facilitating the migration of immune cells and edema. This inflammatory response, initially originated in the brain, is monitored by our autonomic nervous system. Through the vagus nerve and adrenergic and cholinergic receptors in various peripheral lymphoid organs and immune cells, bidirectional communication and regulation between the immune and nervous systems is established.
Collapse
Affiliation(s)
- Eder Cáceres
- Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia.
- School of Medicine, Universidad de La Sabana, Chía, Colombia.
- Bioscience PhD. School of Engineering, Universidad de La Sabana, Chía, Colombia.
| | | | - Mario Di Napoli
- Neurological Service, SS Annunziata Hospital, Sulmona, L'Aquila, Italy
| | - Ahmed S Raihane
- School of Medicine, University of New Mexico, Albuquerque, NM, USA
- Department of Neurology, University of New Mexico Health Science Center, Albuquerque, NM, USA
| | - Afshin A Divani
- Department of Neurology, University of New Mexico Health Science Center, Albuquerque, NM, USA
| |
Collapse
|
4
|
Legramante JM, Minieri M, Belli M, Giovannelli A, Agnoli A, Bajo D, Bellincampi L, De Angelis AM, Terrinoni A, Pieri M, Nicolai E, Di Lecce VN, Paganelli C, Ferrazza G, Longo S, Ciotti M, Bernardini S. Evaluation of GFAP/UCH-L1 biomarkers for computed tomography exclusion in mild traumatic brain injury (mTBI). Int J Emerg Med 2024; 17:164. [PMID: 39448905 PMCID: PMC11515575 DOI: 10.1186/s12245-024-00708-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/11/2024] [Indexed: 10/26/2024] Open
Abstract
INTRODUCTION Mild traumatic brain injury (mTBI) represents a major public health concern and affects millions of people worldwide every year. Diagnosis mainly relies on clinical criteria and computed tomography (CT) scans. GFAP (glial fibrillary acidic protein) and UCH-L1 (ubiquitin carboxyl-terminal hydrolase-L1) have been recently studied as potential biomarkers of mTBI. This study retrospectively evaluated the possible use of these combined biomarkers as negative predictors for excluding brain injuries in patients with suspected mTBI in the emergency department. METHODS Adult patients (n = 130) enrolled at Tor Vergata University Hospital (Rome, Italy), consecutively registered at the triage of the emergency department between October 2022 and January 2023, with non-penetrating TBI and Glasgow Coma Scale (GCS) score of 13-15, were considered. All eligible patients underwent intracranial CT scans and blood tests, within 12 h after trauma, for GFAP and UCH-L1 serum concentrations. RESULTS Intracranial CT detected injuries in only seven patients (5%); GFAP and UCH-L1 tested positive in 96 patients and negative in 34 patients (74% vs. 26%). Combined biomarkers had a sensitivity equal to 1.00 (95% CI 0.64-1.00) and a negative predictive value (NPV) of 1.00 (0.99-1.00) in mTBI diagnosis with a negative CT. CONCLUSIONS Combined laboratory tests for GFAP and UCH-L1 biomarkers might play a potential clinical role in avoiding unnecessary head CT scans after mTBI in emergency departments.
Collapse
Affiliation(s)
- Jacopo M Legramante
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Department of Emergency, University Hospital Tor Vergata, Rome, Italy
| | - Marilena Minieri
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy.
- Unit of Laboratory Medicine, University Hospital Tor Vergata, Rome, Italy.
| | - Marzia Belli
- Department of Emergency, University Hospital Tor Vergata, Rome, Italy
| | | | - Alessia Agnoli
- Unit of Laboratory Medicine, University Hospital Tor Vergata, Rome, Italy
| | - Daniela Bajo
- Unit of Laboratory Medicine, University Hospital Tor Vergata, Rome, Italy
| | | | | | - Alessandro Terrinoni
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
- Unit of Laboratory Medicine, University Hospital Tor Vergata, Rome, Italy
| | - Massimo Pieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
- Unit of Laboratory Medicine, University Hospital Tor Vergata, Rome, Italy
| | - Eleonora Nicolai
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Vito N Di Lecce
- Department of Emergency, University Hospital Tor Vergata, Rome, Italy
| | - Carla Paganelli
- Department of Emergency, University Hospital Tor Vergata, Rome, Italy
| | - Gianluigi Ferrazza
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Department of Emergency, University Hospital Tor Vergata, Rome, Italy
| | - Susanna Longo
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Department of Emergency, University Hospital Tor Vergata, Rome, Italy
| | - Marco Ciotti
- Unit of Laboratory Medicine, University Hospital Tor Vergata, Rome, Italy
| | - Sergio Bernardini
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
- Unit of Laboratory Medicine, University Hospital Tor Vergata, Rome, Italy
| |
Collapse
|
5
|
Zhao H, Zhu D, Zhang M, Wang T, Han N, Ge T, Ma X, Wu A, Li R, Zhao X. Establishing Neuron-Specific Enolase Reference Intervals: A Comparative Analysis of Partitioned Approach- and Gender-Based Continuous Age- and Season-Related Models. Diagnostics (Basel) 2024; 14:2226. [PMID: 39410630 PMCID: PMC11475130 DOI: 10.3390/diagnostics14192226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/28/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Static reference intervals (RIs) fail to capture the dynamic changes in bioanalytes. This study aimed to develop gender-based continuous age- and season-related RIs for neuron-specific enolase (NSE) using real-world data and to compare them with partitioned RIs. Methods: The NSE results from 4097 individuals were included after rigorous screening. Partitioned RIs were determined using the Hoffmann method. Generalized additive models for location, scale and shape (GAMLSS) were selected to develop continuous RIs. Results: The partitioned RIs are as follows: <16.4 µg/L for males aged ≥19 years; <14.47 µg/L for females aged 19-49 years; and <17.25 µg/L for females aged ≥50 years. For continuous RIs, NSE levels in males remain stable with age, while in females, NSE levels evidently increase around the age of 50. Although less impactful than age, seasonal changes still affect NSE levels. Dynamic changes and continuous RIs for NSE are visualized in this study. Conclusions: We developed gender-based continuous age- and season-integrated RIs for NSE in North China, highlighting the variation in NSE levels in females with age and season. Compared to static RIs, continuous RIs are more responsive to NSE, potentially enhancing the precision and individualization of health assessments.
Collapse
Affiliation(s)
- Haibin Zhao
- Laboratory Medicine Department, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Dong Zhu
- Laboratory Medicine Department, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Miaomiao Zhang
- Laboratory Medicine Department, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Tengjiao Wang
- Laboratory Medicine Department, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Ning Han
- Laboratory Medicine Department, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Tinglei Ge
- Laboratory Medicine Department, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Xiaoming Ma
- Information Management Department, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Anxin Wu
- School of Biological Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Runqing Li
- Laboratory Medicine Department, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Xiuying Zhao
- Laboratory Medicine Department, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| |
Collapse
|
6
|
Mastandrea P, Mengozzi S, Bernardini S. Systematic review and meta-analysis of observational studies evaluating glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase L1 (UCHL1) as blood biomarkers of mild acute traumatic brain injury (mTBI) or sport-related concussion (SRC) in adult subjects. Diagnosis (Berl) 2024:dx-2024-0078. [PMID: 39167371 DOI: 10.1515/dx-2024-0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/14/2024] [Indexed: 08/23/2024]
Abstract
INTRODUCTION Neurotrauma is the leading cause of death in individuals <45 years old. Many of the published articles on UCHL1 and GFAP lack rigorous methods and reporting. CONTENT Due to the high heterogeneity between studies, we evaluated blood GFAP and UCHL1 levels in the same subjects. We determined the biomarker congruence among areas under the ROC curves (AUCs), sensitivities, specificities, and laboratory values in ng/L to avoid spurious results. The definitive meta-analysis included 1,880 subjects in eight studies. The items with the highest risk of bias were as follows: cut-off not prespecified and case-control design not avoided. The AUC of GFAP was greater than the AUC of UCHL1, with a lower prediction interval (PI) limit of 50.1 % for GFAP and 37.3 % for UCHL1, and a significantly greater percentage of GFAP Sp. The PI of laboratory results for GFAP and UCHL1 were 0.517-7,518 ng/L (diseased), 1.2-255 ng/L (nondiseased), and 3-4,180 vs. 3.2-1,297 ng/L, respectively. SUMMARY Only the GFAP positive cut-off (255 ng/L) appears to be reliable. The negative COs appear unreliable. OUTLOOK GFAP needs better standardization. However, the AUCs of the phospho-Tau and phospho-Tau/Tau proteins resulted not significantly lower than AUC of GFAP, but this result needs further verifications.
Collapse
Affiliation(s)
- Paolo Mastandrea
- Department of Clinical Pathology, 90384 Azienda Ospedaliera di Rilievo Nazionale e di Alta Specialità San Giuseppe Moscati , Salerno, Italy
| | - Silvia Mengozzi
- U.O. Patologia Clinica, AUSL della Romagna, Laboratorio Unico, Cesena, Forli'-Cesena, Italy
| | - Sergio Bernardini
- Department of Experimental Medicine and Surgery, "Tor Vergata" University Hospital, Rome, Rome, Italy
| |
Collapse
|
7
|
Rezaee M, Nasehi MM, Effatpanah M, Jabbaripour S, Ghamkhar M, Karami H, Mehrizi R, Torabi P, Ghamkhar L. Overutilization of head computed tomography in cases of mild traumatic brain injury: a systematic review and meta-analysis. Emerg Radiol 2024; 31:551-565. [PMID: 38844658 DOI: 10.1007/s10140-024-02247-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/23/2024] [Indexed: 07/31/2024]
Abstract
Head computed tomography (CT) is the preferred imaging modality for mild traumatic brain injury (mTBI). The routine use of head CT in low-risk individuals with mild TBI offers no clinical benefit but also causes notable health and financial burden. Despite the availability of related guidelines, studies have reported considerable rate of non-indicated head CT requests. The objectives were to provide an overall estimate for the head CT overutilization rate and to identify the factors contributing to the overuse. A systematic review of PubMed, Scopus, Web of Science, and Embase databases was conducted up to November 2023, following PRISMA and MOOSE guidelines. Two reviewers independently selected eligible articles and extracted data. Quality assessment was performed using a bias risk tool, and a random-effects model was used for data synthesis. Fourteen studies, encompassing 28,612 patients, were included, with 27,809 undergoing head CT scans. Notably, 75% of the included studies exhibited a moderate to high risk of bias. The overutilization rate for pediatric and adult patients was 27% (95% CI: 5-50%) and 32% (95% CI: 21-44%), respectively. An alternative rate, focusing on low-risk pediatric patients, was 54% (95% CI: 20-89%). Overutilization rates showed no significant difference between teaching and non-teaching hospitals. Patients with mTBI from falls or assaults were less likely to receive non-indicated scans. There was no significant association between physician specialty or seniority and overuse, nor between patients' age or sex and the likelihood of receiving a non-indicated scan. Approximately one-third of head CT scans in mTBI cases are avoidable, underscoring the necessity for quality improvement programs to reduce unnecessary imaging and its associated burdens.
Collapse
Affiliation(s)
- Mehdi Rezaee
- Department of Orthopedics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Nasehi
- Pediatric Neurology Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Pediatric Neurology Department, Mofid Children Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Effatpanah
- Pediatric Department, School of Medicine, Imam Khomeini Hospital, Tehran University of Medical Sciences, National Center for Health Insurance Research, Tehran, Iran
| | - Sama Jabbaripour
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Ghamkhar
- Islamic Azad University Challus Branch, Challus, Mazandaran, Iran
| | - Hossein Karami
- National Center for Health Insurance Research, Tehran, Iran
| | - Reza Mehrizi
- National Center for Health Insurance Research, Tehran, Iran
| | - Pegah Torabi
- Department of Radiology Arak, University of Medical Sciences, Arak, Iran
| | - Leila Ghamkhar
- Physical Therapy, National Center for Health Insurance Research, Tehran, Iran.
| |
Collapse
|
8
|
Zhi M, Huang J, Jin X. Clinical value of serum neuron-specific enolase in sepsis-associated encephalopathy: a systematic review and meta-analysis. Syst Rev 2024; 13:191. [PMID: 39039544 PMCID: PMC11265151 DOI: 10.1186/s13643-024-02583-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/13/2024] [Indexed: 07/24/2024] Open
Abstract
OBJECTIVE This study aimed to investigate the serum levels of neuron-specific enolase (NSE) in sepsis-associated encephalopathy (SAE) and perform a meta-analysis to assess the diagnostic and prognostic potential of serum NSE in SAE patients. METHODS We searched English and Chinese databases for studies related to SAE that reported serum NSE levels until November 2023. We extracted information from these studies including the first author and year of publication, the number of samples, the gender and age of patients, the collection time of blood samples in patients, the assay method of serum NSE, the study methods, and the levels of serum NSE with units of ng/mL. The quality assessment of diagnostic accuracy studies 2 (QUADAS-2) tool was used to evaluate the study quality. A meta-analysis was performed using Review Manager version 5.3, employing either a random effects model or a fixed effects model. RESULTS A total of 17 studies were included in the final meta-analysis, including 682 SAE patients and 946 NE patients. The meta-analysis demonstrated significantly higher serum NSE levels in SAE patients compared to NE patients (Z = 5.97, P < 0.001, MD = 7.79, 95%CI 5.23-10.34), irrespective of the method used for serum NSE detection (Z = 6.15, P < 0.001, mean difference [MD] = 7.75, 95%CI 5.28-10.22) and the study methods (Z = 5.97, P < 0.001, MD = 7.79, 95%CI 5.23-10.34). Furthermore, sepsis patients with a favorable outcome showed significantly lower levels of serum NSE compared to those with an unfavorable outcome (death or adverse neurological outcomes) (Z = 5.44, P < 0.001, MD = - 5.34, 95%CI - 7.26-3.42). CONCLUSION The Serum level of NSE in SAE patients was significantly higher than that in septic patients without encephalopathy. The higher the serum NSE level in SAE patients, the higher their mortality rate and incidence of adverse neurological outcomes.
Collapse
Affiliation(s)
- Meiling Zhi
- Clinical Laboratory, Hangzhou Ninth People's Hospital, No. 98 Yilong Road, Qiantang District, Hangzhou, 310020, China.
- Emergency Internal Medicine, Hangzhou Ninth People's Hospital, Hangzhou, 310020, China.
| | - Jian Huang
- Clinical Laboratory, Hangzhou Ninth People's Hospital, No. 98 Yilong Road, Qiantang District, Hangzhou, 310020, China
- Emergency Internal Medicine, Hangzhou Ninth People's Hospital, Hangzhou, 310020, China
| | - Xuli Jin
- Clinical Laboratory, Hangzhou Ninth People's Hospital, No. 98 Yilong Road, Qiantang District, Hangzhou, 310020, China
- Emergency Internal Medicine, Hangzhou Ninth People's Hospital, Hangzhou, 310020, China
| |
Collapse
|
9
|
Karimova D, Rostami E, Chubarev VN, Tarasov VV, Schiöth HB, Rask-Andersen M. Advances in development of biomarkers for brain damage and ischemia. Mol Biol Rep 2024; 51:803. [PMID: 39001884 PMCID: PMC11246271 DOI: 10.1007/s11033-024-09708-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/06/2024] [Indexed: 07/15/2024]
Abstract
Acquired brain injury is an urgent situation that requires rapid diagnosis and treatment. Magnetic resonance imaging (MRI) and computed tomography (CT) are required for accurate diagnosis. However, these methods are costly and require substantial infrastructure and specialized staff. Circulatory biomarkers of acute brain injury may help in the management of patients with acute cerebrovascular events and prevent poor outcome and mortality. The purpose of this review is to provide an overview of the development of potential biomarkers of brain damage to increase diagnostic possibilities. For this purpose, we searched the PubMed database of studies on the diagnostic potential of brain injury biomarkers. We also accessed information from Clinicaltrials.gov to identify any clinical trials of biomarker measurements for the diagnosis of brain damage. In total, we present 41 proteins, enzymes and hormones that have been considered as biomarkers for brain injury, of which 20 have been studied in clinical trials. Several microRNAs have also emerged as potential clinical biomarkers for early diagnosis. Combining multiple biomarkers in a panel, along with other parameters, is yielding promising outcomes.
Collapse
Affiliation(s)
- Diana Karimova
- Functional Pharmacology and Neuroscience, Department of Surgical Sciences, Uppsala, University, Uppsala, Sweden
| | - Elham Rostami
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Vladimir N Chubarev
- Advanced Molecular Technology, Limited Liable Company (LLC), Moscow, 354340, Russia
| | - Vadim V Tarasov
- Advanced Molecular Technology, Limited Liable Company (LLC), Moscow, 354340, Russia
| | - Helgi B Schiöth
- Functional Pharmacology and Neuroscience, Department of Surgical Sciences, Uppsala, University, Uppsala, Sweden
| | - Mathias Rask-Andersen
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
10
|
Menditto VG, Moretti M, Babini L, Mattioli A, Giuliani AR, Fratini M, Pallua FY, Andreoli E, Nitti C, Contucci S, Gabrielli A, Rocchi MBL, Pomponio G. Minor head injury in anticoagulated patients: performance of biomarkers S100B, NSE, GFAP, UCH-L1 and Alinity TBI in the detection of intracranial injury. A prospective observational study. Clin Chem Lab Med 2024; 62:1376-1382. [PMID: 38206121 DOI: 10.1515/cclm-2023-1169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024]
Abstract
OBJECTIVES Data in literature indicate that in patients suffering a minor head injury (MHI), biomarkers serum levels could be effective to predict the absence of intracranial injury (ICI) on head CT scan. Use of these biomarkers in case of patients taking oral anticoagulants who experience MHI is very limited. We investigated biomarkers as predictors of ICI in anticoagulated patients managed in an ED. METHODS We conducted a single-cohort, prospective, observational study in an ED. Our structured clinical pathway included a first head CT scan, 24 h observation and a second CT scan. The outcome was delayed ICI (dICI), defined as ICI on the second CT scan after a first negative CT scan. We assessed the sensitivity (SE), specificity (SP), negative predictive value (NNV) and positive predictive value (PPV) of the biomarkers S100B, NSE, GFAP, UCH-L1 and Alinity TBI in order to identify dICI. RESULTS Our study population was of 234 patients with a negative first CT scan who underwent a second CT scan. The rate of dICI was 4.7 %. The NPV for the detection of dICI were respectively (IC 95 %): S100B 92.7 % (86.0-96.8 %,); ubiquitin C-terminal hydrolase-L1 (UCH-L1) 91.8 % (83.8-96.6 %); glial fibrillary protein (GFP) 100 % (83.2-100 %); TBI 100 % (66.4-100 %). The AUC for the detection of dICI was 0.407 for S100B, 0.563 for neuron-specific enolase (NSE), 0.510 for UCH-L1 and 0.720 for glial fibrillary acidic protein (GFAP), respectively. CONCLUSIONS The NPV of the analyzed biomarkers were high and they potentially could limit the number of head CT scan for detecting dICI in anticoagulated patients suffering MHI. GFAP and Alinity TBI seem to be effective to rule out a dCI, but future trials are needed.
Collapse
Affiliation(s)
- Vincenzo G Menditto
- Emergency and Internal Medicine Department, Azienda Ospedaliero Universitaria delle Marche, Ancona, Ancona, Italy
| | - Marco Moretti
- Medicina di Laboratorio, Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| | - Lucia Babini
- Medicina di Laboratorio, Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| | - Annalisa Mattioli
- Emergency and Internal Medicine Department, Azienda Ospedaliero Universitaria delle Marche, Ancona, Ancona, Italy
| | - Andres Ramon Giuliani
- Emergency and Internal Medicine Department, Azienda Ospedaliero Universitaria delle Marche, Ancona, Ancona, Italy
| | - Marina Fratini
- Emergency and Internal Medicine Department, Azienda Ospedaliero Universitaria delle Marche, Ancona, Ancona, Italy
| | - Fabienne Yvonne Pallua
- Emergency and Internal Medicine Department, Azienda Ospedaliero Universitaria delle Marche, Ancona, Ancona, Italy
| | - Elisa Andreoli
- Emergency and Internal Medicine Department, Azienda Ospedaliero Universitaria delle Marche, Ancona, Ancona, Italy
| | - Cinzia Nitti
- Emergency and Internal Medicine Department, Azienda Ospedaliero Universitaria delle Marche, Ancona, Ancona, Italy
| | - Susanna Contucci
- Emergency and Internal Medicine Department, Azienda Ospedaliero Universitaria delle Marche, Ancona, Ancona, Italy
| | - Armando Gabrielli
- Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, Ancona, Italy
| | | | - Giovanni Pomponio
- Clinica Medica, Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| |
Collapse
|
11
|
Puccio AM, Yue JK, Korley FK, Okonkwo DO, Diaz-Arrastia R, Yuh EL, Ferguson AR, Mukherjee P, Wang KKW, Taylor SR, Deng H, Markowitz AJ, Sun X, Jain S, Manley GT. Diagnostic Utility of Glial Fibrillary Acidic Protein Beyond 12 Hours After Traumatic Brain Injury: A TRACK-TBI Study. J Neurotrauma 2024; 41:1353-1363. [PMID: 38251868 DOI: 10.1089/neu.2023.0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024] Open
Abstract
Blood levels of glial fibrillary acidic protein (GFAP) and ubiquitin carboxyl-terminal hydrolase-L1 (UCH-L1) within 12h of suspected traumatic brain injury (TBI) have been approved by the Food and Drug administration to aid in determining the need for a brain computed tomography (CT) scan. The current study aimed to determine whether this context of use can be expanded beyond 12h post-TBI in patients presenting with Glasgow Coma Scale (GCS) 13-15. The prospective, 18-center Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) study enrolled TBI participants aged ≥17 years who presented to a United States Level 1 trauma center and received a clinically indicated brain CT scan within 24h post-injury, a blood draw within 24h and at 14 days for biomarker analysis. Data from participants with emergency department arrival GCS 13-15 and biomarker values at days 1 and 14 were extracted for the primary analysis. A subgroup of hospitalized participants with serial biomarkers at days 1, 3, 5, and 14 were analyzed, including plasma GFAP and UCH-L1, and serum neuron-specific enolase (NSE) and S100 calcium-binding protein B (S100B). The primary analysis compared biomarker values dichotomized by head CT results (CT+/CT-). Area under receiver-operating characteristic curve (AUC) was used to determine diagnostic accuracy. The overall cohort included 1142 participants with initial GCS 13-15, with mean age 39.8 years, 65% male, and 73% Caucasian. The GFAP provided good discrimination in the overall cohort at days 1 (AUC = 0.82) and 14 (AUC = 0.72), and in the hospitalized subgroup at days 1 (AUC = 0.84), 3 (AUC = 0.88), 5 (AUC = 0.82), and 14 (AUC = 0.74). The UCH-L1, NSE, and S100B did not perform well (AUC = 0.51-0.57 across time points). This study demonstrates the utility of GFAP to aid in decision-making for diagnostic brain CT imaging beyond the 12h time frame in patients with TBI who have a GCS 13-15.
Collapse
Affiliation(s)
- Ava M Puccio
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - John K Yue
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, California, USA
| | - Frederick K Korley
- Department of Emergency Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - David O Okonkwo
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Esther L Yuh
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, California, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Adam R Ferguson
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, California, USA
| | - Pratik Mukherjee
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, California, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Kevin K W Wang
- Center for Neurotrauma, Multiomics and Biomarkers, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Sabrina R Taylor
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, California, USA
| | - Hansen Deng
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Amy J Markowitz
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, California, USA
| | - Xiaoying Sun
- Biostatistics Research Center, Herbert Wertheim School of Public Health and Longevity Science, University of California San Diego, San Diego, California, USA
| | - Sonia Jain
- Biostatistics Research Center, Herbert Wertheim School of Public Health and Longevity Science, University of California San Diego, San Diego, California, USA
| | - Geoffrey T Manley
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, California, USA
| |
Collapse
|
12
|
Lopes AN, Regner A, Simon D. The Role of S100b Protein Biomarker in Brain Death: A Literature Review. Cureus 2024; 16:e62707. [PMID: 39036258 PMCID: PMC11259197 DOI: 10.7759/cureus.62707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2024] [Indexed: 07/23/2024] Open
Abstract
Brain death (BD) represents the irreversible loss of all brain functions, including the brainstem, and is equivalent to clinical death established by neurological criteria. However, clinical diagnosis, mainly based on the absence of primary reflexes post-acute brain injury, remains a challenge in hospital settings. The S100 calcium-binding protein beta (S100b) is used to monitor brain injuries, as recommended by neurotrauma care guidelines in some countries. Its levels are associated with severity and mortality, particularly after traumatic brain injury (TBI) and cerebral hemorrhage. The evaluation of S100b levels in investigating brain death is promising; however, aspects such as cutoff values remain to be elucidated. This paper reviews the literature on the use of S100b as a biomarker in diagnosing brain death. It is noteworthy that there is still no defined cutoff for S100b levels in confirming brain death. Additionally, when considering the use of S100b in emergency situations, a point-of-care methodology should be established to support clinical decision-making quickly and easily in the early identification of patients who are more likely to progress to brain death. In this context, S100b levels may assist in establishing the diagnosis of brain death, complementing existing clinical evidence. This, in turn, can optimize and qualify the organ donation process, reducing costs with ineffective therapies and minimizing the suffering of the families involved.
Collapse
Affiliation(s)
| | - Andrea Regner
- Critical Care, Hospital Materno Infantil Presidente Vargas, Porto Alegre, BRA
| | - Daniel Simon
- Genetics, Universidade Luterana do Brasil, Canoas, BRA
| |
Collapse
|
13
|
Horvat S, Kos J, Pišlar A. Multifunctional roles of γ-enolase in the central nervous system: more than a neuronal marker. Cell Biosci 2024; 14:61. [PMID: 38735971 PMCID: PMC11089681 DOI: 10.1186/s13578-024-01240-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 04/27/2024] [Indexed: 05/14/2024] Open
Abstract
Enolase, a multifunctional protein with diverse isoforms, has generally been recognized for its primary roles in glycolysis and gluconeogenesis. The shift in isoform expression from α-enolase to neuron-specific γ-enolase extends beyond its enzymatic role. Enolase is essential for neuronal survival, differentiation, and the maturation of neurons and glial cells in the central nervous system. Neuron-specific γ-enolase is a critical biomarker for neurodegenerative pathologies and neurological conditions, not only indicating disease but also participating in nerve cell formation and neuroprotection and exhibiting neurotrophic-like properties. These properties are precisely regulated by cysteine peptidase cathepsin X and scaffold protein γ1-syntrophin. Our findings suggest that γ-enolase, specifically its C-terminal part, may offer neuroprotective benefits against neurotoxicity seen in Alzheimer's and Parkinson's disease. Furthermore, although the therapeutic potential of γ-enolase seems promising, the effectiveness of enolase inhibitors is under debate. This paper reviews the research on the roles of γ-enolase in the central nervous system, especially in pathophysiological events and the regulation of neurodegenerative diseases.
Collapse
Affiliation(s)
- Selena Horvat
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Janko Kos
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
- Department of Biotechnology, Jožef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia
| | - Anja Pišlar
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
14
|
Santing JAL, Hopman JH, Verheul RJ, van der Naalt J, van den Brand CL, Jellema K. Clinical value of S100B in detecting intracranial injury in elderly patients with mild traumatic brain injury. Injury 2024; 55:111313. [PMID: 38219558 DOI: 10.1016/j.injury.2024.111313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024]
Abstract
OBJECTIVE The biomarker S100B is a sensitive biomarker to detect traumatic intracranial injury in patients mild traumatic brain injury (mTBI). Higher blood values of S100B, resulting in lower specificity and decreased head computed tomography (CT) reduction has been regarded as one of shortcomings in patients over 65 years of age. The purpose of this study was to assess the accuracy of plasma S100B to detect intracranial injury in elderly patients with mTBI. METHODS A posthoc analysis was performed of a larger prospective cohort study. Previous recorded patient variables and plasma values of S100B from patients with mTBI who presented to the Emergency Department (ED) within 6 h of injury, underwent a head CT and had a blood sample drawn as part of their routine clinical care, were partitioned at 65 years of age. Sensitivity, specificity, negative predictive value, and positive predictive value of plasma S100B for predicting traumatic intracranial lesions on head CT, with a cut-off set at 0.105 μg/L, were calculated. Results were compared with data from an additional systematic review on the accuracy of S100B to detect intracranial injury in elderly patients with mTBI. RESULTS Data of 240 patients (48.4 %) of 65 years or older were analyzed. Sensitivity and NPV of S100B were 89 % and 86 % respectively, which is lower than among younger patients (both 97 %). The specificity decreased stepwise with older age: 22 %, 18 %, and 5 % for the age groups 65-74, 75-84, and ≥ 85 years old, respectively. The meta-analysis comprised 4 studies and the current study with data from 2166 patients. Pooled data estimated the sensitivity of s100B as 97.4 % (95 % CI 83.3-100 %) and specificity as 17.3 % (95 % CI 9.5-29.3 %) to detect intracranial injury in elderly patients with mTBI. CONCLUSION The biomarker S100B at the routine threshold has a limited clinical value in the management of elderly mTBI patients mainly due to a poor specificity leading to only a small decrease in head CTs. Alternate cut-off values and combining several plasma biomarkers with clinical variables may be useful strategies to increase the accuracy of S100B in (subgroups of) elderly mTBI patients.
Collapse
Affiliation(s)
| | - Joella H Hopman
- Department of Emergency Medicine, Haaglanden Medical Center, The Hague, The Netherlands
| | - Rolf J Verheul
- Department of Clinical Chemistry and Laboratory Medicine, Haaglanden Medical Center, The Hague, The Netherlands
| | - Joukje van der Naalt
- Department of Neurology, University Medical Center Groningen, Groningen, The Netherlands
| | - Crispijn L van den Brand
- Department of Emergency Medicine, Haaglanden Medical Center, The Hague, The Netherlands; Department of Emergency Medicine, Erasmus Medical Center, The Netherlands
| | - Korné Jellema
- Department of Neurology, Haaglanden Medical Center, The Hague, The Netherlands
| |
Collapse
|
15
|
Nelson L, Magnus B, Yue J, Balsis S, Patrick C, Temkin N, Diaz-Arrastia R, Manley G. Data-driven characterization of traumatic brain injury severity from clinical, neuroimaging, and blood-based indicators. RESEARCH SQUARE 2024:rs.3.rs-3954157. [PMID: 38410436 PMCID: PMC10896408 DOI: 10.21203/rs.3.rs-3954157/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The conventional clinical approach to characterizing traumatic brain injuries (TBIs) as mild, moderate, or severe using the Glasgow Coma Scale (GCS) total score has well-known limitations, prompting calls for more sophisticated strategies to characterize TBI. Here, we use item response theory (IRT) to develop a novel method for quantifying TBI severity that incorporates neuroimaging and blood-based biomarkers along with clinical measures. Within the multicenter Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) study sample (N = 2545), we show that a set of 23 clinical, head computed tomography (CT), and blood-based biomarker variables familiar to clinicians and researchers index a common latent continuum of TBI severity. We illustrate how IRT can be used to identify the relative value of these features to estimate an individual's position along the TBI severity continuum. Finally, we show that TBI severity scores generated using this novel IRT-based method incrementally predict functional outcome over classic clinical (mild, moderate, severe) or International Mission for Prognosis and Analysis of Clinical Trials in TBI (IMPACT) classification methods. Our findings directly inform ongoing international efforts to refine and deploy new pragmatic, empirically-supported strategies for characterizing TBI, while illustrating a strategy that may be useful to evolve staging systems for other diseases.
Collapse
|
16
|
Trivedi D, Forssten MP, Cao Y, Ismail AM, Czeiter E, Amrein K, Kobeissy F, Wang KKW, DeSoucy E, Buki A, Mohseni S. Screening Performance of S100 Calcium-Binding Protein B, Glial Fibrillary Acidic Protein, and Ubiquitin C-Terminal Hydrolase L1 for Intracranial Injury Within Six Hours of Injury and Beyond. J Neurotrauma 2024; 41:349-358. [PMID: 38115670 DOI: 10.1089/neu.2023.0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
The Scandinavian NeuroTrauma Committee (SNC) guidelines recommend S100 calcium-binding protein B (S100B) as a screening tool for early detection of Traumatic brain injury (TBI) in patients presenting with an initial Glasgow Coma Scale (GCS) of 14-15. The objective of the current study was to compare S100B's diagnostic performance within the recommended 6-h window after injury, compared with glial fibrillary acidic protein (GFAP) and UCH-L1. The secondary outcome of interest was the ability of these biomarkers in detecting traumatic intracranial pathology beyond the 6-h mark. The Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) core database (2014-2017) was queried for data pertaining to all TBI patients with an initial GCS of 14-15 who had a blood sample taken within 6 h of injury in which the levels of S100B, GFAP, and UCH-L1 were measured. As a subgroup analysis, data involving patients with blood samples taken within 6-9 h and 9-12 h were analyzed separately for diagnostic ability. The diagnostic ability of these biomarkers for detecting any intracranial injury was evaluated based on the area under the receiver operating characteristic curve (AUC). Each biomarker's sensitivity, specificity, and accuracy were also reported at the cutoff that maximized Youden's index. A total of 531 TBI patients with GCS 14-15 on admission had a blood sample taken within 6 h, of whom 24.9% (n = 132) had radiologically confirmed intracranial injury. The AUCs of GFAP (0.86, 95% confidence interval [CI]: 0.82-0.90) and UCH-L1 (0.81, 95% CI: 0.76-0.85) were statistically significantly higher than that of S100B (0.74, 95% CI: 0.69-0.79) during this time. There was no statistically significant difference in the predictive ability of S100B when sampled within 6 h, 6-9 h, and 9-12 h of injury, as the p values were >0.05 when comparing the AUCs. Overlapping AUC 95% CI suggests no benefit of a combined GFAP and UCH-L1 screening tool over GFAP during the time periods studied [0.87 (0.83-0.90) vs. 0.86 (0.82-0.90) when sampled within 6 h of injury, 0.83 (0.78-0.88) vs. 0.83 (0.78-0.89) within 6 to 9 h and 0.81 (0.73-0.88) vs. 0.79 (0.72-0.87) within 9-12 h]. Targeted analysis of the CENTER-TBI core database, with focus on the patient category for which biomarker testing is recommended by the SNC guidelines, revealed that GFAP and UCH-L1 perform superior to S100B in predicting CT-positive intracranial lesions within 6 h of injury. GFAP continued to exhibit superior predictive ability to S100B during the time periods studied. S100B displayed relatively unaltered screening performance beyond the diagnostic timeline provided by SNC guidelines. These findings suggest the need for a reevaluation of the current SNC TBI guidelines.
Collapse
Affiliation(s)
- Dhanisha Trivedi
- Department of Neurosurgery, Orebro University Hospital, Orebro, Sweden
- School of Medical Sciences , Orebro University Hospital, Orebro, Sweden
| | | | - Yang Cao
- Clinical Epidemiology and Biostatistics, Orebro University Hospital, Orebro, Sweden
| | | | - Endre Czeiter
- Department of Neurosurgery, University of Pecs, Pecs, Hungary
- Neurotrauma Research Group, Szentágothai Research Center, University of Pecs, Pecs, Hungary
- ELKH-PTE Clinical Neuroscience MR Research Group, University of Pecs, Pecs, Hungary
| | - Krisztina Amrein
- Department of Neurosurgery, University of Pecs, Pecs, Hungary
- Neurotrauma Research Group, Szentágothai Research Center, University of Pecs, Pecs, Hungary
- ELKH-PTE Clinical Neuroscience MR Research Group, University of Pecs, Pecs, Hungary
| | - Firas Kobeissy
- Center for Neurotrauma, Multiomics, and Biomarkers, Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Kevin K W Wang
- Center for Neurotrauma, Multiomics, and Biomarkers, Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Erik DeSoucy
- Division of Trauma, Critical Care, and Acute Care Surgery, Department of Surgery, Sheikh Shakhbout Medical City-Mayo Clinic, Abu Dhabi, United Arab Emirates
| | - Andras Buki
- Department of Neurosurgery, Orebro University Hospital, Orebro, Sweden
- School of Medical Sciences , Orebro University Hospital, Orebro, Sweden
| | - Shahin Mohseni
- School of Medical Sciences , Orebro University Hospital, Orebro, Sweden
| |
Collapse
|
17
|
Keski-Pukkila M, Karr JE, Posti JP, Berghem K, Kotilainen AK, Blennow K, Zetterberg H, Iverson GL, Luoto TM. Preliminary Evaluation of the Scandinavian Guidelines for Initial Management of Minimal, Mild, and Moderate Head Injuries with Glial Fibrillary Acidic Protein. Neurotrauma Rep 2024; 5:50-60. [PMID: 38249322 PMCID: PMC10797168 DOI: 10.1089/neur.2023.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024] Open
Abstract
Glial fibrillary acidic protein (GFAP) has become the most promising biomarker for detecting traumatic abnormalities on head computed tomography (CT) in patients with traumatic brain injury (TBI), but most studies have not addressed the potential added value of combining the biomarker with clinical variables that confer risk for intracranial injuries. The Scandinavian Guidelines for Initial Management of Minimal, Mild, and Moderate Head Injuries in Adults were the first clinical decision rules in the field with an incorporated biomarker, the S100 astroglial calcium-binding protein B (S100B), which is used in the Mild (Low Risk) group defined by the guidelines. Our aim was to evaluate the performance of the guidelines when S100B was substituted with GFAP. The sample (N = 296) was recruited from the Tampere University Hospital's emergency department between November 2015 and November 2016, and there were 49 patients with available GFAP results who were stratified in the Mild (Low Risk) group (thus patients undergoing biomarker triaging). A previously reported cutoff of plasma GFAP ≥140 pg/mL was used. Within the Mild (Low Risk) group (n = 49), GFAP sensitivity (with 95% confidence intervals in parentheses) for detecting traumatic CT abnormalities was 1.0 (0.40-1.00), specificity 0.34 (0.19-0.53), the negative predictive value (NPV) 1.0 (0.68-1.00), and the positive predictive value (PPV) 0.16 (0.05-0.37). The sensitivity and specificity of the modified guidelines with GFAP, when applied to all imaged patients (n = 197) in the whole sample, were 0.94 (0.77-0.99) and 0.20 (0.15-0.28), respectively. NPV was 0.94 (0.80-0.99) and PPV 0.18 (0.13-0.25). In the Mild (Low Risk) group, none of the patients with GFAP results below 140 pg/mL had traumatic abnormalities on their head CT. These findings were derived from a small patient subgroup. Future researchers should replicate these findings in larger samples and assess whether GFAP has added or comparable value to S100B in acute TBI management.
Collapse
Affiliation(s)
- Mira Keski-Pukkila
- Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Justin E. Karr
- Department of Psychology, University of Kentucky, Lexington, Kentucky, USA
| | - Jussi P. Posti
- Neurocenter, Department of Neurosurgery, and Turku Brain Injury Center, Turku University Hospital, and University of Turku, Turku, Finland
| | - Ksenia Berghem
- Medical Imaging Centre, Department of Radiology, Tampere University Hospital, Tampere, Finland
| | - Anna-Kerttu Kotilainen
- Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute, Institute of Neurology, University College London, London, United Kingdom
- Department of Molecular Neuroscience, Queen Square Institute of Neurology, University College London, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Grant L. Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA
- Spaulding Rehabilitation Hospital and the Schoen Adams Research Institute at Spaulding Rehabilitation, Charlestown, Massachusetts, USA
- Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, Charlestown, Massachusetts, USA
| | - Teemu M. Luoto
- Department of Neurosurgery, Tampere University Hospital and Tampere University, Tampere, Finland
| |
Collapse
|
18
|
Hoefer LE, Benjamin AJ, Polcari AM, Schreiber MA, Zakrison TL, Rowell SE. TXA does not affect levels of TBI-related biomarkers in blunt TBI with ICH: A secondary analysis of the prehospital TXA for TBI trial. J Trauma Acute Care Surg 2024; 96:94-100. [PMID: 37807179 PMCID: PMC10840876 DOI: 10.1097/ta.0000000000004130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
BACKGROUND Brain specific biomarkers such as glial fibrillary acidic protein (GFAP), ubiquitin C-terminal hydrolase L1 (UCH-L1), and microtubule-associated protein-2 (MAP-2) have been identified as tools for diagnosis in traumatic brain injury (TBI). Tranexamic acid (TXA) has been shown to decrease mortality in patients with intracranial hemorrhage (ICH). The effect of TXA on these biomarkers is unknown. We investigated whether TXA affects levels of GFAP, UCH-L1, and MAP-2, and whether biomarker levels are associated with mortality in patients receiving TXA. METHODS Patients enrolled in the prehospital TXA for TBI trial had GFAP, UCHL-1 and MAP-2 levels drawn at 0 hour and 24 hours postinjury (n = 422). Patients with ICH from blunt trauma with a GCS <13 and SBP >90 were randomized to placebo, 2 g TXA bolus, or 1 g bolus +1 g/8 hours TXA infusion. Associations of TXA and 24-hour biomarker change were assessed with multivariate linear regression. Association of biomarkers with 28-day mortality was assessed with multivariate logistic regression. All models were controlled for age, GCS, ISS, and AIS head. RESULTS Administration of TXA was not associated with a change in biomarkers over 24 hours postinjury. Changes in biomarker levels were associated with AIS head and age. On admission, higher GFAP (odds ratio [OR], 1.75; confidence interval [CI], 1.31-2.38; p < 0.001) was associated with increased 28-day mortality. At 24 hours postinjury, higher levels of GFAP (OR, 2.09; CI, 1.37-3.30; p < 0.001 and UCHL-1 (OR, 2.98; CI, 1.77-5.25; p < 0.001) were associated with mortality. A change in UCH levels from 0 hour to 24 hours postinjury was also associated with increased mortality (OR, 1.68; CI, 1.15-2.49; p < 0.01). CONCLUSION Administration of TXA does not impact change in GFAP, UCHL-1, or MAP-2 during the first 24 hours after blunt TBI with ICH. Higher levels of GFAP and UCH early after injury may help identify patients at high risk for 28-day mortality. LEVEL OF EVIDENCE Therapeutic/Care Management; Level III.
Collapse
Affiliation(s)
- Lea E Hoefer
- From the Department of Surgery (L.E.H., A.M.P.), University of Chicago Medicine, Chicago, Illinois; Section of Trauma and Acute Care Surgery (A.J.B., T.L.Z., S.E.R.), University of Chicago Medicine, Chicago, Illinois; and Department of Surgery (M.A.S.), Oregon Health and Sciences University, Portland, Oregon
| | | | | | | | | | | |
Collapse
|
19
|
Zhang Y, Li Z, Wang H, Pei Z, Zhao S. Molecular biomarkers of diffuse axonal injury: recent advances and future perspectives. Expert Rev Mol Diagn 2024; 24:39-47. [PMID: 38183228 DOI: 10.1080/14737159.2024.2303319] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024]
Abstract
INTRODUCTION Diffuse axonal injury (DAI), with high mortality and morbidity both in children and adults, is one of the most severe pathological consequences of traumatic brain injury. Currently, clinical diagnosis, disease assessment, disability identification, and postmortem diagnosis of DAI is mainly limited by the absent of specific molecular biomarkers. AREAS COVERED In this review, we first introduce the pathophysiology of DAI, summarized the reported biomarkers in previous animal and human studies, and then the molecular biomarkers such as β-Amyloid precursor protein, neurofilaments, S-100β, myelin basic protein, tau protein, neuron-specific enolase, Peripherin and Hemopexin for DAI diagnosis is summarized. Finally, we put forward valuable views on the future research direction of diagnostic biomarkers of DAI. EXPERT OPINION In recent years, the advanced technology has ultimately changed the research of DAI, and the numbers of potential molecular biomarkers was introduced in related studies. We summarized the latest updated information in such studies to provide references for future research and explore the potential pathophysiological mechanism on diffuse axonal injury.
Collapse
Affiliation(s)
- Youyou Zhang
- Department of Geriatrics Neurology, the Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Linfen People's Hosiptal, the Seventh Clinical Medical College of Shanxi Medical University, Linfen, Shanxi, China
| | - Zhaoyang Li
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hui Wang
- Department of Geriatrics Neurology, the Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhiyong Pei
- Linfen People's Hosiptal, the Seventh Clinical Medical College of Shanxi Medical University, Linfen, Shanxi, China
| | - Shuquan Zhao
- Department of Forensic Pathology, Zhongshan School of Medicine Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
20
|
Jalali R, Godlewska I, Fadrowska-Szleper M, Pypkowska A, Kern A, Bil J, Manta J, Romaszko J. Significance of S100B Protein as a Rapid Diagnostic Tool in Emergency Departments for Traumatic Brain Injury Patients. J Pers Med 2023; 13:1724. [PMID: 38138951 PMCID: PMC10744632 DOI: 10.3390/jpm13121724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Traumatic brain injuries (TBIs) are not only the leading cause of death among people below 44 years of age, but also one of the biggest diagnostic challenges in the emergency set up. We believe that the use of serum biomarkers in diagnosis can help to improve patient care in TBI. One of them is the S100B protein, which is currently proposed as a promising diagnostic tool for TBI and its consequences. In our study, we analyzed serum biomarker S100B in 136 patients admitted to the Emergency Department of the Regional Specialist Hospital in Olsztyn. Participants were divided into three groups: patients with head trauma and alcohol intoxication, patients with head trauma with no alcohol intoxication and a control group of patients with no trauma or with injury in locations other than the head. In our study, as compared to the control group, patients with TBI had a significantly higher S100B level (both with and without intoxication). Moreover, in both groups, the mean S100B protein level was significantly higher in patients with pathological changes in CT. According to our study results, the S100B protein is a promising diagnostic tool, and we propose including its evaluation in routine regimens in patients with TBI.
Collapse
Affiliation(s)
- Rakesh Jalali
- Department of Emergency Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland; (I.G.); (M.F.-S.); (A.P.)
- Clinical Emergency Department, Regional Specialist Hospital, 10-561 Olsztyn, Poland
| | - Izabela Godlewska
- Department of Emergency Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland; (I.G.); (M.F.-S.); (A.P.)
| | - Magdalena Fadrowska-Szleper
- Department of Emergency Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland; (I.G.); (M.F.-S.); (A.P.)
| | - Agata Pypkowska
- Department of Emergency Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland; (I.G.); (M.F.-S.); (A.P.)
| | - Adam Kern
- Department of Cardiology and Internal Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland;
| | - Jacek Bil
- Department of Invasive Cardiology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland;
| | - Joanna Manta
- Department of Emergency Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland; (I.G.); (M.F.-S.); (A.P.)
- Clinical Emergency Department, Regional Specialist Hospital, 10-561 Olsztyn, Poland
| | - Jerzy Romaszko
- Department of Family Medicine and Infectious Diseases, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland;
| |
Collapse
|
21
|
Agoston DV, Helmy A. Fluid-Based Protein Biomarkers in Traumatic Brain Injury: The View from the Bedside. Int J Mol Sci 2023; 24:16267. [PMID: 38003454 PMCID: PMC10671762 DOI: 10.3390/ijms242216267] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
There has been an explosion of research into biofluid (blood, cerebrospinal fluid, CSF)-based protein biomarkers in traumatic brain injury (TBI) over the past decade. The availability of very large datasets, such as CENTRE-TBI and TRACK-TBI, allows for correlation of blood- and CSF-based molecular (protein), radiological (structural) and clinical (physiological) marker data to adverse clinical outcomes. The quality of a given biomarker has often been framed in relation to the predictive power on the outcome quantified from the area under the Receiver Operating Characteristic (ROC) curve. However, this does not in itself provide clinical utility but reflects a statistical association in any given population between one or more variables and clinical outcome. It is not currently established how to incorporate and integrate biofluid-based biomarker data into patient management because there is no standardized role for such data in clinical decision making. We review the current status of biomarker research and discuss how we can integrate existing markers into current clinical practice and what additional biomarkers do we need to improve diagnoses and to guide therapy and to assess treatment efficacy. Furthermore, we argue for employing machine learning (ML) capabilities to integrate the protein biomarker data with other established, routinely used clinical diagnostic tools, to provide the clinician with actionable information to guide medical intervention.
Collapse
Affiliation(s)
- Denes V. Agoston
- Department of Anatomy, Physiology and Genetic, School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK;
| |
Collapse
|
22
|
Modin A, Wickbom F, Kamis C, Undén J. Management of traumatic brain injury in adult-A cross-sectional national study. Health Sci Rep 2023; 6:e1651. [PMID: 37915367 PMCID: PMC10616643 DOI: 10.1002/hsr2.1651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/21/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023] Open
Abstract
Background Mild traumatic brain injury (mTBI) is a common cause for seeking care. Previous studies have shown considerable variations in TBI management. New guidelines may have influenced management routines. Methods This is a descriptive cross-sectional study, collecting data through structured questionnaires. All Swedish emergency hospitals that manage and treat adult patients with mTBI (Reaction Level Scale [RLS] 1-3, Glasgow Coma Scale [GCS] 13-15, age > 18 years) for the initial 24 h after injury were included in this study. Results The response rate among hospitals fulfilling the study criteria's was 61/67 (91%). We observed a distinct predominance of nonspecialists being responsible for the initial management of these patients, with general surgeons and ED-physicians being the dominating specialties. A total of 45/61 (74%) of the hospitals use a guideline when managing TBI, with 12 hospitals (20%) stating that no guideline was used. Conclusion In general, established guidelines are used for the management of TBI in Sweden. However, some of these are outdated and several hospitals used local guidelines not based upon reliable evidence-based methodology. Most patients with TBI are managed by nonspecialist doctors, stressing the need of a reliable guideline.
Collapse
Affiliation(s)
- Albert Modin
- Department of SurgeryHallands HospitalHalmstadSweden
| | - Fredrik Wickbom
- Department of Operation and Intensive CareHallands HospitalHalmstadSweden
| | | | - Johan Undén
- Department of Operation and Intensive CareHallands HospitalHalmstadSweden
- Institution of Clinical ScienceLund UniversityLundSweden
| |
Collapse
|
23
|
Rauchman SH, Pinkhasov A, Gulkarov S, Placantonakis DG, De Leon J, Reiss AB. Maximizing the Clinical Value of Blood-Based Biomarkers for Mild Traumatic Brain Injury. Diagnostics (Basel) 2023; 13:3330. [PMID: 37958226 PMCID: PMC10650880 DOI: 10.3390/diagnostics13213330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Mild traumatic brain injury (TBI) and concussion can have serious consequences that develop over time with unpredictable levels of recovery. Millions of concussions occur yearly, and a substantial number result in lingering symptoms, loss of productivity, and lower quality of life. The diagnosis may not be made for multiple reasons, including due to patient hesitancy to undergo neuroimaging and inability of imaging to detect minimal damage. Biomarkers could fill this gap, but the time needed to send blood to a laboratory for analysis made this impractical until point-of-care measurement became available. A handheld blood test is now on the market for diagnosis of concussion based on the specific blood biomarkers glial fibrillary acidic protein (GFAP) and ubiquitin carboxyl terminal hydrolase L1 (UCH-L1). This paper discusses rapid blood biomarker assessment for mild TBI and its implications in improving prediction of TBI course, avoiding repeated head trauma, and its potential role in assessing new therapeutic options. Although we focus on the Abbott i-STAT TBI plasma test because it is the first to be FDA-cleared, our discussion applies to any comparable test systems that may become available in the future. The difficulties in changing emergency department protocols to include new technology are addressed.
Collapse
Affiliation(s)
| | - Aaron Pinkhasov
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (A.P.); (S.G.); (J.D.L.)
| | - Shelly Gulkarov
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (A.P.); (S.G.); (J.D.L.)
| | | | - Joshua De Leon
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (A.P.); (S.G.); (J.D.L.)
| | - Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (A.P.); (S.G.); (J.D.L.)
| |
Collapse
|
24
|
Shen H, Zaitseva D, Yang Z, Forsythe L, Joergensen S, Zone AI, Shehu J, Maghraoui S, Ghorbani A, Davila A, Issadore D, Abella BS. Brain-derived extracellular vesicles as serologic markers of brain injury following cardiac arrest: A pilot feasibility study. Resuscitation 2023; 191:109937. [PMID: 37591443 PMCID: PMC10528050 DOI: 10.1016/j.resuscitation.2023.109937] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
AIM Assessment of neurologic injury within the immediate hours following out-of-hospital cardiac arrest (OHCA) resuscitation remains a major clinical challenge. Extracellular vesicles (EVs), small bodies derived from cytosolic contents during injury, may provide the opportunity for "liquid biopsy" within hours following resuscitation, as they contain proteins and RNA linked to cell type of origin. We evaluated whether micro-RNA (miRNA) from serologic EVs were associated with post-arrest neurologic outcome. METHODS We obtained serial blood samples in an OHCA cohort. Using novel microfluidic techniques to isolate EVs based on EV surface marker GluR2 (present on excitatory neuronal dendrites enriched in hippocampal tissue), we employed reverse transcription quantitative polymerase chain reaction (RT-qPCR) methods to measure a panel of miRNAs and tested association with dichotomized modified Rankin Score (mRS) at discharge. RESULTS EVs were assessed in 27 post-arrest patients between 7/3/2019 and 7/21/2022; 9 patients experienced good outcomes. Several miRNA species including miR-124 were statistically associated with mRS at discharge when measured within 6 hours of resuscitation (AUC = 0.84 for miR-124, p < 0.05). In a Kendall ranked correlation analysis, miRNA associations with outcome were not strongly correlated with standard serologic marker measurements, or amongst themselves, suggesting that miRNA provide distinct information from common protein biomarkers. CONCLUSIONS This study explores the associations between miRNAs from neuron-derived EVs (NDEs) and circulating protein biomarkers within 6 hours with neurologic outcome, suggesting a panel of very early biomarker may be useful during clinical care. Future work will be required to test larger cohorts with a broader panel of miRNA species.
Collapse
Affiliation(s)
- Hanfei Shen
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Daria Zaitseva
- Penn Acute Research Collaboration, Department of Emergency Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zijian Yang
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Liam Forsythe
- Penn Acute Research Collaboration, Department of Emergency Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah Joergensen
- Penn Acute Research Collaboration, Department of Emergency Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alea I Zone
- Penn Acute Research Collaboration, Department of Emergency Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joana Shehu
- Penn Acute Research Collaboration, Department of Emergency Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah Maghraoui
- Penn Acute Research Collaboration, Department of Emergency Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anahita Ghorbani
- Penn Acute Research Collaboration, Department of Emergency Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Antonio Davila
- Penn Acute Research Collaboration, Department of Emergency Medicine, University of Pennsylvania, Philadelphia, PA, USA; School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - David Issadore
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin S Abella
- Penn Acute Research Collaboration, Department of Emergency Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Resuscitation Science, Department of Emergency Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
25
|
Tsakiris C, Siempis T, Lianos GD, Vlachodimitropoulou L, Voulgaris S, Alexiou GA. Blood biomarkers: a new solution to the silent pandemic of traumatic brain injury. Biomark Med 2023; 17:783-785. [PMID: 38223950 DOI: 10.2217/bmm-2023-0444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Affiliation(s)
- Charalampos Tsakiris
- Department of Neurosurgery, University Hospital of Ioannina, Ioannina, 45110, Greece
| | - Timoleon Siempis
- Department of Neurosurgery, University Hospital of Ioannina, Ioannina, 45110, Greece
| | - Georgios D Lianos
- Department of Surgery, University Hospital of Ioannina, Ioannina, 45110, Greece
| | | | - Spyridon Voulgaris
- Department of Neurosurgery, University Hospital of Ioannina, Ioannina, 45110, Greece
| | - George A Alexiou
- Department of Neurosurgery, University Hospital of Ioannina, Ioannina, 45110, Greece
| |
Collapse
|
26
|
de Souza DN, Jarmol M, Bell CA, Marini C, Balcer LJ, Galetta SL, Grossman SN. Precision Concussion Management: Approaches to Quantifying Head Injury Severity and Recovery. Brain Sci 2023; 13:1352. [PMID: 37759953 PMCID: PMC10526525 DOI: 10.3390/brainsci13091352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Mitigating the substantial public health impact of concussion is a particularly difficult challenge. This is partly because concussion is a highly prevalent condition, and diagnosis is predominantly symptom-based. Much of contemporary concussion management relies on symptom interpretation and accurate reporting by patients. These types of reports may be influenced by a variety of factors for each individual, such as preexisting mental health conditions, headache disorders, and sleep conditions, among other factors. This can all be contributory to non-specific and potentially misleading clinical manifestations in the aftermath of a concussion. This review aimed to conduct an examination of the existing literature on emerging approaches for objectively evaluating potential concussion, as well as to highlight current gaps in understanding where further research is necessary. Objective assessments of visual and ocular motor concussion symptoms, specialized imaging techniques, and tissue-based concentrations of specific biomarkers have all shown promise for specifically characterizing diffuse brain injuries, and will be important to the future of concussion diagnosis and management. The consolidation of these approaches into a comprehensive examination progression will be the next horizon for increased precision in concussion diagnosis and treatment.
Collapse
Affiliation(s)
- Daniel N. de Souza
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
| | - Mitchell Jarmol
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
| | - Carter A. Bell
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
| | - Christina Marini
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
| | - Laura J. Balcer
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY 10017, USA
- Department of Population Health, New York University Grossman School of Medicine, New York, NY 10017, USA
| | - Steven L. Galetta
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY 10017, USA
| | - Scott N. Grossman
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY 10017, USA
| |
Collapse
|
27
|
Okada Y, Nakasone H, Yoshimura K, Tamaki M, Kusuda M, Nakamura Y, Kawamura M, Kawamura S, Takeshita J, Yoshino N, Misaki Y, Gomyo A, Tanihara A, Kimura SI, Kako S, Kanda Y. Plasma ubiquitin C-terminal hydrolase-L1 (UCH-L1) level as a blood biomarker of neurological damage after allogeneic hematopoietic cell transplantation. Int J Hematol 2023; 118:340-346. [PMID: 37480445 DOI: 10.1007/s12185-023-03642-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/24/2023]
Abstract
Several biofluid-based biomarkers for traumatic brain injury show promise for use in diagnosis and outcome prediction. In contrast, few studies have investigated biomarkers for non-traumatic brain injury. We focused on ubiquitin C-terminal hydrolase-L1 (UCH-L1), which has been proposed as a screening tool for traumatic brain injury, and investigated whether the plasma UCH-L1 level could also be a useful biomarker in patients with non-traumatic brain injury. We measured UCH-L1 in 25 patients who had experienced neurological complications after allogeneic hematopoietic cell transplantation (HCT) and 22 control patients without any complications or graft-versus-host disease. Although UCH-L1 levels before HCT did not differ significantly (P = 0.053), levels after HCT were higher in patients with neurological complications compared with the control group (P < 0.001). At a UCH-L1 cutoff value of 0.072 ng/ml, sensitivity was 68.0% and specificity was 100%. The statistical power of UCH-L1 for neurological complications seemed to be higher than that of CT and comparable to that of MRI. Thus, increased levels of UCH-L1 might reflect the presence of neurological damage even in patients with non-traumatic brain injury. Further large cohort investigations are warranted.
Collapse
Affiliation(s)
- Yosuke Okada
- Division of Hematology, Jichi Medical University Saitama Medical Center, 1-847 Amanuma-cho Omiya-ku, Saitama, 330-8503, Japan
| | - Hideki Nakasone
- Division of Hematology, Jichi Medical University Saitama Medical Center, 1-847 Amanuma-cho Omiya-ku, Saitama, 330-8503, Japan
| | - Kazuki Yoshimura
- Division of Hematology, Jichi Medical University Saitama Medical Center, 1-847 Amanuma-cho Omiya-ku, Saitama, 330-8503, Japan
| | - Masaharu Tamaki
- Division of Hematology, Jichi Medical University Saitama Medical Center, 1-847 Amanuma-cho Omiya-ku, Saitama, 330-8503, Japan
| | - Machiko Kusuda
- Division of Hematology, Jichi Medical University Saitama Medical Center, 1-847 Amanuma-cho Omiya-ku, Saitama, 330-8503, Japan
| | - Yuhei Nakamura
- Division of Hematology, Jichi Medical University Saitama Medical Center, 1-847 Amanuma-cho Omiya-ku, Saitama, 330-8503, Japan
| | - Masakatsu Kawamura
- Division of Hematology, Jichi Medical University Saitama Medical Center, 1-847 Amanuma-cho Omiya-ku, Saitama, 330-8503, Japan
| | - Shunto Kawamura
- Division of Hematology, Jichi Medical University Saitama Medical Center, 1-847 Amanuma-cho Omiya-ku, Saitama, 330-8503, Japan
| | - Junko Takeshita
- Division of Hematology, Jichi Medical University Saitama Medical Center, 1-847 Amanuma-cho Omiya-ku, Saitama, 330-8503, Japan
| | - Nozomu Yoshino
- Division of Hematology, Jichi Medical University Saitama Medical Center, 1-847 Amanuma-cho Omiya-ku, Saitama, 330-8503, Japan
| | - Yukiko Misaki
- Division of Hematology, Jichi Medical University Saitama Medical Center, 1-847 Amanuma-cho Omiya-ku, Saitama, 330-8503, Japan
| | - Ayumi Gomyo
- Division of Hematology, Jichi Medical University Saitama Medical Center, 1-847 Amanuma-cho Omiya-ku, Saitama, 330-8503, Japan
| | - Aki Tanihara
- Division of Hematology, Jichi Medical University Saitama Medical Center, 1-847 Amanuma-cho Omiya-ku, Saitama, 330-8503, Japan
| | - Shun-Ichi Kimura
- Division of Hematology, Jichi Medical University Saitama Medical Center, 1-847 Amanuma-cho Omiya-ku, Saitama, 330-8503, Japan
| | - Shinichi Kako
- Division of Hematology, Jichi Medical University Saitama Medical Center, 1-847 Amanuma-cho Omiya-ku, Saitama, 330-8503, Japan
| | - Yoshinobu Kanda
- Division of Hematology, Jichi Medical University Saitama Medical Center, 1-847 Amanuma-cho Omiya-ku, Saitama, 330-8503, Japan.
| |
Collapse
|
28
|
Gil-Jardiné C, Payen JF, Bernard R, Bobbia X, Bouzat P, Catoire P, Chauvin A, Claessens YE, Douay B, Dubucs X, Galanaud D, Gauss T, Gauvrit JY, Geeraerts T, Glize B, Goddet S, Godier A, Le Borgne P, Rousseau G, Sapin V, Velly L, Viglino D, Vigue B, Cuvillon P, Frasca D, Claret PG. Management of patients suffering from mild traumatic brain injury 2023. Anaesth Crit Care Pain Med 2023; 42:101260. [PMID: 37285919 DOI: 10.1016/j.accpm.2023.101260] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
OBJECTIVE To develop a multidisciplinary French reference that addresses initial pre- and in-hospital management of a mild traumatic brain injury patient. DESIGN A panel of 22 experts was formed on request from the French Society of Emergency Medicine (SFMU) and the French Society of Anaesthesiology and Critical Care Medicine (SFAR). A policy of declaration and monitoring of links of interest was applied and respected throughout the process of producing the guidelines. Similarly, no funding was received from any company marketing a health product (drug or medical device). The expert panel had to respect and follow the Grade® (Grading of Recommendations Assessment, Development and Evaluation) methodology to evaluate the quality of the evidence on which the recommendations were based. Given the impossibility of obtaining a high level of evidence for most of the recommendations, it was decided to adopt a "Recommendations for Professional Practice" (RPP) format, rather than a Formalized Expert Recommendation (FER) format, and to formulate the recommendations using the terminology of the SFMU and SFAR Guidelines. METHODS Three fields were defined: 1) pre-hospital assessment, 2) emergency room management, and 3) emergency room discharge modalities. The group assessed 11 questions related to mild traumatic brain injury. Each question was formulated using a PICO (Patients Intervention Comparison Outcome) format. RESULTS The experts' synthesis work and the application of the GRADE® method resulted in the formulation of 14 recommendations. After two rounds of rating, strong agreement was obtained for all recommendations. For one question, no recommendation could be made. CONCLUSION There was strong agreement among the experts on important, transdisciplinary recommendations, the purpose of which is to improve management practices for patients with mild head injury.
Collapse
Affiliation(s)
- Cédric Gil-Jardiné
- Centre Hospitalier Universitaire de Bordeaux, Hôpital Pellegrin, Service des Urgences-Adultes, Population Health, INSERM U1219, équipe aHeAD, Université de Bordeaux, Bordeaux, France.
| | - Jean-François Payen
- Department of Anesthesiology and Critical Care, Grenoble Alpes University Hospital, University Grenoble Alpes, F-38000 Grenoble, France
| | - Rémy Bernard
- Department of Anaesthesiology and Critical Care, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Xavier Bobbia
- Montpellier University, UR UM 103 (IMAGINE), Department of Emergency Medicine, CHU Montpellier, Montpellier, France
| | - Pierre Bouzat
- Department of Anesthesiology and Critical Care, Grenoble Alpes University Hospital, University Grenoble Alpes, F-38000 Grenoble, France
| | - Pierre Catoire
- Emergency Consultant, Academic Clinical Fellow (Pitié-Salpétrière University, General Emergency Department, Paris) - Tactical Ultrasound Course for Ukraine (TUSC-UA) Course Director - Mehad, France
| | - Anthony Chauvin
- Service d'Accueil des Urgences/SMUR, CHU Lariboisière, Université de Paris - Inserm U942 MASCOT, Université de Paris, Paris, France
| | - Yann-Erick Claessens
- Département de Médecine d'urgence, Centre Hospitalier Princesse Grace, Avenue Pasteur, MC-98002, Monaco
| | - Bénédicte Douay
- SMUR/Service des Urgences, Hôpital Beaujon, AP-HP Nord, Clichy, France
| | - Xavier Dubucs
- Emergency Departement, Centre Hospitalo-Universitaire de Toulouse, Place du Docteur Baylac, 31300 Toulouse, France
| | - Damien Galanaud
- Service de Neuroradiologie, GH Pitié Salpêtrière, Sorbonne Université, Paris, France
| | - Tobias Gauss
- Department of Anesthesiology and Critical Care, Grenoble Alpes University Hospital, University Grenoble Alpes, F-38000 Grenoble, France
| | - Jean-Yves Gauvrit
- Service de Neuroradiologie, Hôpital Pontchaillou, CHU Rennes, Rennes, France
| | - Thomas Geeraerts
- Pole Anesthesie Réanimation et INSERM Tonic, CHU de Toulouse et Universite Toulouse 3, Toulouse, France
| | - Bertrand Glize
- PMR Department, CHU de Bordeaux, ACTIVE Team, BPH INSERM U1219, University of Bordeaux, France
| | - Sybille Goddet
- Samu-21, CHU de Dijon, SAU-Smur, CH du Creusot, Dijon, France
| | - Anne Godier
- Université Paris Cité, APHP, Hôpital Européen Georges Pompidou, Service d'anesthésie Réanimation and Inserm UMRS_1140, Paris, France
| | - Pierrick Le Borgne
- Emergency Department, University Hospitals of Strasbourg, 1 place de l'hôpital, 67000 Strasbourg, France - INSERM UMR 1260, Regenerative NanoMedicine (RNM), Fédération de Médecine Translationnelle (FMTS), Faculté de Médecine, Université de Strasbourg, 4 rue Kirschleger, 67085 Strasbourg Cedex, France
| | | | - Vincent Sapin
- Service de Biochimie et de Génétique Moléculaire, Centre de Biologie, CHU de Clermont-Ferrand, France
| | - Lionel Velly
- Department of Anaesthesiology and Critical Care Medicine, University Hospital Timone, Aix Marseille University, Marseille, France
| | - Damien Viglino
- University Grenoble-Alpes, Emergency Department, CHU Grenoble-Alpes, Grenoble, France - HP2 Laboratory INSERM U1300, Grenoble, France
| | - Bernard Vigue
- Département d'Anesthésie Réanimation, Hôpital Universitaire de Bicêtre, Le Kremlin Bicêtre, France
| | - Philippe Cuvillon
- EA 2992 IMAGINE, Prévention et Prise en Charge de la Défaillance Circulatoire des Patients en état de Choc, Anaesthesiology Department, CHU Nîmes, University Montpellier, 30000 Nîmes, France
| | - Denis Frasca
- Université de Poitiers, UFR de Médecine-Pharmacie, Poitiers, France, Service d'Anesthésie, Réanimation et Médecine Péri-Opératoire, CHU de Poitiers, France, INSERM U1246, Methods in Patients-Centered Outcomes and Health Research - SPHERE, Nantes, France
| | | |
Collapse
|
29
|
Tsitsipanis C, Miliaraki M, Paflioti E, Lazarioti S, Moustakis N, Ntotsikas K, Theofanopoulos A, Ilia S, Vakis A, Simos P, Venihaki M. Inflammation biomarkers IL‑6 and IL‑10 may improve the diagnostic and prognostic accuracy of currently authorized traumatic brain injury tools. Exp Ther Med 2023; 26:364. [PMID: 37408863 PMCID: PMC10318605 DOI: 10.3892/etm.2023.12063] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/04/2023] [Indexed: 07/07/2023] Open
Abstract
Traumatic brain injury (TBI) is currently one of the leading causes of mortality and disability worldwide. At present, no reliable inflammatory or specific molecular neurobiomarker exists in any of the standard models proposed for TBI classification or prognostication. Therefore, the present study was designed to assess the value of a group of inflammatory mediators for evaluating acute TBI, in combination with clinical, laboratory and radiological indices and prognostic clinical scales. In the present single-centre, prospective observational study, 109 adult patients with TBI, 20 adult healthy controls and a pilot group of 17 paediatric patients with TBI from a Neurosurgical Department and two intensive care units of University General Hospital of Heraklion, Greece were recruited. Blood measurements using the ELISA method, of cytokines IL-6, IL-8 and IL-10, ubiquitin C-terminal hydrolase L1 (UCH-L1) and glial fibrillary acidic protein, were performed. Compared with those in healthy control individuals, elevated IL-6 and IL-10 but reduced levels of IL-8 were found on day 1 in adult patients with TBI. In terms of TBI severity classifications, higher levels of IL-6 (P=0.001) and IL-10 (P=0.009) on day 1 in the adult group were found to be associated with more severe TBI according to widely used clinical and functional scales. Moreover, elevated IL-6 and IL-10 in adults were found to be associated with more serious brain imaging findings (rs<0.442; P<0.007). Subsequent multivariate logistic regression analysis in adults revealed that early-measured (day 1) IL-6 [odds ratio (OR)=0.987; P=0.025] and UCH-L1 (OR=0.993; P=0.032) are significant independent predictors of an unfavourable outcome. In conclusion, results from the present study suggest that inflammatory molecular biomarkers may prove to be valuable diagnostic and prognostic tools for TBI.
Collapse
Affiliation(s)
- Christos Tsitsipanis
- Department of Neurosurgery, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Marianna Miliaraki
- Pediatric Intensive Care Unit, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Elina Paflioti
- Department of Clinical Chemistry, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Sofia Lazarioti
- Department of Neurosurgery, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Nikolaos Moustakis
- Department of Neurosurgery, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Konstantinos Ntotsikas
- Department of Neurosurgery, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | | | - Stavroula Ilia
- Pediatric Intensive Care Unit, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Antonis Vakis
- Department of Neurosurgery, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Panagiotis Simos
- Department of Psychiatry, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Maria Venihaki
- Department of Clinical Chemistry, School of Medicine, University of Crete, 70013 Heraklion, Greece
| |
Collapse
|
30
|
Caramelo I, Coelho M, Rosado M, Cardoso CMP, Dinis A, Duarte CB, Grãos M, Manadas B. Biomarkers of hypoxic-ischemic encephalopathy: a systematic review. World J Pediatr 2023; 19:505-548. [PMID: 37084165 PMCID: PMC10199106 DOI: 10.1007/s12519-023-00698-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/31/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND Current diagnostic criteria for hypoxic-ischemic encephalopathy in the early hours lack objective measurement tools. Therefore, this systematic review aims to identify putative molecules that can be used in diagnosis in daily clinical practice (PROSPERO ID: CRD42021272610). DATA SOURCES Searches were performed in PubMed, Web of Science, and Science Direct databases until November 2020. English original papers analyzing samples from newborns > 36 weeks that met at least two American College of Obstetricians and Gynecologists diagnostic criteria and/or imaging evidence of cerebral damage were included. Bias was assessed by the Newcastle-Ottawa Scale. The search and data extraction were verified by two authors separately. RESULTS From 373 papers, 30 met the inclusion criteria. Data from samples collected in the first 72 hours were extracted, and increased serum levels of neuron-specific enolase and S100-calcium-binding protein-B were associated with a worse prognosis in newborns that suffered an episode of perinatal asphyxia. In addition, the levels of glial fibrillary acidic protein, ubiquitin carboxyl terminal hydrolase isozyme-L1, glutamic pyruvic transaminase-2, lactate, and glucose were elevated in newborns diagnosed with hypoxic-ischemic encephalopathy. Moreover, pathway analysis revealed insulin-like growth factor signaling and alanine, aspartate and glutamate metabolism to be involved in the early molecular response to insult. CONCLUSIONS Neuron-specific enolase and S100-calcium-binding protein-B are potential biomarkers, since they are correlated with an unfavorable outcome of hypoxic-ischemic encephalopathy newborns. However, more studies are required to determine the sensitivity and specificity of this approach to be validated for clinical practice.
Collapse
Affiliation(s)
- Inês Caramelo
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789, Coimbra, Portugal
| | - Margarida Coelho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- Chemistry Department, Faculty of Sciences and Technology, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Miguel Rosado
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789, Coimbra, Portugal
| | | | - Alexandra Dinis
- Pediatric Intensive Care Unit, Hospital Pediátrico, Centro Hospitalar E Universitário de Coimbra, 3000-075, Coimbra, Portugal
| | - Carlos B Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3001-401, Coimbra, Portugal
| | - Mário Grãos
- Biocant, Technology Transfer Association, 3060-197, Cantanhede, Portugal
| | - Bruno Manadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal.
- Institute for Interdisciplinary Research, University of Coimbra (IIIUC), 3030-789, Coimbra, Portugal.
| |
Collapse
|
31
|
Michetti F, Clementi ME, Di Liddo R, Valeriani F, Ria F, Rende M, Di Sante G, Romano Spica V. The S100B Protein: A Multifaceted Pathogenic Factor More Than a Biomarker. Int J Mol Sci 2023; 24:ijms24119605. [PMID: 37298554 DOI: 10.3390/ijms24119605] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
S100B is a calcium-binding protein mainly concentrated in astrocytes in the nervous system. Its levels in biological fluids are recognized as a reliable biomarker of active neural distress, and more recently, mounting evidence points to S100B as a Damage-Associated Molecular Pattern molecule, which, at high concentration, triggers tissue reactions to damage. S100B levels and/or distribution in the nervous tissue of patients and/or experimental models of different neural disorders, for which the protein is used as a biomarker, are directly related to the progress of the disease. In addition, in experimental models of diseases such as Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, multiple sclerosis, traumatic and vascular acute neural injury, epilepsy, and inflammatory bowel disease, alteration of S100B levels correlates with the occurrence of clinical and/or toxic parameters. In general, overexpression/administration of S100B worsens the clinical presentation, whereas deletion/inactivation of the protein contributes to the amelioration of the symptoms. Thus, the S100B protein may be proposed as a common pathogenic factor in different disorders, sharing different symptoms and etiologies but appearing to share some common pathogenic processes reasonably attributable to neuroinflammation.
Collapse
Affiliation(s)
- Fabrizio Michetti
- Department of Neuroscience, Catholic University of the Sacred Heart, 00168 Rome, Italy
- IRCCS San Raffaele Scientific Institute, Università Vita-Salute San Raffaele, 20132 Milan, Italy
- Department of Medicine, LUM University, 70010 Casamassima, Italy
- Genes, Via Venti Settembre 118, 00187 Roma, Italy
| | | | - Rosa Di Liddo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Federica Valeriani
- Laboratory of Epidemiology and Biotechnologies, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy
| | - Francesco Ria
- Department of Translational Medicine and Surgery, Section of General Pathology, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Mario Rende
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 06132 Perugia, Italy
| | - Gabriele Di Sante
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 06132 Perugia, Italy
| | - Vincenzo Romano Spica
- Laboratory of Epidemiology and Biotechnologies, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy
| |
Collapse
|
32
|
Zhu QH, Wu JK, Hou GL. Changes and significance of serum ubiquitin carboxyl-terminal hydrolase L1 and glial fibrillary acidic protein in patients with glioma. World J Clin Cases 2023; 11:3158-3166. [PMID: 37274029 PMCID: PMC10237134 DOI: 10.12998/wjcc.v11.i14.3158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/17/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND Brain gliomas are malignant tumors with high postoperative recurrence rates. Early prediction of prognosis using specific indicators is of great significance.
AIM To assess changes in ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) and glial fibrillary acidic protein (GFAP) levels in patients with glioma pre-and postoperatively.
METHODS Between June 2018 and June 2021, 91 patients with gliomas who underwent surgery at our hospital were enrolled in the glioma group. Sixty healthy volunteers were included in the control group. Serum UCH-L1 and GFAP levels were measured in peripheral blood collected from patients with glioma before and 3 d after surgery. UCH-L1 and GFAP levels in patients with glioma with different clinicopathological characteristics were compared before and after surgery. The patients were followed-up until February 2022. Postoperative glioma recurrence was recorded to determine the serum UCH-L1 and GFAP levels, which could assist in predicting postoperative glioma recurrence.
RESULTS UCH-L1 and GFAP levels in patients with glioma decreased significantly 3 d after surgery compared to those before therapy (P < 0.05). However, UCH-L1 and GFAP levels in the glioma group were significantly higher than those in the control group before and after surgery (P < 0.05). There were no statistically significant differences in preoperative serum UCH-L1 and GFAP levels among patients with glioma according to sex, age, pathological type, tumor location, or number of lesions (P > 0.05). Serum UCH-L1 and GFAP levels were significantly lower in the patients with WHO grade I-II tumors than in those with grade III-IV tumors (P < 0.05). Serum UCH-L1 and GFAP levels were lower in the patients with tumor diameter ≤ 5 cm than in those with diameter > 5 cm, in which the differences were statistically significant (P < 0.05). Glioma recurred in 22 patients. The preoperative and 3-d postoperative serum UCH-L1 and GFAP levels were significantly higher in the recurrence group than these in the non-recurrence group (P < 0.05). Receiver operating characteristic curves were plotted. The areas under the curves of preoperative serum UCH-L1 and GFAP levels for predicting postoperative glioma recurrence were 0.785 and 0.775, respectively. However, the efficacy of serum UCH-L1 and GFAP levels 3 d after surgery in predicting postoperative glioma recurrence was slightly lower compared with their preoperative levels.
CONCLUSION UCH-L1 and GFAP efficiently reflected the development and recurrence of gliomas and could be used as potential indicators for the recurrence and prognosis of glioma.
Collapse
Affiliation(s)
- Qing-Hua Zhu
- Department of Neurosurgery, Affiliated Hospital of Hebei Engineering University, Handan 056002, Hebei Province, China
| | - Jing-Kun Wu
- Department of Neurosurgery, Affiliated Hospital of Hebei Engineering University, Handan 056002, Hebei Province, China
| | - Gao-Lei Hou
- Department of Neurosurgery, Affiliated Hospital of Hebei Engineering University, Handan 056002, Hebei Province, China
| |
Collapse
|
33
|
Liu Y, Yao X, Lv X, Qian J. The role of spectrin breakdown products in patients with traumatic brain injury: a systematic review and meta-analysis. Neurol Sci 2023; 44:1171-1183. [PMID: 36547778 DOI: 10.1007/s10072-022-06558-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Spectrin Breakdown Products (SBDPs) accumulate in the brain after traumatic brain injury (TBI) and are expected to become a potentially promising biomarker of TBI. OBJECTIVE This systematic review and meta-analysis were undertaken to evaluate the role of SBDPs in the diagnosis and prognosis of TBI. METHODS We systematically searched the following databases up to 31 October 2022: Ovid MEDLINE, PubMed, EMBASE, Cochrane Library, and Web of Science Database, and studies were only included if they had sufficient data on SBDP concentrations in TBI patients. We calculated the standardized mean differences (SMDs) and 95% confidence intervals (CIs) for continuous outcomes and assessed the potential publication bias by using Egger's test and funnel plots. The statistical analysis was conducted by RevMan 5.4 and Stata 17. RESULTS Of 1429 identified studies, 10 studies involving 417 participants were included in our systematic review and meta-analysis. The results demonstrated that serum and cerebrospinal fluid (CSF) SBDP concentrations were significantly increased in TBI compared to controls (SBDP120: SMD = 1.42, 95% CI = 0.71 ~ 2.12, P < 0.00001; SBDP145: SMD = 1.32, 95% CI = 0.78 ~ 1.86, P < 0.00001; SBDP150: SMD = 1.39, 95% CI = 0.97 ~ 1.80, P < 0.00001), and CSF SBDPs were significantly associated with poor functional outcomes (PFO) (SBDP145: SMD = 1.75, 95% CI = 1.37 ~ 2.13, P < 0.00001; SBDP150: SMD = 1.14, 95% CI = 0.75 ~ 1.52, P < 0.00001). In addition, CSF and serum SBDP145 are valuable in diagnosing TBI (AUC = 0.89, 95% CI = 0.80 ~ 0.99, P < 0.00001), and CSF SBDP145 also has diagnostic value for PFO (AUC = 0.80, 95% CI = 0.76 ~ 0.84, P < 0.00001). CONCLUSIONS The limited evidence supports that the SBDPs can be employed as potential biomarkers for the diagnosis and prognosis of TBI.
Collapse
Affiliation(s)
- Yang Liu
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Haidian District, No. 48 Xinxi Road, Beijing, 102211, China
| | - Xiaomeng Yao
- Viterbi School of Engineering, University of Southern California, Los Angeles, LA, USA
| | - Xianglin Lv
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Haidian District, No. 48 Xinxi Road, Beijing, 102211, China
| | - Jinghua Qian
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Haidian District, No. 48 Xinxi Road, Beijing, 102211, China.
| |
Collapse
|
34
|
Hashimoto Y, Greene C, Munnich A, Campbell M. The CLDN5 gene at the blood-brain barrier in health and disease. Fluids Barriers CNS 2023; 20:22. [PMID: 36978081 PMCID: PMC10044825 DOI: 10.1186/s12987-023-00424-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
The CLDN5 gene encodes claudin-5 (CLDN-5) that is expressed in endothelial cells and forms tight junctions which limit the passive diffusions of ions and solutes. The blood-brain barrier (BBB), composed of brain microvascular endothelial cells and associated pericytes and end-feet of astrocytes, is a physical and biological barrier to maintain the brain microenvironment. The expression of CLDN-5 is tightly regulated in the BBB by other junctional proteins in endothelial cells and by supports from pericytes and astrocytes. The most recent literature clearly shows a compromised BBB with a decline in CLDN-5 expression increasing the risks of developing neuropsychiatric disorders, epilepsy, brain calcification and dementia. The purpose of this review is to summarize the known diseases associated with CLDN-5 expression and function. In the first part of this review, we highlight the recent understanding of how other junctional proteins as well as pericytes and astrocytes maintain CLDN-5 expression in brain endothelial cells. We detail some drugs that can enhance these supports and are being developed or currently in use to treat diseases associated with CLDN-5 decline. We then summarise mutagenesis-based studies which have facilitated a better understanding of the physiological role of the CLDN-5 protein at the BBB and have demonstrated the functional consequences of a recently identified pathogenic CLDN-5 missense mutation from patients with alternating hemiplegia of childhood. This mutation is the first gain-of-function mutation identified in the CLDN gene family with all others representing loss-of-function mutations resulting in mis-localization of CLDN protein and/or attenuated barrier function. Finally, we summarize recent reports about the dosage-dependent effect of CLDN-5 expression on the development of neurological diseases in mice and discuss what cellular supports for CLDN-5 regulation are compromised in the BBB in human diseases.
Collapse
Affiliation(s)
- Yosuke Hashimoto
- Trinity College Dublin, Smurfit Institute of Genetics, Dublin, D02 VF25, Ireland.
| | - Chris Greene
- Trinity College Dublin, Smurfit Institute of Genetics, Dublin, D02 VF25, Ireland
| | - Arnold Munnich
- Institut Imagine, INSERM UMR1163, Université Paris Cité, Paris, F-75015, France
- Departments of Pediatric Neurology and Medical Genetics, Hospital Necker Enfants Malades, Université Paris Cité, Paris, F-75015, France
| | - Matthew Campbell
- Trinity College Dublin, Smurfit Institute of Genetics, Dublin, D02 VF25, Ireland.
| |
Collapse
|
35
|
Iverson GL, Minkkinen M, Karr JE, Berghem K, Zetterberg H, Blennow K, Posti JP, Luoto TM. Examining four blood biomarkers for the detection of acute intracranial abnormalities following mild traumatic brain injury in older adults. Front Neurol 2022; 13:960741. [PMID: 36484020 PMCID: PMC9723459 DOI: 10.3389/fneur.2022.960741] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/20/2022] [Indexed: 01/25/2023] Open
Abstract
Blood-based biomarkers have been increasingly studied for diagnostic and prognostic purposes in patients with mild traumatic brain injury (MTBI). Biomarker levels in blood have been shown to vary throughout age groups. Our aim was to study four blood biomarkers, glial fibrillary acidic protein (GFAP), ubiquitin C-terminal hydrolase-L1 (UCH-L1), neurofilament light (NF-L), and total tau (t-tau), in older adult patients with MTBI. The study sample was collected in the emergency department in Tampere University Hospital, Finland, between November 2015 and November 2016. All consecutive adult patients with head injury were eligible for inclusion. Serum samples were collected from the enrolled patients, which were frozen and later sent for biomarker analyses. Patients aged 60 years or older with MTBI, head computed tomography (CT) imaging, and available biomarker levels were eligible for this study. A total of 83 patients (mean age = 79.0, SD = 9.58, range = 60-100; 41.0% men) were included in the analysis. GFAP was the only biomarker to show statistically significant differentiation between patients with and without acute head CT abnormalities [U(83) = 280, p < 0.001, r = 0.44; area under the curve (AUC) = 0.79, 95% CI = 0.67-0.91]. The median UCH-L1 values were modestly greater in the abnormal head CT group vs. normal head CT group [U (83) = 492, p = 0.065, r = 0.20; AUC = 0.63, 95% CI = 0.49-0.77]. Older age was associated with biomarker levels in the normal head CT group, with the most prominent age associations being with NF-L (r = 0.56) and GFAP (r = 0.54). The results support the use of GFAP in detecting abnormal head CT findings in older adults with MTBIs. However, small sample sizes run the risk for producing non-replicable findings that may not generalize to the population and do not translate well to clinical use. Further studies should consider the potential effect of age on biomarker levels when establishing clinical cut-off values for detecting head CT abnormalities.
Collapse
Affiliation(s)
- Grant L. Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States,Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and the Schoen Adams Research Institute at Spaulding Rehabilitation, Charlestown, MA, United States,Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, Boston, MA, United States
| | - Mira Minkkinen
- Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Justin E. Karr
- Department of Psychology, University of Kentucky, Lexington, KY, United States
| | - Ksenia Berghem
- Medical Imaging Centre, Department of Radiology, Tampere University Hospital, Tampere, Finland
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden,UK Dementia Research Institute at University College London, London, United Kingdom,Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London, United Kingdom,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, Hong Kong SAR, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Jussi P. Posti
- Neurocenter, Department of Neurosurgery, Turku University Hospital and University of Turku, Turku, Finland,Turku Brain Injury Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Teemu M. Luoto
- Department of Neurosurgery, Tampere University Hospital and Tampere University, Tampere, Finland,*Correspondence: Teemu M. Luoto
| |
Collapse
|
36
|
Kim CK, Park JS, Kim E, Oh MK, Lee YT, Yoon KJ, Joo KM, Lee K, Park YS. The effects of early exercise in traumatic brain-injured rats with changes in motor ability, brain tissue, and biomarkers. BMB Rep 2022; 55:512-517. [PMID: 36104258 PMCID: PMC9623238 DOI: 10.5483/bmbrep.2022.55.10.097] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/06/2022] [Accepted: 08/17/2022] [Indexed: 09/19/2023] Open
Abstract
Traumatic brain injury (TBI) is brain damage which is caused by the impact of external mechanical forces. TBI can lead to the temporary or permanent impairment of physical and cognitive abilities, resulting in abnormal behavior. We recently observed that a single session of early exercise in animals with TBI improved their behavioral performance in the absence of other cognitive abnormalities. In the present study, we investigated the therapeutic effects of continuous exercise during the early stages of TBI in rats. We found that continuous low-intensity exercise in early-stage improves the locomotion recovery in the TBI of animal models; however, it does not significantly enhance short-term memory capabilities. Moreover, continuous early exercise not only reduces the protein expression of cerebral damage-related markers, such as Glial Fibrillary Acid Protein (GFAP), Neuron-Specific Enolase (NSE), S100β, Protein Gene Products 9.5 (PGP9.5), and Heat Shock Protein 70 (HSP70), but it also decreases the expression of apoptosis-related protein BAX and cleaved caspase 3. Furthermore, exercise training in animals with TBI decreases the microglia activation and the expression of inflammatory cytokines in the serum, such as CCL20, IL-13, IL-1α, and IL-1β. These findings thus demonstrate that early exercise therapy for TBI may be an effective strategy in improving physiological function, and that serum protein levels are useful biomarkers for the predicition of the effectiveness of early exercise therapy.[BMB Reports 2022; 55(10): 506-511].
Collapse
Affiliation(s)
- Chung Kwon Kim
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16149, Korea
- Medical Innovation Technology Inc. (MEDINNO Inc.), Seoul 08517, Korea
| | - Jee Soo Park
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16149, Korea
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16149, Korea
| | - Eunji Kim
- Medical Innovation Technology Inc. (MEDINNO Inc.), Seoul 08517, Korea
| | - Min-Kyun Oh
- Department of Rehabilitation Medicine, Gyeongsang National University Changwon Hospital, Gyeongsang National University Graduate School of Medicine, Jinju 52727, Korea
| | - Yong-Taek Lee
- Department of Physical & Rehabilitation Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Korea
| | - Kyung Jae Yoon
- Department of Physical & Rehabilitation Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Korea
| | - Kyeung Min Joo
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16149, Korea
- Medical Innovation Technology Inc. (MEDINNO Inc.), Seoul 08517, Korea
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16149, Korea
| | - Kyunghoon Lee
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16149, Korea
| | - Young Sook Park
- Department of Physical & Rehabilitation Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Korea
| |
Collapse
|
37
|
Nakamura Y, Kitamura T, Kawano Y, Hoshino K, Irie Y, Muranishi K, Iwaasa M, Ishikura H. Glial fibrillary acidic protein level on admission can predict severe traumatic brain injury in patients with severe multiple trauma: A single-center retrospective observational study. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100047. [DOI: 10.1016/j.crneur.2022.100047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/22/2022] [Accepted: 07/19/2022] [Indexed: 11/28/2022] Open
|