1
|
Mbuagbaw L, Sadeghirad B, Morgan RL, Mertz D, Motaghi S, Ghadimi M, Babatunde I, Zani B, Pasumarthi T, Derby M, Kothapudi VN, Palmer NR, Aebischer A, Harder T, Reichert F. Failure of scabies treatment: a systematic review and meta-analysis. Br J Dermatol 2024; 190:163-173. [PMID: 37625798 DOI: 10.1093/bjd/ljad308] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Treatment failure is considered to be an important factor in relation to the increase in scabies incidence over the last decade. However, the regional and temporal differences, in addition to the predictors of therapy failure, are unclear. OBJECTIVES We aimed to conduct a systematic review of the prevalence of treatment failure in patients with scabies and investigation of associated factors. METHODS We searched MEDLINE, EMBASE, CINAHL, Web of Science, Scopus, Global Health and the Cochrane Central Register of Controlled Trials from inception to August 2021 for randomized and quasi-randomized trials, in addition to observational studies that enrolled children or adults diagnosed with confirmed or clinical scabies treated with permethrin, ivermectin, crotamiton, benzyl benzoate, malathion, sulfur or lindane, and measured treatment failure or factors associated with treatment failure. We performed a random effects meta-analysis for all outcomes reported by at least two studies. RESULTS A total of 147 studies were eligible for inclusion in the systematic review. The overall prevalence of treatment failure was 15.2% [95% confidence interval (CI) 12.9-17.6; I2 = 95.3%, moderate-certainty evidence] with regional differences between World Health Organization regions (P = 0.003) being highest in the Western Pacific region (26.9%, 95% CI 14.5-41.2). Oral ivermectin (11.8%, 95% CI 8.4-15.4), topical ivermectin (9.3%, 95% CI 5.1-14.3) and permethrin (10.8%, 95% CI 7.5-14.5) had relatively lower failure prevalence compared with the overall prevalence. Failure prevalence was lower in patients treated with two doses of oral ivermectin (7.1%, 95% CI 3.1-12.3) compared with those treated with one dose (15.2%, 95% CI 10.8-20.2; P = 0.021). Overall and permethrin treatment failure prevalence in the included studies (1983-2021) increased by 0.27% and 0.58% per year, respectively. Only three studies conducted a multivariable risk factor analysis; no studies assessed resistance. CONCLUSIONS A second dose of ivermectin showed lower failure prevalence than single-dose ivermectin, which should be considered in all guidelines. The increase in treatment failure over time hints at decreasing mite susceptibility for several drugs, but reasons for failure are rarely assessed. Ideally, scabicide susceptibility testing should be implemented in future studies.
Collapse
Affiliation(s)
- Lawrence Mbuagbaw
- Biostatistics Unit/The Research Institute, St Joseph's Healthcare, Hamilton, ON, Canada
- Department of Health Research Methods, Evidence, and Impact
- Department of Anesthesia
| | - Behnam Sadeghirad
- Department of Health Research Methods, Evidence, and Impact
- Department of Anesthesia
- Michael G. DeGroote National Pain Centre
| | - Rebecca L Morgan
- Department of Health Research Methods, Evidence, and Impact
- Evidence Foundation, Cleveland Heights, OH, USA
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Dominik Mertz
- Department of Health Research Methods, Evidence, and Impact
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | | | - Maryam Ghadimi
- Department of Health Research Methods, Evidence, and Impact
| | | | - Babalwa Zani
- Knowledge Translation Unit, University of Cape Town Lung Institute, Rondebosch, South Africa
| | | | | | | | | | | | - Thomas Harder
- Department of Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Felix Reichert
- Department of Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
2
|
Takano K, de Hayr L, Carver S, Harvey RJ, Mounsey KE. Pharmacokinetic and pharmacodynamic considerations for treating sarcoptic mange with cross-relevance to Australian wildlife. Int J Parasitol Drugs Drug Resist 2023; 21:97-113. [PMID: 36906936 PMCID: PMC10023865 DOI: 10.1016/j.ijpddr.2023.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 03/07/2023]
Abstract
Sarcoptes scabiei is the microscopic burrowing mite responsible for sarcoptic mange, which is reported in approximately 150 mammalian species. In Australia, sarcoptic mange affects a number of native and introduced wildlife species, is particularly severe in bare-nosed wombats (Vombatus ursinus) and an emerging issue in koala and quenda. There are a variety of acaricides available for the treatment of sarcoptic mange which are generally effective in eliminating mites from humans and animals in captivity. In wild populations, effective treatment is challenging, and concerns exist regarding safety, efficacy and the potential emergence of acaricide resistance. There are risks where acaricides are used intensively or inadequately, which could adversely affect treatment success rates as well as animal welfare. While reviews on epidemiology, treatment strategies, and pathogenesis of sarcoptic mange in wildlife are available, there is currently no review evaluating the use of specific acaricides in the context of their pharmacokinetic and pharmacodynamic properties, and subsequent likelihood of emerging drug resistance, particularly for Australian wildlife. This review critically evaluates acaricides that have been utilised to treat sarcoptic mange in wildlife, including dosage forms and routes, pharmacokinetics, mode of action and efficacy. We also highlight the reports of resistance of S. scabiei to acaricides, including clinical and in vitro observations.
Collapse
Affiliation(s)
- Kotaro Takano
- School of Health, University of the Sunshine Coast, Maroochydore, Queensland, Australia; Sunshine Coast Health Institute, Birtinya, QLD, Australia
| | - Lachlan de Hayr
- School of Health, University of the Sunshine Coast, Maroochydore, Queensland, Australia; Sunshine Coast Health Institute, Birtinya, QLD, Australia
| | - Scott Carver
- Department of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Robert J Harvey
- School of Health, University of the Sunshine Coast, Maroochydore, Queensland, Australia; Sunshine Coast Health Institute, Birtinya, QLD, Australia
| | - Kate E Mounsey
- School of Health, University of the Sunshine Coast, Maroochydore, Queensland, Australia; Sunshine Coast Health Institute, Birtinya, QLD, Australia.
| |
Collapse
|
3
|
Fernando DD, Fischer K. Spinosad topical suspension (0.9%): a new topical treatment for scabies. Expert Rev Anti Infect Ther 2022; 20:1149-1154. [PMID: 35799317 DOI: 10.1080/14787210.2022.2099376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Scabies is a highly contagious skin disease caused by the parasitic mite Sarcoptes scabiei. There is no vaccine and for the past 30 years, the first line treatments have been topical permethrin and oral ivermectin. These drugs target mainly the parasite nervous system, killing only the motile stages. As they lack ovicidal activities, repeat treatments are required to achieve complete cure. Incompliance to repeat treatments causing prolonged drug usage, has contributed to emerging drug resistances. In addition, they are not appropriate for all patient categories, specifically for infants and young children or pregnant and breast feeding women. Consequently, new single dose scabicides are urgently needed. AREAS COVERED In 2021, spinosad, a drug previously used to treat head lice, was approved by the US FDA as a topical scabies treatment. Here the pharmacology, clinical efficacy and tolerability of this drug are discussed. EXPERT OPINION As the first single dose scabicide the formulated 0.9% topical Spinosad solution shows significant efficacy, little systemic absorption and no serious adverse reactions, making it a promising treatment for classical scabies in patients older than four years.
Collapse
Affiliation(s)
- Deepani D Fernando
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia
| | - Katja Fischer
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia
| |
Collapse
|
4
|
Mathachan SR, Sardana K, Khurana A. Current Use of Ivermectin in Dermatology, Tropical Medicine, and COVID-19: An Update on Pharmacology, Uses, Proven and Varied Proposed Mechanistic Action. Indian Dermatol Online J 2021; 12:500-514. [PMID: 34430453 PMCID: PMC8354388 DOI: 10.4103/idoj.idoj_298_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/16/2021] [Indexed: 12/22/2022] Open
Abstract
Ivermectin is a broad-spectrum antiparasitic drug with anti-inflammatory, anti-viral, anti-bacterial, and anti-tumor effects. In this review, we discuss the history, pharmacology, multimodal actions, indications in dermatology and tropical medicine, therapeutic and prophylactic use of ivermectin in COVID-19, safety, adverse effects, special considerations, and drug interactions of ivermectin.
Collapse
Affiliation(s)
- Sinu Rose Mathachan
- Departments of Dermatology, Venereology and Leprosy, ABVIMS and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Kabir Sardana
- Departments of Dermatology, Venereology and Leprosy, ABVIMS and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Ananta Khurana
- Departments of Dermatology, Venereology and Leprosy, ABVIMS and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| |
Collapse
|
5
|
Abstract
Sarcoptes scabiei is a causative organism for scabies that affects an estimated global population of 300 million and remains a disease of significant concern. Recently, a number of potential drug targets were identified for scabies, including hydrolytic enzymes, inactivated paralogues of hydrolytic enzymes, inhibitors of host proteolytic enzymes and other proteins of interest. These discoveries remain confined to academic laboratories and institutions, failing to attract interest from researchers in commercial drug development. Here, we summarize the latest developments in the scabies mite biology and the drug targets that were subsequently identified, and we propose several peptide and nonpeptide ligands targeting the hot spots for protein-protein interactions. We also identify gaps in the development of ligands as inhibitors or modulators of these macromolecules.
Collapse
|
6
|
Ivermectin: An Anthelmintic, an Insecticide, and Much More. Trends Parasitol 2020; 37:48-64. [PMID: 33189582 DOI: 10.1016/j.pt.2020.10.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/26/2022]
Abstract
Here we tell the story of ivermectin, describing its anthelmintic and insecticidal actions and recent studies that have sought to reposition ivermectin for the treatment of other diseases that are not caused by helminth and insect parasites. The standard theory of its anthelmintic and insecticidal mode of action is that it is a selective positive allosteric modulator of glutamate-gated chloride channels found in nematodes and insects. At higher concentrations, ivermectin also acts as an allosteric modulator of ion channels found in host central nervous systems. In addition, in tissue culture, at concentrations higher than anthelmintic concentrations, ivermectin shows antiviral, antimalarial, antimetabolic, and anticancer effects. Caution is required before extrapolating from these preliminary repositioning experiments to clinical use, particularly for Covid-19 treatment, because of the high concentrations of ivermectin used in tissue-culture experiments.
Collapse
|
7
|
Serova OV, Gantsova EA, Deyev IE, Petrenko AG. The Value of pH Sensors in Maintaining Homeostasis of the Nervous System. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020040196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Buckingham SD, Mann HJ, Hearnden OK, Sattelle DB. Turning a Drug Target into a Drug Candidate: A New Paradigm for Neurological Drug Discovery? Bioessays 2020; 42:e2000011. [PMID: 32776366 DOI: 10.1002/bies.202000011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/26/2020] [Indexed: 11/11/2022]
Abstract
The conventional paradigm for developing new treatments for disease mainly involves either the discovery of new drug targets, or finding new, improved drugs for old targets. However, an ion channel found only in invertebrates offers the potential of a completely new paradigm in which an established drug target can be re-engineered to serve as a new candidate therapeutic agent. The L-glutamate-gated chloride channels (GluCls) of invertebrates are absent from vertebrate genomes, offering the opportunity to introduce this exogenous, inhibitory, L-glutamate receptor into vertebrate neuronal circuits either as a tool with which to study neural networks, or a candidate therapy. Epileptic seizures can involve L-glutamate-induced hyper-excitation and toxicity. Variant GluCls, with their inhibitory responses to L-glutamate, when engineered into human neurons, might counter the excitotoxic effects of excess L-glutamate. In reviewing recent studies on model organisms, it appears that this approach might offer a new paradigm for the development of candidate therapeutics for epilepsy.
Collapse
Affiliation(s)
- Steven D Buckingham
- School of Biological and Chemical Sciences, Queen Mary University London, Mile End Road, London, E1 4NS, UK.,UCL Respiratory, University College London, 5 University Street, London, WC1E 6JF, UK
| | - Harry-Jack Mann
- UCL Respiratory, University College London, 5 University Street, London, WC1E 6JF, UK
| | - Olivia K Hearnden
- UCL Respiratory, University College London, 5 University Street, London, WC1E 6JF, UK
| | - David B Sattelle
- UCL Respiratory, University College London, 5 University Street, London, WC1E 6JF, UK
| |
Collapse
|
9
|
Khan S, Zhao X, Hou Y, Yuan C, Li Y, Luo X, Liu J, Feng X. Analysis of genome-wide SNPs based on 2b-RAD sequencing of pooled samples reveals signature of selection in different populations of Haemonchus contortus. J Biosci 2019. [DOI: 10.1007/s12038-019-9917-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Feingold D, Knogler L, Starc T, Drapeau P, O'Donnell MJ, Nilson LA, Dent JA. secCl is a cys-loop ion channel necessary for the chloride conductance that mediates hormone-induced fluid secretion in Drosophila. Sci Rep 2019; 9:7464. [PMID: 31097722 PMCID: PMC6522505 DOI: 10.1038/s41598-019-42849-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 04/10/2019] [Indexed: 01/09/2023] Open
Abstract
Organisms use circulating diuretic hormones to control water balance (osmolarity), thereby avoiding dehydration and managing excretion of waste products. The hormones act through G-protein-coupled receptors to activate second messenger systems that in turn control the permeability of secretory epithelia to ions like chloride. In insects, the chloride channel mediating the effects of diuretic hormones was unknown. Surprisingly, we find a pentameric, cys-loop chloride channel, a type of channel normally associated with neurotransmission, mediating hormone-induced transepithelial chloride conductance. This discovery is important because: 1) it describes an unexpected role for pentameric receptors in the membrane permeability of secretory epithelial cells, and 2) it suggests that neurotransmitter-gated ion channels may have evolved from channels involved in secretion.
Collapse
Affiliation(s)
- Daniel Feingold
- Department of Biology, McGill University, 1205 Dr. Penfield, Montréal, Québec, H3A 1B1, Canada
| | - Laura Knogler
- Department of Neurosciences, Research Centre of the University of Montréal Hospital Centre, Montréal, Québec, Canada
- Max Planck Institute of Neurobiology, Sensorimotor Control Research Group, Am Klopferspitz 18, Martinsried, 82152, Germany
| | - Tanja Starc
- Institute of Neuroscience, Technische Universität München, Biedersteiner Str. 29, München, Bau 601D-80802, Germany
| | - Pierre Drapeau
- Department of Neurosciences, Research Centre of the University of Montréal Hospital Centre, Montréal, Québec, Canada
| | - Michael J O'Donnell
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Laura A Nilson
- Department of Biology, McGill University, 1205 Dr. Penfield, Montréal, Québec, H3A 1B1, Canada
| | - Joseph A Dent
- Department of Biology, McGill University, 1205 Dr. Penfield, Montréal, Québec, H3A 1B1, Canada.
| |
Collapse
|
11
|
Electrostatics, proton sensor, and networks governing the gating transition in GLIC, a proton-gated pentameric ion channel. Proc Natl Acad Sci U S A 2018; 115:E12172-E12181. [PMID: 30541892 DOI: 10.1073/pnas.1813378116] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The pentameric ligand-gated ion channel (pLGIC) from Gloeobacter violaceus (GLIC) has provided insightful structure-function views on the permeation process and the allosteric regulation of the pLGICs family. However, GLIC is activated by pH instead of a neurotransmitter and a clear picture for the gating transition driven by protons is still lacking. We used an electrostatics-based (finite difference Poisson-Boltzmann/Debye-Hückel) method to predict the acidities of all aspartic and glutamic residues in GLIC, both in its active and closed-channel states. Those residues with a predicted pKa close to the experimental pH50 were individually replaced by alanine and the resulting variant receptors were titrated by ATR/FTIR spectroscopy. E35, located in front of loop F far away from the orthosteric site, appears as the key proton sensor with a measured individual pKa at 5.8. In the GLIC open conformation, E35 is connected through a water-mediated hydrogen-bond network first to the highly conserved electrostatic triad R192-D122-D32 and then to Y197-Y119-K248, both located at the extracellular domain-transmembrane domain interface. The second triad controls a cluster of hydrophobic side chains from the M2-M3 loop that is remodeled during the gating transition. We solved 12 crystal structures of GLIC mutants, 6 of them being trapped in an agonist-bound but nonconductive conformation. Combined with previous data, this reveals two branches of a continuous network originating from E35 that reach, independently, the middle transmembrane region of two adjacent subunits. We conclude that GLIC's gating proceeds by making use of loop F, already known as an allosteric site in other pLGICs, instead of the classic orthosteric site.
Collapse
|
12
|
Nemecz Á, Hu H, Fourati Z, Van Renterghem C, Delarue M, Corringer PJ. Full mutational mapping of titratable residues helps to identify proton-sensors involved in the control of channel gating in the Gloeobacter violaceus pentameric ligand-gated ion channel. PLoS Biol 2017; 15:e2004470. [PMID: 29281623 PMCID: PMC5760087 DOI: 10.1371/journal.pbio.2004470] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/09/2018] [Accepted: 12/04/2017] [Indexed: 11/19/2022] Open
Abstract
The Gloeobacter violaceus ligand-gated ion channel (GLIC) has been extensively studied by X-ray crystallography and other biophysical techniques. This provided key insights into the general gating mechanism of pentameric ligand-gated ion channel (pLGIC) signal transduction. However, the GLIC is activated by lowering the pH and the location of its putative proton activation site(s) still remain(s) unknown. To this end, every Asp, Glu, and His residue was mutated individually or in combination and investigated by electrophysiology. In addition to the mutational analysis, key mutations were structurally resolved to address whether particular residues contribute to proton sensing, or alternatively to GLIC-gating, independently of the side chain protonation. The data show that multiple residues located below the orthosteric site, notably E26, D32, E35, and D122 in the lower part of the extracellular domain (ECD), along with E222, H235, E243, and H277 in the transmembrane domain (TMD), alter GLIC activation. D122 and H235 were found to also alter GLIC expression. E35 is identified as a key proton-sensing residue, whereby neutralization of its side chain carboxylate stabilizes the active state. Thus, proton activation occurs allosterically to the orthosteric site, at the level of multiple loci with a key contribution of the coupling interface between the ECD and TMD. Pentameric ligand-gated ion channels are an important class of receptors that are involved in many neurological diseases. They have been extensively studied but a full understanding of their mechanism of action has yet to be achieved. In an effort to bypass obstacles in the research of human receptors, bacterial versions have been used to characterize the family’s structure-function relationship. One key bacterial receptor, known as GLIC, has lead the way in structural resolution of various mechanistic states along the gating pathway, yet its activation by protons is significantly less understood than its human counterparts. To define the site(s) involved in proton gating, we systematically mutated all titratable residues near the pH50 of activation: Asp, Glu, and His. We determined that a previously established His residue in the transmembrane domain is structurally important but likely plays little or no role in proton gating. We instead found that proton activation is a complex multiple loci mechanism, with the key contribution stemming from the coupling interface between the extracellular and transmembrane domain, with E35 acting as a key proton-sensing residue.
Collapse
Affiliation(s)
- Ákos Nemecz
- Unité Récepteurs-Canaux, Unité Mixte de Recherche 3571 du Centre National de la Recherche Scientifique, Institut Pasteur, Paris, France
| | - Haidai Hu
- Unité de Dynamique Structurale des Macromolécules, Unité Mixte de Recherche 3528 du Centre National de la Recherche Scientifique, Institut Pasteur, Paris, France
| | - Zaineb Fourati
- Unité de Dynamique Structurale des Macromolécules, Unité Mixte de Recherche 3528 du Centre National de la Recherche Scientifique, Institut Pasteur, Paris, France
| | - Catherine Van Renterghem
- Unité Récepteurs-Canaux, Unité Mixte de Recherche 3571 du Centre National de la Recherche Scientifique, Institut Pasteur, Paris, France
| | - Marc Delarue
- Unité de Dynamique Structurale des Macromolécules, Unité Mixte de Recherche 3528 du Centre National de la Recherche Scientifique, Institut Pasteur, Paris, France
| | - Pierre-Jean Corringer
- Unité Récepteurs-Canaux, Unité Mixte de Recherche 3571 du Centre National de la Recherche Scientifique, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
13
|
Abstract
Scabies is an infestation of the skin by the mite Sarcoptes scabiei. It manifests with pruritic erythematous papules and excoriations, in addition to the pathognomonic burrows. Multiple drugs can be used for treatment, but resistance to conventional therapy is increasing throughout the years. This paper will review the mechanisms of resistance proposed in the literature and some of the potential solutions to this problem.
Collapse
|
14
|
Chen IS, Kubo Y. Ivermectin and its target molecules: shared and unique modulation mechanisms of ion channels and receptors by ivermectin. J Physiol 2017; 596:1833-1845. [PMID: 29063617 DOI: 10.1113/jp275236] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/06/2017] [Indexed: 12/11/2022] Open
Abstract
Ivermectin (IVM) is an antiparasitic drug that is used worldwide and rescues hundreds of millions of people from onchocerciasis and lymphatic filariasis. It was discovered by Satoshi Ōmura and William C. Campbell, to whom the 2015 Nobel Prize in Physiology or Medicine was awarded. It kills parasites by activating glutamate-gated Cl- channels, and it also targets several ligand-gated ion channels and receptors, including Cys-loop receptors, P2X4 receptors and fernesoid X receptors. Recently, we found that IVM also activates a novel target, the G-protein-gated inwardly rectifying K+ channel, and also identified the structural determinant for the activation. In this review, we aim to provide an update and summary of recent progress in the identification of IVM targets, as well as their modulation mechanisms, through molecular structures, chimeras and site-directed mutagenesis, and molecular docking and modelling studies.
Collapse
Affiliation(s)
- I-Shan Chen
- Division of Biophysics and Neurobiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan.,Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, 240-0193, Japan
| | - Yoshihiro Kubo
- Division of Biophysics and Neurobiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan.,Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, 240-0193, Japan
| |
Collapse
|
15
|
Okuhara D, Furutani S, Ito K, Ihara M, Matsuda K. Splice Variants of pH-Sensitive Chloride Channel Identify a Key Determinant of Ivermectin Sensitivity in the Larvae of the Silkworm Bombyx mori. Mol Pharmacol 2017; 92:491-499. [PMID: 28739571 DOI: 10.1124/mol.117.109199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/20/2017] [Indexed: 11/22/2022] Open
Abstract
The pH-sensitive chloride channels (pHCls) are broadly expressed in insects, but little is known about their physiologic role, diversity, and sensitivity to insecticides acting on relevant chloride channels. Here we have sequenced 50 transcripts of the pHCl-1 gene from the brain, third thoracic ganglion (T3G), and midgut of larvae of silkworm Bombyx mori It was found that >50 variants were expressed with distinct splicing in the T3G compared with the brain and midgut. Of the variants detected, variant 9, which was expressed most abundantly in the larvae, was reconstituted in Xenopus laevis oocytes to characterize its pH and ivermectin sensitivity. Variant 9 formed a functional pHCl with half-maximal activation at a pH of 7.87, and was activated by ivermectin irrespective of the extracellular pH. This was in contrast to variant 1, which was activated more profoundly at acidic rather than basic pH. To identify a key determinant for such differential ivermectin sensitivity, different amino acids in variants 1 and 9 were swapped, and the effects of the mutations on ivermectin sensitivity were investigated. The V275S mutation of variant 1 enhanced ivermectin sensitivity, whereas the S275V mutation of variant 9 caused a reduction in sensitivity. In homology models of the Bombyx pHCls, Val275 of variant 1 interacted more strongly with Ala273 than Ser275 of variant 9 at the channel gate. This interaction is likely to prevent ivermectin-induced opening of the channel, accounting, at least partially, for the differential macrolide action on the two variants.
Collapse
Affiliation(s)
- Daiki Okuhara
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan (D.O., S.F., M.I., K.M.); Department of Science of Biological Production, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan (K.I.)
| | - Shogo Furutani
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan (D.O., S.F., M.I., K.M.); Department of Science of Biological Production, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan (K.I.)
| | - Katsuhiko Ito
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan (D.O., S.F., M.I., K.M.); Department of Science of Biological Production, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan (K.I.)
| | - Makoto Ihara
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan (D.O., S.F., M.I., K.M.); Department of Science of Biological Production, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan (K.I.)
| | - Kazuhiko Matsuda
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan (D.O., S.F., M.I., K.M.); Department of Science of Biological Production, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan (K.I.)
| |
Collapse
|
16
|
Liu H, French AS, Torkkeli PH. Expression of Cys-loop receptor subunits and acetylcholine binding protein in the mechanosensory neurons, glial cells, and muscle tissue of the spider Cupiennius salei. J Comp Neurol 2016; 525:1139-1154. [PMID: 27650259 DOI: 10.1002/cne.24122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/30/2016] [Accepted: 09/10/2016] [Indexed: 12/23/2022]
Abstract
The central and peripheral nervous system transcriptomes of the spider Cupiennius salei have 15 Cys-loop receptor subunits and an acetylcholine-binding protein (AChBP). Twelve subunits are predicted to form anion channels gated by γ-aminobutyric acid (GABA), glutamate, histamine, or changes in pH, and three are putative ACh-gated cation channels. Spiders have a variety of mechanosensilla and proprioceptive organs that are innervated by efferents in their peripherally located parts, and efferents also innervate muscle fibers. We investigated Cys-loop gene expression in muscle tissue by qPCR and localized this expression in mechanosensilla via in situ hybridization. The cuticular mechanosensory neurons had only CsGABArdl and CspHCl2 subunits, whereas the muscle tissue expressed a wider variety of subunits, especially CsGABAgrd, CsGABAA β, CsGluCl1 and CspHCl, but very low levels of the CsGABArdl or CsnACh subunits. An nACh non-α subunit was expressed in a group of unidentified cells in the hypodermis and at low level in the muscle tissue, but the physiological function of this subunit is unknown. The CsnAChα subunit was not expressed in sensory neurons and was expressed at extremely low level in the muscle tissue. None of the probes gave signals in proprioceptive joint receptors, suggesting that efferent innervation to this sense organ employs other receptor types. CsAChBP and a glia-specific homeodomain CsREPO were both expressed in glial cells that surround sensory neurons and also in muscle tissue, probably around the nerve endings of the neuromuscular junction. These locations have large numbers of synapses, suggesting that AChBP may have a function in modulating synaptic transmission. J. Comp. Neurol. 525:1139-1154, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hongxia Liu
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Andrew S French
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Päivi H Torkkeli
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
17
|
Feingold D, Starc T, O'Donnell MJ, Nilson L, Dent JA. The orphan pentameric ligand-gated ion channel pHCl-2 is gated by pH and regulates fluid secretion in Drosophila Malpighian tubules. ACTA ACUST UNITED AC 2016; 219:2629-38. [PMID: 27358471 DOI: 10.1242/jeb.141069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/13/2016] [Indexed: 12/30/2022]
Abstract
Pentameric ligand-gated ion channels (pLGICs) constitute a large protein superfamily in metazoa whose role as neurotransmitter receptors mediating rapid, ionotropic synaptic transmission has been extensively studied. Although the vast majority of pLGICs appear to be neurotransmitter receptors, the identification of pLGICs in non-neuronal tissues and homologous pLGIC-like proteins in prokaryotes points to biological functions, possibly ancestral, that are independent of neuronal signalling. Here, we report the molecular and physiological characterization of a highly divergent, orphan pLGIC subunit encoded by the pHCl-2 (CG11340) gene, in Drosophila melanogaster We show that pHCl-2 forms a channel that is insensitive to a wide array of neurotransmitters, but is instead gated by changes in extracellular pH. pHCl-2 is expressed in the Malpighian tubules, which are non-innervated renal-type secretory tissues. We demonstrate that pHCl-2 is localized to the apical membrane of the epithelial principal cells of the tubules and that loss of pHCl-2 reduces urine production during diuresis. Our data implicate pHCl-2 as an important source of chloride conductance required for proper urine production, highlighting a novel role for pLGICs in epithelial tissues regulating fluid secretion and osmotic homeostasis.
Collapse
Affiliation(s)
- Daniel Feingold
- Department of Biology, McGill University, 1205 Dr Penfield, Montreal, QC, Canada H3A 1B1
| | - Tanja Starc
- Institute of Neuroscience, Technische Universität München, Biedersteiner Strasse 29, München Bau 601D-80802, Germany
| | - Michael J O'Donnell
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4K1
| | - Laura Nilson
- Department of Biology, McGill University, 1205 Dr Penfield, Montreal, QC, Canada H3A 1B1
| | - Joseph A Dent
- Department of Biology, McGill University, 1205 Dr Penfield, Montreal, QC, Canada H3A 1B1
| |
Collapse
|
18
|
Nakatani Y, Furutani S, Ihara M, Matsuda K. Ivermectin modulation of pH-sensitive chloride channels in the silkworm larvae of Bombyx mori. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 126:1-5. [PMID: 26778427 DOI: 10.1016/j.pestbp.2015.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/23/2015] [Accepted: 08/24/2015] [Indexed: 05/27/2023]
Affiliation(s)
- Yuri Nakatani
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Shogo Furutani
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Makoto Ihara
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Kazuhiko Matsuda
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan.
| |
Collapse
|
19
|
Transcriptome Analysis of the Central and Peripheral Nervous Systems of the Spider Cupiennius salei Reveals Multiple Putative Cys-Loop Ligand Gated Ion Channel Subunits and an Acetylcholine Binding Protein. PLoS One 2015; 10:e0138068. [PMID: 26368804 PMCID: PMC4569296 DOI: 10.1371/journal.pone.0138068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/25/2015] [Indexed: 11/19/2022] Open
Abstract
Invertebrates possess a diverse collection of pentameric Cys-loop ligand gated ion channel (LGIC) receptors whose molecular structures, evolution and relationships to mammalian counterparts have been intensely investigated in several clinically and agriculturally important species. These receptors are targets for a variety of control agents that may also harm beneficial species. However, little is known about Cys-loop receptors in spiders, which are important natural predators of insects. We assembled de novo transcriptomes from the central and peripheral nervous systems of the Central American wandering spider Cupiennius salei, a model species for neurophysiological, behavioral and developmental studies. We found 15 Cys-loop receptor subunits that are expected to form anion or cation permeable channels, plus a putative acetylcholine binding protein (AChBP) that has only previously been reported in molluscs and one annelid. We used phylogenetic and sequence analysis to compare the spider subunits to homologous receptors in other species and predicted the 3D structures of each protein using the I-Tasser server. The quality of homology models improved with increasing sequence identity to the available high-resolution templates. We found that C. salei has orthologous γ-aminobutyric acid (GABA), GluCl, pHCl, HisCl and nAChα LGIC subunits to other arthropods, but some subgroups are specific to arachnids, or only to spiders. C. salei sequences were phylogenetically closest to gene fragments from the social spider, Stegodyphus mimosarum, indicating high conservation within the Araneomorphae suborder of spiders. C. salei sequences had similar ligand binding and transmembrane regions to other invertebrate and vertebrate LGICs. They also had motifs associated with high sensitivity to insecticides and antiparasitic agents such as fipronil, dieldrin and ivermectin. Development of truly selective control agents for pest species will require information about the molecular structure and pharmacology of Cys-loop receptors in beneficial species.
Collapse
|
20
|
Murayama T, Maruyama IN. Alkaline pH sensor molecules. J Neurosci Res 2015; 93:1623-30. [PMID: 26154399 DOI: 10.1002/jnr.23621] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/12/2015] [Accepted: 06/26/2015] [Indexed: 12/22/2022]
Abstract
Animals can survive only within a narrow pH range. This requires continual monitoring of environmental and body-fluid pH. Although a variety of acidic pH sensor molecules have been reported, alkaline pH sensor function is not well understood. This Review describes neuronal alkaline pH sensors, grouped according to whether they monitor extracellular or intracellular alkaline pH. Extracellular sensors include the receptor-type guanylyl cyclase, the insulin receptor-related receptor, ligand-gated Cl- channels, connexin hemichannels, two-pore-domain K+ channels, and transient receptor potential (TRP) channels. Intracellular sensors include TRP channels and gap junction channels. Identification of molecular mechanisms underlying alkaline pH sensing is crucial for understanding how animals respond to environmental alkaline pH and how body-fluid pH is maintained within a narrow range.
Collapse
Affiliation(s)
- Takashi Murayama
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Ichiro N Maruyama
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
21
|
Gonzalez-Gutierrez G, Grosman C. The atypical cation-conduction and gating properties of ELIC underscore the marked functional versatility of the pentameric ligand-gated ion-channel fold. J Gen Physiol 2015; 146:15-36. [PMID: 26078054 PMCID: PMC4485021 DOI: 10.1085/jgp.201411333] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 05/14/2015] [Indexed: 01/07/2023] Open
Abstract
The superfamily of pentameric ligand-gated ion channels (pLGICs) is unique among ionotropic receptors in that the same overall structure has evolved to generate multiple members with different combinations of agonist specificities and permeant-ion charge selectivities. However, aside from these differences, pLGICs have been typically regarded as having several invariant functional properties. These include pore blockade by extracellular quaternary-ammonium cations in the micromolar-to-millimolar concentration range (in the case of the cation-selective members), and a gain-of-function phenotype, which manifests as a slower deactivation time course, as a result of mutations that reduce the hydrophobicity of the transmembrane pore lining. Here, we tested this notion on three distantly related cation-selective members of the pLGIC superfamily: the mouse muscle nicotinic acetylcholine receptor (nAChR), and the bacterial GLIC and ELIC channels. Remarkably, we found that, whereas low millimolar concentrations of TMA(+) and TEA(+) block the nAChR and GLIC, neither of these two quaternary-ammonium cations blocks ELIC at such concentrations; instead, both carry measurable inward currents when present as the only cations on the extracellular side. Also, we found that, whereas lidocaine binding speeds up the current-decay time courses of the nAChR and GLIC in the presence of saturating concentrations of agonists, the binding of lidocaine to ELIC slows this time course down. Furthermore, whereas mutations that reduce the hydrophobicity of the side chains at position 9' of the M2 α-helices greatly slowed the deactivation time course of the nAChR and GLIC, these mutations had little effect--or even sped up deactivation--when engineered in ELIC. Our data indicate that caution should be exercised when generalizing results obtained with ELIC to the rest of the pLGICs, but more intriguingly, they hint at the possibility that ELIC is a representative of a novel branch of the superfamily with markedly divergent pore properties despite a well-conserved three-dimensional architecture.
Collapse
Affiliation(s)
- Giovanni Gonzalez-Gutierrez
- Department of Molecular and Integrative Physiology, Center for Biophysics and Computational Biology, and Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Claudio Grosman
- Department of Molecular and Integrative Physiology, Center for Biophysics and Computational Biology, and Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
22
|
Molecular determinants of agonist selectivity in glutamate-gated chloride channels which likely explain the agonist selectivity of the vertebrate glycine and GABAA-ρ receptors. PLoS One 2014; 9:e108458. [PMID: 25259865 PMCID: PMC4178172 DOI: 10.1371/journal.pone.0108458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 08/11/2014] [Indexed: 11/29/2022] Open
Abstract
Orthologous Cys-loop glutamate-gated chloride channels (GluClR’s) have been cloned and described electrophysiologically and pharmacologically in arthropods and nematodes (both members of the invertebrate ecdysozoan superphylum). Recently, GluClR’s from Aplysia californica (a mollusc from the lophotrochozoan superphylum) have been cloned and similarly studied. In spite of sharing a common function, the ecdysozoan and lophotrochozoan receptors have been shown by phylogenetic analyses to have evolved independently. The recent crystallization of the GluClR from C. elegans revealed the binding pocket of the nematode receptor. An alignment of the protein sequences of the nematode and molluscan GluClRs showed that the Aplysia receptor does not contain all of the residues defining the binding mode of the ecdysozoan receptor. That the two receptors have slightly different binding modes is not surprising since earlier electrophysiological and pharmacological experiments had suggested that they were differentially responsive to certain agonists. Knowledge of the structure of the C. elegans GluClR has permitted us to generate a homology model of the binding pocket of the Aplysia receptor. We have analyzed the differences between the two binding modes and evaluated the relative significance of their non-common residues. We have compared the GluClRs electrophysiologically and pharmacologically and we have used site-directed mutagenesis on both receptor types to test predictions made from the model. Finally, we propose an explanation derived from the model for why the nematode receptors are gated only by glutamate, whereas the molluscan receptors can also be activated by β-alanine, GABA and taurine. Like the Aplysia receptor, the vertebrate glycine and GABAA-ρ receptors also respond to these other agonists. An alignment of the sequences of the molluscan and vertebrate receptors shows that the reasons we have given for the ability of the other agonists to activate the Aplysia receptor also explain the agonist profile seen in the glycine and GABAA-ρ receptors.
Collapse
|
23
|
Fischer K, Walton S. Parasitic mites of medical and veterinary importance--is there a common research agenda? Int J Parasitol 2014; 44:955-67. [PMID: 25218570 DOI: 10.1016/j.ijpara.2014.08.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 08/22/2014] [Accepted: 08/23/2014] [Indexed: 01/31/2023]
Abstract
There are an estimated 0.5-1 million mite species on earth. Among the many mites that are known to affect humans and animals, only a subset are parasitic but these can cause significant disease. We aim here to provide an overview of the most recent work in this field in order to identify common biological features of these parasites and to inform common strategies for future research. There is a critical need for diagnostic tools to allow for better surveillance and for drugs tailored specifically to the respective parasites. Multi-'omics' approaches represent a logical and timely strategy to identify the appropriate mite molecules. Recent advances in sequencing technology enable us to generate de novo genome sequence data, even from limited DNA resources. Consequently, the field of mite genomics has recently emerged and will now rapidly expand, which is a particular advantage for parasitic mites that cannot be cultured in vitro. Investigations of the microbiota associated with mites will elucidate the link between parasites and pathogens, and define the role of the mite in transmission and pathogenesis. The databases generated will provide the crucial knowledge essential to design novel diagnostic tools, control measures, prophylaxes, drugs and immunotherapies against the mites and associated secondary infections.
Collapse
Affiliation(s)
- Katja Fischer
- QIMR Berghofer Medical Research Institute, Infectious Diseases Program, Biology Department, Brisbane, Queensland, Australia.
| | - Shelley Walton
- Inflammation and Healing Research Cluster, School of Health and Sport Sciences, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia.
| |
Collapse
|
24
|
Juneja P, Horlacher R, Bertrand D, Krause R, Marger F, Welte W. An internally modulated, thermostable, pH-sensitive Cys loop receptor from the hydrothermal vent worm Alvinella pompejana. J Biol Chem 2014; 289:15130-40. [PMID: 24719323 DOI: 10.1074/jbc.m113.525576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cys loop receptors (CLRs) are commonly known as ligand-gated channels that transiently open upon binding of neurotransmitters to modify the membrane potential. However, a class of cation-selective bacterial homologues of CLRs have been found to open upon a sudden pH drop, suggesting further ligands and more functions of the homologues in prokaryotes. Here we report an anion-selective CLR from the hydrothermal vent annelid worm Alvinella pompejana that opens at low pH. A. pompejana expressed sequence tag databases were explored by us, and two full-length CLR sequences were identified, synthesized, cloned, expressed in Xenopus oocytes, and studied by two-electrode voltage clamp. One channel, named Alv-a1-pHCl, yielded functional receptors and opened upon a sudden pH drop but not by other known agonists. Sequence comparison showed that both CLR proteins share conserved characteristics with eukaryotic CLRs, such as an N-terminal helix, a cysteine loop motif, and an intracellular loop intermediate in length between the long loops of other eukaryotic CLRs and those of prokaryotic CLRs. Both full-length Alv-a1-pHCl and a truncated form, termed tAlv-a1-pHCl, lacking 37 amino-terminal residues that precede the N-terminal helix, formed functional channels in oocytes. After pH activation, tAlv-a1-pHCl showed desensitization and was not modulated by ivermectin. In contrast, pH-activated, full-length Alv-a1-pHCl showed a marked rebound current and was modulated significantly by ivermectin. A thermostability assay indicated that purified tAlv-a1-pHCl expressed in Sf9 cells denatured at a higher temperature than the nicotinic acetylcholine receptor from Torpedo californica.
Collapse
Affiliation(s)
- Puneet Juneja
- From the Fachbereich Biologie, Universität Konstanz, Universitätsstraβe 10, 78457 Konstanz, Germany
| | | | - Daniel Bertrand
- HiQScreen Sàrl, 6, rte. de Compois, 1222 Vésenaz, Geneva, Switzerland
| | - Ryoko Krause
- HiQScreen Sàrl, 6, rte. de Compois, 1222 Vésenaz, Geneva, Switzerland
| | - Fabrice Marger
- HiQScreen Sàrl, 6, rte. de Compois, 1222 Vésenaz, Geneva, Switzerland
| | - Wolfram Welte
- From the Fachbereich Biologie, Universität Konstanz, Universitätsstraβe 10, 78457 Konstanz, Germany,
| |
Collapse
|
25
|
Lees K, Jones AK, Matsuda K, Akamatsu M, Sattelle DB, Woods DJ, Bowman AS. Functional characterisation of a nicotinic acetylcholine receptor α subunit from the brown dog tick, Rhipicephalus sanguineus. Int J Parasitol 2013; 44:75-81. [PMID: 24291321 PMCID: PMC4029082 DOI: 10.1016/j.ijpara.2013.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/01/2013] [Accepted: 11/04/2013] [Indexed: 12/16/2022]
Abstract
Ticks and tick-borne diseases have a major impact on human and animal health worldwide. Current control strategies rely heavily on the use of chemical acaricides, most of which target the CNS and with increasing resistance, new drugs are urgently needed. Nicotinic acetylcholine receptors (nAChRs) are targets of highly successful insecticides. We isolated a full-length nAChR α subunit from a normalised cDNA library from the synganglion (brain) of the brown dog tick, Rhipicephalus sanguineus. Phylogenetic analysis has shown this R. sanguineus nAChR to be most similar to the insect α1 nAChR group and has been named Rsanα1. Rsanα1 is distributed in multiple tick tissues and is present across all life-stages. When expressed in Xenopus laevis oocytes Rsanα1 failed to function as a homomer, with and without the addition of either Caenorhabditis elegans resistance-to-cholinesterase (RIC)-3 or X. laevis RIC-3. When co-expressed with chicken β2 nAChR, Rsanα1 evoked concentration-dependent, inward currents in response to acetylcholine (ACh) and showed sensitivity to nicotine (100 μM) and choline (100 μM). Rsanα1/β2 was insensitive to both imidacloprid (100 μM) and spinosad (100 μM). The unreliable expression of Rsanα1 in vitro suggests that additional subunits or chaperone proteins may be required for more robust expression. This study enhances our understanding of nAChRs in arachnids and may provide a basis for further studies on the interaction of compounds with the tick nAChR as part of a discovery process for novel acaricides.
Collapse
Affiliation(s)
- Kristin Lees
- Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Ave, Aberdeen AB24 2TZ, UK; Faculty of Life Sciences, University of Manchester, Oxford Rd, Manchester M13 9PT, UK
| | - Andrew K Jones
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Kazuhiko Matsuda
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Miki Akamatsu
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - David B Sattelle
- Wolfson Institute for Biomedical Research, Cruciform Building, University College London, Gower Street, London WC1E 6BT
| | - Debra J Woods
- Pfizer Animal Health, Pfizer Ltd, Sandwich, Kent CT13 9NJ, UK
| | - Alan S Bowman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Ave, Aberdeen AB24 2TZ, UK.
| |
Collapse
|
26
|
Prevost MS, Delarue-Cochin S, Marteaux J, Colas C, Van Renterghem C, Blondel A, Malliavin T, Corringer PJ, Joseph D. Identification of Cinnamic Acid Derivatives As Novel Antagonists of the Prokaryotic Proton-Gated Ion Channel GLIC. J Med Chem 2013; 56:4619-30. [DOI: 10.1021/jm400374q] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Marie S. Prevost
- Institut Pasteur, Unité Récepteurs-Canaux,
Paris, France
- CNRS UMR 3571, Paris, France
- Université Pierre et Marie Curie (UPMC), Cellule Pasteur, Paris, France
| | - Sandrine Delarue-Cochin
- Université Paris-Sud, Équipe de Chimie des Substances Naturelles, Châtenay-Malabry,
France
- CNRS UMR 8076 BioCIS, Châtenay-Malabry, France
| | - Justine Marteaux
- Université Paris-Sud, Équipe de Chimie des Substances Naturelles, Châtenay-Malabry,
France
- CNRS UMR 8076 BioCIS, Châtenay-Malabry, France
| | - Claire Colas
- Institut Pasteur, Unité de Bioinformatique Structurale, Paris, France
- CNRS UMR 3528, Paris, France
| | | | - Arnaud Blondel
- Institut Pasteur, Unité de Bioinformatique Structurale, Paris, France
- CNRS UMR 3528, Paris, France
| | - Thérèse Malliavin
- Institut Pasteur, Unité de Bioinformatique Structurale, Paris, France
- CNRS UMR 3528, Paris, France
| | - Pierre-Jean Corringer
- Institut Pasteur, Unité Récepteurs-Canaux,
Paris, France
- CNRS UMR 3571, Paris, France
| | - Delphine Joseph
- Université Paris-Sud, Équipe de Chimie des Substances Naturelles, Châtenay-Malabry,
France
- CNRS UMR 8076 BioCIS, Châtenay-Malabry, France
| |
Collapse
|
27
|
Kaestli M, Schmid M, Mayo M, Rothballer M, Harrington G, Richardson L, Hill A, Hill J, Tuanyok A, Keim P, Hartmann A, Currie BJ. Out of the ground: aerial and exotic habitats of the melioidosis bacterium Burkholderia pseudomallei in grasses in Australia. Environ Microbiol 2012; 14:2058-70. [PMID: 22176696 PMCID: PMC3319007 DOI: 10.1111/j.1462-2920.2011.02671.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Melioidosis is an emerging infectious disease of humans and animals in the tropics caused by the soil bacterium Burkholderia pseudomallei. Despite high fatality rates, the ecology of B.pseudomallei remains unclear. We used a combination of field and laboratory studies to investigate B.pseudomallei colonization of native and exotic grasses in northern Australia. Multivariable and spatial analyses were performed to determine significant predictors for B.pseudomallei occurrence in plants and soil collected longitudinally from field sites. In plant inoculation experiments, the impact of B.pseudomallei upon these grasses was studied and the bacterial load semi-quantified. Fluorescence in situ hybridization and confocal laser scanning microscopy were performed to localize the bacteria in plants. Burkholderia pseudomallei was found to inhabit not only the rhizosphere and roots but also aerial parts of specific grasses. This raises questions about the potential spread of B.pseudomallei by grazing animals whose droppings were found to be positive for these bacteria. In particular, B.pseudomallei readily colonized exotic grasses introduced to Australia for pasture. The ongoing spread of these introduced grasses creates new habitats suitable for B.pseudomallei survival and may be an important factor in the evolving epidemiology of melioidosis seen both in northern Australia and elsewhere globally.
Collapse
Affiliation(s)
- Mirjam Kaestli
- Tropical & Emerging Infectious Diseases Division, Menzies School of Health Research, PO Box 41096, Casuarina, NT 0811, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Dermauw W, Ilias A, Riga M, Tsagkarakou A, Grbić M, Tirry L, Van Leeuwen T, Vontas J. The cys-loop ligand-gated ion channel gene family of Tetranychus urticae: implications for acaricide toxicology and a novel mutation associated with abamectin resistance. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:455-465. [PMID: 22465149 DOI: 10.1016/j.ibmb.2012.03.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/07/2012] [Accepted: 03/09/2012] [Indexed: 05/27/2023]
Abstract
The cys-loop ligand-gated ion channel (cysLGIC) super family of Tetranychus urticae, the two-spotted spider mite, represents the largest arthropod cysLGIC super family described to date and the first characterised one within the group of chelicerates. Genome annotation, phylogenetic analysis and comparison of the cysLGIC subunits with their counterparts in insects reveals that the T. urticae genome encodes for a high number of glutamate- and histamine-gated chloride channel genes (GluCl and HisCl) compared to insects. Three orthologues of the insect γ-aminobutyric acid (GABA)-gated chloride channel gene Rdl were detected. Other cysLGIC groups, such as the nAChR subunits, are more conserved and have clear insect orthologues. Members of cysLGIC family mediate endogenous chemical neurotransmission and they are prime targets of insecticides. Implications for toxicology associated with the identity and specific features of T. urticae family members are discussed. We further reveal the accumulation of known and novel mutations in different GluCl channel subunits (Tu_GluCl1 and Tu_GluCl3) associated with abamectin resistance in T. urticae, and provide genetic evidence for their causality. Our study provides useful toxicological insights for the exploration of the T. urticae cysLGIC subunits as putative molecular targets for current and future chemical control strategies.
Collapse
Affiliation(s)
- W Dermauw
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Agricultural and Applied, Biological Sciences, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Lynagh T, Lynch JW. Ivermectin binding sites in human and invertebrate Cys-loop receptors. Trends Pharmacol Sci 2012; 33:432-41. [PMID: 22677714 DOI: 10.1016/j.tips.2012.05.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 04/27/2012] [Accepted: 05/07/2012] [Indexed: 10/28/2022]
Abstract
Ivermectin is a gold standard antiparasitic drug that has been used successfully to treat billions of humans, livestock and pets. Until recently, the binding site on its Cys-loop receptor target had been a mystery. Recent protein crystal structures, site-directed mutagenesis data and molecular modelling now explain how ivermectin binds to these receptors and reveal why it is selective for invertebrate members of the Cys-loop receptor family. Combining this with emerging genomic information, we are now in a position to predict species sensitivity to ivermectin and better understand the molecular basis of ivermectin resistance. An understanding of the molecular structure of the ivermectin binding site, which is formed at the interface of two adjacent subunits in the transmembrane domain of the receptor, should also aid the development of new lead compounds both as anthelmintics and as therapies for a wide variety of human neurological disorders.
Collapse
Affiliation(s)
- Timothy Lynagh
- Neurosensory Systems Group, Technical University of Darmstadt, Schnittspahnstrasse 3, 64287 Darmstadt, Germany
| | | |
Collapse
|
30
|
Holt DC, Burgess STG, Reynolds SL, Mahmood W, Fischer K. Intestinal proteases of free-living and parasitic astigmatid mites. Cell Tissue Res 2012; 351:339-52. [DOI: 10.1007/s00441-012-1369-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 02/08/2012] [Indexed: 11/28/2022]
|
31
|
Fischer K, Holt D, Currie B, Kemp D. Scabies: important clinical consequences explained by new molecular studies. ADVANCES IN PARASITOLOGY 2012; 79:339-73. [PMID: 22726646 DOI: 10.1016/b978-0-12-398457-9.00005-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In 2004, we reviewed the status of disease caused by the scabies mite Sarcoptes scabiei at the time and pointed out that very little basic research had ever been done. The reason for this was largely the lack of availability of mites for experimental purposes and, to a degree, a consequent lack of understanding of its importance, resulting in the trivial name 'itch mite'. Scabies is responsible for major morbidity in disadvantaged communities and immunocompromised patients worldwide. In addition to the physical discomfort caused by the disease, scabies infestations facilitate infection by bacterial pathogens such as Streptococcus pyogenes and Staphylococcus aureus via skin lesions, resulting in severe downstream disease such as in a high prevalence of rheumatic fever/heart disease in affected communities. We now have further evidence that in disadvantaged populations living in tropical climates, scabies rather than 'Strep throat' is an important source of S. pyogenes causing rheumatic fever and eventually rheumatic heart disease. In addition, our work has resulted in two fundamental research tools that facilitate much of the current biomedical research efforts on scabies, namely a public database containing ~45,000 scabies mite expressed sequence tags and a porcine in vivo model. Here we will discuss novel and unexpected proteins encountered in the database that appear crucial to mite survival with regard to digestion and evasion of host defence. The mode(s) of action of some of these have been at least partially revealed. Further, newly discovered molecules that may well have a similar role, such as a family of inactivated cysteine proteases, are yet to be investigated. Hence, there are now whole families of potential targets for chemical inhibitors of S. scabiei. These efforts put today's scabies research in a unique position to design and test small molecules that may specifically interfere with mite-derived molecules, such as digestive proteases and mite complement inhibitors. The porcine scabies model will be available to trial in vivo treatment with potential inhibitors. New therapies for scabies may be developed from these studies and may contribute to reduce the spread of scabies and the subsequent prevalence of bacterial skin infections and their devastating sequelae in the community.
Collapse
Affiliation(s)
- Katja Fischer
- Queensland Institute of Medical Research, Herston, Austraria
| | | | | | | |
Collapse
|
32
|
Jayawardhana DA, Sengupta MK, Krishantha DM, Gupta J, Armstrong DW, Guan X. Chemical-induced pH-mediated molecular switch. Anal Chem 2011; 83:7692-7. [PMID: 21919492 PMCID: PMC3214665 DOI: 10.1021/ac2019393] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The transmembrane protein α-hemolysin pore has been used to develop ultrasensitive biosensors, study biomolecular folding and unfolding, investigate covalent and noncovalent bonding interactions, and probe enzyme kinetics. Here, we report that, by addition of ionic liquid tetrakis(hydroxymethyl)phosphonium chloride solution to the α-hemolysin pore, the α-hemolysin channel can be controlled open or closed by adjusting the pH of the solution. This approach can be employed to develop a novel molecular switch to regulate molecular transport and should find potential applications as a "smart" drug delivery method.
Collapse
Affiliation(s)
- Dilani A. Jayawardhana
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, 700 Planetarium Place, Arlington, Texas 76019-0065, USA
| | - Mrinal K. Sengupta
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, 700 Planetarium Place, Arlington, Texas 76019-0065, USA
| | - D.M. Milan Krishantha
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, 700 Planetarium Place, Arlington, Texas 76019-0065, USA
| | - Jyoti Gupta
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, 700 Planetarium Place, Arlington, Texas 76019-0065, USA
| | - Daniel W. Armstrong
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, 700 Planetarium Place, Arlington, Texas 76019-0065, USA
| | - Xiyun Guan
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, 700 Planetarium Place, Arlington, Texas 76019-0065, USA
| |
Collapse
|
33
|
Foy BD, Kobylinski KC, da Silva IM, Rasgon JL, Sylla M. Endectocides for malaria control. Trends Parasitol 2011; 27:423-8. [PMID: 21727027 DOI: 10.1016/j.pt.2011.05.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 05/27/2011] [Accepted: 05/31/2011] [Indexed: 02/03/2023]
Abstract
Systemic endectocidal drugs, used to control nematodes in humans and other vertebrates, can be toxic to Anopheles spp. mosquitoes when they take a blood meal from a host that has recently received one of these drugs. Recent laboratory and field studies have highlighted the potential of ivermectin to control malaria parasite transmission if this drug is distributed strategically and more often. There are important theoretical benefits to this strategy, as well as caveats. A better understanding of drug effects against vectors and malaria ecologies are needed. In the near future, ivermectin and other endectocides could serve as potent and novel malaria transmission control tools that are directly linked to the control of neglected tropical diseases in the same communities.
Collapse
Affiliation(s)
- Brian D Foy
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1692, USA.
| | | | | | | | | |
Collapse
|
34
|
Kobylinski KC, Deus KM, Butters MT, Hongyu T, Gray M, Silva IMD, Sylla M, Foy BD. The effect of oral anthelmintics on the survivorship and re-feeding frequency of anthropophilic mosquito disease vectors. Acta Trop 2010; 116:119-26. [PMID: 20540931 PMCID: PMC2939250 DOI: 10.1016/j.actatropica.2010.06.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 05/29/2010] [Accepted: 06/01/2010] [Indexed: 11/16/2022]
Abstract
In the Tropics, there is substantial temporal and spatial overlap of diseases propagated by anthropophilic mosquito vectors (such as malaria and dengue) and human helminth diseases (such as onchocerciasis and lymphatic filariasis) that are treated though mass drug administrations (MDA). This overlap will result in mosquito vectors imbibing significant quantities of these drugs when they blood feed on humans. Since many anthelmintic drugs have broad anti-invertebrate effects, the possibility of combined helminth control and mosquito-borne disease control through MDA is apparent. It has been previously shown that ivermectin can reduce mosquito survivorship when administered in a blood meal, but more detailed examinations are needed if MDA is to ever be developed into a tool for malaria or dengue control. We examined concentrations of drugs that follow human pharmacokinetics after MDA and that matched with mosquito feeding times, for effects against the anthropophilic mosquito vectors Anopheles gambiae s.s. and Aedes aegypti. Ivermectin was the only human-approved MDA drug we tested that affected mosquito survivorship, and only An. gambiae s.s. were affected at concentrations respecting human pharmacokinetics at indicated doses. Ivermectin also delayed An. gambiae s.s. re-feeding frequency and defecation rates, and two successive ivermectin-spiked blood meals following human pharmacokinetic concentrations compounded mortality effects compared to controls. These findings suggest that ivermectin MDA in Africa may be used to decrease malaria transmission if MDAs were administered more frequently. Such a strategy would broaden the current scope of polyparasitism control already afforded by MDAs, and which is needed in many African villages simultaneously burdened by many parasitic diseases.
Collapse
Affiliation(s)
- Kevin C. Kobylinski
- Arthropod-borne & Infectious Diseases Laboratory, Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Kelsey M. Deus
- Arthropod-borne & Infectious Diseases Laboratory, Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Matt T. Butters
- Arthropod-borne & Infectious Diseases Laboratory, Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Tan Hongyu
- Department of Statistics, Colorado State University, Fort Collins, Colorado, United States of America
| | - Meg Gray
- Arthropod-borne & Infectious Diseases Laboratory, Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Ines Marques da Silva
- Arthropod-borne & Infectious Diseases Laboratory, Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Massamba Sylla
- Arthropod-borne & Infectious Diseases Laboratory, Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Brian D. Foy
- Arthropod-borne & Infectious Diseases Laboratory, Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
35
|
Abstract
Cys-loop receptors are membrane-spanning neurotransmitter-gated ion channels that are responsible for fast excitatory and inhibitory transmission in the peripheral and central nervous systems. The best studied members of the Cys-loop family are nACh, 5-HT3, GABAA and glycine receptors. All these receptors share a common structure of five subunits, pseudo-symmetrically arranged to form a rosette with a central ion-conducting pore. Some are cation selective (e.g. nACh and 5-HT3) and some are anion selective (e.g. GABAA and glycine). Each receptor has an extracellular domain (ECD) that contains the ligand-binding sites, a transmembrane domain (TMD) that allows ions to pass across the membrane, and an intracellular domain (ICD) that plays a role in channel conductance and receptor modulation. Cys-loop receptors are the targets for many currently used clinically relevant drugs (e.g. benzodiazepines and anaesthetics). Understanding the molecular mechanisms of these receptors could therefore provide the catalyst for further development in this field, as well as promoting the development of experimental techniques for other areas of neuroscience.In this review, we present our current understanding of Cys-loop receptor structure and function. The ECD has been extensively studied. Research in this area has been stimulated in recent years by the publication of high-resolution structures of nACh receptors and related proteins, which have permitted the creation of many Cys loop receptor homology models of this region. Here, using the 5-HT3 receptor as a typical member of the family, we describe how homology modelling and ligand docking can provide useful but not definitive information about ligand interactions. We briefly consider some of the many Cys-loop receptors modulators. We discuss the current understanding of the structure of the TMD, and how this links to the ECD to allow channel gating, and consider the roles of the ICD, whose structure is poorly understood. We also describe some of the current methods that are beginning to reveal the differences between different receptor states, and may ultimately show structural details of transitions between them.
Collapse
|
36
|
Pasay C, Mounsey K, Stevenson G, Davis R, Arlian L, Morgan M, Vyszenski-Moher D, Andrews K, McCarthy J. Acaricidal activity of eugenol based compounds against scabies mites. PLoS One 2010; 5:e12079. [PMID: 20711455 PMCID: PMC2920318 DOI: 10.1371/journal.pone.0012079] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 07/14/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Human scabies is a debilitating skin disease caused by the "itch mite" Sarcoptes scabiei. Ordinary scabies is commonly treated with topical creams such as permethrin, while crusted scabies is treated with topical creams in combination with oral ivermectin. Recent reports of acaricide tolerance in scabies endemic communities in Northern Australia have prompted efforts to better understand resistance mechanisms and to identify potential new acaricides. In this study, we screened three essential oils and four pure compounds based on eugenol for acaricidal properties. METHODOLOGY/PRINCIPAL FINDINGS Contact bioassays were performed using live permethrin-sensitive S. scabiei var suis mites harvested from pigs and permethrin-resistant S. scabiei var canis mites harvested from rabbits. Results of bioassays showed that clove oil was highly toxic against scabies mites. Nutmeg oil had moderate toxicity and ylang ylang oil was the least toxic. Eugenol, a major component of clove oil and its analogues--acetyleugenol and isoeugenol, demonstrated levels of toxicity comparable to benzyl benzoate, the positive control acaricide, killing mites within an hour of contact. CONCLUSIONS The acaricidal properties demonstrated by eugenol and its analogues show promise as leads for future development of alternative topical acaricides to treat scabies.
Collapse
Affiliation(s)
- Cielo Pasay
- Queensland Institute of Medical Research and Australian Centre for International and Tropical Health, University of Queensland, Brisbane, Queensland, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Lees K, Woods DJ, Bowman AS. Transcriptome analysis of the synganglion from the brown dog tick, Rhipicephalus sanguineus. INSECT MOLECULAR BIOLOGY 2010; 19:273-282. [PMID: 20002796 DOI: 10.1111/j.1365-2583.2009.00968.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Tick control strategies rely heavily on chemicals (acaricides), most of which target the central nervous system. With increasing resistance, new acaricides are urgently needed but knowledge of tick neurobiology is surprisingly limited, notably the number of neural-specific gene sequences. One thousand and eight expressed sequence tags (ESTs) were obtained from a normalized cDNA library from Rhipicephalus sanguineus synganglia. Putative functional identities were assigned to 44% whereas 34% were unknown/novel sequences. Of particular interest were ESTs encoding a chitinase-like enzyme, an acetylcholinesterase and four transmembrane receptors including two glutamate-gated chloride channel receptors, a leucokinin-like receptor and a nicotinic acetylcholine receptor alpha-subunit. This study highlights the benefits of using both neural tissues and normalized libraries in an EST-approach for identifying potential acaricide targets expressed as rare transcripts.
Collapse
Affiliation(s)
- K Lees
- School of Biological Sciences (Zoology), University of Aberdeen, Aberdeen, UK
| | | | | |
Collapse
|
38
|
Mounsey KE, Pasay CJ, Arlian LG, Morgan MS, Holt DC, Currie BJ, Walton SF, McCarthy JS. Increased transcription of Glutathione S-transferases in acaricide exposed scabies mites. Parasit Vectors 2010; 3:43. [PMID: 20482766 PMCID: PMC2890653 DOI: 10.1186/1756-3305-3-43] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 05/18/2010] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Recent evidence suggests that Sarcoptes scabiei var. hominis mites collected from scabies endemic communities in northern Australia show increasing tolerance to 5% permethrin and oral ivermectin. Previous findings have implicated detoxification pathways in developing resistance to these acaricides. We investigated the contribution of Glutathione S-transferase (GST) enzymes to permethrin and ivermectin tolerance in scabies mites using biochemical and molecular approaches. RESULTS Increased in vitro survival following permethrin exposure was observed in S. scabiei var. hominis compared to acaricide naïve mites (p < 0.0001). The addition of the GST inhibitor diethyl maleate restored in vitro permethrin susceptibility, confirming GST involvement in permethrin detoxification. Assay of GST enzymatic activity in mites demonstrated that S. scabiei var. hominis mites showed a two-fold increase in activity compared to naïve mites (p < 0.0001). Increased transcription of three different GST molecules was observed in permethrin resistant S. scabiei var. canis- mu 1 (p < 0.0001), delta 1 (p < 0.001), and delta 3 (p < 0.0001). mRNA levels of GST mu 1, delta 3 and P-glycoprotein also significantly increased in S. scabiei var. hominis mites collected from a recurrent crusted scabies patient over the course of ivermectin treatment. CONCLUSIONS These findings provide further support for the hypothesis that increased drug metabolism and efflux mediate permethrin and ivermectin resistance in scabies mites and highlight the threat of emerging acaricide resistance to the treatment of scabies worldwide. This is one of the first attempts to define specific genes involved in GST mediated acaricide resistance at the transcriptional level, and the first application of such studies to S. scabiei, a historically challenging ectoparasite.
Collapse
Affiliation(s)
- Kate E Mounsey
- Infectious Diseases Division, Queensland Institute of Medical Research and Australian Centre for International and Tropical Health and Nutrition, University of Queensland, Brisbane, Queensland, Australia
- Tropical and Emerging Infectious Diseases Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Cielo J Pasay
- Infectious Diseases Division, Queensland Institute of Medical Research and Australian Centre for International and Tropical Health and Nutrition, University of Queensland, Brisbane, Queensland, Australia
| | | | | | - Deborah C Holt
- Tropical and Emerging Infectious Diseases Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Bart J Currie
- Tropical and Emerging Infectious Diseases Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Northern Territory Clinical School, Flinders University, Darwin, Northern Territory, Australia
| | - Shelley F Walton
- School of Health and Sports Science, University of Sunshine Coast, Maroochydore, Queensland, Australia
| | - James S McCarthy
- Infectious Diseases Division, Queensland Institute of Medical Research and Australian Centre for International and Tropical Health and Nutrition, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
39
|
Affiliation(s)
- Bart J Currie
- Menzies School of Health Research, Royal Darwin Hospital, Darwin, NT, Australia.
| | | |
Collapse
|
40
|
The evolution of pentameric ligand-gated ion channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 683:11-23. [PMID: 20737785 DOI: 10.1007/978-1-4419-6445-8_2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Fast, ionotropic neurotransmission mediated by ligand-gated ion channels is essential for timely behavioral responses in multicellular organisms. Metazoa employ more ionotropic neurotransmitters in more types of synapses, inhibitory or excitatory, than is generally appreciated. It is becoming increasingly clear that the adaptability of a single neurotransmitter receptor superfamily, the pentameric ligand-gated ion channels (pLGICs), makes the diversity in ionotropic neurotransmission possible. Modification ofa common pLGIC structure generates channels that are gated by ligands as different as protons, histamine or zinc and that pair common neurotransmitters with both cation and anion permeability. A phylogeny of the pLGIC gene family from representative metazoa suggests that pLGIC diversity is ancient and evolution of contemporary phyla was characterized by a surprising loss of pLGIC diversity. The pLGIC superfamily reveals aspects of early metazoan evolution, may help us identify novel neurotransmitters and can inform our exploration of structure/function relationships.
Collapse
|
41
|
Mounsey KE, Holt DC, McCarthy J, Currie BJ, Walton SF. Scabies: molecular perspectives and therapeutic implications in the face of emerging drug resistance. Future Microbiol 2008; 3:57-66. [DOI: 10.2217/17460913.3.1.57] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Limited effective treatments, coupled with recent observations of emerging drug resistance to oral ivermectin and 5% permethrin, raise concerns regarding the future control of scabies, especially in severe cases and in endemic areas where repeated community treatment programs are in place. There is consequently an urgent need to define molecular mechanisms of drug resistance in scabies mites and to develop and assess alternative therapeutic options, such as tea tree oil, in the event of increasing treatment failure. Molecular studies on scabies mites have, until recently, been restricted; however, recent advances are providing new insights into scabies mite biology and genetic mechanisms underlying drug resistance. These may assist in overcoming many of the current difficulties in monitoring treatment efficacy and allow the development of more sensitive tools for monitoring emerging resistance.
Collapse
Affiliation(s)
- Kate E Mounsey
- Charles Darwin University, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Deborah C Holt
- Charles Darwin University, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - James McCarthy
- Queensland Institute of Medical Research & Australian Centre for International & Tropical Health & Nutrition, University of Queensland, Brisbane, Queensland, Australia
| | - Bart J Currie
- Charles Darwin University, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Shelley F Walton
- Charles Darwin University, Menzies School of Health Research, Darwin, Northern Territory, Australia
| |
Collapse
|