1
|
Nguyen D, Wang G, Wafa T, Fitzgerald T, Gu Y. The medial entorhinal cortex encodes multisensory spatial information. Cell Rep 2024; 43:114813. [PMID: 39395171 DOI: 10.1016/j.celrep.2024.114813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 08/12/2024] [Accepted: 09/17/2024] [Indexed: 10/14/2024] Open
Abstract
Animals employ spatial information in multisensory modalities to navigate their natural environments. However, it is unclear whether the brain encodes such information in separate cognitive maps or integrates it all into a single, universal map. We address this question in the microcircuit of the medial entorhinal cortex (MEC), a cognitive map of space. Using cellular-resolution calcium imaging, we examine the MEC of mice navigating virtual reality tracks, where visual and auditory cues provide comparable spatial information. We uncover two cell types: "unimodality cells" and "multimodality cells." The unimodality cells specifically represent either auditory or visual spatial information. They are anatomically intermingled and maintain sensory preferences across multiple tracks and behavioral states. The multimodality cells respond to both sensory modalities, with their responses shaped differentially by auditory or visual information. Thus, the MEC enables accurate spatial encoding during multisensory navigation by computing spatial information in different sensory modalities and generating distinct maps.
Collapse
Affiliation(s)
- Duc Nguyen
- Spatial Navigation and Memory Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Garret Wang
- Spatial Navigation and Memory Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Talah Wafa
- Mouse Auditory Testing Core Facility, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tracy Fitzgerald
- Mouse Auditory Testing Core Facility, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yi Gu
- Spatial Navigation and Memory Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Jones JA, Zhou J, Dong J, Huitron-Resendiz S, Boussaty E, Chavez E, Wei N, Dumitru CD, Morodomi Y, Kanaji T, Ryan AF, Friedman R, Zhou T, Kanaji S, Wortham M, Schenk S, Roberts AJ, Yang XL. Murine nuclear tyrosyl-tRNA synthetase deficiency leads to fat storage deficiency and hearing loss. J Biol Chem 2024; 300:107756. [PMID: 39260699 PMCID: PMC11470617 DOI: 10.1016/j.jbc.2024.107756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024] Open
Abstract
Aminoacyl-tRNA synthetases are fundamental to the translation machinery with emerging roles in transcriptional regulation. Previous cellular studies have demonstrated tyrosyl-tRNA synthetase (YARS1 or TyrRS) as a stress response protein through its cytosol-nucleus translocation to maintain cellular homeostasis. Here, we established a mouse model with a disrupted TyrRS nuclear localization signal, revealing its systemic impact on metabolism. Nuclear TyrRS deficiency (YarsΔNLS) led to reduced lean mass, reflecting a mild developmental defect, and reduced fat mass, possibly due to increased energy expenditure. Consistently, YarsΔNLS mice exhibit improved insulin sensitivity and reduced insulin levels, yet maintain normoglycemia, indicative of enhanced insulin action. Notably, YarsΔNLS mice also develop progressive hearing loss. These findings underscore the crucial function of nuclear TyrRS in the maintenance of fat storage and hearing and suggest that aminoacyl-tRNA synthetases' regulatory roles can affect metabolic pathways and tissue-specific health. This work broadens our understanding of how protein synthesis interconnects metabolic regulation to ensure energy efficiency.
Collapse
Affiliation(s)
- Julia A Jones
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Jiadong Zhou
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Jianjie Dong
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | | | - Ely Boussaty
- Department of Otolaryngology - Head and Neck Surgery, University of California San Diego, La Jolla, California, USA
| | - Eduardo Chavez
- Department of Otolaryngology - Head and Neck Surgery, University of California San Diego, La Jolla, California, USA
| | - Na Wei
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Calin Dan Dumitru
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Yosuke Morodomi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Taisuke Kanaji
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Allen F Ryan
- Department of Otolaryngology - Head and Neck Surgery, University of California San Diego, La Jolla, California, USA
| | - Rick Friedman
- Department of Otolaryngology - Head and Neck Surgery, University of California San Diego, La Jolla, California, USA
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Sachiko Kanaji
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Matthew Wortham
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California San Diego, La Jolla, California, USA
| | - Simon Schenk
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, California, USA
| | - Amanda J Roberts
- Animal Models Core Facility, The Scripps Research Institute, La Jolla, California, USA
| | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA.
| |
Collapse
|
3
|
Chen HK, Wang YH, Lei CS, Guo YR, Tang MC, Tsai TF, Chen YF, Wang CH. Loss of Cisd2 Exacerbates the Progression of Age-Related Hearing Loss. Aging Dis 2024:AD.2024.1036. [PMID: 39226169 DOI: 10.14336/ad.2024.1036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/24/2024] [Indexed: 09/05/2024] Open
Abstract
Age-related hearing loss (ARHL) is a disease that impacts human quality of life and contributes to the progression of other neuronal problems. Various stressors induce an increase in free radicals, destroy mitochondria to further contribute to cellular malfunction, and compromise cell viability, ultimately leading to functional decline. Cisd2, a master gene for Marfan syndrome, plays an essential role in maintaining mitochondrial integrity and functions. As shown by our data, specific deletion of Cisd2 in the cochlea exacerbated the hearing impairment of ARHL in C57BL/6 mice. Increased defects in mitochondrial function, potassium homeostasis and synapse activity were observed in the Cisd2-deleted mouse models. These mechanistic phenotypes combined with oxidative stress contribute to cell death in the whole cochlea. Human patients with obviously deteriorated ARHL had low Cisd2 expression; therefore, Cisd2 may be a potential target for designing therapeutic methods to attenuate the disease progression of ARHL.
Collapse
Affiliation(s)
- Hang-Kang Chen
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114201, Taiwan
- Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 114201, Taiwan
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114202, Taiwan
| | - Yen-Hsin Wang
- The Ph.D. Program for Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Cing-Syuan Lei
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
| | - Yu-Ru Guo
- The Ph.D. Program for Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ming-Chi Tang
- The Ph.D. Program for Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ting-Fen Tsai
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 11221, Taiwan
- Brain Research Center, National Yang-Ming University, Taipei 11221, Taiwan
- Aging and Health Research Center, National Yang-Ming University, Taipei 11221, Taiwan
- Genome Research Center, National Yang-Ming University, Taipei 11221, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Yi-Fan Chen
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Master Program in Clinical Genomics and Proteomics, School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- The Ph.D. Program for Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Hung Wang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114201, Taiwan
- Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 114201, Taiwan
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114202, Taiwan
| |
Collapse
|
4
|
Subramanian R, Bauman A, Carpenter O, Cho C, Coste G, Dam A, Drake K, Ehnstrom S, Fitzgerald N, Jenkins A, Koolpe H, Liu R, Paserman T, Petersen D, Chavez DS, Rozental S, Thompson H, Tsukuda T, Zweig S, Gall M, Zupan B, Bergstrom H. An Infralimbic Cortex Neuronal Ensemble Encoded During Learning Attenuates Fear Generalization Expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.18.608308. [PMID: 39229064 PMCID: PMC11370439 DOI: 10.1101/2024.08.18.608308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Generalization allows for experience to flexibly guide behavior when conditions change. A basic physical unit of memory storage and expression in the brain are sparse, distributed groups of neurons known as ensembles (i.e., the engram). The infralimbic (IL) subregion of the ventral medial prefrontal cortex plays a key role in modulating conditioned defensive responses. How IL neuronal ensembles established during learning contribute to generalized responses is unknown. In this set of experiments, generalization was tested in male and female mice by presenting a novel, ambiguous, tone generalization stimulus following Pavlovian defensive (fear) conditioning. The first experiment was designed to test a role for IL in generalization using chemogenetic manipulations. Results show IL bidirectionally regulates defensive behavior. IL silencing promotes a switch in defensive state from vigilant scanning to generalized freezing, while IL stimulation reduces freezing in favor of scanning. Leveraging activity-dependent tagging technology (ArcCreERT2 x eYFP system), a neuronal ensemble, preferentially located in IL superficial layer 2/3, was associated with the generalization stimulus. Remarkably, in the identical discrete location, fewer reactivated neurons were associated with the generalization stimulus at the remote timepoint (30 days) following learning. When an IL neuronal ensemble established during learning was selectively chemogenetically silenced, generalization increased. Conversely, IL neuronal ensemble stimulation reduced generalization. Overall, these data identify a crucial role for IL in suppressing generalized responses. Further, we uncover an IL neuronal ensemble, formed during learning, functions to later attenuate the expression of generalization in the presence of ambiguous threat stimuli.
Collapse
Affiliation(s)
- Rajani Subramanian
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Avery Bauman
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Olivia Carpenter
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Chris Cho
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Gabrielle Coste
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Ahona Dam
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Kasey Drake
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Sara Ehnstrom
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Naomi Fitzgerald
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Abigail Jenkins
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Hannah Koolpe
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Runqi Liu
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Tamar Paserman
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - David Petersen
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Diego Scala Chavez
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Stefano Rozental
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Hannah Thompson
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Tyler Tsukuda
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Sasha Zweig
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Megan Gall
- Department of Biology, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Bojana Zupan
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Hadley Bergstrom
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| |
Collapse
|
5
|
Marino AL, Rex TS, Harrison FE. Modulation of microglia activation by the ascorbic acid transporter SVCT2. Brain Behav Immun 2024; 120:557-570. [PMID: 38972487 PMCID: PMC11458066 DOI: 10.1016/j.bbi.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/04/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024] Open
Abstract
Neuroinflammation is a major characteristic of pathology in several neurodegenerative diseases. Microglia, the brain's resident myeloid cells, shift between activation states under neuroinflammatory conditions, both responding to, but also driving damage in the brain. Vitamin C (ascorbate) is an essential antioxidant for central nervous system function that may have a specific role in the neuroinflammatory response. Uptake of ascorbate throughout the central nervous system is facilitated by the sodium-dependent vitamin C transporter 2 (SVCT2). SVCT2 transports the reduced form of ascorbate into neurons and microglia, however the contribution of altered SVCT2 expression to the neuroinflammatory response in microglia is not well understood. In this study we demonstrate that SVCT2 expression modifies microglial response, as shown through changes in cell morphology and mRNA expression, following a mild traumatic brain injury (mTBI) in mice with decreased or increased expression of SVCT2. Results were supported by in vitro studies in an immortalized microglial cell line and in primary microglial cultures derived from SVCT2-heterozygous and transgenic animals. Overall, this work demonstrates the importance of SVCT2 and ascorbate in modulating the microglial response to mTBI and suggests a potential role for both in response to neuroinflammatory challenges.
Collapse
Affiliation(s)
- Amanda L Marino
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| | - Tonia S Rex
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States; Division of Ophthalmology & Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Fiona E Harrison
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States; Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States.
| |
Collapse
|
6
|
Ji L, Borges BC, Martel DT, Wu C, Liberman MC, Shore SE, Corfas G. From hidden hearing loss to supranormal auditory processing by neurotrophin 3-mediated modulation of inner hair cell synapse density. PLoS Biol 2024; 22:e3002665. [PMID: 38935589 PMCID: PMC11210788 DOI: 10.1371/journal.pbio.3002665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/07/2024] [Indexed: 06/29/2024] Open
Abstract
Loss of synapses between spiral ganglion neurons and inner hair cells (IHC synaptopathy) leads to an auditory neuropathy called hidden hearing loss (HHL) characterized by normal auditory thresholds but reduced amplitude of sound-evoked auditory potentials. It has been proposed that synaptopathy and HHL result in poor performance in challenging hearing tasks despite a normal audiogram. However, this has only been tested in animals after exposure to noise or ototoxic drugs, which can cause deficits beyond synaptopathy. Furthermore, the impact of supernumerary synapses on auditory processing has not been evaluated. Here, we studied mice in which IHC synapse counts were increased or decreased by altering neurotrophin 3 (Ntf3) expression in IHC supporting cells. As we previously showed, postnatal Ntf3 knockdown or overexpression reduces or increases, respectively, IHC synapse density and suprathreshold amplitude of sound-evoked auditory potentials without changing cochlear thresholds. We now show that IHC synapse density does not influence the magnitude of the acoustic startle reflex or its prepulse inhibition. In contrast, gap-prepulse inhibition, a behavioral test for auditory temporal processing, is reduced or enhanced according to Ntf3 expression levels. These results indicate that IHC synaptopathy causes temporal processing deficits predicted in HHL. Furthermore, the improvement in temporal acuity achieved by increasing Ntf3 expression and synapse density suggests a therapeutic strategy for improving hearing in noise for individuals with synaptopathy of various etiologies.
Collapse
Affiliation(s)
- Lingchao Ji
- Kresge Hearing Research Institute and Department of Otolaryngology—Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Beatriz C. Borges
- Kresge Hearing Research Institute and Department of Otolaryngology—Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - David T. Martel
- Kresge Hearing Research Institute and Department of Otolaryngology—Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Calvin Wu
- Kresge Hearing Research Institute and Department of Otolaryngology—Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - M. Charles Liberman
- Mass Eye and Ear Infirmary and Harvard Medical School. Boston, Massachusetts, United States of America
| | - Susan E. Shore
- Kresge Hearing Research Institute and Department of Otolaryngology—Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
- Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Gabriel Corfas
- Kresge Hearing Research Institute and Department of Otolaryngology—Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
7
|
Jendrichovsky P, Lee HK, Kanold PO. Dark exposure reduces high-frequency hearing loss in C57BL/6J mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592252. [PMID: 38746420 PMCID: PMC11092591 DOI: 10.1101/2024.05.02.592252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Plastic changes in the brain are primarily limited to early postnatal periods. Recovery of adult brain plasticity is critical for the effective development of therapies. A brief (1-2 week) duration of visual deprivation (dark exposure, DE) in adult mice can trigger functional plasticity of thalamocortical and intracortical circuits in the primary auditory cortex suggesting improved sound processing. We tested if DE enhances the ability of adult mice to detect sounds. We trained and continuously evaluated the behavioral performance of mice in control and DE conditions using automated home-cage training. Consistent with age-related peripheral hearing loss present in C57BL/6J mice, we observed decreased performance for high-frequency sounds with age, which was reduced by DE. In CBA mice with preserved peripheral hearing, we also found that DE enhanced auditory performance in low and mid frequencies over time compared to the control.
Collapse
Affiliation(s)
- Peter Jendrichovsky
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine; Baltimore, USA
| | - Hey-Kyoung Lee
- Department of Neuroscience, Johns Hopkins University School of Medicine; Baltimore, USA
- Kavli NDI, Johns Hopkins University School of Medicine; Baltimore, USA
- Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University; Baltimore, USA
| | - Patrick O. Kanold
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine; Baltimore, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine; Baltimore, USA
- Kavli NDI, Johns Hopkins University School of Medicine; Baltimore, USA
| |
Collapse
|
8
|
Mazo C, Baeta M, Petreanu L. Auditory cortex conveys non-topographic sound localization signals to visual cortex. Nat Commun 2024; 15:3116. [PMID: 38600132 PMCID: PMC11006897 DOI: 10.1038/s41467-024-47546-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
Spatiotemporally congruent sensory stimuli are fused into a unified percept. The auditory cortex (AC) sends projections to the primary visual cortex (V1), which could provide signals for binding spatially corresponding audio-visual stimuli. However, whether AC inputs in V1 encode sound location remains unknown. Using two-photon axonal calcium imaging and a speaker array, we measured the auditory spatial information transmitted from AC to layer 1 of V1. AC conveys information about the location of ipsilateral and contralateral sound sources to V1. Sound location could be accurately decoded by sampling AC axons in V1, providing a substrate for making location-specific audiovisual associations. However, AC inputs were not retinotopically arranged in V1, and audio-visual modulations of V1 neurons did not depend on the spatial congruency of the sound and light stimuli. The non-topographic sound localization signals provided by AC might allow the association of specific audiovisual spatial patterns in V1 neurons.
Collapse
Affiliation(s)
- Camille Mazo
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal.
| | - Margarida Baeta
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
| | - Leopoldo Petreanu
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal.
| |
Collapse
|
9
|
Wang M, Lin S, Xie R. Apical-basal distribution of different subtypes of spiral ganglion neurons in the cochlea and the changes during aging. PLoS One 2023; 18:e0292676. [PMID: 37883357 PMCID: PMC10602254 DOI: 10.1371/journal.pone.0292676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Sound information is transmitted from the cochlea to the brain mainly by type I spiral ganglion neurons (SGNs), which consist of different subtypes with distinct physiological properties and selective expression of molecular markers. It remains unclear how these SGN subtypes distribute along the tonotopic axis, and whether the distribution pattern changes during aging that might underlie age-related hearing loss (ARHL). We investigated these questions using immunohistochemistry in three age groups of CBA/CaJ mice of either sex, including 2-5 months (young), 17-19 months (middle-age), and 28-32 months (old). Mouse cochleae were cryo-sectioned and triple-stained using antibodies against Tuj1, calretinin (CR) and calbindin (CB), which are reportedly expressed in all type I, subtype Ia, and subtype Ib SGNs, respectively. Labeled SGNs were classified into four groups based on the expression pattern of stained markers, including CR+ (subtype Ia), CB+ (subtype Ib), CR+CB+ (dual-labeled Ia/Ib), and CR-CB- (subtype Ic) neurons. The distribution of these SGN groups was analyzed in the apex, middle, and base regions of the cochleae. It showed that the prevalence of subtype Ia, Ib and dual-labeled Ia/Ib SGNs are high in the apex and low in the base. In contrast, the distribution pattern is reversed in Ic SGNs. Such frequency-dependent distribution is largely maintained during aging except for a preferential reduction of Ic SGNs, especially in the base. These findings corroborate the prior study based on RNAscope that SGN subtypes show differential vulnerability during aging. It suggests that sound processing of different frequencies involves distinct combinations of SGN subtypes, and the age-dependent loss of Ic SGNs in the base may especially impact high-frequency hearing during ARHL.
Collapse
Affiliation(s)
- Meijian Wang
- Department of Otolaryngology, The Ohio State University, Columbus, OH, United States of Ameirca
| | - Shengyin Lin
- Department of Otolaryngology, The Ohio State University, Columbus, OH, United States of Ameirca
| | - Ruili Xie
- Department of Otolaryngology, The Ohio State University, Columbus, OH, United States of Ameirca
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States of Ameirca
| |
Collapse
|
10
|
Penn C, Mayilsamy K, Zhu XX, Bauer MA, Mohapatra SS, Frisina RD, Mohapatra S. A mouse model of repeated traumatic brain injury-induced hearing impairment: Early cochlear neurodegeneration in the absence of hair cell loss. Hear Res 2023; 436:108832. [PMID: 37364367 DOI: 10.1016/j.heares.2023.108832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
PURPOSE Traumatic Brain Injury (TBI) is a major cause of death and disability worldwide. Mounting evidence suggests that even mild TBI injuries, which comprise >75% of all TBIs, can cause chronic post-concussive neurological symptoms, especially when experienced repetitively (rTBI). The most common post-concussive symptoms include auditory dysfunction in the form of hearing loss, tinnitus, or impaired auditory processing, which can occur even in the absence of direct damage to the auditory system at the time of injury. The mechanism by which indirect damage causes loss of auditory function is poorly understood, and treatment is currently limited to symptom management rather than preventative care. We reasoned that secondary injury mechanisms, such as inflammation, may lead to damage of the inner ear and parts of the brain used for hearing after rTBI. Herein, we established a model of indirect damage to the auditory system induced by rTBI and characterized the pathology of hearing loss. METHODS We established a mouse model of rTBI in order to determine a timeline of auditory pathology following multiple mild injuries. Mice were subject to controlled cortical impact at the skull midline once every 48 h, for a total of 5 hits. Auditory function was assessed via the auditory brainstem response (ABR) at various timepoints post injury. Brain and cochleae were collected to establish a timeline of cellular pathology. RESULTS We observed increased ABR thresholds and decreased (ABR) P1 amplitudes in rTBI vs sham animals at 14 days post-impact (dpi). This effect persisted for up to 60 days (dpi). Auditory temporal processing was impaired beginning at 30 dpi. Spiral ganglion degeneration was evident at 14 dpi. No loss of hair cells was detected at this time, suggesting that neuronal loss is one of the earliest notable events in hearing loss caused by this type of rTBI. CONCLUSIONS We conclude that rTBI results in chronic auditory dysfunction via damage to the spiral ganglion which occurs in the absence of any reduction in hair cell number. This suggests early neuronal damage that may be caused by systemic mechanisms similar to those leading to the spread of neuronal death in the brain following TBI. This TBI-hearing loss model provides an important first step towards identifying therapeutic targets to attenuate damage to the auditory system following head injury.
Collapse
Affiliation(s)
- Courtney Penn
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; James A Haley VA Hospital, Tampa, FL 33612, USA
| | - Karthick Mayilsamy
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; James A Haley VA Hospital, Tampa, FL 33612, USA
| | - Xiao Xia Zhu
- Department of Medical Engineering, College of Engineering and Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Mark A Bauer
- Department of Medical Engineering, College of Engineering and Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Shyam S Mohapatra
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; James A Haley VA Hospital, Tampa, FL 33612, USA
| | - Robert D Frisina
- Department of Medical Engineering, College of Engineering and Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Subhra Mohapatra
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; James A Haley VA Hospital, Tampa, FL 33612, USA.
| |
Collapse
|
11
|
Xue B, Meng X, Kao JPY, Kanold PO. Age-related changes in excitatory and inhibitory intra-cortical circuits in auditory cortex of C57Bl/6 mice. Hear Res 2023; 429:108685. [PMID: 36701895 PMCID: PMC9928889 DOI: 10.1016/j.heares.2022.108685] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/16/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
A common impairment in aging is age-related hearing loss (presbycusis), which manifests as impaired spectrotemporal processing. Aging is accompanied by alteration in normal inhibitory (GABA) neurotransmission, and changes in excitatory (NMDA and AMPA) synapses in the auditory cortex (ACtx). However, the circuits affected by these synaptic changes remain unknown. Mice of the C57Bl/6J strain show premature age-related hearing loss and changes in functional responses in ACtx. We thus investigated how auditory cortical microcircuits change with age by comparing young (∼ 6 weeks) and aged (>1 year old) C57Bl/6J mice. We performed laser scanning photostimulation (LSPS) combined with whole-cell patch clamp recordings from Layer (L) 2/3 cells in primary auditory cortex (A1) of young adult and aged C57Bl/6J mice. We found that L2/3 cells in aged C57Bl/6J mice display functional hypoconnectivity of both excitatory and inhibitory circuits. Compared to cells from young C57Bl/6 mice, cells from aged C57Bl/6J mice have fewer excitatory connections with weaker connection strength. Whereas young adult and aged C57Bl/6J mice have similar amounts of inhibitory connections, the strength of local inhibition is weaker in the aged group. We confirmed these results by recording miniature excitatory (mEPSCs) and inhibitory synaptic currents (mIPSCs). Our results suggest a specific reduction in excitatory and inhibitory intralaminar cortical circuits in aged C57Bl/6J mice compared with young adult animals. We speculate that these unbalanced changes in cortical circuits contribute to the functional manifestations of age-related hearing loss.
Collapse
Affiliation(s)
- Binghan Xue
- Department of Biology, University of Maryland, College Park, MD 20742, United States
| | - Xiangying Meng
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, United States; Department of Biology, University of Maryland, College Park, MD 20742, United States
| | - Joseph P Y Kao
- Center for Biomedical Engineering and Technology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Patrick O Kanold
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, United States; Department of Biology, University of Maryland, College Park, MD 20742, United States.
| |
Collapse
|
12
|
Kim SJ, Gajbhiye A, Lyu AR, Kim TH, Shin SA, Kwon HC, Park YH, Park MJ. Sex differences in hearing impairment due to diet-induced obesity in CBA/Ca mice. Biol Sex Differ 2023; 14:10. [PMID: 36810096 PMCID: PMC9945383 DOI: 10.1186/s13293-023-00493-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Obesity is an independent risk factor for hearing loss. Although attention has focused on major obesity comorbidities such as cardiovascular disease, stroke, and type 2 diabetes, the impact of obesity on sensorineural organs, including the auditory system, is unclear. Using a high-fat diet (HFD)-induced obese mouse model, we investigated the impact of diet-induced obesity on sexual dimorphism in metabolic alterations and hearing sensitivity. METHODS Male and female CBA/Ca mice were randomly assigned to three diet groups and fed, from weaning (at 28 days) to 14 weeks of age, a sucrose-matched control diet (10 kcal% fat content diet), or one of two HFDs (45 or 60 kcal% fat content diets). Auditory sensitivity was evaluated based on the auditory brainstem response (ABR), distortion product otoacoustic emission (DPOAE), and ABR wave 1 amplitude at 14 weeks of age, followed by biochemical analyses. RESULTS We found significant sexual dimorphism in HFD-induced metabolic alterations and obesity-related hearing loss. Male mice exhibited greater weight gain, hyperglycemia, increased ABR thresholds at low frequencies, elevated DPOAE, and lower ABR wave 1 amplitude compared to female mice. The hair cell (HC) ribbon synapse (CtBP2) puncta showed significant sex differences. The serum concentration of adiponectin, an otoprotective adipokine, was significantly higher in female than in male mice; cochlear adiponectin levels were elevated by HFD in female but not male mice. Adiponectin receptor 1 (AdipoR1) was widely expressed in the inner ear, and cochlear AdipoR1 protein levels were increased by HFD, in female but not male mice. Stress granules (G3BP1) were significantly induced by the HFD in both sexes; conversely, inflammatory (IL-1β) responses were observed only in the male liver and cochlea, consistent with phenotype HFD-induced obesity. CONCLUSIONS Female mice are more resistant to the negative effects of an HFD on body weight, metabolism, and hearing. Females showed increased peripheral and intra-cochlear adiponectin and AdipoR1 levels, and HC ribbon synapses. These changes may mediate resistance to HFD-induced hearing loss seen in female mice.
Collapse
Affiliation(s)
- Soo Jeong Kim
- grid.254230.20000 0001 0722 6377Brain Research Institute, College of Medicine, Chungnam National University, 282 Munwha-ro, Daesa-dong, Jung-gu, 35015 Daejeon, South Korea
| | - Akanksha Gajbhiye
- grid.254230.20000 0001 0722 6377Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015 South Korea
| | - Ah-Ra Lyu
- grid.254230.20000 0001 0722 6377Brain Research Institute, College of Medicine, Chungnam National University, 282 Munwha-ro, Daesa-dong, Jung-gu, 35015 Daejeon, South Korea
| | - Tae Hwan Kim
- grid.254230.20000 0001 0722 6377Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015 South Korea
| | - Sun-Ae Shin
- grid.254230.20000 0001 0722 6377Brain Research Institute, College of Medicine, Chungnam National University, 282 Munwha-ro, Daesa-dong, Jung-gu, 35015 Daejeon, South Korea
| | - Hyuk Chan Kwon
- grid.254230.20000 0001 0722 6377Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015 South Korea
| | - Yong-Ho Park
- Brain Research Institute, College of Medicine, Chungnam National University, 282 Munwha-ro, Daesa-dong, Jung-gu, 35015, Daejeon, South Korea. .,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea. .,Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea.
| | - Min Jung Park
- Brain Research Institute, College of Medicine, Chungnam National University, 282 Munwha-ro, Daesa-dong, Jung-gu, 35015, Daejeon, South Korea. .,Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea.
| |
Collapse
|
13
|
Shi L, Palmer K, Wang H, Xu-Friedman MA, Sun W. Low Intensity Noise Exposure Enhanced Auditory Loudness and Temporal Processing by Increasing Excitability of DCN. Neural Plast 2022; 2022:6463355. [PMID: 36452876 PMCID: PMC9705115 DOI: 10.1155/2022/6463355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 08/12/2022] [Accepted: 10/21/2022] [Indexed: 11/23/2022] Open
Abstract
Sound stimulation is generally used for tinnitus and hyperacusis treatment. Recent studies found that long-term noise exposure can change synaptic and firing properties in the central auditory system, which will be detected by the acoustic startle reflex. However, the perceptual consequences of long-term low-intensity sound exposure are indistinct. This study will detect the effects of moderate-level noise exposure (83 dB SPL) on auditory loudness, and temporal processing was evaluated using CBA/CaJ mice. C-Fos staining was used to detect neural activity changes in the central auditory pathway. With two weeks of 83 dB SPL noise exposure (8 hours per day), no persistent threshold shift of the auditory brainstem response (ABR) was identified. On the other hand, noise exposure enhanced the acoustic startle response (ASR) and gap-induced prepulse inhibition significantly (gap-PPI). Low-level noise exposure, according to the findings, can alter temporal acuity. Noise exposure increased the number of c-Fos labeled neurons in the dorsal cochlear nucleus (DCN) and caudal pontine reticular nucleus (PnC) but not at a higher level in the central auditory nuclei. Our results suggested that noise stimulation can change acoustical temporal processing presumably by increasing the excitability of auditory brainstem neurons.
Collapse
Affiliation(s)
- Lin Shi
- Department of Otorhinolaryngology, The First Hospital of Dalian Medical University, Dalian, China
- Department of Communicative Disorders and Sciences, Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, NY, USA
| | - Katie Palmer
- Department of Communicative Disorders and Sciences, Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, NY, USA
| | - Haolin Wang
- Department of Otorhinolaryngology, The First Hospital of Dalian Medical University, Dalian, China
- Department of General Surgery, The First Hospital of Dalian Medical University, Dalian, China
| | - Matthew A. Xu-Friedman
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Wei Sun
- Department of Communicative Disorders and Sciences, Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
14
|
Hyperacusis: Loudness Intolerance, Fear, Annoyance and Pain. Hear Res 2022; 426:108648. [DOI: 10.1016/j.heares.2022.108648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022]
|
15
|
Zhao T, Tian G. Potential therapeutic role of SIRT1 in age- related hearing loss. Front Mol Neurosci 2022; 15:984292. [PMID: 36204138 PMCID: PMC9530142 DOI: 10.3389/fnmol.2022.984292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/30/2022] [Indexed: 01/11/2023] Open
Abstract
Age-related hearing loss (ARHL) is a major public health burden worldwide that profoundly affects the daily life of elderly people. Silent information regulator 1 (SIRT1 or Sirtuin1), known as a regulator of the cell cycle, the balance of oxidation/antioxidant and mitochondrial function, has been proven to have anti-aging and life-extending effects, and its possible connection with ARHL has received increasing attention in recent years. This paper provides an overview of research on the connection between SIRT1 and ARHL. Topics cover both the functions of SIRT1 and its important role in ARHL. This review concludes with a look at possible research directions for ARHL in the future.
Collapse
Affiliation(s)
- Tingting Zhao
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Guangyong Tian
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| |
Collapse
|
16
|
O'Reilly JA. Modelling mouse auditory response dynamics along a continuum of consciousness using a deep recurrent neural network. J Neural Eng 2022; 19. [DOI: 10.1088/1741-2552/ac9257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 09/15/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective Understanding neurophysiological changes that accompany transitions between anaesthetized and conscious states is a key objective of anesthesiology and consciousness science. This study aimed to characterize the dynamics of auditory-evoked potential morphology in mice along a continuum of consciousness. Approach Epidural field potentials were recorded from above the primary auditory cortices of two groups of laboratory mice: urethane-anaesthetized (A, n = 14) and conscious (C, n = 17). Both groups received auditory stimulation in the form of a repeated pure-tone stimulus, before and after receiving 10 mg/kg i.p. ketamine (AK and CK). Evoked responses were then ordered by ascending sample entropy into AK, A, CK, and C, considered to reflect physiological correlates of awareness. These data were used to train a recurrent neural network (RNN) with an input parameter encoding state. Model outputs were compared with grand-average event-related potential (ERP) waveforms. Subsequently, the state parameter was varied to simulate changes in the ERP that occur during transitions between states, and relationships with dominant peak amplitudes were quantified. Main results The RNN synthesized output waveforms that were in close agreement with grand-average ERPs for each group (r2 > 0.9, p < 0.0001). Varying the input state parameter generated model outputs reflecting changes in ERP morphology predicted to occur between states. Positive peak amplitudes within 25 to 50 ms, and negative peak amplitudes within 50 to 75 ms post-stimulus-onset, were found to display a sigmoidal characteristic during the transition from anaesthetized to conscious states. In contrast, negative peak amplitudes within 0 to 25 ms displayed greater linearity. Significance This study demonstrates a method for modelling changes in ERP morphology that accompany transitions between states of consciousness using a RNN. In future studies, this approach may be applied to human data to support the clinical use of ERPs to predict transition to consciousness.
Collapse
|
17
|
Capas-Peneda S, Saavedra Torres Y, Prins JB, Olsson IAS. From Mating to Milk Access: A Review of Reproductive Vocal Communication in Mice. Front Behav Neurosci 2022; 16:833168. [PMID: 35418843 PMCID: PMC8995852 DOI: 10.3389/fnbeh.2022.833168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/07/2022] [Indexed: 11/17/2022] Open
Abstract
Vocalisations play a central role in rodent communication, especially in reproduction related behaviours. In adult mice (Mus musculus) the emission of ultrasonic vocalisations (USVs) has been observed in courtship and mating behaviour, especially by males. These have been found to have distinctive individual signatures that influence female choice of mating partner. The most recent findings show that vocal communication also has a role in parental cooperation, in that female mice communicate with male partners in ultrasonic frequencies to induce paternal behaviour. Infant vocalisations form the other important part of reproductive vocal communication. Although born deaf, neonatal mice are capable of producing vocalisations since birth. As an altricial species, successful mother-infant communication is essential for survival, and these vocalisations are important modulators of maternal behaviour. Three main types of infant vocalisations have been identified and characterised. Most research has addressed pure USVs, related to stressful situations (e.g., cold, isolation, handling, presence of unfamiliar males or predators), which usually elicit maternal search and retrieval. In addition, broad-band spectrum signals, emitted post-partum during cleaning of foetal membranes, inhibit biting and injury by adults and “wriggling calls,” emitted during suckling, release maternal behaviour (such as licking). Several variables have been identified to modulate vocalisations in mice, including individual characteristics such as strain/genotype, age, sex, and experimental factors such as pharmacological compounds and social context. In recent years, there has been a big increase in the knowledge about the characteristics of vocal communication in rodents due to recent technological advances as well as a growing interest from the neuroscience community. Vocalisation analysis has become an essential tool for phenotyping and evaluating emotional states. In this review, we will (i) provide a comprehensive summary of the current knowledge on mouse reproductive vocal communication and (ii) discuss the most recent findings in order to provide a broad overview on this topic.
Collapse
Affiliation(s)
- Sara Capas-Peneda
- Biological Research Facility, Francis Crick Institute, London, United Kingdom
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ICBAS – School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- *Correspondence: Sara Capas-Peneda,
| | | | - Jan-Bas Prins
- Biological Research Facility, Francis Crick Institute, London, United Kingdom
- Leiden University Medical Centre, Leiden, Netherlands
| | - I. Anna S. Olsson
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ICBAS – School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
18
|
Transcriptome-Guided Identification of Drugs for Repurposing to Treat Age-Related Hearing Loss. Biomolecules 2022; 12:biom12040498. [PMID: 35454087 PMCID: PMC9028743 DOI: 10.3390/biom12040498] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/13/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Age-related hearing loss (ARHL) or presbycusis is a prevalent condition associated with social isolation, cognitive impairment, and dementia. Age-related changes in the cochlea, the auditory portion of the inner ear, are the primary cause of ARHL. Unfortunately, there are currently no pharmaceutical approaches to treat ARHL. To examine the biological processes underlying age-related changes in the cochlea and identify candidate drugs for rapid repurposing to treat ARHL, we utilized bulk RNA sequencing to obtain transcriptomes from the functional substructures of the cochlea—the sensorineural structures, including the organ of Corti and spiral ganglion neurons (OC/SGN) and the stria vascularis and spiral ligament (SV/SL)—in young (6-week-old) and old (2-year-old) C57BL/6 mice. Transcriptomic analyses revealed both overlapping and unique patterns of gene expression and gene enrichment between substructures and with ageing. Based on these age-related transcriptional changes, we queried the protein products of genes differentially expressed with ageing in DrugBank and identified 27 FDA/EMA-approved drugs that are suitable to be repurposed to treat ARHL. These drugs target the protein products of genes that are differentially expressed with ageing uniquely in either the OC/SGN or SV/SL and that interrelate diverse biological processes. Further transcriptomic analyses revealed that most genes differentially expressed with ageing in both substructures encode protein products that are promising drug target candidates but are, nevertheless, not yet linked to approved drugs. Thus, with this study, we apply a novel approach to characterize the druggable genetic landscape for ARHL and propose a list of drugs to test in pre-clinical studies as potential treatment options for ARHL.
Collapse
|
19
|
Zhang C, Ding D, Sun W, Hu BH, Manohar S, Salvi R. Time- and frequency-dependent changes in acoustic startle reflex amplitude following cyclodextrin-induced outer and inner cell loss. Hear Res 2022; 415:108441. [DOI: 10.1016/j.heares.2022.108441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/04/2022] [Accepted: 01/13/2022] [Indexed: 11/27/2022]
|
20
|
Stimulus Generalization in Mice during Pavlovian Eyeblink Conditioning. eNeuro 2022; 9:ENEURO.0400-21.2022. [PMID: 35228312 PMCID: PMC8941640 DOI: 10.1523/eneuro.0400-21.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/24/2022] [Accepted: 02/15/2022] [Indexed: 11/21/2022] Open
Abstract
Here, we investigate stimulus generalization in a cerebellar learning paradigm, called eyeblink conditioning. Mice were conditioned to close their eyes in response to a 10-kHz tone by repeatedly pairing this tone with an air puff to the eye 250 ms after tone onset. After 10 consecutive days of training, when mice showed reliable conditioned eyelid responses to the 10-kHz tone, we started to expose them to tones with other frequencies, ranging from 2 to 20 kHz. We found that mice had a strong generalization gradient, whereby the probability and amplitude of conditioned eyelid responses gradually decreases depending on the dissimilarity with the 10-kHz tone. Tones with frequencies closest to 10 kHz evoked the most and largest conditioned eyelid responses and each step away from the 10-kHz tone resulted in fewer and smaller conditioned responses (CRs). In addition, we found that tones with lower frequencies resulted in CRs that peaked earlier after tone onset compared with those to tones with higher frequencies. Together, our data show prominent generalization patterns in cerebellar learning. Since the known function of cerebellum is rapidly expanding from pure motor control to domains that include cognition, reward-learning, fear-learning, social function, and even addiction, our data imply generalization controlled by cerebellum in all these domains.
Collapse
|
21
|
Kiefer L, Koch L, Merdan-Desik M, Gaese BH, Nowotny M. Comparing the electrophysiological effects of traumatic noise exposure between rodents. J Neurophysiol 2022; 127:452-462. [PMID: 35020518 DOI: 10.1152/jn.00081.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Noise-induced hearing deficits are important health problems in the industrialized world. As the underlying physiological dysfunctions are not well understood, research in suitable animal models is urgently needed. Three rodent species (Mongolian gerbil, rat and mouse) were studied to compare the temporal dynamics of noise-induced hearing loss after identical procedures of noise exposure. Auditory brainstem responses (ABRs) were measured before, during and up to eight weeks after noise exposure for threshold determination and ABR waveform analysis. Trauma induction with stepwise increasing sound pressure level was interrupted by five interspersed ABR measurements. Comparing short- and long-term dynamics underlying the following noise-induced hearing loss revealed diverging time courses between the three species. Hearing loss occurred early on during noise exposure in all three rodent species at or above trauma frequency. Initial noise level (105 dB SPL) was most effective in rats while the delayed level-increase to 115 dB SPL affected mice much stronger. Induced temporary threshold shifts in rats and mice were larger in animals with lower pre-trauma ABR thresholds. The increase in activity (gain) along the auditory pathway was derived by comparing the amplitudes of short- and long-latency ABR waveform components. Directly after trauma, significant effects were found for rats (decreasing gain) and mice (increasing gain) while gerbils revealed high individual variability in gain changes. Taken together, our comparative study revealed pronounced species-specific differences in the development of noise-induced hearing loss and the related processing along the auditory pathway.
Collapse
Affiliation(s)
- Lenneke Kiefer
- Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany
| | - Lisa Koch
- Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany
| | - Melisa Merdan-Desik
- Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany.,Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University, Jena, Germany
| | - Bernhard H Gaese
- Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany
| | - Manuela Nowotny
- Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany.,Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
22
|
Delsmann MM, Seist R, Stürznickel J, Schmidt FN, Mansour A, Kobelski MM, Broocks G, Peichl J, Oheim R, Praetorius M, Schinke T, Amling M, Demay MB, Stankovic KM, Rolvien T. Conductive Hearing Loss in the Hyp Mouse Model of X-Linked Hypophosphatemia Is Accompanied by Hypomineralization of the Auditory Ossicles. J Bone Miner Res 2021; 36:2317-2328. [PMID: 34523743 PMCID: PMC8688200 DOI: 10.1002/jbmr.4443] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/27/2021] [Accepted: 09/13/2021] [Indexed: 01/10/2023]
Abstract
X-linked hypophosphatemia (XLH) is a hereditary musculoskeletal disorder caused by loss-of-function mutations in the PHEX gene. In XLH, increased circulating fibroblast growth factor 23 (FGF23) levels cause renal phosphate wasting and low concentrations of 1,25-dihydroxyvitamin D, leading to an early clinical manifestation of rickets. Importantly, hearing loss is commonly observed in XLH patients. We present here data from two XLH patients with marked conductive hearing loss. To decipher the underlying pathophysiology of hearing loss in XLH, we utilized the Hyp mouse model of XLH and measured auditory brain stem responses (ABRs) and distortion product otoacoustic emissions (DPOAEs) to functionally assess hearing. As evidenced by the increased ABR/DPOAE threshold shifts in the mid-frequency range, these measurements indicated a predominantly conductive hearing loss in Hyp mice compared to wild-type (WT) mice. Therefore, we carried out an in-depth histomorphometric and scanning electron microscopic analysis of the auditory ossicles. Quantitative backscattered electron imaging (qBEI) indicated a severe hypomineralization of the ossicles in Hyp mice, evidenced by lower calcium content (CaMean) and higher void volume (ie, porosity) compared to WT mice. Histologically, voids correlated with unmineralized bone (ie, osteoid), and the osteoid volume per bone volume (OV/BV) was markedly higher in Hyp mice than WT mice. The density of osteocyte lacunae was lower in Hyp mice than in WT mice, whereas osteocyte lacunae were enlarged. Taken together, our findings highlight the importance of ossicular mineralization for hearing conduction and point toward the potential benefit of improving mineralization to prevent hearing loss in XLH. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Maximilian M Delsmann
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany.,Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Richard Seist
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, USA.,Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Julian Stürznickel
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany.,Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Felix N Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Amer Mansour
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, USA
| | - Margaret M Kobelski
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gabriel Broocks
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jonathan Peichl
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Mark Praetorius
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Marie B Demay
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Konstantina M Stankovic
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, USA.,Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Tim Rolvien
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
23
|
Rumschlag JA, Razak KA. Age-related changes in event related potentials, steady state responses and temporal processing in the auditory cortex of mice with severe or mild hearing loss. Hear Res 2021; 412:108380. [PMID: 34758398 DOI: 10.1016/j.heares.2021.108380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 08/19/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022]
Abstract
Age-related changes in auditory processing affect the quality of life of older adults with and without hearing loss. To distinguish between the effects of sensorineural hearing loss and aging on cortical processing, the main goal of the present study was to compare cortical responses using the same stimulus paradigms and recording conditions in two strains of mice (C57BL/6J and FVB) that differ in the degree of age-related hearing loss. Electroencephalogram (EEG) recordings were obtained from freely moving young and old mice using epidural screw electrodes. We measured event related potentials (ERP) and 40 Hz auditory steady-state responses (ASSR). We used a novel stimulus, termed the gap-ASSR stimulus, which elicits an ASSR by rapidly presenting short gaps in continuous noise. By varying the gap widths and modulation depths, we probed the limits of temporal processing in young and old mice. Temporal fidelity of ASSR and gap-ASSR responses were measured as phase consistency across trials (inter-trial phase clustering; ITPC). The old C57 mice, which show severe hearing loss, produced larger ERP amplitudes compared to young mice. Despite robust ERPs, the old C57 mice showed significantly diminished ITPC in the ASSR and gap-ASSR responses, even with 100% modulation depth. The FVB mice, which show mild hearing loss with age, generated similar ERP amplitudes and ASSR ITPC across the age groups tested. However, the old FVB mice showed decreased gap-ASSR responses compared to young mice, particularly for modulation depths <100%. The C57 mice data suggest that severe presbycusis leads to increased gain in the auditory cortex, but with reduced temporal fidelity. The FVB mice data suggest that with mild hearing loss, age-related changes in temporal processing become apparent only when tested with more challenging sounds (shorter gaps and shallower modulation).
Collapse
Affiliation(s)
| | - Khaleel A Razak
- Graduate Neuroscience Program, Riverside, United States; Psychology Department, University of California, Riverside, United States.
| |
Collapse
|
24
|
Peineau T, Belleudy S, Pietropaolo S, Bouleau Y, Dulon D. Synaptic Release Potentiation at Aging Auditory Ribbon Synapses. Front Aging Neurosci 2021; 13:756449. [PMID: 34733152 PMCID: PMC8558230 DOI: 10.3389/fnagi.2021.756449] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Age-related hidden hearing loss is often described as a cochlear synaptopathy that results from a progressive degeneration of the inner hair cell (IHC) ribbon synapses. The functional changes occurring at these synapses during aging are not fully understood. Here, we characterized this aging process in IHCs of C57BL/6J mice, a strain which is known to carry a cadherin-23 mutation and experiences early hearing loss with age. These mice, while displaying a large increase in auditory brainstem thresholds due to 50% loss of IHC synaptic ribbons at middle age (postnatal day 365), paradoxically showed enhanced acoustic startle reflex suggesting a hyperacusis-like response. The auditory defect was associated with a large shrinkage of the IHCs' cell body and a drastic enlargement of their remaining presynaptic ribbons which were facing enlarged postsynaptic AMPAR clusters. Presynaptic Ca2+ microdomains and the capacity of IHCs to sustain high rates of exocytosis were largely increased, while on the contrary the expression of the fast-repolarizing BK channels, known to negatively control transmitter release, was decreased. This age-related synaptic plasticity in IHCs suggested a functional potentiation of synaptic transmission at the surviving synapses, a process that could partially compensate the decrease in synapse number and underlie hyperacusis.
Collapse
Affiliation(s)
- Thibault Peineau
- Neurophysiologie de la Synapse Auditive, INSERM UMRS 1120, Bordeaux Neurocampus, Université de Bordeaux, Bordeaux, France.,Institut de l'Audition, Centre Institut Pasteur/Inserm, Paris, France
| | - Séverin Belleudy
- Neurophysiologie de la Synapse Auditive, INSERM UMRS 1120, Bordeaux Neurocampus, Université de Bordeaux, Bordeaux, France
| | | | - Yohan Bouleau
- Neurophysiologie de la Synapse Auditive, INSERM UMRS 1120, Bordeaux Neurocampus, Université de Bordeaux, Bordeaux, France.,Institut de l'Audition, Centre Institut Pasteur/Inserm, Paris, France
| | - Didier Dulon
- Neurophysiologie de la Synapse Auditive, INSERM UMRS 1120, Bordeaux Neurocampus, Université de Bordeaux, Bordeaux, France.,Institut de l'Audition, Centre Institut Pasteur/Inserm, Paris, France
| |
Collapse
|
25
|
Chen C, She Z, Tang P, Qin Z, He J, Qu JY. Study of neurovascular coupling by using mesoscopic and microscopic imaging. iScience 2021; 24:103176. [PMID: 34693226 PMCID: PMC8511898 DOI: 10.1016/j.isci.2021.103176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/02/2021] [Accepted: 09/22/2021] [Indexed: 12/05/2022] Open
Abstract
Neuronal activation is often accompanied by the regulation of cerebral hemodynamics via a process known as neurovascular coupling (NVC) which is essential for proper brain function and has been observed to be disrupted in a variety of neuropathologies. A comprehensive understanding of NVC requires imaging capabilities with high spatiotemporal resolution and a field-of-view that spans different orders of magnitude. Here, we present an approach for concurrent multi-contrast mesoscopic and two-photon microscopic imaging of neurovascular dynamics in the cortices of live mice. We investigated the spatiotemporal correlation between sensory-evoked neuronal and vascular responses in the auditory cortices of living mice using four imaging modalities. Our findings unravel drastic differences in the NVC at the regional and microvascular levels and the distinctive effects of different brain states on NVC. We further investigated the brain-state-dependent changes of NVC in large cortical networks and revealed that anesthesia and sedation caused spatiotemporal disruption of NVC. Concurrent mesoscopic and microscopic imaging of neurovascular dynamics Spatiotemporal characteristics of neurovascular responses across multiple scales Distinct effects of anesthesia and sedation on neurovascular coupling Cortex-wide correlation of neuronal activity and cerebral hemodynamics
Collapse
Affiliation(s)
- Congping Chen
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China.,State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China.,Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Zhentao She
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China.,State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China.,Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Peng Tang
- Department of Neuroscience (NS), City University of Hong Kong, Hong Kong, P.R. China.,Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, P.R. China
| | - Zhongya Qin
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China.,State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China.,Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Jufang He
- Department of Neuroscience (NS), City University of Hong Kong, Hong Kong, P.R. China
| | - Jianan Y Qu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China.,State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China.,Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
26
|
Peixoto Pinheiro B, Adel Y, Knipper M, Müller M, Löwenheim H. Auditory Threshold Variability in the SAMP8 Mouse Model of Age-Related Hearing Loss: Functional Loss and Phenotypic Change Precede Outer Hair Cell Loss. Front Aging Neurosci 2021; 13:708190. [PMID: 34408646 PMCID: PMC8366269 DOI: 10.3389/fnagi.2021.708190] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/09/2021] [Indexed: 11/13/2022] Open
Abstract
Age-related hearing loss (ARHL) is the most common sensory deficit in aging society, which is accompanied by increased speech discrimination difficulties in noisy environments, social isolation, and cognitive decline. The audiometric degree of ARHL is largely correlated with sensory hair cell loss in addition to age-related factors not captured by histopathological analysis of the human cochlea. Previous studies have identified the senescence-accelerated mouse prone strain 8 (SAMP8) as a model for studying ARHL and age-related modifications of the cochlear redox environment. However, the SAMP8 population exhibits a large variability in auditory function decline over age, whose underlying cause remains unknown. In this study, we analyzed auditory function of SAMP8 mice by measuring auditory brainstem response (ABR) thresholds at the age of 6 weeks (juvenile), 12 weeks (young adult), and 24 weeks (adult). Consistent with previous studies, SAMP8 mice exhibit an early progressive, age-related decline of hearing acuity. However, a spatiotemporal cytohistological analysis showed that the significant increase in threshold variability was not concurrently reflected in outer hair cell (OHC) loss observed in the lower and upper quartiles of the ABR threshold distributions over age. This functional loss was found to precede OHC loss suggesting that age-related phenotypic changes may be contributing factors not represented in cytohistological analysis. The expression of potassium channels KCNQ4 (KV7.4), which mediates the current IK,n crucial for the maintenance of OHC membrane potential, and KCNQ1 (KV7.1), which is an essential component in potassium circulation and secretion into the endolymph generating the endocochlear potential, showed differences between these quartiles and age groups. This suggests that phenotypic changes in OHCs or the stria vascularis due to variable oxidative deficiencies in individual mice may be predictors of the observed threshold variability in SAMP8 mice and their progressive ARHL. In future studies, further phenotypic predictors affected by accumulated metabolic challenges over age need to be investigated as potentially underlying causes of ARHL preceding irreversible OHC loss in the SAMP8 mouse model.
Collapse
Affiliation(s)
- Barbara Peixoto Pinheiro
- Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Youssef Adel
- Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Marlies Knipper
- Molecular Physiology of Hearing, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Marcus Müller
- Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Hubert Löwenheim
- Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| |
Collapse
|
27
|
Milinkeviciute G, Chokr SM, Castro EM, Cramer KS. CX3CR1 mutation alters synaptic and astrocytic protein expression, topographic gradients, and response latencies in the auditory brainstem. J Comp Neurol 2021; 529:3076-3097. [PMID: 33797066 DOI: 10.1002/cne.25150] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/04/2021] [Accepted: 03/27/2021] [Indexed: 01/14/2023]
Abstract
The precise and specialized circuitry in the auditory brainstem develops through adaptations of cellular and molecular signaling. We previously showed that elimination of microglia during development impairs synaptic pruning that leads to maturation of the calyx of Held, a large encapsulating synapse that terminates on neurons of the medial nucleus of the trapezoid body (MNTB). Microglia depletion also led to a decrease in glial fibrillary acidic protein (GFAP), a marker for mature astrocytes. Here, we investigated the role of signaling through the fractalkine receptor (CX3CR1), which is expressed by microglia and mediates communication with neurons. CX3CR1-/- and wild-type mice were studied before and after hearing onset and at 9 weeks of age. Levels of GFAP were significantly increased in the MNTB in mutants at 9 weeks. Pruning was unaffected at the calyx of Held, but we found an increase in expression of glycinergic synaptic marker in mutant mice at P14, suggesting an effect on maturation of inhibitory inputs. We observed disrupted tonotopic gradients of neuron and calyx size in MNTB in mutant mice. Auditory brainstem recording (ABR) revealed that CX3CR1-/- mice had normal thresholds and amplitudes but decreased latencies and interpeak latencies, particularly for the highest frequencies. These results demonstrate that disruption of fractalkine signaling has a significant effect on auditory brainstem development. Our findings highlight the importance of neuron-microglia-astrocyte communication in pruning of inhibitory synapses and establishment of tonotopic gradients early in postnatal development.
Collapse
Affiliation(s)
- Giedre Milinkeviciute
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA
| | - Sima M Chokr
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA
| | - Emily M Castro
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA
| | - Karina S Cramer
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA
| |
Collapse
|
28
|
Qiang Q, Manalo JM, Sun H, Zhang Y, Song A, Wen AQ, Wen YE, Chen C, Liu H, Cui Y, Nemkov T, Reisz JA, Edwards III G, Perreira FA, Kellems RE, Soto C, D’Alessandro A, Xia Y. Erythrocyte adenosine A2B receptor prevents cognitive and auditory dysfunction by promoting hypoxic and metabolic reprogramming. PLoS Biol 2021; 19:e3001239. [PMID: 34138843 PMCID: PMC8211187 DOI: 10.1371/journal.pbio.3001239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022] Open
Abstract
Hypoxia drives aging and promotes age-related cognition and hearing functional decline. Despite the role of erythrocytes in oxygen (O2) transport, their role in the onset of aging and age-related cognitive decline and hearing loss (HL) remains undetermined. Recent studies revealed that signaling through the erythrocyte adenosine A2B receptor (ADORA2B) promotes O2 release to counteract hypoxia at high altitude. However, nothing is known about a role for erythrocyte ADORA2B in age-related functional decline. Here, we report that loss of murine erythrocyte-specific ADORA2B (eAdora2b-/-) accelerates early onset of age-related impairments in spatial learning, memory, and hearing ability. eAdora2b-/- mice display the early aging-like cellular and molecular features including the proliferation and activation of microglia and macrophages, elevation of pro-inflammatory cytokines, and attenuation of hypoxia-induced glycolytic gene expression to counteract hypoxia in the hippocampus (HIP), cortex, or cochlea. Hypoxia sufficiently accelerates early onset of cognitive and cochlear functional decline and inflammatory response in eAdora2b-/- mice. Mechanistically, erythrocyte ADORA2B-mediated activation of AMP-activated protein kinase (AMPK) and bisphosphoglycerate mutase (BPGM) promotes hypoxic and metabolic reprogramming to enhance production of 2,3-bisphosphoglycerate (2,3-BPG), an erythrocyte-specific metabolite triggering O2 delivery. Significantly, this finding led us to further discover that murine erythroblast ADORA2B and BPGM mRNA levels and erythrocyte BPGM activity are reduced during normal aging. Overall, we determined that erythrocyte ADORA2B-BPGM axis is a key component for anti-aging and anti-age-related functional decline.
Collapse
Affiliation(s)
- Qingfen Qiang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
| | - Jeanne M. Manalo
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
- University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
| | - Hong Sun
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yujin Zhang
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
| | - Anren Song
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
| | - Alexander Q. Wen
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
- University of California at San Diego, La Jolla, California, United States of America
| | - Y. Edward Wen
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
- University of Texas Southwestern Medical School, Dallas, Texas, United States of America
| | - Changhan Chen
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
| | - Hong Liu
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying Cui
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - George Edwards III
- University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- Department of Neurology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
| | - Fred A. Perreira
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, United States of America
| | - Rodney E. Kellems
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
- University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
| | - Claudio Soto
- Department of Neurology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Yang Xia
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
- University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
| |
Collapse
|
29
|
Shen Y, Hu H, Fan C, Wang Q, Zou T, Ye B, Xiang M. Sensorineural hearing loss may lead to dementia-related pathological changes in hippocampal neurons. Neurobiol Dis 2021; 156:105408. [PMID: 34082124 DOI: 10.1016/j.nbd.2021.105408] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 01/23/2023] Open
Abstract
Presbycusis contributes to cognitive decline and Alzheimer's disease. However, most research in this area involves clinical observations and statistical modeling, and few studies have examined the relationship between hearing loss and the molecular changes that lead to cognitive dysfunction. The present study investigated whether hearing loss contributes to dementia in the absence of aging and noise using a mouse model of severe bilateral hearing loss induced by kanamycin (1000 mg/kg) and furosemide (400 mg/kg). Immunohistochemistry, silver staining, immunofluorescence analysis, and Western blotting were used to observe pathological changes in different regions of the hippocampus in animals with hearing loss. Changes in the cognitive function of animals with hearing loss were assessed using the Morris water maze test. The results showed that neurons began to degenerate 60 days after hearing loss, and this degeneration was accompanied by structural disorganization and decreased neurogenesis. The level of phosphorylated tau increased over time. Increases in escape latency and distance traveled during the training phase of the Morris water maze test were observed 90 days after hearing loss. Activated microglia and astrocytes with increased levels of inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were detected in the hippocampus. These results suggest that hearing loss alone causes neuronal degeneration, inhibition of neurogenesis, increased tau protein phosphorylation, and increased neuroinflammation in the hippocampus. Early intervention in individuals with hearing loss may reduce the risk of cognitive decline.
Collapse
Affiliation(s)
- Yilin Shen
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Haixia Hu
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Cui Fan
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Quan Wang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Tianyuan Zou
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Bin Ye
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
| | - Mingliang Xiang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
| |
Collapse
|
30
|
Eaton M, Zhang J, Ma Z, Park AC, Lietzke E, Romero CM, Liu Y, Coleman ER, Chen X, Xiao T, Que Z, Lai S, Wu J, Lee JH, Palant S, Nguyen HP, Huang Z, Skarnes WC, Koss WA, Yang Y. Generation and basic characterization of a gene-trap knockout mouse model of Scn2a with a substantial reduction of voltage-gated sodium channel Na v 1.2 expression. GENES, BRAIN, AND BEHAVIOR 2021; 20:e12725. [PMID: 33369088 DOI: 10.1111/gbb.12725] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022]
Abstract
Large-scale genetic studies revealed SCN2A as one of the most frequently mutated genes in patients with neurodevelopmental disorders. SCN2A encodes for the voltage-gated sodium channel isoform 1.2 (Nav 1.2) expressed in the neurons of the central nervous system. Homozygous knockout (null) of Scn2a in mice is perinatal lethal, whereas heterozygous knockout of Scn2a (Scn2a+/- ) results in mild behavior abnormalities. The Nav 1.2 expression level in Scn2a+/- mice is reported to be around 50-60% of the wild-type (WT) level, which indicates that a close to 50% reduction of Nav 1.2 expression may not be sufficient to lead to major behavioral phenotypes in mice. To overcome this barrier, we characterized a novel mouse model of severe Scn2a deficiency using a targeted gene-trap knockout (gtKO) strategy. This approach produces viable homozygous mice (Scn2agtKO/gtKO ) that can survive to adulthood, with about a quarter of Nav 1.2 expression compared to WT mice. Innate behaviors like nesting and mating were profoundly disrupted in Scn2agtKO/gtKO mice. Notably, Scn2agtKO/gtKO mice have a significantly decreased center duration compared to WT in the open field test, suggesting anxiety-like behaviors in a novel, open space. These mice also have decreased thermal and cold tolerance. Additionally, Scn2agtKO/gtKO mice have increased fix-pattern exploration in the novel object exploration test and a slight increase in grooming, indicating a detectable level of repetitive behaviors. They bury little to no marbles and have decreased interaction with novel objects. These Scn2a gene-trap knockout mice thus provide a unique model to study pathophysiology associated with severe Scn2a deficiency.
Collapse
Affiliation(s)
- Muriel Eaton
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Jingliang Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Zhixiong Ma
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Anthony C Park
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Emma Lietzke
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Chloé M Romero
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Yushuang Liu
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Emily R Coleman
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Xiaoling Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Tiange Xiao
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Zhefu Que
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Shirong Lai
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Jiaxiang Wu
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Ji Hea Lee
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Sophia Palant
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Huynhvi P Nguyen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Zhuo Huang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - William C Skarnes
- Department of Cellular Engineering, The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Wendy A Koss
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
- Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana, USA
| | - Yang Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
31
|
Phenotype of the Aging-Dependent Spontaneous Onset of Hearing Loss in DBA/2 Mice. Vet Sci 2021; 8:vetsci8030049. [PMID: 33802823 PMCID: PMC8002487 DOI: 10.3390/vetsci8030049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 11/25/2022] Open
Abstract
Simple Summary In this study, we confirmed the changes in hearing function and inner ear structure over a long period of time in DBA/2 mice, a laboratory animal model suitable for studying hearing loss. We believe that our study is the first to report findings regarding hearing function and structural changes in DBA/2 mice aged ≥34 weeks. These results are of significance for researchers and the scientific community using laboratory animal models. Abstract DBA/2 mice are a well-known animal model for hearing loss developed due to intrinsic properties of these animals. However, results on the phenotype of hearing loss in DBA/2 mice have been mainly reported at an early stage in mice aged ≤7 weeks. Instead, the present study evaluated the hearing ability at 5, 13, and 34 weeks of age using DBA/2korl mice. Auditory brainstem response test was performed at 8–32 KHz at 5, 13, and 34 weeks of age, and hearing loss was confirmed to be induced in a time-dependent manner. In addition, histopathological evaluation at the same age confirmed the morphological damage of the cochlea. The findings presented herein are the results of the long-term observation of the phenotype of hearing loss in DBA/2 mice and can be useful in studies related to aging-dependent hearing loss.
Collapse
|
32
|
The aging mouse brain: cognition, connectivity and calcium. Cell Calcium 2021; 94:102358. [PMID: 33517250 DOI: 10.1016/j.ceca.2021.102358] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 02/08/2023]
Abstract
Aging is a complex process that differentially impacts multiple cognitive, sensory, neuronal and molecular processes. Technological innovations now allow for parallel investigation of neuronal circuit function, structure and molecular composition in the brain of awake behaving adult mice. Thus, mice have become a critical tool to better understand how aging impacts the brain. However, a more granular systems-based approach, which considers the impact of age on key features relating to neural processing, is required. Here, we review evidence probing the impact of age on the mouse brain. We focus on a range of processes relating to neuronal function, including cognitive abilities, sensory systems, synaptic plasticity and calcium regulation. Across many systems, we find evidence for prominent age-related dysregulation even before 12 months of age, suggesting that emerging age-related alterations can manifest by late adulthood. However, we also find reports suggesting that some processes are remarkably resilient to aging. The evidence suggests that aging does not drive a parallel, linear dysregulation of all systems, but instead impacts some processes earlier, and more severely, than others. We propose that capturing the more fine-scale emerging features of age-related vulnerability and resilience may provide better opportunities for the rejuvenation of the aged brain.
Collapse
|
33
|
Metabolic changes in the brain and blood of rats following acoustic trauma, tinnitus and hyperacusis. PROGRESS IN BRAIN RESEARCH 2021; 262:399-430. [PMID: 33931189 DOI: 10.1016/bs.pbr.2020.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
It has been increasingly recognized that tinnitus is likely to be generated by complex network changes. Acoustic trauma that causes tinnitus induces significant changes in multiple metabolic pathways in the brain. However, it is not clear whether those metabolic changes in the brain could also be reflected in blood samples and whether metabolic changes could discriminate acoustic trauma, hyperacusis and tinnitus. We analyzed brain and serum metabolic changes in rats following acoustic trauma or a sham procedure using metabolomics. Hearing levels were recorded before and after acoustic trauma and behavioral measures to quantify tinnitus and hyperacusis were conducted at 4 weeks following acoustic trauma. Tissues from 11 different brain regions and serum samples were collected at about 3 months following acoustic trauma. Among the acoustic trauma animals, eight exhibited hyperacusis-like behavior and three exhibited tinnitus-like behavior. Using Gas chromatography-mass spectrometry and multivariate statistical analysis, significant metabolic changes were found in acoustic trauma animals in both the brain and serum samples with a number of metabolic pathways significantly perturbated. Furthermore, metabolic changes in the serum were able to differentiate sham from acoustic trauma animals, as well as sham from hyperacusis animals, with high accuracy. Our results suggest that serum metabolic profiling in combination with machine learning analysis may be a promising approach for identifying biomarkers for acoustic trauma, hyperacusis and potentially, tinnitus.
Collapse
|
34
|
Lu J, West MB, Du X, Cai Q, Ewert DL, Cheng W, Nakmali D, Li W, Huang X, Kopke RD. Electrophysiological assessment and pharmacological treatment of blast-induced tinnitus. PLoS One 2021; 16:e0243903. [PMID: 33411811 PMCID: PMC7790300 DOI: 10.1371/journal.pone.0243903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/01/2020] [Indexed: 11/19/2022] Open
Abstract
Tinnitus, the phantom perception of sound, often occurs as a clinical sequela of auditory traumas. In an effort to develop an objective test and therapeutic approach for tinnitus, the present study was performed in blast-exposed rats and focused on measurements of auditory brainstem responses (ABRs), prepulse inhibition of the acoustic startle response, and presynaptic ribbon densities on cochlear inner hair cells (IHCs). Although the exact mechanism is unknown, the “central gain theory” posits that tinnitus is a perceptual indicator of abnormal increases in the gain (or neural amplification) of the central auditory system to compensate for peripheral loss of sensory input from the cochlea. Our data from vehicle-treated rats supports this rationale; namely, blast-induced cochlear synaptopathy correlated with imbalanced elevations in the ratio of centrally-derived ABR wave V amplitudes to peripherally-derived wave I amplitudes, resulting in behavioral evidence of tinnitus. Logistic regression modeling demonstrated that the ABR wave V/I amplitude ratio served as a reliable metric for objectively identifying tinnitus. Furthermore, histopathological examinations in blast-exposed rats revealed tinnitus-related changes in the expression patterns of key plasticity factors in the central auditory pathway, including chronic loss of Arc/Arg3.1 mobilization. Using a formulation of N-acetylcysteine (NAC) and disodium 2,4-disulfophenyl-N-tert-butylnitrone (HPN-07) as a therapeutic for addressing blast-induced neurodegeneration, we measured a significant treatment effect on preservation or restoration of IHC ribbon synapses, normalization of ABR wave V/I amplitude ratios, and reduced behavioral evidence of tinnitus in blast-exposed rats, all of which accorded with mitigated histopathological evidence of tinnitus-related neuropathy and maladaptive neuroplasticity.
Collapse
Affiliation(s)
- Jianzhong Lu
- Hough Ear Institute, Oklahoma City, Oklahoma, United States of America
| | - Matthew B. West
- Hough Ear Institute, Oklahoma City, Oklahoma, United States of America
| | - Xiaoping Du
- Hough Ear Institute, Oklahoma City, Oklahoma, United States of America
| | - Qunfeng Cai
- Hough Ear Institute, Oklahoma City, Oklahoma, United States of America
| | - Donald L. Ewert
- Hough Ear Institute, Oklahoma City, Oklahoma, United States of America
| | - Weihua Cheng
- Hough Ear Institute, Oklahoma City, Oklahoma, United States of America
| | - Don Nakmali
- Hough Ear Institute, Oklahoma City, Oklahoma, United States of America
| | - Wei Li
- Hough Ear Institute, Oklahoma City, Oklahoma, United States of America
| | - Xiangping Huang
- Hough Ear Institute, Oklahoma City, Oklahoma, United States of America
| | - Richard D. Kopke
- Hough Ear Institute, Oklahoma City, Oklahoma, United States of America
- Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- Departments of Physiology and Otolaryngology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
35
|
O'Reilly JA, Conway BA. Classical and controlled auditory mismatch responses to multiple physical deviances in anaesthetised and conscious mice. Eur J Neurosci 2020; 53:1839-1854. [DOI: 10.1111/ejn.15072] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/16/2020] [Accepted: 11/26/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Jamie A. O'Reilly
- College of Biomedical Engineering Rangsit University Pathum Thani Thailand
| | - Bernard A. Conway
- Department of Biomedical Engineering University of Strathclyde Glasgow UK
| |
Collapse
|
36
|
Kawashima T, Harai K, Fujita N, Takahashi R. Ninjinyoeito Has a Protective Effect on the Auditory Nerve and Suppresses the Progression of Age-Related Hearing Loss in Mice. Front Nutr 2020; 7:528864. [PMID: 33163504 PMCID: PMC7583632 DOI: 10.3389/fnut.2020.528864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 09/01/2020] [Indexed: 12/02/2022] Open
Abstract
Currently, there are limited reports available regarding the treatment and prevention of progressive age-related hearing loss. This is because age-related hearing loss is not a critical disease with direct fatalities and has several well-established countermeasures such as hearing aids and cochlear implants. This study evaluated the efficacy of Ninjinyoeito (NYT) in the treatment of age-related hearing loss. C57BL/6J mice were divided into three groups: baseline group, untreated group, and NYT-treated group, with the latter receiving NYT treatment for 2 months. The mice were fed with NYT extract mixed with 4% mouse normal chow. Hearing loss was confirmed by a reduction in intact cell density of the auditory nerve from the age of 5–7 months. The suppression of hearing loss with aging and decrease in the intact cell density of the auditory nerve were significant in mice fed with NYT for 2 months. NYT has been reported to improve blood flow and enhance mitochondrial activity and may exert its protective effects on spiral neurons through these mechanisms. There was no decrease in the size of the stria vascularis from the age of 5–7 months in C57BL/6J mice. The present model failed to reveal the effect of NYT on atrophy of the stria vascularis of the cochlear duct. In conclusion, NYT appears to have a protective effect on the auditory nerve and suppress the progression of age-related hearing loss by reducing age-related auditory nerve degeneration.
Collapse
Affiliation(s)
| | - Kenji Harai
- Kampo Research Laboratories, Kracie Pharma, Ltd., Tokyo, Japan
| | - Nina Fujita
- Kampo Research Laboratories, Kracie Pharma, Ltd., Tokyo, Japan
| | - Ryuji Takahashi
- Kampo Research Laboratories, Kracie Pharma, Ltd., Tokyo, Japan
| |
Collapse
|
37
|
Holman HA, Wan Y, Rabbitt RD. Developmental GAD2 Expression Reveals Progenitor-like Cells with Calcium Waves in Mammalian Crista Ampullaris. iScience 2020; 23:101407. [PMID: 32771977 PMCID: PMC7415930 DOI: 10.1016/j.isci.2020.101407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/29/2020] [Accepted: 07/21/2020] [Indexed: 01/26/2023] Open
Abstract
Sense of motion, spatial orientation, and balance in vertebrates relies on sensory hair cells in the inner ear vestibular system. Vestibular supporting cells can regenerate hair cells that are lost from aging, ototoxicity, and trauma, although not all factors or specific cell types are known. Here we report a population of GAD2-positive cells in the mouse crista ampullaris and trace GAD2 progenitor-like cells that express pluripotent transcription factors SOX2, PROX1, and CTBP2. GAD2 progenitor-like cells organize into rosettes around a central branched structure in the eminentia cruciatum (EC) herein named the EC plexus. GCaMP5G calcium indicator shows spontaneous and acetylcholine-evoked whole-cell calcium waves in neonatal and adult mice. We present a hypothetical model that outlines the lineage and potential regenerative capacity of GAD2 cells in the mammalian vestibular neuroepithelium.
Collapse
Affiliation(s)
- Holly A Holman
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| | - Yong Wan
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Richard D Rabbitt
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA; Graduate Program in Neuroscience, University of Utah, Salt Lake City, UT 84112, USA; Department of Otolaryngology-Head & Neck Surgery, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
38
|
Bowen Z, Winkowski DE, Kanold PO. Functional organization of mouse primary auditory cortex in adult C57BL/6 and F1 (CBAxC57) mice. Sci Rep 2020; 10:10905. [PMID: 32616766 PMCID: PMC7331716 DOI: 10.1038/s41598-020-67819-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 06/15/2020] [Indexed: 12/05/2022] Open
Abstract
The primary auditory cortex (A1) plays a key role for sound perception since it represents one of the first cortical processing stations for sounds. Recent studies have shown that on the cellular level the frequency organization of A1 is more heterogeneous than previously appreciated. However, many of these studies were performed in mice on the C57BL/6 background which develop high frequency hearing loss with age making them a less optimal choice for auditory research. In contrast, mice on the CBA background retain better hearing sensitivity in old age. Since potential strain differences could exist in A1 organization between strains, we performed comparative analysis of neuronal populations in A1 of adult (~ 10 weeks) C57BL/6 mice and F1 (CBAxC57) mice. We used in vivo 2-photon imaging of pyramidal neurons in cortical layers L4 and L2/3 of awake mouse primary auditory cortex (A1) to characterize the populations of neurons that were active to tonal stimuli. Pure tones recruited neurons of widely ranging frequency preference in both layers and strains with neurons in F1 (CBAxC57) mice exhibiting a wider range of frequency preference particularly to higher frequencies. Frequency selectivity was slightly higher in C57BL/6 mice while neurons in F1 (CBAxC57) mice showed a greater sound-level sensitivity. The spatial heterogeneity of frequency preference was present in both strains with F1 (CBAxC57) mice exhibiting higher tuning diversity across all measured length scales. Our results demonstrate that the tone evoked responses and frequency representation in A1 of adult C57BL/6 and F1 (CBAxC57) mice are largely similar.
Collapse
Affiliation(s)
- Zac Bowen
- Department of Biology, University of Maryland, 1116 Biosciences Res. Bldg., College Park, MD, 20742, USA
| | - Daniel E Winkowski
- Department of Biology, University of Maryland, 1116 Biosciences Res. Bldg., College Park, MD, 20742, USA
| | - Patrick O Kanold
- Department of Biology, University of Maryland, 1116 Biosciences Res. Bldg., College Park, MD, 20742, USA.
| |
Collapse
|
39
|
Manohar S, Adler HJ, Radziwon K, Salvi R. Interaction of auditory and pain pathways: Effects of stimulus intensity, hearing loss and opioid signaling. Hear Res 2020; 393:108012. [PMID: 32554129 DOI: 10.1016/j.heares.2020.108012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/24/2020] [Accepted: 05/29/2020] [Indexed: 11/19/2022]
Abstract
Moderate intensity sounds can reduce pain sensitivity (i.e., audio-analgesia) whereas intense sounds can induce aural pain, evidence of multisensory interaction between auditory and pain pathways. To explore auditory-pain pathway interactions, we used the tail-flick (TF) test to assess thermal tail-pain sensitivity by measuring the latency of a rat to remove its tail from 52 °C water. In Experiment 1, TF latencies were measured in ambient noise and broadband noise (BBN) presented from 80 to 120 dB SPL. TF latencies gradually increased from ambient to 90 dB SPL (audio-analgesia), but then declined. At 120 dB, TF latencies were significantly shorter than normal, evidence for audio-hyperalgesia near the aural threshold for pain. In Experiment II, the opioid pain pathway was modified by treating rats with a high dose of fentanyl known to induce post-treatment hyperalgesia. TF latencies in ambient noise were normal 10-days post-fentanyl. However, TF latencies became shorter than normal from 90 to 110 dB indicating that fentanyl pre-treatment had converted audio-analgesia to audio-hyperalgesia. In Experiment III, we tested the hypothesis that hearing loss could alter pain sensitivity by unilaterally exposing rats to an intense noise that induced a significant hearing loss. TF latencies in ambient noise gradually declined from 1- to 4-weeks post-exposure indicating that noise-induced hearing loss had increased pain sensitivity. Our results suggest that auditory and pain pathways interact in ways that depend on intensity, hearing loss and opioid pain signaling, results potentially relevant to pain hyperacusis.
Collapse
Affiliation(s)
- Senthilvelan Manohar
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY, 14214, USA
| | - Henry J Adler
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY, 14214, USA
| | - Kelly Radziwon
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY, 14214, USA
| | - Richard Salvi
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY, 14214, USA.
| |
Collapse
|
40
|
Tserga E, Damberg P, Canlon B, Cederroth CR. Auditory synaptopathy in mice lacking the glutamate transporter GLAST and its impact on brain activity. PROGRESS IN BRAIN RESEARCH 2020; 262:245-261. [PMID: 33931183 DOI: 10.1016/bs.pbr.2020.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neurotransmission of acoustic signals from the hair cells to the auditory nerve relies on a tightly controlled communication between pre-synaptic ribbons and post-synaptic glutamatergic terminals. After noise overexposure, de-afferentation occurs as a consequence of excessive glutamate release. What maintains synaptic integrity in the cochlea is poorly understood. The objective of this study is to evaluate the role of GLAST in maintaining synaptic integrity in the cochlea in absence or presence of noise, and its impact on sound-evoked brain activity using manganese-enhanced MRI (MeMRI). The glutamate aspartate transporter GLAST is present in supporting cells near the afferent synapse and its genetic deletion leads to greater synaptic swelling after noise overexposure. At baseline, GLAST knockout (GLAST KO) mice displayed two-fold lower wave 1 amplitude of the auditory brainstem response (ABR) when compared to their wild-type littermates in spite of similar ABR and distortion product otoacoustic emissions (DPOAE) thresholds. While the abundance of ribbons was not affected by the loss of GLAST function, the number of paired synapses was halved in GLAST KO mice, suggestive of a pre-existing auditory synaptopathy. Immediately after the noise exposure ABR thresholds rose by 41-62dB to a similar degree in GLAST WT and KO mice and DPOAE remained unaffected. In the acute phase following noise exposure, GLAST KO mice showed near complete de-afferentation unlike WT mice which maintained four to seven paired synapses per IHC. Brain activity using MeMRI found noise exposure to cause greater activity in the inferior colliculus in GLAST KO but not in WT mice. No changes in brain activity was found in GLAST KO mice at baseline in spite of affected afferent synapses, suggesting that auditory synaptopathy may not be sufficient to alter brain activity in the absence of noise exposure.
Collapse
Affiliation(s)
- Evangelia Tserga
- Laboratory of Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Peter Damberg
- Karolinska Experimental Research and Imaging Center, Karolinska University Hospital, Stockholm, Sweden
| | - Barbara Canlon
- Laboratory of Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Christopher R Cederroth
- Laboratory of Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
41
|
Stortz JA, Hollen MK, Nacionales DC, Horiguchi H, Ungaro R, Dirain ML, Wang Z, Wu Q, Wu KK, Kumar A, Foster TC, Stewart BD, Ross JA, Segal M, Bihorac A, Brakenridge S, Moore FA, Wohlgemuth SE, Leeuwenburgh C, Mohr AM, Moldawer LL, Efron PA. Old Mice Demonstrate Organ Dysfunction as well as Prolonged Inflammation, Immunosuppression, and Weight Loss in a Modified Surgical Sepsis Model. Crit Care Med 2020; 47:e919-e929. [PMID: 31389840 DOI: 10.1097/ccm.0000000000003926] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Our goal was to "reverse translate" the human response to surgical sepsis into the mouse by modifying a widely adopted murine intra-abdominal sepsis model to engender a phenotype that conforms to current sepsis definitions and follows the most recent expert recommendations for animal preclinical sepsis research. Furthermore, we aimed to create a model that allows the study of aging on the long-term host response to sepsis. DESIGN Experimental study. SETTING Research laboratory. SUBJECTS Young (3-5 mo) and old (18-22 mo) C57BL/6j mice. INTERVENTIONS Mice received no intervention or were subjected to polymicrobial sepsis with cecal ligation and puncture followed by fluid resuscitation, analgesia, and antibiotics. Subsets of mice received daily chronic stress after cecal ligation and puncture for 14 days. Additionally, modifications were made to ensure that "Minimum Quality Threshold in Pre-Clinical Sepsis Studies" recommendations were followed. MEASUREMENTS AND MAIN RESULTS Old mice exhibited increased mortality following both cecal ligation and puncture and cecal ligation and puncture + daily chronic stress when compared with young mice. Old mice developed marked hepatic and/or renal dysfunction, supported by elevations in plasma aspartate aminotransferase, blood urea nitrogen, and creatinine, 8 and 24 hours following cecal ligation and puncture. Similar to human sepsis, old mice demonstrated low-grade systemic inflammation 14 days after cecal ligation and puncture + daily chronic stress and evidence of immunosuppression, as determined by increased serum concentrations of multiple pro- and anti-inflammatory cytokines and chemokines when compared with young septic mice. In addition, old mice demonstrated expansion of myeloid-derived suppressor cell populations and sustained weight loss following cecal ligation and puncture + daily chronic stress, again similar to the human condition. CONCLUSIONS The results indicate that this murine cecal ligation and puncture + daily chronic stress model of surgical sepsis in old mice adhered to current Minimum Quality Threshold in Pre-Clinical Sepsis Studies guidelines and met Sepsis-3 criteria. In addition, it effectively created a state of persistent inflammation, immunosuppression, and weight loss, thought to be a key aspect of chronic sepsis pathobiology and increasingly more prevalent after human sepsis.
Collapse
Affiliation(s)
- Julie A Stortz
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - McKenzie K Hollen
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Dina C Nacionales
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Hiroyuki Horiguchi
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Ricardo Ungaro
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Marvin L Dirain
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Zhongkai Wang
- Department of Biostatistics, University of Florida College of Medicine, Gainesville, FL
| | - Quran Wu
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Kevin K Wu
- Department of Aging and Geriatric Research, University of Florida College of Medicine, Gainesville, FL
| | - Ashok Kumar
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL
| | - Thomas C Foster
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL
| | - Brian D Stewart
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL
| | - Julia A Ross
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL
| | - Marc Segal
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL
| | - Azra Bihorac
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL
| | - Scott Brakenridge
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Frederick A Moore
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Stephanie E Wohlgemuth
- Department of Aging and Geriatric Research, University of Florida College of Medicine, Gainesville, FL
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric Research, University of Florida College of Medicine, Gainesville, FL
| | - Alicia M Mohr
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Lyle L Moldawer
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Philip A Efron
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| |
Collapse
|
42
|
Gaucher Q, Panniello M, Ivanov AZ, Dahmen JC, King AJ, Walker KM. Complexity of frequency receptive fields predicts tonotopic variability across species. eLife 2020; 9:53462. [PMID: 32420865 PMCID: PMC7269667 DOI: 10.7554/elife.53462] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 05/18/2020] [Indexed: 12/17/2022] Open
Abstract
Primary cortical areas contain maps of sensory features, including sound frequency in primary auditory cortex (A1). Two-photon calcium imaging in mice has confirmed the presence of these global tonotopic maps, while uncovering an unexpected local variability in the stimulus preferences of individual neurons in A1 and other primary regions. Here we show that local heterogeneity of frequency preferences is not unique to rodents. Using two-photon calcium imaging in layers 2/3, we found that local variance in frequency preferences is equivalent in ferrets and mice. Neurons with multipeaked frequency tuning are less spatially organized than those tuned to a single frequency in both species. Furthermore, we show that microelectrode recordings may describe a smoother tonotopic arrangement due to a sampling bias towards neurons with simple frequency tuning. These results help explain previous inconsistencies in cortical topography across species and recording techniques.
Collapse
Affiliation(s)
- Quentin Gaucher
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Mariangela Panniello
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Aleksandar Z Ivanov
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Johannes C Dahmen
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Andrew J King
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Kerry Mm Walker
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
43
|
Rogalla MM, Hildebrandt KJ. Aging But Not Age-Related Hearing Loss Dominates the Decrease of Parvalbumin Immunoreactivity in the Primary Auditory Cortex of Mice. eNeuro 2020; 7:ENEURO.0511-19.2020. [PMID: 32327469 PMCID: PMC7210488 DOI: 10.1523/eneuro.0511-19.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/06/2020] [Accepted: 03/22/2020] [Indexed: 11/21/2022] Open
Abstract
Alterations in inhibitory circuits of the primary auditory cortex (pAC) have been shown to be an aspect of aging and age-related hearing loss (AHL). Several studies reported a decline in parvalbumin (PV) immunoreactivity in aged rodent pAC of animals displaying AHL and conclude a relationship between reduced sensitivity and declined PV immunoreactivity. However, it remains elusive whether AHL or a general molecular aging is causative for decreased PV immunoreactivity. In this study, we aimed to disentangle the effects of AHL and general aging on PV immunoreactivity patterns in inhibitory interneurons of mouse pAC. We compared young and old animals of a mouse line with AHL (C57BL/6) and a mutant (C57B6.CAST-Cdh23Ahl+ ) that is not vulnerable to AHL according to their hearing status by measuring auditory brainstem responses (ABRs) and by an immunohistochemical evaluation of the PV immunoreactivity patterns in two dimensions (rostro-caudal and layer) in the pAC. Although AHL could be confirmed by ABR measurements for the C57BL/6 mice, both aged strains showed a similar reduction of PV+ positive interneurons in both, number and density. The pattern of reduction across the rostro-caudal axis and across cortical layers was similar for both aged lines. Our results demonstrate that a reduced PV immunoreactivity is a sign of general, molecular aging and not related to AHL.
Collapse
Affiliation(s)
- Meike M Rogalla
- Department of Neuroscience, Division of Auditory Neuroscience, and Cluster of Excellence, Hearing4all, Carl von Ossietzky University, Oldenburg 26129, Germany
| | - K Jannis Hildebrandt
- Department of Neuroscience, Division of Auditory Neuroscience, and Cluster of Excellence, Hearing4all, Carl von Ossietzky University, Oldenburg 26129, Germany
| |
Collapse
|
44
|
Karimi M, Nasirinezhad F, Shahbazi A, Jalaei S, Mokrian H, Farahani S. The effect of insular cortex lesion on hyperacusis-like behavior in rats. Int J Neurosci 2020; 130:1071-1081. [PMID: 32003272 DOI: 10.1080/00207454.2020.1716751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Background and objectives: Hyperacusis is hypersensitivity and extreme response to the intensity of sound that is tolerable in normal subjects. The mechanisms underlying hyperacusis has not been well understood, specially the role of insular cortex. The aim of this study is to investigate the role of insular cortex in hyperacusis like behavior. Material and methods: The number of 33 male wistar rats weighting 170-250 gr were allocated randomly in three groups; control, sham, and insular lesion. Auditory startle responses (ASR) to different intensities of stimuli (70, 80, 90, 100, and110 dB without background noise as well as 110 dB in the presence of 70, 80 dB background noise) were measured before and up to four weeks after intervention. Results: Data analyses showed an increase in ASR to 100 dB stimulus without background noise one week after insular lesion, and increased responses to other intensities two weeks after lesion. Furthermore, there was a decrease in ASR to 110 dB stimulus with 80 dB background noise two weeks after insular lesion. However, no significant difference was observed in 70 dB background noise. The changes in ASR lasts at least four weeks.Conclusion: The findings indicated that there was an increase in ASR in the absence of background noise following cortical excititoxic lesion limited to insular cortex, while there was a decrease in responses in the presence of background noise which suggests possible increased sensitivity to sound loudness as a hyperacusis-like phenomenon. The study showed a significant relationship between insular cortex lesion and ASR in rats.
Collapse
Affiliation(s)
- Minoo Karimi
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Farinaz Nasirinezhad
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Shahbazi
- Cellular and Molecular Research Center, Iran University of Medical Science, Tehran, Iran.,Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran Iran
| | - Shohreh Jalaei
- Department of Physiotherapy, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Helnaz Mokrian
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeid Farahani
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
45
|
Bergstrom HC. Assaying Fear Memory Discrimination and Generalization: Methods and Concepts. CURRENT PROTOCOLS IN NEUROSCIENCE 2020; 91:e89. [PMID: 31995285 PMCID: PMC7000165 DOI: 10.1002/cpns.89] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Generalization describes the transfer of conditioned responding to stimuli that perceptually differ from the original conditioned stimulus. One arena in which discriminant and generalized responding is of particular relevance is when stimuli signal the potential for harm. Aversive (fear) conditioning is a leading behavioral model for studying associative learning and memory processes related to threatening stimuli. This article describes a step-by-step protocol for studying discrimination and generalization using cued fear conditioning in rodents. Alternate conditioning paradigms, including context generalization, differential generalization, discrimination training, and safety learning, are also described. The protocol contains instructions for constructing a cued fear memory generalization gradient and methods for isolating discrete cued-from-context cued conditioned responses (i.e., "the baseline issue"). The preclinical study of generalization is highly pertinent in the context of fear learning and memory because a lack of fear discrimination (overgeneralization) likely contributes to the etiology of anxiety-related disorders and post-traumatic stress disorder. © 2020 by John Wiley & Sons, Inc. Basic Protocol 1: Tone cued fear generalization gradient Basic Protocol 2: Quantification of freezing Support Protocol: Alternate conditioning paradigms.
Collapse
Affiliation(s)
- Hadley C Bergstrom
- Vassar College, Department of Psychological Science, Program in Neuroscience and Behavior, Poughkeepsie, New York
| |
Collapse
|
46
|
Weible AP, Yavorska I, Wehr M. A Cortico-Collicular Amplification Mechanism for Gap Detection. Cereb Cortex 2020; 30:3590-3607. [PMID: 32055848 DOI: 10.1093/cercor/bhz328] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Auditory cortex (AC) is necessary for the detection of brief gaps in ongoing sounds, but not for the detection of longer gaps or other stimuli such as tones or noise. It remains unclear why this is so, and what is special about brief gaps in particular. Here, we used both optogenetic suppression and conventional lesions to show that the cortical dependence of brief gap detection hinges specifically on gap termination. We then identified a cortico-collicular gap detection circuit that amplifies cortical gap termination responses before projecting to inferior colliculus (IC) to impact behavior. We found that gaps evoked off-responses and on-responses in cortical neurons, which temporally overlapped for brief gaps, but not long gaps. This overlap specifically enhanced cortical responses to brief gaps, whereas IC neurons preferred longer gaps. Optogenetic suppression of AC reduced collicular responses specifically to brief gaps, indicating that under normal conditions, the enhanced cortical representation of brief gaps amplifies collicular gap responses. Together these mechanisms explain how and why AC contributes to the behavioral detection of brief gaps, which are critical cues for speech perception, perceptual grouping, and auditory scene analysis.
Collapse
Affiliation(s)
- Aldis P Weible
- Department of Psychology, Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Iryna Yavorska
- Department of Psychology, Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Michael Wehr
- Department of Psychology, Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
47
|
Winne J, Boerner BC, Malfatti T, Brisa E, Doerl J, Nogueira I, Leão KE, Leão RN. Anxiety-like behavior induced by salicylate depends on age and can be prevented by a single dose of 5-MeO-DMT. Exp Neurol 2020; 326:113175. [PMID: 31923390 DOI: 10.1016/j.expneurol.2020.113175] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/23/2019] [Accepted: 01/06/2020] [Indexed: 11/16/2022]
Abstract
Salicylate intoxication is a cause of tinnitus and comorbidly associated with anxiety in humans. In a previous work, we showed that salicylate induces anxiety-like behavior and hippocampal type 2 theta oscillations (theta2) in mice. Here we investigate if the anxiogenic effect of salicylate is dependent on age and previous tinnitus experience. We also tested whether a single dose of DMT can prevent this effect. Using microwire electrode arrays, we recorded local field potential in young (4-5- month-old) and old (11-13-month-old) mice to study the electrophysiological effect of tinnitus in the ventral hippocampus (vHipp) and medial prefrontal cortex (mPFC) in an open field arena and elevated plus maze 1h after salicylate (300mg/kg) injection. We found that anxiety-like behavior and increase in theta2 oscillations (4-6 Hz), following salicylate pre-treatment, only occurs in young (normal hearing) mice. We also show that theta2 and slow gamma oscillations increase in the vHipp and mPFC in a complementary manner during anxiety tests in the presence of salicylate. Finally, we show that pre-treating mice with a single dose of the hallucinogenic 5-MeO-DMT prevents anxiety-like behavior and the increase in theta2 and slow gamma oscillations after salicylate injection in normal hearing young mice. This work further support the hypothesis that anxiety-like behavior after salicylate injection is triggered by tinnitus and require normal hearing. Moreover, our results show that hallucinogenic compounds can be effective in treating tinnitus-related anxiety.
Collapse
Affiliation(s)
- Jessica Winne
- Neurodynamics Lab, Brain Institute, Federal University of the Rio Grande do Norte, Av. Nascimento de Castro 2155, 59560-450 Natal/RN, Brazil; Developmental Genetics Unit, Department of Neuroscience, Uppsala University, Husarg 3, Uppsala 75234, Sweden
| | - Barbara C Boerner
- Neurodynamics Lab, Brain Institute, Federal University of the Rio Grande do Norte, Av. Nascimento de Castro 2155, 59560-450 Natal/RN, Brazil
| | - Thawann Malfatti
- Neurodynamics Lab, Brain Institute, Federal University of the Rio Grande do Norte, Av. Nascimento de Castro 2155, 59560-450 Natal/RN, Brazil
| | - Elis Brisa
- Neurodynamics Lab, Brain Institute, Federal University of the Rio Grande do Norte, Av. Nascimento de Castro 2155, 59560-450 Natal/RN, Brazil
| | - Jhulimar Doerl
- Neural Development and Environment Lab, Brain Institute, Federal University of the Rio Grande do Norte, Av. Nascimento de Castro 2155, 59560-450 Natal, RN, Brazil
| | - Ingrid Nogueira
- Neurodynamics Lab, Brain Institute, Federal University of the Rio Grande do Norte, Av. Nascimento de Castro 2155, 59560-450 Natal/RN, Brazil
| | - Katarina E Leão
- Neurodynamics Lab, Brain Institute, Federal University of the Rio Grande do Norte, Av. Nascimento de Castro 2155, 59560-450 Natal/RN, Brazil
| | - Richardson N Leão
- Neurodynamics Lab, Brain Institute, Federal University of the Rio Grande do Norte, Av. Nascimento de Castro 2155, 59560-450 Natal/RN, Brazil; Neural Development and Environment Lab, Brain Institute, Federal University of the Rio Grande do Norte, Av. Nascimento de Castro 2155, 59560-450 Natal, RN, Brazil.
| |
Collapse
|
48
|
O’Sullivan C, Weible AP, Wehr M. Disruption of Early or Late Epochs of Auditory Cortical Activity Impairs Speech Discrimination in Mice. Front Neurosci 2020; 13:1394. [PMID: 31998064 PMCID: PMC6965026 DOI: 10.3389/fnins.2019.01394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/10/2019] [Indexed: 11/22/2022] Open
Abstract
Speech evokes robust activity in auditory cortex, which contains information over a wide range of spatial and temporal scales. It remains unclear which components of these neural representations are causally involved in the perception and processing of speech sounds. Here we compared the relative importance of early and late speech-evoked activity for consonant discrimination. We trained mice to discriminate the initial consonants in spoken words, and then tested the effect of optogenetically suppressing different temporal windows of speech-evoked activity in auditory cortex. We found that both early and late suppression disrupted performance equivalently. These results suggest that mice are impaired at recognizing either type of disrupted representation because it differs from those learned in training.
Collapse
Affiliation(s)
- Conor O’Sullivan
- Institute of Neuroscience, University of Oregon, Eugene, OR, United States
- Department of Biology, University of Oregon, Eugene, OR, United States
| | - Aldis P. Weible
- Institute of Neuroscience, University of Oregon, Eugene, OR, United States
| | - Michael Wehr
- Institute of Neuroscience, University of Oregon, Eugene, OR, United States
- Department of Psychology, University of Oregon, Eugene, OR, United States
- *Correspondence: Michael Wehr,
| |
Collapse
|
49
|
Radziwon K, Auerbach BD, Ding D, Liu X, Chen GD, Salvi R. Noise-Induced loudness recruitment and hyperacusis: Insufficient central gain in auditory cortex and amygdala. Neuroscience 2019; 422:212-227. [PMID: 31669363 PMCID: PMC6994858 DOI: 10.1016/j.neuroscience.2019.09.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022]
Abstract
Noise-induced hearing loss generally induces loudness recruitment, but sometimes gives rise to hyperacusis, a debilitating condition in which moderate intensity sounds are perceived abnormally loud. In an attempt to develop an animal model of loudness hyperacusis, we exposed rats to a 16-20 kHz noise at 104 dB SPL for 12 weeks. Behavioral reaction time-intensity functions were used to assess loudness growth functions before, during and 2-months post-exposure. During the exposure, loudness recruitment (R) was present in the region of hearing loss, but subtle evidence of hyperacusis (H) started to emerge at the border of the hearing loss. Unexpectedly, robust evidence of hyperacusis appeared below and near the edge of the hearing loss 2-months post-exposure. To identify the neural correlates of hyperacusis and test the central gain model of hyperacusis, we recorded population neural responses from the cochlea, auditory cortex and lateral amygdala 2-months post-exposure. Compared to controls, the neural output of the cochlea was greatly reduced in the noise group. Consistent with central gain models, the gross neural responses from the auditory cortex and amygdala were proportionately much larger than those from the cochlea. However, despite central amplification, the population responses in the auditory cortex and amygdala were still below the level needed to fully account for hyperacusis and/or recruitment. Having developed procedures that can consistently induce hyperacusis in rats, our results set the stage for future studies that seek to identify the neurobiological events that give rise to hyperacusis and to develop new therapies to treat this debilitating condition.
Collapse
Affiliation(s)
- Kelly Radziwon
- Center for Hearing and Deafness, SUNY at Buffalo, Buffalo, NY 14214, USA
| | | | - Dalian Ding
- Center for Hearing and Deafness, SUNY at Buffalo, Buffalo, NY 14214, USA
| | - Xiaopeng Liu
- Center for Hearing and Deafness, SUNY at Buffalo, Buffalo, NY 14214, USA
| | - Guang-Di Chen
- Center for Hearing and Deafness, SUNY at Buffalo, Buffalo, NY 14214, USA.
| | - Richard Salvi
- Center for Hearing and Deafness, SUNY at Buffalo, Buffalo, NY 14214, USA
| |
Collapse
|
50
|
Lundt A, Soós J, Seidel R, Henseler C, Müller R, Raj Ginde V, Imran Arshaad M, Ehninger D, Hescheler J, Sachinidis A, Broich K, Wormuth C, Papazoglou A, Weiergräber M. Functional implications of Ca v 2.3 R-type voltage-gated calcium channels in the murine auditory system - novel vistas from brainstem-evoked response audiometry. Eur J Neurosci 2019; 51:1583-1604. [PMID: 31603587 DOI: 10.1111/ejn.14591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/11/2019] [Accepted: 10/08/2019] [Indexed: 12/25/2022]
Abstract
Voltage-gated Ca2+ channels (VGCCs) are considered to play a key role in auditory perception and information processing within the murine inner ear and brainstem. In the past, Cav 1.3 L-type VGCCs gathered most attention as their ablation causes congenital deafness. However, isolated patch-clamp investigation and localization studies repetitively suggested that Cav 2.3 R-type VGCCs are also expressed in the cochlea and further components of the ascending auditory tract, pointing to a potential functional role of Cav 2.3 in hearing physiology. Thus, we performed auditory profiling of Cav 2.3+/+ controls, heterozygous Cav 2.3+/- mice and Cav 2.3 null mutants (Cav 2.3-/- ) using brainstem-evoked response audiometry. Interestingly, click-evoked auditory brainstem responses (ABRs) revealed increased hearing thresholds in Cav 2.3+/- mice from both genders, whereas no alterations were observed in Cav 2.3-/- mice. Similar observations were made for tone burst-related ABRs in both genders. However, Cav 2.3 ablation seemed to prevent mutant mice from total hearing loss particularly in the higher frequency range (36-42 kHz). Amplitude growth function analysis revealed, i.a., significant reduction in ABR wave WI and WIII amplitude in mutant animals. In addition, alterations in WI -WIV interwave interval were observed in female Cav 2.3+/- mice whereas absolute latencies remained unchanged. In summary, our results demonstrate that Cav 2.3 VGCCs are mandatory for physiological auditory information processing in the ascending auditory tract.
Collapse
Affiliation(s)
- Andreas Lundt
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Julien Soós
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Robin Seidel
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Christina Henseler
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Ralf Müller
- Cognitive Neurophysiology, Department of Psychiatry and Psychotherapy and University Hospital Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Varun Raj Ginde
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Muhammad Imran Arshaad
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Dan Ehninger
- Molecular and Cellular Cognition, German Center for Neurodegenerative Diseases, (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Bonn, Germany
| | - Jürgen Hescheler
- Institute of Neurophysiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Agapios Sachinidis
- Institute of Neurophysiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Karl Broich
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Carola Wormuth
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Anna Papazoglou
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Marco Weiergräber
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| |
Collapse
|