1
|
Goodman SS, Haysley S, Jennings SG. Human Olivocochlear Effects: A Statistical Detection Approach Applied to the Cochlear Microphonic Evoked by Swept Tones. J Assoc Res Otolaryngol 2024; 25:451-475. [PMID: 38954166 PMCID: PMC11527856 DOI: 10.1007/s10162-024-00956-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/12/2024] [Indexed: 07/04/2024] Open
Abstract
The human medial olivocochlear (MOC) reflex was assessed by observing the effects of contralateral acoustic stimulation (CAS) on the cochlear microphonic (CM) across a range of probe frequencies. A frequency-swept probe tone (125-4757 Hz, 90 dB SPL) was presented in two directions (up sweep and down sweep) to normal-hearing young adults. This study assessed MOC effects on the CM in individual participants using a statistical approach that calculated minimum detectable changes in magnitude and phase based on CM signal-to-noise ratio (SNR). Significant increases in CM magnitude, typically 1-2 dB in size, were observed for most participants from 354 to 1414 Hz, where the size and consistency of these effects depended on participant, probe frequency, sweep direction, and SNR. CAS-related phase lags were also observed, consistent with CM-based MOC studies in laboratory animals. Observed effects on CM magnitude and phase were in the opposite directions of reported effects on otoacoustic emissions (OAEs). OAEs are sensitive to changes in the motility of outer hair cells located near the peak region of the traveling wave, while the effects of CAS on the CM likely originate from MOC-related changes in the conductance of outer hair cells located in the basal tail of the traveling wave. Thus, MOC effects on the CM are complementary to those observed for OAEs.
Collapse
Affiliation(s)
- Shawn S Goodman
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA, USA
| | - Sarah Haysley
- Department of Communication Sciences and Disorders, University of Utah, Salt Lake City, UT, USA
| | - Skyler G Jennings
- Department of Communication Sciences and Disorders, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
2
|
Geys M, Sijgers L, Dobrev I, Dalbert A, Röösli C, Pfiffner F, Huber A. ZH-ECochG Bode Plot: A Novel Approach to Visualize Electrocochleographic Data in Cochlear Implant Users. J Clin Med 2024; 13:3470. [PMID: 38929998 PMCID: PMC11205027 DOI: 10.3390/jcm13123470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Background: Various representations exist in the literature to visualize electrocochleography (ECochG) recordings along the basilar membrane (BM). This lack of generalization complicates comparisons within and between cochlear implant (CI) users, as well as between publications. This study synthesized the visual representations available in the literature via a systematic review and provides a novel approach to visualize ECochG data in CI users. Methods: A systematic review was conducted within PubMed and EMBASE to evaluate studies investigating ECochG and CI. Figures that visualized ECochG responses were selected and analyzed. A novel visualization of individual ECochG data, the ZH-ECochG Bode plot (ZH = Zurich), was devised, and the recordings from three CI recipients were used to demonstrate and assess the new framework. Results: Within the database search, 74 articles with a total of 115 figures met the inclusion criteria. Analysis revealed various types of representations using different axes; their advantages were incorporated into the novel visualization framework. The ZH-ECochG Bode plot visualizes the amplitude and phase of the ECochG recordings along the different tonotopic regions and angular insertion depths of the recording sites. The graph includes the pre- and postoperative audiograms to enable a comparison of ECochG responses with the audiometric profile, and allows different measurements to be shown in the same graph. Conclusions: The ZH-ECochG Bode plot provides a generalized visual representation of ECochG data, using well-defined axes. This will facilitate the investigation of the complex ECochG potentials generated along the BM and allows for better comparisons of ECochG recordings within and among CI users and publications. The scripts used to construct the ZH-ECochG Bode plot are provided by the authors.
Collapse
Affiliation(s)
- Marlies Geys
- Department of Otorhinolaryngology, Head & Neck Surgery, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
3
|
Scheperle R, Etler C, Oleson J, Dunn C, Kashani R, Claussen A, Gantz BJ, Hansen MR. Evaluation of Real-Time Intracochlear Electrocochleography for Guiding Cochlear Implant Electrode Array Position. J Clin Med 2023; 12:7409. [PMID: 38068461 PMCID: PMC10707171 DOI: 10.3390/jcm12237409] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/12/2023] [Accepted: 11/24/2023] [Indexed: 02/12/2024] Open
Abstract
This study evaluates intracochlear electrocochleography (ECochG) for real-time monitoring during cochlear implantation. One aim tested whether adjusting the recording electrode site would help differentiate between atraumatic and traumatic ECochG amplitude decrements. A second aim assessed whether associations between ECochG amplitude decrements and post-operative hearing loss were weaker when considering hearing sensitivity at the ECochG stimulus frequency compared to a broader frequency range. Eleven adult cochlear implant recipients who were candidates for electro-acoustic stimulation participated. Single-frequency (500-Hz) ECochG was performed during cochlear implantation; the amplitude of the first harmonic of the difference waveform was considered. Post-operative hearing preservation at 500 Hz ranged from 0 to 94%. The expected relationship between ECochG amplitude decrements and hearing preservation was observed, though the trend was not statistically significant, and predictions were grossly inaccurate for two participants. Associations did not improve when considering alternative recording sites or hearing sensitivity two octaves above the ECochG stimulus frequency. Intracochlear location of a moving recording electrode is a known confound to real-time interpretation of ECochG amplitude fluctuations, which was illustrated by the strength of the correlation with ECochG amplitude decrements. Multiple factors contribute to ECochG amplitude patterns and to hearing preservation; these results highlight the confounding influence of intracochlear recording electrode location on the ECochG.
Collapse
Affiliation(s)
- Rachel Scheperle
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA; (C.E.); (C.D.); (R.K.); (A.C.); (B.J.G.); (M.R.H.)
| | - Christine Etler
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA; (C.E.); (C.D.); (R.K.); (A.C.); (B.J.G.); (M.R.H.)
| | - Jacob Oleson
- Department of Biostatistics, University of Iowa, Iowa City, IA 52242, USA
| | - Camille Dunn
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA; (C.E.); (C.D.); (R.K.); (A.C.); (B.J.G.); (M.R.H.)
| | - Rustin Kashani
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA; (C.E.); (C.D.); (R.K.); (A.C.); (B.J.G.); (M.R.H.)
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Alexander Claussen
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA; (C.E.); (C.D.); (R.K.); (A.C.); (B.J.G.); (M.R.H.)
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Bruce J. Gantz
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA; (C.E.); (C.D.); (R.K.); (A.C.); (B.J.G.); (M.R.H.)
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Marlan R. Hansen
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA; (C.E.); (C.D.); (R.K.); (A.C.); (B.J.G.); (M.R.H.)
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
- Department of Molecular Physiology and Biophysics, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| |
Collapse
|
4
|
Jennings SG, Aviles ES. Middle ear muscle and medial olivocochlear activity inferred from individual human ears via cochlear potentials. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:1723. [PMID: 37002081 PMCID: PMC10019909 DOI: 10.1121/10.0017604] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 05/18/2023]
Abstract
The peripheral auditory system is influenced by the medial olivocochlear (MOC) and middle ear muscle (MEM) reflexes. When elicited by contralateral acoustic stimulation (CAS), these reflexes reduce cochlear amplification (MOC reflex) and limit low-frequency transmission through the middle ear (MEM reflex). The independent roles of these reflexes on auditory physiology and perception are difficult to distinguish. The amplitude of the cochlear microphonic (CM) is expected to increase or decrease when the MOC and MEM reflexes are elicited by CAS, respectively, which could lead to a straightforward interpretation of what reflex is dominant for a given CAS level. CM and ear canal sound pressure level (SPL) were measured for a 500 Hz, 90 dB SPL probe in the presence of contralateral broadband noise (CBBN) for levels ranging from 45-75 dB SPL. In most subjects, CM amplitude increased for CBBN levels of 45 and 55 dB SPL, while no change in ear canal SPL was observed, consistent with eliciting the MOC reflex. Conversely, CM amplitude decreased, and ear canal SPL increased in the presence of 65 and 75 dB SPL CBBN, consistent with eliciting the MEM reflex. A CM-based test of the MOC reflex may facilitate detection of MEM effects and the assessment of adults with cochlear hearing loss.
Collapse
Affiliation(s)
- Skyler G Jennings
- Department of Communication Sciences and Disorders, The University of Utah, 390 South, 1530 East, BEHS 1201, Salt Lake City, Utah 84112, USA
| | - Elizabeth Sarai Aviles
- Department of Communication Sciences and Disorders, The University of Utah, 390 South, 1530 East, BEHS 1201, Salt Lake City, Utah 84112, USA
| |
Collapse
|
5
|
McChesney N, Barth JL, Rumschlag JA, Tan J, Harrington AJ, Noble KV, McClaskey CM, Elvis P, Vaena SG, Romeo MJ, Harris KC, Cowan CW, Lang H. Peripheral Auditory Nerve Impairment in a Mouse Model of Syndromic Autism. J Neurosci 2022; 42:8002-8018. [PMID: 36180228 PMCID: PMC9617620 DOI: 10.1523/jneurosci.0253-22.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/27/2022] [Accepted: 08/13/2022] [Indexed: 11/21/2022] Open
Abstract
Dysfunction of the peripheral auditory nerve (AN) contributes to dynamic changes throughout the central auditory system, resulting in abnormal auditory processing, including hypersensitivity. Altered sound sensitivity is frequently observed in autism spectrum disorder (ASD), suggesting that AN deficits and changes in auditory information processing may contribute to ASD-associated symptoms, including social communication deficits and hyperacusis. The MEF2C transcription factor is associated with risk for several neurodevelopmental disorders, and mutations or deletions of MEF2C produce a haploinsufficiency syndrome characterized by ASD, language, and cognitive deficits. A mouse model of this syndromic ASD (Mef2c-Het) recapitulates many of the MEF2C haploinsufficiency syndrome-linked behaviors, including communication deficits. We show here that Mef2c-Het mice of both sexes exhibit functional impairment of the peripheral AN and a modest reduction in hearing sensitivity. We find that MEF2C is expressed during development in multiple AN and cochlear cell types; and in Mef2c-Het mice, we observe multiple cellular and molecular alterations associated with the AN, including abnormal myelination, neuronal degeneration, neuronal mitochondria dysfunction, and increased macrophage activation and cochlear inflammation. These results reveal the importance of MEF2C function in inner ear development and function and the engagement of immune cells and other non-neuronal cells, which suggests that microglia/macrophages and other non-neuronal cells might contribute, directly or indirectly, to AN dysfunction and ASD-related phenotypes. Finally, our study establishes a comprehensive approach for characterizing AN function at the physiological, cellular, and molecular levels in mice, which can be applied to animal models with a wide range of human auditory processing impairments.SIGNIFICANCE STATEMENT This is the first report of peripheral auditory nerve (AN) impairment in a mouse model of human MEF2C haploinsufficiency syndrome that has well-characterized ASD-related behaviors, including communication deficits, hyperactivity, repetitive behavior, and social deficits. We identify multiple underlying cellular, subcellular, and molecular abnormalities that may contribute to peripheral AN impairment. Our findings also highlight the important roles of immune cells (e.g., cochlear macrophages) and other non-neuronal elements (e.g., glial cells and cells in the stria vascularis) in auditory impairment in ASD. The methodological significance of the study is the establishment of a comprehensive approach for evaluating peripheral AN function and impact of peripheral AN deficits with minimal hearing loss.
Collapse
Affiliation(s)
- Nathan McChesney
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Jeremy L Barth
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Jeffrey A Rumschlag
- Department of Otolaryngology & Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Junying Tan
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Adam J Harrington
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Kenyaria V Noble
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Carolyn M McClaskey
- Department of Otolaryngology & Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Phillip Elvis
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Silvia G Vaena
- Hollings Cancer Institute, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Martin J Romeo
- Hollings Cancer Institute, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Kelly C Harris
- Department of Otolaryngology & Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Christopher W Cowan
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| |
Collapse
|
6
|
Lukashkina VA, Levic S, Simões P, Xu Z, DiGuiseppi JA, Zuo J, Lukashin AN, Russell IJ. In Vivo Optogenetics Reveals Control of Cochlear Electromechanical Responses by Supporting Cells. J Neurosci 2022; 42:5660-5671. [PMID: 35732495 PMCID: PMC9302466 DOI: 10.1523/jneurosci.2127-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/25/2022] [Accepted: 04/17/2022] [Indexed: 01/22/2023] Open
Abstract
Cochlear sensitivity, essential for communication and exploiting the acoustic environment, results from sensory-motor outer hair cells (OHCs) operating in a structural scaffold of supporting cells and extracellular cortilymph within the organ of Corti (OoC). Cochlear sensitivity control is hypothesized to involve interaction between the OHCs and OoC supporting cells (e.g., Deiters' cells [DCs] and outer pillar cells [OPCs]), but this has never been established in vivo Here, we conditionally expressed channelrhodopsins (ChR2) specifically in male and female mouse DCs and OPCs. Illumination of the OoC activated the nonselective ChR2 cation conductance and depolarized DCs when measured in vivo and in isolated OoC. Measurements of sound-induced cochlear mechanical and electrical responses revealed that OoC illumination suppressed the normal functions of OoC supporting cells transiently and reversibly. OoC illumination blocked normally occurring continuous minor adjustments of tone-evoked basilar membrane displacements over their entire dynamic range and OHC voltage responses to tones at levels and frequencies subject to cochlear amplification. OoC illumination altered the OHC mechanoelectrical transduction conductance operating point, which reversed the asymmetry of OHC voltage responses to high level tones. OoC illumination accelerated recovery from temporary loud sound-induced acoustic desensitization. We concluded that DCs and OPCs are involved in both the control of cochlear responses (which are essential for normal hearing) and the recovery from temporary acoustic desensitization. This is the first direct in vivo evidence for the interdependency of the structural, mechanical, and electrochemical arrangements of OHCs and OoC supporting cells that together provide fine control of cochlear responses.SIGNIFICANCE STATEMENT A striking feature of the mammalian cochlear sensory epithelium, the organ of Corti, is the cellular architecture and supporting cell arrangement that provides a structural scaffold for the sensory-motor outer hair cells. The role of the supporting cell scaffold, however, has never been elucidated in vivo, although in vitro and modeling studies indicate the scaffold is involved in exchange of forces between the outer hair cells and the organ of Corti. We used in vivo techniques, including optogenetics, that do not disrupt arrangements between the outer hair cells and supporting cells, but selectively, transiently, and reversibly interfere with supporting cell normal function. We revealed the supporting cells provide continuous adjustment of cochlear sensitivity, which is instrumental in normal hearing.
Collapse
Affiliation(s)
- Victoria A Lukashkina
- Sensory Neuroscience Research Group, School of Applied Sciences, University of Brighton, Brighton, BN2 4GJ, United Kingdom
| | - Snezana Levic
- Sensory Neuroscience Research Group, School of Applied Sciences, University of Brighton, Brighton, BN2 4GJ, United Kingdom
- Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PX, United Kingdom
| | - Patrício Simões
- Sensory Neuroscience Research Group, School of Applied Sciences, University of Brighton, Brighton, BN2 4GJ, United Kingdom
| | - Zhenhang Xu
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68178
| | - Joseph A DiGuiseppi
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68178
| | - Jian Zuo
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68178
| | - Andrei N Lukashin
- Sensory Neuroscience Research Group, School of Applied Sciences, University of Brighton, Brighton, BN2 4GJ, United Kingdom
| | - Ian J Russell
- Sensory Neuroscience Research Group, School of Applied Sciences, University of Brighton, Brighton, BN2 4GJ, United Kingdom
| |
Collapse
|
7
|
Round Window Electrocochleography to Low Frequency Tones in Pediatric Cochlear Implant Recipients with and Without Auditory Neuropathy Spectrum Disorder: Separating Hair Cell and Neural Contributions Using a Computational Model. Otol Neurotol 2022; 43:781-788. [PMID: 35763496 PMCID: PMC9329248 DOI: 10.1097/mao.0000000000003568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS Characterize the contribution of the auditory nerve neurophonic (ANN) to electrocochleography (ECochG) of pediatric cochlear implant (CI) recipients with and without auditory nerve spectrum disorder (ANSD). BACKGROUND ECochG is an emerging technique for predicting outcomes in CI recipients. Its utility may be increased by separating the cochlear microphonic (CM), produced by hair cells, from the ANN, the evoked potential correlate of neural phase-locking, which are mixed in the ongoing portion of the response to low frequency tone bursts. METHODS Responses to tone bursts of different frequency and intensities were recorded from the round window of pediatric CI recipients. Separation of the CM and ANN was performed using a model of the underlying processes that lead to the shapes of the observed waveforms. RESULTS Preoperative mean pure tone amplitudes of the included ANSD (n = 36) and non-ANSD subjects (n = 123), were similar (89.5 and 93.5, p = 0.1). Total of 1,024 ECochG responses to frequency and intensity series were recorded. The mean correlation (r) between the input and the modeled signals was 0.973 ± 0.056 (standard deviation). The ANN magnitudes were higher in the ANSD group (ANOVAs, F = 26.5 for frequency and 21.9 for intensity, df's = 1, p's < 0.001). However, its relative contribution to the overall signal was lower (ANOVAs, F = 25.8 and 12.1, df = 1, p's < 0.001). CONCLUSIONS ANN was detected in low frequency ECochG responses but not high frequency responses in both ANSD and non-ANSD subjects. ANSD subjects, evidence of neural contribution in responses to low frequency stimuli was highly variable and often comparable to signals recorded in non-ANSD subjects. The computational model revealed that on average the ANN comprised a lower proportion of the overall signal than in non-ANSD subjects.
Collapse
|
8
|
Jennings SG, Dominguez J. Firing Rate Adaptation of the Human Auditory Nerve Optimizes Neural Signal-to-Noise Ratios. J Assoc Res Otolaryngol 2022; 23:365-378. [PMID: 35254540 PMCID: PMC9085988 DOI: 10.1007/s10162-022-00841-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/14/2022] [Indexed: 10/18/2022] Open
Abstract
Several physiological mechanisms act on the response of the auditory nerve (AN) during acoustic stimulation, resulting in an adjustment in auditory gain. These mechanisms include-but are not limited to-firing rate adaptation, dynamic range adaptation, the middle ear muscle reflex, and the medial olivocochlear reflex. A potential role of these mechanisms is to improve the neural signal-to-noise ratio (SNR) at the output of the AN in real time. This study tested the hypothesis that neural SNRs, inferred from non-invasive assessment of the human AN, improve over the duration of acoustic stimulation. Cochlear potentials were measured in response to a series of six high-level clicks embedded in a series of six lower-level broadband noise bursts. This paradigm elicited a compound action potential (CAP) in response to each click and to the onset of each noise burst. The ratio of CAP amplitudes elicited by each click and noise burst pair (i.e., neural SNR) was tracked over the six click/noise bursts. The main finding was a rapid (< 24 ms) increase in neural SNR from the first to the second click/noise burst, consistent with a real-time adjustment in the response of the auditory periphery toward improving the SNR of the signal transmitted to the brainstem. Analysis of cochlear microphonic and ear canal sound pressure recordings, as well as the time course for this improvement in neural SNR, supports the conclusion that firing rate adaptation is likely the primary mechanism responsible for improving neural SNR, while dynamic range adaptation, the middle ear muscle reflex, and the medial olivocochlear reflex played a secondary role on the effects observed in this study. Real-time improvements in neural SNR are significant because they may be essential for robust encoding of speech and other relevant stimuli in the presence of background noise.
Collapse
Affiliation(s)
- Skyler G Jennings
- Department of Communication Sciences and Disorders, The University of Utah, 390 South, 1530 East, BEHS 1201, Salt Lake City, UT, 84112, USA.
| | - Juan Dominguez
- Department of Communication Sciences and Disorders, The University of Utah, 390 South, 1530 East, BEHS 1201, Salt Lake City, UT, 84112, USA
| |
Collapse
|
9
|
Curthoys IS, Grant JW, Pastras CJ, Fröhlich L, Brown DJ. Similarities and Differences Between Vestibular and Cochlear Systems - A Review of Clinical and Physiological Evidence. Front Neurosci 2021; 15:695179. [PMID: 34456671 PMCID: PMC8397526 DOI: 10.3389/fnins.2021.695179] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/12/2021] [Indexed: 12/04/2022] Open
Abstract
The evoked response to repeated brief stimuli, such as clicks or short tone bursts, is used for clinical evaluation of the function of both the auditory and vestibular systems. One auditory response is a neural potential - the Auditory Brainstem Response (ABR) - recorded by surface electrodes on the head. The clinical analogue for testing the otolithic response to abrupt sounds and vibration is the myogenic potential recorded from tensed muscles - the vestibular evoked myogenic potential (VEMP). VEMPs have provided clinicians with a long sought-after tool - a simple, clinically realistic indicator of the function of each of the 4 otolithic sensory regions. We review the basic neural evidence for VEMPs and discuss the similarities and differences between otolithic and cochlear receptors and afferents. VEMPs are probably initiated by sound or vibration selectively activating afferent neurons with irregular resting discharge originating from the unique type I receptors at a specialized region of the otolithic maculae (the striola). We review how changes in VEMP responses indicate the functional state of peripheral vestibular function and the likely transduction mechanisms allowing otolithic receptors and afferents to trigger such very short latency responses. In section "ELECTROPHYSIOLOGY" we show how cochlear and vestibular receptors and afferents have many similar electrophysiological characteristics [e.g., both generate microphonics, summating potentials, and compound action potentials (the vestibular evoked potential, VsEP)]. Recent electrophysiological evidence shows that the hydrodynamic changes in the labyrinth caused by increased fluid volume (endolymphatic hydrops), change the responses of utricular receptors and afferents in a way which mimics the changes in vestibular function attributed to endolymphatic hydrops in human patients. In section "MECHANICS OF OTOLITHS IN VEMPS TESTING" we show how the major VEMP results (latency and frequency response) follow from modeling the physical characteristics of the macula (dimensions, stiffness etc.). In particular, the structure and mechanical operation of the utricular macula explains the very fast response of the type I receptors and irregular afferents which is the very basis of VEMPs and these structural changes of the macula in Menière's Disease (MD) predict the upward shift of VEMP tuning in these patients.
Collapse
Affiliation(s)
- Ian S. Curthoys
- Vestibular Research Laboratory, School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | - John Wally Grant
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - Christopher J. Pastras
- The Menière’s Research Laboratory, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Laura Fröhlich
- Department of Otorhinolaryngology, Head and Neck Surgery, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Daniel J. Brown
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, WA, Australia
| |
Collapse
|
10
|
Model of cochlear microphonic explores the tuning and magnitude of hair cell transduction current. Biophys J 2021; 120:3550-3565. [PMID: 34384762 DOI: 10.1016/j.bpj.2021.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/24/2021] [Accepted: 08/04/2021] [Indexed: 11/20/2022] Open
Abstract
The mammalian cochlea relies on the active forcing of sensory outer hair cells (OHCs) to amplify traveling wave responses along the basilar membrane. These forces are the result of electromotility, wherein current through the OHCs leads to conformational changes in the cells that provide stresses on surrounding structures. OHC transducer current can be detected via the voltage in the scala tympani (the cochlear microphonic, CM), and the CM can be used as an indicator of healthy cochlear operation. The CM represents a summation of OHC currents (the inner hair cell contribution is known to be small) and to use CM to probe the properties of OHC transduction requires a model that simulates that summation. We developed a finite element model for that purpose. The pattern of current generators (the model input) was initially based on basilar membrane displacement, with the current size based on in vitro data. The model was able to reproduce the amplitude of experimental CM results reasonably well when the input tuning was enhanced slightly (peak increased by ∼6 dB), which can be regarded as additional hair bundle tuning, and with a current/input value of 200-260 pA/nm, which is ∼4 times greater than the largest in vitro measures.
Collapse
|
11
|
Flaherty SM, Russell IJ, Lukashkin AN. Drug distribution along the cochlea is strongly enhanced by low-frequency round window micro vibrations. Drug Deliv 2021; 28:1312-1320. [PMID: 34176371 PMCID: PMC8238068 DOI: 10.1080/10717544.2021.1943059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The cochlea’s inaccessibility and complex nature provide significant challenges to delivering drugs and other agents uniformly, safely and efficiently, along the entire cochlear spiral. Large drug concentration gradients are formed along the cochlea when drugs are administered to the middle ear. This undermines the major goal of attaining therapeutic drug concentration windows along the whole cochlea. Here, utilizing a well-known physiological effect of salicylate, we demonstrate a proof of concept in which drug distribution along the entire cochlea is enhanced by applying round window membrane low-frequency micro vibrations with a probe that only partially covers the round window. We provide evidence of enhanced drug influx into the cochlea and cochlear apical drug distribution without breaching cochlear boundaries. It is further suggested that ossicular functionality is not required for the effective drug distribution we report. The novel method presented here of local drug delivery to the cochlea could be implemented when ossicular functionality is absent or impeded and can be incorporated in clinically approved auditory protheses for patients who suffer with conductive, sensorineural or mixed hearing loss.
Collapse
Affiliation(s)
- Samuel M Flaherty
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK.,Centre for Regenerative Medicine and Devices, University of Brighton, Brighton, UK
| | - Ian J Russell
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Andrei N Lukashkin
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK.,Centre for Regenerative Medicine and Devices, University of Brighton, Brighton, UK
| |
Collapse
|
12
|
Li W, Li D, Chen N, Liu P, Han S, Wang L, Gong S, Huang W, Ding D. Recording of electrocochleography from the facial nerve canal in mice. J Neurosci Methods 2021; 360:109256. [PMID: 34126140 DOI: 10.1016/j.jneumeth.2021.109256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND The ever-expanding arsenal of genetically modified mice has created experimental models for studying various mechanisms of deafness. Electrocochleography (ECochG) is a recording technique of cochlear potentials evoked by sound stimulation, which was widely used to evaluate the cochlear hearing function. However, there is currently a lack of information on long-term recording technology of ECochG in mice. NEW METHOD We describe in detail the surgical procedure of implanting electrode into the facial nerve canal in C57BL/6J mice for ECochG recording. The results of ECochG recorded by electrode in the facial nerve canal were compared with ECochG guided by electrode on the round window niche. RESULTS The surgical method of inserting the electrode into the facial nerve canal is relatively simple and can be completed within 15 min. The electrode inserted into the elongated facial nerve canal is stable and close to the auditory nerve trunk, so it is conducive to long-term auditory function monitoring. Hence, the ECochG guided by the electrode from the facial nerve canal can maintain a stable response for more than two weeks. In contrast, the ECochG guided by the electrode in the round window niche can only be maintained for a maximum of 20 min. COMPARISON WITH EXISTING METHODS In mice, existing recording techniques of ECochG from round window niche is limited by conductive hearing loss due to middle ear effusion or surgical damage. CONCLUSIONS ECochG recording from the facial nerve canal is suitable for long-term recording in mice. This electrode approach provides a repeatable and reliable measurement of ECochG.
Collapse
Affiliation(s)
- Wenjuan Li
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Department of Otolaryngology, Children's Hospital of Shanxi, Women health of Shanxi, Taiyuan, China
| | - Dong Li
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Nina Chen
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Pan Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shuguang Han
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Line Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Shusheng Gong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | | | - Dalian Ding
- Center for Hearing and Deafness, State University of New York at Buffalo, New York, United States of America
| |
Collapse
|
13
|
Trouillet A, Miller KK, George SS, Wang P, Ali NES, Ricci A, Grillet N. Loxhd1 Mutations Cause Mechanotransduction Defects in Cochlear Hair Cells. J Neurosci 2021; 41:3331-3343. [PMID: 33707295 PMCID: PMC8051682 DOI: 10.1523/jneurosci.0975-20.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 12/27/2022] Open
Abstract
Sound detection happens in the inner ear via the mechanical deflection of the hair bundle of cochlear hair cells. The hair bundle is an apical specialization consisting of actin-filled membrane protrusions (called stereocilia) connected by tip links (TLs) that transfer the deflection force to gate the mechanotransduction channels. Here, we identified the hearing loss-associated Loxhd1/DFNB77 gene as being required for the mechanotransduction process. LOXHD1 consists of 15 polycystin lipoxygenase α-toxin (PLAT) repeats, which in other proteins can bind lipids and proteins. LOXHD1 was distributed along the length of the stereocilia. Two LOXHD1 mouse models with mutations in the 10th PLAT repeat exhibited mechanotransduction defects (in both sexes). While mechanotransduction currents in mutant inner hair cells (IHCs) were similar to wild-type levels in the first postnatal week, they were severely affected by postnatal day 11. The onset of the mechanotransduction phenotype was consistent with the temporal progression of postnatal LOXHD1 expression/localization in the hair bundle. The mechanotransduction defect observed in Loxhd1-mutant IHCs was not accompanied by a morphologic defect of the hair bundle or a reduction in TL number. Using immunolocalization, we found that two proteins of the upper and lower TL protein complexes (Harmonin and LHFPL5) were maintained in the mutants, suggesting that the mechanotransduction machinery was present but not activatable. This work identified a novel LOXHD1-dependent step in hair bundle development that is critical for mechanotransduction in mature hair cells as well as for normal hearing function in mice and humans.SIGNIFICANCE STATEMENT Hair cells detect sound-induced forces via the hair bundle, which consists of membrane protrusions connected by tip links. The mechanotransduction machinery forms protein complexes at the tip-link ends. The current study showed that LOXHD1, a multirepeat protein responsible for hearing loss in humans and mice when mutated, was required for hair-cell mechanotransduction, but only after the first postnatal week. Using immunochemistry, we demonstrated that this defect was not caused by the mislocalization of the tip-link complex proteins Harmonin or LHFPL5, suggesting that the mechanotransduction protein complexes were maintained. This work identified a new step in hair bundle development, which is critical for both hair-cell mechanotransduction and hearing.
Collapse
Affiliation(s)
- Alix Trouillet
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Stanford University, Stanford, California 94305
| | - Katharine K Miller
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Stanford University, Stanford, California 94305
| | - Shefin Sam George
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Stanford University, Stanford, California 94305
| | - Pei Wang
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Stanford University, Stanford, California 94305
| | - Noor-E-Seher Ali
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Stanford University, Stanford, California 94305
| | - Anthony Ricci
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Stanford University, Stanford, California 94305
- Department of Molecular and Cellular Physiology, School of Medicine, Stanford University, Stanford, California 94305
| | - Nicolas Grillet
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Stanford University, Stanford, California 94305
| |
Collapse
|
14
|
Eckert MA, Harris KC, Lang H, Lewis MA, Schmiedt RA, Schulte BA, Steel KP, Vaden KI, Dubno JR. Translational and interdisciplinary insights into presbyacusis: A multidimensional disease. Hear Res 2021; 402:108109. [PMID: 33189490 PMCID: PMC7927149 DOI: 10.1016/j.heares.2020.108109] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/19/2020] [Accepted: 10/25/2020] [Indexed: 12/18/2022]
Abstract
There are multiple etiologies and phenotypes of age-related hearing loss or presbyacusis. In this review we summarize findings from animal and human studies of presbyacusis, including those that provide the theoretical framework for distinct metabolic, sensory, and neural presbyacusis phenotypes. A key finding in quiet-aged animals is a decline in the endocochlear potential (EP) that results in elevated pure-tone thresholds across frequencies with greater losses at higher frequencies. In contrast, sensory presbyacusis appears to derive, in part, from acute and cumulative effects on hair cells of a lifetime of environmental exposures (e.g., noise), which often result in pronounced high frequency hearing loss. These patterns of hearing loss in animals are recognizable in the human audiogram and can be classified into metabolic and sensory presbyacusis phenotypes, as well as a mixed metabolic+sensory phenotype. However, the audiogram does not fully characterize age-related changes in auditory function. Along with the effects of peripheral auditory system declines on the auditory nerve, primary degeneration in the spiral ganglion also appears to contribute to central auditory system aging. These inner ear alterations often correlate with structural and functional changes throughout the central nervous system and may explain suprathreshold speech communication difficulties in older adults with hearing loss. Throughout this review we highlight potential methods and research directions, with the goal of advancing our understanding, prevention, diagnosis, and treatment of presbyacusis.
Collapse
Affiliation(s)
- Mark A Eckert
- Medical University of South Carolina, Department of Otolaryngology - Head and Neck Surgery, Charleston, SC 29425, USA.
| | - Kelly C Harris
- Medical University of South Carolina, Department of Otolaryngology - Head and Neck Surgery, Charleston, SC 29425, USA
| | - Hainan Lang
- Medical University of South Carolina, Department of Pathology and Laboratory Medicine, Charleston, SC 29425, USA
| | - Morag A Lewis
- King's College London, Wolfson Centre for Age-Related Diseases, London SE1 1UL, United Kingdom
| | - Richard A Schmiedt
- Medical University of South Carolina, Department of Otolaryngology - Head and Neck Surgery, Charleston, SC 29425, USA
| | - Bradley A Schulte
- Medical University of South Carolina, Department of Pathology and Laboratory Medicine, Charleston, SC 29425, USA; Medical University of South Carolina, Department of Otolaryngology - Head and Neck Surgery, Charleston, SC 29425, USA
| | - Karen P Steel
- King's College London, Wolfson Centre for Age-Related Diseases, London SE1 1UL, United Kingdom
| | - Kenneth I Vaden
- Medical University of South Carolina, Department of Otolaryngology - Head and Neck Surgery, Charleston, SC 29425, USA
| | - Judy R Dubno
- Medical University of South Carolina, Department of Otolaryngology - Head and Neck Surgery, Charleston, SC 29425, USA; Medical University of South Carolina, Department of Pathology and Laboratory Medicine, Charleston, SC 29425, USA
| |
Collapse
|
15
|
Use of an Extra-Tympanic Membrane Electrode to Record Cochlear Microphonics with Click, Tone Burst and Chirp Stimuli. Audiol Res 2021; 11:89-99. [PMID: 33804370 PMCID: PMC7931016 DOI: 10.3390/audiolres11010010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/08/2021] [Accepted: 02/22/2021] [Indexed: 11/29/2022] Open
Abstract
This study determined electrocochleography (ECochG) parameter settings to obtain cochlear microphonics (CM) with less invasive flexible extra-tympanic membrane electrodes. In 24 adult normal-hearing subjects, CMs were elicited by presenting click stimuli at 100 dBnHL, tone bursts (2 kHz) and broadband (BB) CE-chirps® LS (Interacoustics, Middelfart, Denmark), both at 80 dBnHL. Different high-pass filters (HPFs) (3.3 Hz and 100 Hz, respectively) were used to investigate response quality of the CM. CMs were successfully obtained in 92–100% with click-, 75–83% with 2 kHz tone burst- and 58–63% with CE-chirp®-LS stimuli. Click stimuli elicited significantly larger CM amplitudes compared to 2 kHz tone bursts and BB CE-chirp® LS (Interacoustics, Middelfart, Denmark). No significant differences were found between the two different high-pass filter (HPF) settings. The present study shows that it is possible to obtain clear CMs with the flexible extra-tympanic membrane electrodes using click stimuli. In contrast to 2 kHz tone bursts and CE-chirp® (Interacoustics, Middelfart, Denmark) LS, clicks show a significantly higher success rate and are the preferred stimuli to confirm the presence or absence of CMs.
Collapse
|
16
|
Cochlear microphonic latency predicts outer hair cell function in animal models and clinical populations. Hear Res 2020; 398:108094. [PMID: 33099252 DOI: 10.1016/j.heares.2020.108094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 09/29/2020] [Accepted: 10/09/2020] [Indexed: 11/24/2022]
Abstract
As recently reported, electrocochleography recorded in cochlear implant recipients showed reduced amplitude and shorter latency in patients with more severe high-frequency hearing loss compared with those with some residual hearing. As the response is generated primarily by receptor currents in outer hair cells, these variations in amplitude and latency may indicate outer hair cell function after cochlear implantation. We propose that an absence of latency shift when the cochlear microphonic is measured on two adjacent electrodes indicates an absence or dysfunction of outer hair cells between these electrodes. We test this preclinically in noise deafened guinea pigs (2 h of a 124 dB HL, 16-24 kHz narrow-band noise), and clinically, in electrocochleographic recordings made in cochlear implant recipients immediately after implantation. We found that normal hearing guinea pigs showed a progressive increase in latency from basal to apical electrodes. In contrast, guinea pigs with significantly elevated high-frequency hearing thresholds showed no change in cochlear microphonic latency measured on basal electrodes (located approximately at the 16-24 kHz location in the cochlea).. In the clinical cohort, a significant negative correlation existed between cochlear microphonic latency shifts and hearing thresholds at 1-, 2-, & 4 kHz when tested on electrodes located at the relevant cochlear tonotopic place. This reduction in latency shift was such that patients with no measurable hearing also had no detectable latency shift (place assessed by CT scan, r's of -.70 to -.83). These findings suggest that electrocochleography can be used as a diagnostic tool to detect cochlear regions with functioning hair cells, which may be important for defining cross-over point for electro-acoustic stimulation.
Collapse
|
17
|
Kamerer AM, Chertoff ME. An analytic approach to identifying the sources of the low-frequency round window cochlear response. Hear Res 2019; 375:53-65. [PMID: 30808536 DOI: 10.1016/j.heares.2019.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/18/2019] [Accepted: 02/06/2019] [Indexed: 01/19/2023]
Abstract
The cochlear microphonic, traditionally thought of as an indication of electrical current flow through hair cells, in conjunction with suppressing high-pass noise or tones, is a promising method of assessing the health of outer hair cells at specific locations along the cochlear partition. We propose that the electrical potential recorded from the round window in gerbils in response to low-frequency tones, which we call cochlear response (CR), contains significant responses from multiple cellular sources, which may expand its diagnostic purview. In this study, CR is measured in the gerbil and modeled to identify its contributing sources. CR was recorded via an electrode placed in the round window niche of sixteen Mongolian gerbils and elicited with a 45 Hz tone burst embedded in 18 high-pass filtered noise conditions to target responses from increasing regions along the cochlear partition. Possible sources were modeled using previously-published hair cell and auditory nerve response data, and then weighted and combined using linear regression to produce a model response that fits closely to the mean CR waveform. The significant contributing sources identified by the model are outer hair cells, inner hair cells, and the auditory nerve. We conclude that the low-frequency CR contains contributions from several cellular sources.
Collapse
Affiliation(s)
- Aryn M Kamerer
- Center for Hearing Research, Boys Town National Research Hospital, Omaha, NE, USA.
| | - Mark E Chertoff
- Department of Hearing & Speech, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
18
|
Lee C, Guinan JJ, Rutherford MA, Kaf WA, Kennedy KM, Buchman CA, Salt AN, Lichtenhan JT. Cochlear compound action potentials from high-level tone bursts originate from wide cochlear regions that are offset toward the most sensitive cochlear region. J Neurophysiol 2019; 121:1018-1033. [PMID: 30673362 DOI: 10.1152/jn.00677.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Little is known about the spatial origins of auditory nerve (AN) compound action potentials (CAPs) evoked by moderate to intense sounds. We studied the spatial origins of AN CAPs evoked by 2- to 16-kHz tone bursts at several sound levels by slowly injecting kainic acid solution into the cochlear apex of anesthetized guinea pigs. As the solution flowed from apex to base, it sequentially reduced CAP responses from low- to high-frequency cochlear regions. The times at which CAPs were reduced, combined with the cochlear location traversed by the solution at that time, showed the cochlear origin of the removed CAP component. For low-level tone bursts, the CAP origin along the cochlea was centered at the characteristic frequency (CF). As sound level increased, the CAP center shifted basally for low-frequency tone bursts but apically for high-frequency tone bursts. The apical shift was surprising because it is opposite the shift expected from AN tuning curve and basilar membrane motion asymmetries. For almost all high-level tone bursts, CAP spatial origins extended over 2 octaves along the cochlea. Surprisingly, CAPs evoked by high-level low-frequency (including 2 kHz) tone bursts showed little CAP contribution from CF regions ≤ 2 kHz. Our results can be mostly explained by spectral splatter from the tone-burst rise times, excitation in AN tuning-curve "tails," and asynchronous AN responses to high-level energy ≤ 2 kHz. This is the first time CAP origins have been identified by a spatially specific technique. Our results show the need for revising the interpretation of the cochlear origins of high-level CAPs-ABR wave 1. NEW & NOTEWORTHY Cochlear compound action potentials (CAPs) and auditory brain stem responses (ABRs) are routinely used in laboratories and clinics. They are typically interpreted as arising from the cochlear region tuned to the stimulus frequency. However, as sound level is increased, the cochlear origins of CAPs from tone bursts of all frequencies become very wide and their centers shift toward the most sensitive cochlear region. The standard interpretation of CAPs and ABRs from moderate to intense stimuli needs revision.
Collapse
Affiliation(s)
- C Lee
- Department of Otolaryngology, Washington University School of Medicine in St. Louis , St. Louis, Missouri
| | - J J Guinan
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, and Department of Otolaryngology, Harvard Medical School , Boston, Massachusetts
| | - M A Rutherford
- Department of Otolaryngology, Washington University School of Medicine in St. Louis , St. Louis, Missouri
| | - W A Kaf
- Communication Sciences and Disorders Department, Missouri State University , Springfield, Missouri
| | - K M Kennedy
- Department of Otolaryngology, Washington University School of Medicine in St. Louis , St. Louis, Missouri.,Communication Sciences and Disorders Department, Missouri State University , Springfield, Missouri
| | - C A Buchman
- Department of Otolaryngology, Washington University School of Medicine in St. Louis , St. Louis, Missouri
| | - A N Salt
- Department of Otolaryngology, Washington University School of Medicine in St. Louis , St. Louis, Missouri
| | - J T Lichtenhan
- Department of Otolaryngology, Washington University School of Medicine in St. Louis , St. Louis, Missouri
| |
Collapse
|
19
|
Avan P, Normand H, Giraudet F, Gerenton G, Denise P. Noninvasive in-ear monitoring of intracranial pressure during microgravity in parabolic flights. J Appl Physiol (1985) 2018; 125:353-361. [PMID: 29722618 DOI: 10.1152/japplphysiol.00032.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Among possible causes of visual impairment or headache experienced by astronauts in microgravity or postflight and that hamper their performance, elevated intracranial pressure (ICP) has been invoked but never measured for lack of noninvasive methods. The goal of this work was to test two noninvasive methods of ICP monitoring using in-ear detectors of ICP-dependent auditory responses, acoustic and electric, in acute microgravity afforded by parabolic flights. The devices detecting these responses were handheld tablets routinely used in otolaryngology for hearing diagnosis, which were customized for ICP extraction and serviceable by unskilled operators. These methods had been previously validated against invasive ICP measurements in neurosurgery patients. The two methods concurred in their estimation of ICP changes with microgravity, i.e., 11.0 ± 7.7 mmHg for the acoustic method ( n = 7 subjects with valid results out of 30, auditory responses being masked by excessive in-flight noise in 23 subjects) and 11.3 ± 10.6 mmHg for the electric method ( n = 10 subjects with valid results out of 10 tested despite the in-flight noise). These results agree with recent publications using invasive access to cerebrospinal fluid in parabolic flights and suggest that acute microgravity has a moderate average effect on ICP, similar to body tilt from upright to supine, yet with some subjects undergoing large effects whereas others seem immune. The electric in-ear method would be suitable for ICP monitoring in circumstances and with subjects such that invasive measurements are excluded. NEW & NOTEWORTHY In-ear detectors of intracranial pressure-dependent auditory responses allow intracranial pressure to be monitored noninvasively during acute microgravity. The average pressure increase during 20-s long sessions in microgravity is 11 mmHg, comparable with an effect of body tilt. However, intersubject variability is large, with subjects who repeatedly experience from nothing to twice the average effect. A systematic in-flight use would allow the relationship between space adaptation syndrome and ICP to be established or dismissed.
Collapse
Affiliation(s)
- Paul Avan
- UMR INSERM 1107, Neurosensory Biophysics, School of Medicine, Université Clermont Auvergne , Clermont-Ferrand , France.,Centre Jean Perrin , Clermont-Ferrand , France
| | - Hervé Normand
- Normandie University, UNICAEN, INSERM, COMETE 14000, Caen , France
| | - Fabrice Giraudet
- UMR INSERM 1107, Neurosensory Biophysics, School of Medicine, Université Clermont Auvergne , Clermont-Ferrand , France
| | - Grégory Gerenton
- UMR INSERM 1107, Neurosensory Biophysics, School of Medicine, Université Clermont Auvergne , Clermont-Ferrand , France
| | - Pierre Denise
- Normandie University, UNICAEN, INSERM, COMETE 14000, Caen , France
| |
Collapse
|
20
|
Charaziak KK, Siegel JH, Shera CA. Spectral Ripples in Round-Window Cochlear Microphonics: Evidence for Multiple Generation Mechanisms. J Assoc Res Otolaryngol 2018; 19:401-419. [PMID: 30014309 DOI: 10.1007/s10162-018-0668-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/08/2018] [Indexed: 11/30/2022] Open
Abstract
The cochlear microphonic (CM) results from the vector sum of outer hair cell transduction currents excited by a stimulus. The classical theory of CM generation-that the response measured at the round window is dominated by cellular sources located within the tail region of the basilar membrane (BM) excitation pattern-predicts that CM amplitude and phase vary little with stimulus frequency. Contrary to expectations, CM amplitude and phase-gradient delay measured in response to low-level tones in chinchillas demonstrate a striking, quasiperiodic pattern of spectral ripples, even at frequencies > 5 kHz, where interference with neurophonic potentials is unlikely. The spectral ripples were reduced in the presence of a moderate-level saturating tone at a nearby frequency. When converted to the time domain, only the delayed CM energy was diminished in the presence of the saturator. We hypothesize that the ripples represent an interference pattern produced by CM components with different phase gradients: an early-latency component originating within the tail region of the BM excitation and two delayed components that depend on active cochlear processing near the peak region of the traveling wave. Using time windowing, we show that the early, middle, and late components have delays corresponding to estimated middle-ear transmission, cochlear forward delays, and cochlear round-trip delays, respectively. By extending the classical model of CM generation to include mechanical and electrical irregularities, we propose that middle components are generated through a mechanism of "coherent summation" analogous to the production of reflection-source otoacoustic emissions (OAEs), while the late components arise through a process of internal cochlear reflection related to the generation of stimulus-frequency OAEs. Although early-latency components from the passive tail region typically dominate the round-window CM, at low stimulus levels, substantial contributions from components shaped by active cochlear processing provide a new avenue for improving CM measurements as assays of cochlear health.
Collapse
Affiliation(s)
- Karolina K Charaziak
- Auditory Research Center, Caruso Department of Otolarygnology, University of Southern California, Los Angeles, CA, USA.
| | - Jonathan H Siegel
- Hugh Knowles Center, Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
| | - Christopher A Shera
- Auditory Research Center, Caruso Department of Otolarygnology, University of Southern California, Los Angeles, CA, USA.,Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
21
|
Michel V, Booth KT, Patni P, Cortese M, Azaiez H, Bahloul A, Kahrizi K, Labbé M, Emptoz A, Lelli A, Dégardin J, Dupont T, Aghaie A, Oficjalska-Pham D, Picaud S, Najmabadi H, Smith RJ, Bowl MR, Brown SD, Avan P, Petit C, El-Amraoui A. CIB2, defective in isolated deafness, is key for auditory hair cell mechanotransduction and survival. EMBO Mol Med 2018; 9:1711-1731. [PMID: 29084757 PMCID: PMC5709726 DOI: 10.15252/emmm.201708087] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Defects of CIB2, calcium‐ and integrin‐binding protein 2, have been reported to cause isolated deafness, DFNB48 and Usher syndrome type‐IJ, characterized by congenital profound deafness, balance defects and blindness. We report here two new nonsense mutations (pGln12* and pTyr110*) in CIB2 patients displaying nonsyndromic profound hearing loss, with no evidence of vestibular or retinal dysfunction. Also, the generated CIB2−/− mice display an early onset profound deafness and have normal balance and retinal functions. In these mice, the mechanoelectrical transduction currents are totally abolished in the auditory hair cells, whilst they remain unchanged in the vestibular hair cells. The hair bundle morphological abnormalities of CIB2−/− mice, unlike those of mice defective for the other five known USH1 proteins, begin only after birth and lead to regression of the stereocilia and rapid hair‐cell death. This essential role of CIB2 in mechanotransduction and cell survival that, we show, is restricted to the cochlea, probably accounts for the presence in CIB2−/− mice and CIB2 patients, unlike in Usher syndrome, of isolated hearing loss without balance and vision deficits.
Collapse
Affiliation(s)
- Vincent Michel
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| | - Kevin T Booth
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology- Head and Neck Surgery, University of Iowa, Iowa City, Iowa.,Department of Molecular Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Pranav Patni
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| | - Matteo Cortese
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| | - Hela Azaiez
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology- Head and Neck Surgery, University of Iowa, Iowa City, Iowa
| | - Amel Bahloul
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Ménélik Labbé
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| | - Alice Emptoz
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| | - Andrea Lelli
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| | - Julie Dégardin
- Sorbonne Universités, UPMC Univ Paris06, Paris, France.,Retinal information processing - Pharmacology and Pathology, Institut de la Vision, Paris, France
| | - Typhaine Dupont
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| | - Asadollah Aghaie
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France.,Syndrome de Usher et Autres Atteintes Rétino-Cochléaires, Institut de la Vision, Paris, France
| | - Danuta Oficjalska-Pham
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| | - Serge Picaud
- Sorbonne Universités, UPMC Univ Paris06, Paris, France.,Retinal information processing - Pharmacology and Pathology, Institut de la Vision, Paris, France
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Richard J Smith
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology- Head and Neck Surgery, University of Iowa, Iowa City, Iowa
| | - Michael R Bowl
- Mammalian Genetics Unit, MRC Harwell Institute, Oxford, UK
| | | | - Paul Avan
- Laboratoire de Biophysique Sensorielle, Faculté de Médecine, Biophysique Médicale, Centre Jean Perrin, Université d'Auvergne, Clermont-Ferrand, France
| | - Christine Petit
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France.,Collège de France, Paris, France
| | - Aziz El-Amraoui
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France .,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| |
Collapse
|
22
|
Comparison of Cochlear Microphonics Magnitude with Broad and Narrow Band Stimuli in Healthy Adult Wistar Rats. IRANIAN JOURNAL OF CHILD NEUROLOGY 2018; 12:58-65. [PMID: 29696047 PMCID: PMC5904739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 01/04/2017] [Accepted: 01/08/2017] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Cochlear microphonic (CM) is a cochlear AC electric field, recorded within, around, and remote from its sources. Nowadays it can contribute to the differential diagnosis of different auditory pathologies such as auditory neuropathy spectrum disorder (ANSD). This study compared CM waveforms (CMWs) and amplitudes with broad and narrow band stimuli in 25 healthy male young adults Wistar rats. MATERIALS & METHODS This experimental study was accomplished in the School of Rehabilitation Sciences of Iran University of Medical Sciences, Tehran, Iran (April, 2016). Using an extratympanic technique in ECochG (Electrocochleography) recording, CMWs in response to click and tonal stimuli with different octave frequencies were recorded at a high intensity level in subjects. The CMW amplitudes were calculated by a graphical user interface (GUI) designed in MATLAB. RESULTS The CMW magnitude increased upon an increase in bandwidth stimulation. CM amplitude with click stimulation was larger than tonal stimuli. Across tonal stimuli, the CMW amplitudes at lower frequency tones were larger than those at higher frequency tones. Those findings were statistically significant (P<0.001). CONCLUSION CMW amplitude with click as broadband stimulus was larger than those with tone bursts as narrowband stimulation. Click stimulation due to the width of spectral involves greater regions of cochlear partition. Therefore, CMW most likely is a reflection of spatial summation of voltage drops generated by hair cell groups in response to acoustic stimulation. In order to production nature of CM potentials as well as their very small magnitudes especially with tonal stimuli, thus, we recommend using click stimulation for CM potential recording.
Collapse
|
23
|
Neuroplastin Isoform Np55 Is Expressed in the Stereocilia of Outer Hair Cells and Required for Normal Outer Hair Cell Function. J Neurosci 2017; 36:9201-16. [PMID: 27581460 DOI: 10.1523/jneurosci.0093-16.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 07/14/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Neuroplastin (Nptn) is a member of the Ig superfamily and is expressed in two isoforms, Np55 and Np65. Np65 regulates synaptic transmission but the function of Np55 is unknown. In an N-ethyl-N-nitrosaurea mutagenesis screen, we have now generated a mouse line with an Nptn mutation that causes deafness. We show that Np55 is expressed in stereocilia of outer hair cells (OHCs) but not inner hair cells and affects interactions of stereocilia with the tectorial membrane. In vivo vibrometry demonstrates that cochlear amplification is absent in Nptn mutant mice, which is consistent with the failure of OHC stereocilia to maintain stable interactions with the tectorial membrane. Hair bundles show morphological defects as the mutant mice age and while mechanotransduction currents can be evoked in early postnatal hair cells, cochlea microphonics recordings indicate that mechanontransduction is affected as the mutant mice age. We thus conclude that differential splicing leads to functional diversification of Nptn, where Np55 is essential for OHC function, while Np65 is implicated in the regulation of synaptic function. SIGNIFICANCE STATEMENT Amplification of input sound signals, which is needed for the auditory sense organ to detect sounds over a wide intensity range, depends on mechanical coupling of outer hair cells to the tectorial membrane. The current study shows that neuroplastin, a member of the Ig superfamily, which has previously been linked to the regulation of synaptic plasticity, is critical to maintain a stable mechanical link of outer hair cells with the tectorial membrane. In vivo recordings demonstrate that neuroplastin is essential for sound amplification and that mutation in neuroplastin leads to auditory impairment in mice.
Collapse
|
24
|
Pastras CJ, Curthoys IS, Brown DJ. In vivo recording of the vestibular microphonic in mammals. Hear Res 2017; 354:38-47. [PMID: 28850921 DOI: 10.1016/j.heares.2017.07.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/15/2017] [Accepted: 07/25/2017] [Indexed: 01/11/2023]
Abstract
BACKGROUND The Vestibular Microphonic (VM) has only featured in a handful of publications, mostly involving non-mammalian and ex vivo models. The VM is the extracellular analogue of the vestibular hair cell receptor current, and offers a tool to monitor vestibular hair cell activity in vivo. OBJECTIVE To characterise features of the VM measured in vivo in guinea pigs, using a relatively simple experimental setup. METHODS The VM, evoked by bone-conducted vibration (BCV), was recorded from the basal surface of either the utricular or saccular macula after surgical removal of the cochlea, in 27 guinea pigs. RESULTS The VM remained after vestibular nerve blockade, but was abolished following end-organ destruction or death. The VM reversed polarity as the recording electrode tracked across the utricular or saccular macula surface, or through the utricular macula. The VM could be evoked by BCV stimuli of frequencies between 100 Hz and 5 kHz, and was largest to vibrations between 600 Hz and 800 Hz. Experimental manipulations demonstrated a reduction in the VM amplitude with maculae displacement, or rupture of the utricular membrane. CONCLUSIONS Results mirror those obtained in previous ex vivo studies, and further demonstrate that vestibular hair cells are sensitive to vibrations of several kilohertz. Changes in the VM with maculae displacement or rupture suggest utricular hydrops may alter vestibular hair cell sensitivity due to either mechanical or ionic changes.
Collapse
Affiliation(s)
- C J Pastras
- The Meniere's Laboratory, Sydney Medical School, The University of Sydney, Sydney, NSW, 2050, Australia
| | - I S Curthoys
- Vestibular Research Laboratory, The University of Sydney, School of Psychology, Sydney, NSW, 2050, Australia
| | - D J Brown
- The Meniere's Laboratory, Sydney Medical School, The University of Sydney, Sydney, NSW, 2050, Australia.
| |
Collapse
|
25
|
Amplification mode differs along the length of the mouse cochlea as revealed by connexin 26 deletion from specific gap junctions. Sci Rep 2017; 7:5185. [PMID: 28701711 PMCID: PMC5507891 DOI: 10.1038/s41598-017-04279-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/17/2017] [Indexed: 01/26/2023] Open
Abstract
The sharp frequency tuning and exquisite sensitivity of the mammalian cochlea is due to active forces delivered by outer hair cells (OHCs) to the cochlear partition. Force transmission is mediated and modulated by specialized cells, including Deiters’ cells (DCs) and pillar cells (PCs), coupled by gap-junctions composed of connexin 26 (Cx26) and Cx30. We created a mouse with conditional Cx26 knock-out (Cx26 cKO) in DCs and PCs that did not influence sensory transduction, receptor-current-driving-voltage, low-mid-frequency distortion-product-otoacoustic-emissions (DPOAEs), and passive basilar membrane (BM) responses. However, the Cx26 cKO desensitizes mid-high-frequency DPOAEs and active BM responses and sensitizes low-mid-frequency neural excitation. This functional segregation may indicate that the flexible, apical turn cochlear partition facilitates transfer of OHC displacements (isotonic forces) for cochlear amplification and neural excitation. DC and PC Cx26 expression is essential for cochlear amplification in the stiff basal turn, possibly through maintaining cochlear partition mechanical impedance, thereby ensuring effective transfer of OHC isometric forces.
Collapse
|
26
|
Brown DJ, Pastras CJ, Curthoys IS. Electrophysiological Measurements of Peripheral Vestibular Function-A Review of Electrovestibulography. Front Syst Neurosci 2017; 11:34. [PMID: 28620284 PMCID: PMC5450778 DOI: 10.3389/fnsys.2017.00034] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/05/2017] [Indexed: 12/19/2022] Open
Abstract
Electrocochleography (EcochG), incorporating the Cochlear Microphonic (CM), the Summating Potential (SP), and the cochlear Compound Action Potential (CAP), has been used to study cochlear function in humans and experimental animals since the 1930s, providing a simple objective tool to assess both hair cell (HC) and nerve sensitivity. The vestibular equivalent of ECochG, termed here Electrovestibulography (EVestG), incorporates responses of the vestibular HCs and nerve. Few research groups have utilized EVestG to study vestibular function. Arguably, this is because stimulating the cochlea in isolation with sound is a trivial matter, whereas stimulating the vestibular system in isolation requires significantly more technical effort. That is, the vestibular system is sensitive to both high-level sound and bone-conducted vibrations, but so is the cochlea, and gross electrical responses of the inner ear to such stimuli can be difficult to interpret. Fortunately, several simple techniques can be employed to isolate vestibular electrical responses. Here, we review the literature underpinning gross vestibular nerve and HC responses, and we discuss the nomenclature used in this field. We also discuss techniques for recording EVestG in experimental animals and humans and highlight how EVestG is furthering our understanding of the vestibular system.
Collapse
Affiliation(s)
- Daniel J Brown
- Neurotology Laboratory, Sydney Medical School, The University of SydneySydney, NSW, Australia
| | - Christopher J Pastras
- Neurotology Laboratory, Sydney Medical School, The University of SydneySydney, NSW, Australia
| | - Ian S Curthoys
- Department of Psychology, The University of SydneySydney, NSW, Australia
| |
Collapse
|
27
|
Charaziak KK, Shera CA, Siegel JH. Using Cochlear Microphonic Potentials to Localize Peripheral Hearing Loss. Front Neurosci 2017; 11:169. [PMID: 28420953 PMCID: PMC5378797 DOI: 10.3389/fnins.2017.00169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/14/2017] [Indexed: 11/13/2022] Open
Abstract
The cochlear microphonic (CM) is created primarily by the receptor currents of outer hair cells (OHCs) and may therefore be useful for identifying cochlear regions with impaired OHCs. However, the CM measured across the frequency range with round-window or ear-canal electrodes lacks place-specificity as it is dominated by cellular sources located most proximal to the recording site (e.g., at the cochlear base). To overcome this limitation, we extract the "residual" CM (rCM), defined as the complex difference between the CM measured with and without an additional tone (saturating tone, ST). If the ST saturates receptor currents near the peak of its excitation pattern, then the rCM should reflect the activity of OHCs in that region. To test this idea, we measured round-window CMs in chinchillas in response to low-level probe tones presented alone or with an ST ranging from 1 to 2.6 times the probe frequency. CMs were measured both before and after inducing a local impairment in cochlear function (a 4-kHz notch-type acoustic trauma). Following the acoustic trauma, little change was observed in the probe-alone CM. In contrast, rCMs were reduced in a frequency-specific manner. When shifts in rCM levels were plotted vs. the ST frequency, they matched well the frequency range of shifts in neural thresholds. These results suggest that rCMs originate near the cochlear place tuned to the ST frequency and thus can be used to assess OHC function in that region. Our interpretation of the data is supported by predictions of a simple phenomenological model of CM generation and two-tone interactions. The model indicates that the sensitivity of rCM to acoustic trauma is governed by changes in cochlear response at the ST tonotopic place rather than at the probe place. The model also suggests that a combination of CM and rCM measurements could be used to assess both the site and etiology of sensory hearing loss in clinical applications.
Collapse
Affiliation(s)
- Karolina K Charaziak
- Caruso Department of Otolaryngology, Keck School of Medicine, University of Southern CaliforniaLos Angeles, CA, USA.,Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Hugh Knowles Center, Northwestern UniversityEvanston, IL, USA
| | - Christopher A Shera
- Caruso Department of Otolaryngology, Keck School of Medicine, University of Southern CaliforniaLos Angeles, CA, USA
| | - Jonathan H Siegel
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Hugh Knowles Center, Northwestern UniversityEvanston, IL, USA
| |
Collapse
|
28
|
A connexin30 mutation rescues hearing and reveals roles for gap junctions in cochlear amplification and micromechanics. Nat Commun 2017; 8:14530. [PMID: 28220769 PMCID: PMC5321796 DOI: 10.1038/ncomms14530] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/08/2017] [Indexed: 12/30/2022] Open
Abstract
Accelerated age-related hearing loss disrupts high-frequency hearing in inbred CD-1 mice. The p.Ala88Val (A88V) mutation in the gene coding for the gap-junction protein connexin30 (Cx30) protects the cochlear basal turn of adult CD-1Cx30A88V/A88V mice from degeneration and rescues hearing. Here we report that the passive compliance of the cochlear partition and active frequency tuning of the basilar membrane are enhanced in the cochleae of CD-1Cx30A88V/A88V compared to CBA/J mice with sensitive high-frequency hearing, suggesting that gap junctions contribute to passive cochlear mechanics and energy distribution in the active cochlea. Surprisingly, the endocochlear potential that drives mechanoelectrical transduction currents in outer hair cells and hence cochlear amplification is greatly reduced in CD-1Cx30A88V/A88V mice. Yet, the saturating amplitudes of cochlear microphonic potentials in CD-1Cx30A88V/A88V and CBA/J mice are comparable. Although not conclusive, these results are compatible with the proposal that transmembrane potentials, determined mainly by extracellular potentials, drive somatic electromotility of outer hair cells. A point mutation in the gap-junction protein connexin 30 stops early onset age-related hearing loss. Here, the authors show that gap junctions contribute to cochlear micromechanics and that cochlear amplification is likely controlled by extracellular potentials in vicinity of the cochlear sensory cells.
Collapse
|
29
|
Analytical and numerical modeling of the hearing system: Advances towards the assessment of hearing damage. Hear Res 2017; 349:111-128. [PMID: 28161584 DOI: 10.1016/j.heares.2017.01.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 01/20/2017] [Accepted: 01/25/2017] [Indexed: 12/16/2022]
Abstract
Hearing is an extremely complex phenomenon, involving a large number of interrelated variables that are difficult to measure in vivo. In order to investigate such process under simplified and well-controlled conditions, models of sound transmission have been developed through many decades of research. The value of modeling the hearing system is not only to explain the normal function of the hearing system and account for experimental and clinical observations, but to simulate a variety of pathological conditions that lead to hearing damage and hearing loss, as well as for development of auditory implants, effective ear protections and auditory hazard countermeasures. In this paper, we provide a review of the strategies used to model the auditory function of the external, middle, inner ear, and the micromechanics of the organ of Corti, along with some of the key results obtained from such modeling efforts. Recent analytical and numerical approaches have incorporated the nonlinear behavior of some parameters and structures into their models. Few models of the integrated hearing system exist; in particular, we describe the evolution of the Auditory Hazard Assessment Algorithm for Human (AHAAH) model, used for prediction of hearing damage due to high intensity sound pressure. Unlike the AHAAH model, 3D finite element models of the entire hearing system are not able yet to predict auditory risk and threshold shifts. It is expected that both AHAAH and FE models will evolve towards a more accurate assessment of threshold shifts and hearing loss under a variety of stimuli conditions and pathologies.
Collapse
|
30
|
Kamerer AM, Diaz FJ, Peppi M, Chertoff ME. The potential use of low-frequency tones to locate regions of outer hair cell loss. Hear Res 2016; 342:39-47. [PMID: 27677389 DOI: 10.1016/j.heares.2016.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 09/06/2016] [Accepted: 09/19/2016] [Indexed: 11/17/2022]
Abstract
Current methods used to diagnose cochlear hearing loss are limited in their ability to determine the location and extent of anatomical damage to various cochlear structures. In previous experiments, we have used the electrical potential recorded at the round window -the cochlear response (CR) -to predict the location of damage to outer hair cells in the gerbil. In a follow-up experiment, we applied 10 mM ouabain to the round window niche to reduce neural activity in order to quantify the neural contribution to the CR. We concluded that a significant proportion of the CR to a 762 Hz tone originated from phase-locking activity of basal auditory nerve fibers, which could have contaminated our conclusions regarding outer hair cell health. However, at such high concentrations, ouabain may have also affected the responses from outer hair cells, exaggerating the effect we attributed to the auditory nerve. In this study, we lowered the concentration of ouabain to 1 mM and determined the physiologic effects on outer hair cells using distortion-product otoacoustic emissions. As well as quantifying the effects of 1 mM ouabain on the auditory nerve and outer hair cells, we attempted to reduce the neural contribution to the CR by using near-infrasonic stimulus frequencies of 45 and 85 Hz, and hypothesized that these low-frequency stimuli would generate a cumulative amplitude function (CAF) that could reflect damage to hair cells in the apex more accurately than the 762 stimuli. One hour after application of 1 mM ouabain, CR amplitudes significantly increased, but remained unchanged in the presence of high-pass filtered noise conditions, suggesting that basal auditory nerve fibers have a limited contribution to the CR at such low frequencies.
Collapse
MESH Headings
- Acoustic Stimulation
- Animals
- Cochlea/pathology
- Cochlea/physiopathology
- Cochlear Microphonic Potentials/drug effects
- Cochlear Microphonic Potentials/physiology
- Cochlear Nerve/drug effects
- Cochlear Nerve/physiopathology
- Gerbillinae
- Hair Cells, Auditory, Outer/drug effects
- Hair Cells, Auditory, Outer/pathology
- Hair Cells, Auditory, Outer/physiology
- Hearing Loss, Sensorineural/diagnosis
- Hearing Loss, Sensorineural/pathology
- Hearing Loss, Sensorineural/physiopathology
- Otoacoustic Emissions, Spontaneous/drug effects
- Otoacoustic Emissions, Spontaneous/physiology
- Ouabain/administration & dosage
- Round Window, Ear/drug effects
- Round Window, Ear/physiology
- Round Window, Ear/physiopathology
Collapse
Affiliation(s)
- Aryn M Kamerer
- University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Francisco J Diaz
- University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | | - Mark E Chertoff
- University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
31
|
Lichtenhan JT, Wilson US, Hancock KE, Guinan JJ. Medial olivocochlear efferent reflex inhibition of human cochlear nerve responses. Hear Res 2016; 333:216-224. [PMID: 26364824 PMCID: PMC4788580 DOI: 10.1016/j.heares.2015.09.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/02/2015] [Indexed: 11/24/2022]
Abstract
Inhibition of cochlear amplifier gain by the medial olivocochlear (MOC) efferent system has several putative roles: aiding listening in noise, protection against damage from acoustic overexposure, and slowing age-induced hearing loss. The human MOC reflex has been studied almost exclusively by measuring changes in otoacoustic emissions. However, to help understand how the MOC system influences what we hear, it is important to have measurements of the MOC effect on the total output of the organ of Corti, i.e., on cochlear nerve responses that couple sounds to the brain. In this work we measured the inhibition produced by the MOC reflex on the amplitude of cochlear nerve compound action potentials (CAPs) in response to moderate level (52-60 dB peSPL) clicks from five, young, normal hearing, awake, alert, human adults. MOC activity was elicited by 65 dB SPL, contralateral broadband noise (CAS). Using tympanic membrane electrodes, approximately 10 h of data collection were needed from each subject to yield reliable measurements of the MOC reflex inhibition on CAP amplitudes from one click level. The CAS produced a 16% reduction of CAP amplitude, equivalent to a 1.98 dB effective attenuation (averaged over five subjects). Based on previous reports of efferent effects as functions of level and frequency, it is possible that much larger effective attenuations would be observed at lower sound levels or with clicks of higher frequency content. For a preliminary comparison, we also measured MOC reflex inhibition of DPOAEs evoked from the same ears with f2's near 4 kHz. The resulting effective attenuations on DPOAEs were, on average, less than half the effective attenuations on CAPs.
Collapse
Affiliation(s)
- J T Lichtenhan
- Washington University School of Medicine, Department of Otolaryngology, Saint Louis, MO 63110, USA.
| | - U S Wilson
- Washington University School of Medicine, Department of Otolaryngology, Saint Louis, MO 63110, USA; Missouri State University, Communications Sciences and Disorders, Springfield, MO 65897, USA
| | - K E Hancock
- Massachusetts Eye & Ear Infirmary, Eaton-Peabody Laboratory of Auditory Physiology, Boston, MA 02114, USA; Harvard Medical School, Department of Otology and Laryngology, Boston, MA 02115, USA
| | - J J Guinan
- Massachusetts Eye & Ear Infirmary, Eaton-Peabody Laboratory of Auditory Physiology, Boston, MA 02114, USA; Harvard Medical School, Department of Otology and Laryngology, Boston, MA 02115, USA
| |
Collapse
|
32
|
Sodium salicylate potentiates the GABAB-GIRK pathway to suppress rebound depolarization in neurons of the rat's medial geniculate body. Hear Res 2015; 332:104-112. [PMID: 26688177 DOI: 10.1016/j.heares.2015.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 11/16/2015] [Accepted: 11/23/2015] [Indexed: 12/15/2022]
Abstract
Rebound depolarization (RD) is a voltage response to the offset from pre-hyperpolarization of neuronal membrane potential, which manifests a particular form of the postsynaptic membrane potential response to inhibitory presynaptic inputs. We previously demonstrated that sodium salicylate (NaSal), a tinnitus inducer, can drastically suppress the RD in neurons of rat medial geniculate body (MGB) (Su et al, 2012; PLoS ONE 7, e46969). The purpose of the present study was to investigate the underlying cellular mechanism by using whole-cell patch-clamp recordings in rat MGB slices. NaSal (1.4 mM) had no effects on the current mediated by T-type Ca(2+) channels, indicating that it does not target these channels to suppress the RD. Instead, NaSal was shown to hyperpolarize the resting membrane potential to suppress the RD. NaSal had no effects on the current mediated by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, indicating that it does not target these channels to hyperpolarize the resting membrane potential. NaSal induced an outward leak current that could be abolished by CGP55845, a GABAB receptor blocker, or respectively by Ba(2+) and Tertiapin-Q, blockers for G-protein-gated inwardly rectifying potassium (GIRK) channels, indicating that NaSal potentiates the GABAB-GIRK pathway to hyperpolarize the resting membrane potential. Our study demonstrates that NaSal targets GABAB receptors to alter functional behaviors of MGB neurons, which may be implicated in NaSal-induced tinnitus.
Collapse
|
33
|
Charaziak KK, Siegel JH. Tuning of SFOAEs Evoked by Low-Frequency Tones Is Not Compatible with Localized Emission Generation. J Assoc Res Otolaryngol 2015; 16:317-29. [PMID: 25813430 PMCID: PMC4417092 DOI: 10.1007/s10162-015-0513-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 02/17/2015] [Indexed: 12/20/2022] Open
Abstract
Stimulus-frequency otoacoustic emissions (SFOAEs) appear to be well suited for assessing frequency selectivity because, at least on theoretical grounds, they originate over a restricted region of the cochlea near the characteristic place of the evoking tone. In support of this view, we previously found good agreement between SFOAE suppression tuning curves (SF-STCs) and a control measure of frequency selectivity (compound action potential suppression tuning curves (CAP-STC)) for frequencies above 3 kHz in chinchillas. For lower frequencies, however, SF-STCs and were over five times broader than the CAP-STCs and demonstrated more high-pass rather than narrow band-pass filter characteristics. Here, we test the hypothesis that the broad tuning of low-frequency SF-STCs is because emissions originate over a broad region of the cochlea extending basal to the characteristic place of the evoking tone. We removed contributions of the hypothesized basally located SFOAE sources by either pre-suppressing them with a high-frequency interference tone (IT; 4.2, 6.2, or 9.2 kHz at 75 dB sound pressure level (SPL)) or by inducing acoustic trauma at high frequencies (exposures to 8, 5, and lastly 3-kHz tones at 110-115 dB SPL). The 1-kHz SF-STCs and CAP-STCs were measured for baseline, IT present and following the acoustic trauma conditions in anesthetized chinchillas. The IT and acoustic trauma affected SF-STCs in an almost indistinguishable way. The SF-STCs changed progressively from a broad high-pass to narrow band-pass shape as the frequency of the IT was lowered and for subsequent exposures to lower-frequency tones. Both results were in agreement with the "basal sources" hypothesis. In contrast, CAP-STCs were not changed by either manipulation, indicating that neither the IT nor acoustic trauma affected the 1-kHz characteristic place. Thus, unlike CAPs, SFOAEs cannot be considered as a place-specific measure of cochlear function at low frequencies, at least in chinchillas.
Collapse
Affiliation(s)
- Karolina K Charaziak
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA,
| | | |
Collapse
|
34
|
Charaziak KK, Siegel JH. Estimating cochlear frequency selectivity with stimulus-frequency otoacoustic emissions in chinchillas. J Assoc Res Otolaryngol 2014; 15:883-96. [PMID: 25230801 DOI: 10.1007/s10162-014-0487-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 09/03/2014] [Indexed: 11/29/2022] Open
Abstract
It has been suggested that the tuning of the cochlear filters can be derived from measures of otoacoustic emissions (OAEs). Two approaches have been proposed to estimate cochlear frequency selectivity using OAEs evoked with a single tone (stimulus-frequency (SF)) OAEs: based on SFOAE group delays (SF-GDs) and on SFOAE suppression tuning curves (SF-STCs). The aim of this study was to evaluate whether either SF-GDs or SF-STCs obtained with low probe levels (30 dB SPL) correlate with more direct measures of cochlear tuning (compound action potential suppression tuning curves (CAP-STCs)) in chinchillas. The SFOAE-based estimates of tuning covaried with CAP-STCs tuning for >3 kHz probe frequencies, indicating that these measures are related to cochlear frequency selectivity. However, the relationship may be too weak to predict tuning with either SFOAE method in an individual. The SF-GD prediction of tuning was sharper than CAP-STC tuning. On the other hand, SF-STCs were consistently broader than CAP-STCs implying that SFOAEs may have less restricted region of generation in the cochlea than CAPs. Inclusion of <3 kHz data in a statistical model resulted in no significant or borderline significant covariation among the three methods: neither SFOAE test appears to reliably estimate an individual's CAP-STC tuning at low-frequencies. At the group level, SF-GDs and CAP-STCs showed similar tuning at low frequencies, while SF-STCs were over five times broader than the CAP-STCs indicating that low-frequency SFOAE may originate over a very broad region of the cochlea extending ≥5 mm basal to the tonotopic place of the probe.
Collapse
Affiliation(s)
- Karolina K Charaziak
- Department of Communication Sciences and Disorders, School of Communication, Northwestern University, 2240 Campus Drive, Evanston, IL, 60208-2952, USA,
| | | |
Collapse
|
35
|
Chertoff ME, Earl BR, Diaz FJ, Sorensen JL, Thomas MLA, Kamerer AM, Peppi M. Predicting the location of missing outer hair cells using the electrical signal recorded at the round window. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2014; 136:1212. [PMID: 25190395 PMCID: PMC4165229 DOI: 10.1121/1.4890641] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 06/27/2014] [Accepted: 07/07/2014] [Indexed: 06/01/2023]
Abstract
The electrical signal recorded at the round window was used to estimate the location of missing outer hair cells. The cochlear response was recorded to a low frequency tone embedded in high-pass filtered noise conditions. Cochlear damage was created by either overexposure to frequency-specific tones or laser light. In animals with continuous damage along the partition, the amplitude of the cochlear response increased as the high-pass cutoff frequency increased, eventually reaching a plateau. The cochlear distance at the onset of the plateau correlated with the anatomical onset of outer hair cell loss. A mathematical model replicated the physiologic data but was limited to cases with continuous hair cell loss in the middle and basal turns. The neural contribution to the cochlear response was determined by recording the response before and after application of Ouabain. Application of Ouabain eliminated or reduced auditory neural activity from approximately two turns of the cochlea. The amplitude of the cochlear response was reduced for moderate signal levels with a limited effect at higher levels, indicating that the cochlear response was dominated by outer hair cell currents at high signal levels and neural potentials at low to moderate signal levels.
Collapse
MESH Headings
- Animals
- Audiometry, Pure-Tone
- Auditory Threshold
- Cochlear Microphonic Potentials/drug effects
- Disease Models, Animal
- Female
- Gerbillinae
- Hair Cells, Auditory, Outer/drug effects
- Hair Cells, Auditory, Outer/pathology
- Hearing Loss, Noise-Induced/etiology
- Hearing Loss, Noise-Induced/pathology
- Hearing Loss, Noise-Induced/physiopathology
- Lasers
- Models, Biological
- Ouabain/pharmacology
- Round Window, Ear/injuries
- Round Window, Ear/innervation
Collapse
Affiliation(s)
- Mark E Chertoff
- Department of Hearing and Speech, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Brian R Earl
- Department of Communication Sciences and Disorders, University of Cincinnati, Cincinnati, Ohio 45267
| | - Francisco J Diaz
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Janna L Sorensen
- Department of Hearing and Speech, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Megan L A Thomas
- Hearing and Balance Center, Boys Town National Research Hospital, Omaha, Nebraska 68131
| | - Aryn M Kamerer
- Department of Hearing and Speech, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Marcello Peppi
- Department of Hearing and Speech, University of Kansas Medical Center, Kansas City, Kansas 66160
| |
Collapse
|
36
|
Ni G, Elliott SJ, Ayat M, Teal PD. Modelling cochlear mechanics. BIOMED RESEARCH INTERNATIONAL 2014; 2014:150637. [PMID: 25136555 PMCID: PMC4130145 DOI: 10.1155/2014/150637] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 06/02/2014] [Indexed: 01/12/2023]
Abstract
The cochlea plays a crucial role in mammal hearing. The basic function of the cochlea is to map sounds of different frequencies onto corresponding characteristic positions on the basilar membrane (BM). Sounds enter the fluid-filled cochlea and cause deflection of the BM due to pressure differences between the cochlear fluid chambers. These deflections travel along the cochlea, increasing in amplitude, until a frequency-dependent characteristic position and then decay away rapidly. The hair cells can detect these deflections and encode them as neural signals. Modelling the mechanics of the cochlea is of help in interpreting experimental observations and also can provide predictions of the results of experiments that cannot currently be performed due to technical limitations. This paper focuses on reviewing the numerical modelling of the mechanical and electrical processes in the cochlea, which include fluid coupling, micromechanics, the cochlear amplifier, nonlinearity, and electrical coupling.
Collapse
Affiliation(s)
- Guangjian Ni
- Institute of Sound and Vibration Research, University of Southampton, Southampton SO17 1BJ, UK
| | - Stephen J. Elliott
- Institute of Sound and Vibration Research, University of Southampton, Southampton SO17 1BJ, UK
| | - Mohammad Ayat
- School of Engineering and Computer Science, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| | - Paul D. Teal
- School of Engineering and Computer Science, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| |
Collapse
|
37
|
Detection of cochlear amplification and its activation. Biophys J 2014; 105:1067-78. [PMID: 23972858 DOI: 10.1016/j.bpj.2013.06.049] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/17/2013] [Accepted: 06/27/2013] [Indexed: 11/21/2022] Open
Abstract
The operation of the mammalian cochlea relies on a mechanical traveling wave that is actively boosted by electromechanical forces in sensory outer hair cells (OHCs). This active cochlear amplifier produces the impressive sensitivity and frequency resolution of mammalian hearing. The cochlear amplifier has inspired scientists since its discovery in the 1970s, and is still not well understood. To explore cochlear electromechanics at the sensory cell/tissue interface, sound-evoked intracochlear pressure and extracellular voltage were measured using a recently developed dual-sensor with a microelectrode attached to a micro-pressure sensor. The resulting coincident in vivo observations of OHC electrical activity, pressure at the basilar membrane and basilar membrane displacement gave direct evidence for power amplification in the cochlea. Moreover, the results showed a phase shift of voltage relative to mechanical responses at frequencies slightly below the peak, near the onset of amplification. Based on the voltage-force relationship of isolated OHCs, the shift would give rise to effective OHC pumping forces within the traveling wave peak. Thus, the shift activates the cochlear amplifier, serving to localize and thus sharpen the frequency region of amplification. These results are the most concrete evidence for cochlear power amplification to date and support OHC somatic forces as its source.
Collapse
|
38
|
The auditory nerve overlapped waveform (ANOW) originates in the cochlear apex. J Assoc Res Otolaryngol 2014; 15:395-411. [PMID: 24515339 DOI: 10.1007/s10162-014-0447-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 01/23/2014] [Indexed: 10/25/2022] Open
Abstract
Measurements of cochlear function with compound action potentials (CAPs), auditory brainstem responses, and otoacoustic emissions work well with high-frequency sounds but are problematic at low frequencies. We have recently shown that the auditory nerve overlapped waveform (ANOW) can objectively quantify low-frequency (<1 kHz) auditory sensitivity, as thresholds for ANOW at low frequencies and for CAP at high frequencies relate similarly to single auditory nerve fiber thresholds. This favorable relationship, however, does not necessarily mean that ANOW originates from auditory nerve fibers innervating low-frequency regions of the cochlear apex. In the present study, we recorded the cochlear response to tone bursts of low frequency (353, 500, and 707 Hz) and high frequency (2 to 16 kHz) during administration of tetrodotoxin (TTX) to block neural function. TTX was injected using a novel method of slow administration from a pipette sealed into the cochlear apex, allowing real-time measurements of systematic neural blocking from apex to base. The amplitude of phase-locked (ANOW) and onset (CAP) neural firing to moderate-level, low-frequency sounds were markedly suppressed before thresholds and responses to moderate-level, high-frequency sounds were affected. These results demonstrate that the ANOW originates from responses of auditory nerve fibers innervating cochlear apex, confirming that ANOW provides a valid physiological measure of low-frequency auditory nerve function.
Collapse
|
39
|
Ayat M, Teal PD, McGuinness M. An integrated electromechanical model for the cochlear microphonic. Biocybern Biomed Eng 2014. [DOI: 10.1016/j.bbe.2014.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
40
|
Ayat M, Teal PD. Modelling the generation of the cochlear microphonic. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2013:7168-7171. [PMID: 24111398 DOI: 10.1109/embc.2013.6611211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The cochlear microphonic (CM) is one of the electrical signals generated by the human ear in response to sound stimulus. Difficulty in recording this signal and inadequate understanding of its origin have restricted its use for human auditory research. Modelling can help to improve our understanding of this signal. In this paper, an electromechanical model for the generation of the cochlear microphonic is proposed. The results of the model can also explain discrepancies between the basilar membrane and CM tuning curves.
Collapse
|
41
|
Electrocochleography. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/b978-0-7020-5310-8.00005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
42
|
Abstract
OBJECTIVES Cochlear implants (CI) perform especially well if residual acoustic hearing is retained and combined with the CI in the same ear (also termed hybrid or electric-acoustic stimulation). However, in most CI patients, residual hearing is at least partially compromised during surgery, and in some it is lost completely. At present, clinicians have no feedback on the functional status of the cochlea during electrode insertion. Development of an intraoperative physiological recording algorithm during electrode insertion could serve to detect reversible cochlear trauma and optimal placement relative to surviving hair cells. In this report, an animal model was used to assist in determining physiological markers for these conditions using a flexible electrode similar to human surgery. DESIGN The animal model was the normal-hearing gerbil. The flexible electrodes had 1 to 2 platinum-iridium contacts embedded in a 200 µm diameter silastic carrier. As control experiments some insertions were also made with much smaller (50 µm diameter) rigid electrodes. In either case, the electrode was positioned at or just inside the round window membrane and subsequently advanced into the scala tympani longitudinally in 50 to 100 µm increments. After each advancement, acoustic stimulation was used to elicit a cochlear microphonic (CM) and compound action potential (CAP). Stimuli were suprathreshold tone bursts of 1 to 16 kHz in octave steps with 2 msec rise and fall times and a 10 msec plateau. Anatomical integrity of the cochlea was subsequently assessed using a whole-mount preparation. RESULTS In contrast with the CAP, which was relatively stable during insertion, the CM showed a variety of changes related to electrode movement. To tone bursts of 1 to 8 kHz the CM typically remained stable or increased during the insertion before contact with cochlear structures. After contact, the potentials often dropped dramatically. The CM to 16 kHz was the most variable; in some cases it increased but in other cases it decreased early in the insertion and later showed large and abrupt increases. In some instances, this pattern was seen to progressively lower frequencies as well. Histological analysis and the gerbil frequency map indicate that electrode travel was limited to the basal turn (~4 mm from the hook) and did not intrude into the characteristic frequency regions of most frequencies used. CONCLUSIONS First, the CM provides a more sensitive indication of cochlear trauma than does the CAP. Second, stable or steady increases in the CM are a physiological marker for unimpeded travel through the scala tympani as the electrode approaches responding hair cells. Third, abrupt reductions in the CM across frequency are a physiological marker of contact with cochlear structures. Fourth, abrupt increases after a decline, which occurred primarily to 16 kHz but to a lesser degree to other frequencies as well, are a physiological marker for a release from contact. The interpretation is that as the tip of the electrode bends the shaft can move in the mediolateral dimension, sometimes contacting the basilar membrane and sometimes not. Overall, the results indicate that recordings during cochlear implantations can provide valuable feedback to the surgeon regarding electrode position and the integrity of surviving hair cells.
Collapse
|
43
|
The mechanosensory structure of the hair cell requires clarin-1, a protein encoded by Usher syndrome III causative gene. J Neurosci 2012; 32:9485-98. [PMID: 22787034 DOI: 10.1523/jneurosci.0311-12.2012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mutation in the clarin-1 gene (Clrn1) results in loss of hearing and vision in humans (Usher syndrome III), but the role of clarin-1 in the sensory hair cells is unknown. Clarin-1 is predicted to be a four transmembrane domain protein similar to members of the tetraspanin family. Mice carrying null mutation in the clarin-1 gene (Clrn1(-/-)) show loss of hair cell function and a possible defect in ribbon synapse. We investigated the role of clarin-1 using various in vitro and in vivo approaches. We show by immunohistochemistry and patch-clamp recordings of Ca(2+) currents and membrane capacitance from inner hair cells that clarin-1 is not essential for formation or function of ribbon synapse. However, reduced cochlear microphonic potentials, FM1-43 [N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino)styryl) pyridinium dibromide] loading, and transduction currents pointed to diminished cochlear hair bundle function in Clrn1(-/-) mice. Electron microscopy of cochlear hair cells revealed loss of some tall stereocilia and gaps in the v-shaped bundle, although tip links and staircase arrangement of stereocilia were not primarily affected by Clrn1(-/-) mutation. Human clarin-1 protein expressed in transfected mouse cochlear hair cells localized to the bundle; however, the pathogenic variant p.N48K failed to localize to the bundle. The mouse model generated to study the in vivo consequence of p.N48K in clarin-1 (Clrn1(N48K)) supports our in vitro and Clrn1(-/-) mouse data and the conclusion that CLRN1 is an essential hair bundle protein. Furthermore, the ear phenotype in the Clrn1(N48K) mouse suggests that it is a valuable model for ear disease in CLRN1(N48K), the most prevalent Usher syndrome III mutation in North America.
Collapse
|
44
|
Liu J, Yu P, Lin Y, Zhou N, Li T, Ma F, Mao L. In vivo electrochemical monitoring of the change of cochlear perilymph ascorbate during salicylate-induced tinnitus. Anal Chem 2012; 84:5433-8. [PMID: 22703231 DOI: 10.1021/ac301087v] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
As one of the most important neurochemicals in biological systems, ascorbate plays vital roles in many physiological and pathological processes. In order to understand the roles of ascorbate in the pathological process of tinnitus, this study demonstrates an in vivo method for real time monitoring of the changes of ascorbate level in the cochlear perilymph of guinea pigs during the acute period of tinnitus induced by local microinfusion of salicylate with carbon fiber microelectrodes (CFMEs) modified with multiwalled carbon nanotubes (MWNTs). To accomplish in vivo electrochemical monitoring of ascorbate in the microenvironment of the cochlear perilymph, the MWNT-modified CFME is used as working electrode, a microsized Ag/AgCl is used as reference electrode, and Pt wire is used as counter electrode. Three electrodes are combined together around a capillary to form integrated capillary-electrodes. The integrated capillary-electrode is carefully implanted into the cochlear perilymph of guinea pigs and used both for externally microinfusing of salicylate into the cochlear perilymph and for real time monitoring of the change of ascorbate levels. The in vivo voltammetric method based on the integrated capillary-electrodes possesses a high selectivity and a good linearity for ascorbate determination in the cochlear perilymph of guinea pigs. With such a method, the basal level of cochlear perilymph ascorbate is determined to be 45.0 ± 5.1 μM (n = 6). The microinfusion of 10 mM salicylate (1 μL/min, 5 min) into the cochlear decreases the ascorbate level to 28 ± 10% of the basal level (n = 6) with a statistical significance (P < 0.05), implying that the decrease in ascorbate level in the cochlear may be associated with salicylate-induced tinnitus. This study essentially offers a new method for in vivo monitoring of the cochlear perilymph ascorbate following the salicylate-induced tinnitus and can thus be useful for investigation on chemical essences involved in tinnitus.
Collapse
Affiliation(s)
- Junxiu Liu
- Department of Otorhinolaryngology, Peking University Third Hospital, Beijing 100083, P. R. China
| | | | | | | | | | | | | |
Collapse
|
45
|
The group delay and suppression pattern of the cochlear microphonic potential recorded at the round window. PLoS One 2012; 7:e34356. [PMID: 22470560 PMCID: PMC3314608 DOI: 10.1371/journal.pone.0034356] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 03/01/2012] [Indexed: 12/02/2022] Open
Abstract
Background It is commonly assumed that the cochlear microphonic potential (CM) recorded from the round window (RW) is generated at the cochlear base. Based on this assumption, the low-frequency RW CM has been measured for evaluating the integrity of mechanoelectrical transduction of outer hair cells at the cochlear base and for studying sound propagation inside the cochlea. However, the group delay and the origin of the low-frequency RW CM have not been demonstrated experimentally. Methodology/Principal Findings This study quantified the intra-cochlear group delay of the RW CM by measuring RW CM and vibrations at the stapes and basilar membrane in gerbils. At low sound levels, the RW CM showed a significant group delay and a nonlinear growth at frequencies below 2 kHz. However, at high sound levels or at frequencies above 2 kHz, the RW CM magnitude increased proportionally with sound pressure, and the CM phase in respect to the stapes showed no significant group delay. After the local application of tetrodotoxin the RW CM below 2 kHz became linear and showed a negligible group delay. In contrast to RW CM phase, the BM vibration measured at location ∼2.5 mm from the base showed high sensitivity, sharp tuning, and nonlinearity with a frequency-dependent group delay. At low or intermediate sound levels, low-frequency RW CMs were suppressed by an additional tone near the probe-tone frequency while, at high sound levels, they were partially suppressed only at high frequencies. Conclusions/Significance We conclude that the group delay of the RW CM provides no temporal information on the wave propagation inside the cochlea, and that significant group delay of low-frequency CMs results from the auditory nerve neurophonic potential. Suppression data demonstrate that the generation site of the low-frequency RW CM shifts from apex to base as the probe-tone level increases.
Collapse
|
46
|
Wróbel M, Karlik M, Szaumkssel M, Rydzanicz M, Szyfter K, Szyfter W. [Comparison of different deafening strategies based on ototoxic drugs on mouse animals model]. Otolaryngol Pol 2012; 66:56-60. [PMID: 22381017 DOI: 10.1016/s0030-6657(12)70751-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 09/27/2011] [Indexed: 11/19/2022]
Abstract
AIM OF THE STUDY To compare safety, reliability and usefulness of two deafening protocols on animal mouse model, based on aminoglycosides exposure MATERIAL AND METHOD Adults mice, Bulb/C, deafened with kanamycine 14 days treatment (group I), single kanamycin injection followed by etacrinic acid administration (group II) and control group. Hearing evaluation performed with ABR recordings on 6th day after drug exposure RESULTS Both protocols were not able to guarantee complete ablation of the inner ear in tested animals. Although short deafening strategy was more effective (83.33% deaf mice) it was combined with high rate of mortality during general anesthesia for hearing evaluation. CONCLUSIONS Variable outcomes in deafening mouse animal model implies the necessity of hearing evaluation every time prior to the pathophysiological as well as molecular studies. Mice exposed to severe oto- and nephrotoxic insult do not recover after anesthetic drug administration, thus harvesting inner ear tissues especially as the source of RNA should be performed immediately after ABR recordings.
Collapse
Affiliation(s)
- Maciej Wróbel
- Klinika Otolaryngologii i Onkologii Laryngologicznej Uniwersytetu Medycznego w Poznaniu.
| | | | | | | | | | | |
Collapse
|
47
|
Teschner M, Lenarz T, Battmer RD. Validity of cochlear microphonics at high sound pressure levels as an important clinical aspect. ORL J Otorhinolaryngol Relat Spec 2012; 74:38-41. [PMID: 22286860 DOI: 10.1159/000334948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Accepted: 11/07/2011] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Cochlear microphonics are electrical stimulus responses of the inner ear, generated by mechanical displacement of the hair cells caused by acoustic stimulation. As cochlear microphonics are often used in the diagnosis of hearing impairment and deafness, in preliminary investigations it was seen that obliteration or ossification have no effect on the extent to which cochlear microphonics can be recorded at high sound pressure levels. As artifacts at high sound pressure levels suggested, measurements were subsequently conducted using temporal bone specimens. METHODS In a test setup equivalent to that for electrocochleography, a needle electrode was placed on the cochlear promontory and used to record potentials following application of an acoustic stimulus. RESULTS Curves comparable to cochlear microphonics were registrable down to a threshold of 80 dB HL. Additional measurements conducted on damp cloths yielded comparable findings. CONCLUSIONS Registration of cochlear microphonics at high sound pressure levels does not serve as an indicator of hair cell function, but should instead be regarded as artifacts. The possible sources are discussed.
Collapse
Affiliation(s)
- M Teschner
- Department of Otolaryngology, Medical University of Hannover, Carl Neuberg Strasse 1, Hannover, Germany.
| | | | | |
Collapse
|
48
|
Detection of intracochlear damage with cochlear implantation in a gerbil model of hearing loss. Otol Neurotol 2012; 32:1370-8. [PMID: 21921858 DOI: 10.1097/mao.0b013e31822f09f2] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS Cochlear trauma due to electrode insertion can be detected in acoustic responses to low frequencies in an animal model with a hearing condition similar to patients using electroacoustic stimulation. BACKGROUND Clinical evidence suggests that intracochlear damage during cochlear implantation negatively affects residual hearing. Recently, we demonstrated the usefulness of acoustically evoked potentials to detect cochlear trauma in normal-hearing gerbils. Here, gerbils with noise-induced hearing loss were used to investigate the effects of remote trauma on residual hearing. METHODS Gerbils underwent high-pass (4-kHz cutoff) noise exposure to produce sloping hearing loss. After 1 month of recovery, each animal's hearing loss was determined from auditory brainstem responses and baseline intracochlear recording of the cochlear microphonic and compound action potential (CAP) obtained at the round window. Subsequently, electrode insertions were performed to produce basal trauma, whereas the acoustically generated potentials to a 1-kHz tone-burst were recorded after each step of electrode advancement. Hair cell counts were made to characterize the noise damage, and cochlear whole mounts were used to identify cochlear trauma due to the electrode. RESULTS The noise exposure paradigm produced a pattern of hair cell, auditory brainstem response, and intracochlear potential losses that closely mimicked that of electrical and acoustic stimulation patients. Trauma in the basal turn, in the 15- to 30-kHz portion of the deafened region, remote from preserved hair cells, induced a decline in intracochlear acoustic responses to the hearing preserved frequency of 1 kHz. CONCLUSION The results indicate that a recording algorithm based on physiological markers to low-frequency acoustic stimuli can identify cochlear trauma during implantation. Future work will focus on translating these results for use with current cochlear implant technology in humans.
Collapse
|
49
|
Lichtenhan JT. Effects of low-frequency biasing on otoacoustic and neural measures suggest that stimulus-frequency otoacoustic emissions originate near the peak region of the traveling wave. J Assoc Res Otolaryngol 2011; 13:17-28. [PMID: 22002610 DOI: 10.1007/s10162-011-0296-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Accepted: 09/29/2011] [Indexed: 11/26/2022] Open
Abstract
Stimulus-frequency otoacoustic emissions (SFOAEs) have been used to study a variety of topics in cochlear mechanics, although a current topic of debate is where in the cochlea these emissions are generated. One hypothesis is that SFOAE generation is predominately near the peak region of the traveling wave. An opposing hypothesis is that SFOAE generation near the peak region is deemphasized compared to generation in the tail region of the traveling wave. A comparison was made between the effect of low-frequency biasing on both SFOAEs and a physiologic measure that arises from the peak region of the traveling wave--the compound action potential (CAP). SFOAE biasing was measured as the amplitude of spectral sidebands from varying bias tone levels. CAP biasing was measured as the suppression of CAP amplitude from varying bias tone levels. Measures of biasing effects were made throughout the cochlea. Results from cats show that the level of bias tone needed for maximum SFOAE sidebands and for 50% CAP reduction increased as probe frequency increased. Results from guinea pigs show an irregular bias effect as a function of probe frequency. In both species, there was a strong and positive relationship between the bias level needed for maximum SFOAE sidebands and for 50% CAP suppression. This relationship is consistent with the hypothesis that the majority of SFOAE is generated near the peak region of the traveling wave.
Collapse
Affiliation(s)
- Jeffery T Lichtenhan
- Massachusetts Eye & Ear Infirmary, Eaton-Peabody Laboratory of Auditory Physiology, Boston, MA 02114, USA.
| |
Collapse
|
50
|
Elgueda D, Delano PH, Robles L. Effects of electrical stimulation of olivocochlear fibers in cochlear potentials in the chinchilla. J Assoc Res Otolaryngol 2011; 12:317-27. [PMID: 21365333 DOI: 10.1007/s10162-011-0260-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 02/02/2011] [Indexed: 10/18/2022] Open
Abstract
The mammalian cochlea has two types of sensory cells; inner hair cells, which receive auditory-nerve afferent innervation, and outer hair cells, innervated by efferent axons of the medial olivocochlear (MOC) system. The role of the MOC system in hearing is still controversial. Recently, by recording cochlear potentials in behaving chinchillas, we suggested that one of the possible functions of the efferent system is to reduce cochlear sensitivity during attention to other sensory modalities (Delano et al. in J Neurosci 27:4146-4153, 2007). However, in spite of these compelling results, the physiological effects of electrical MOC activation on cochlear potentials have not been described in detail in chinchillas. The main objective of the present work was to describe these efferent effects in the chinchilla, comparing them with those in other species and in behavioral experiments. We activated the MOC efferent axons in chinchillas with sectioned middle-ear muscles by applying current pulses at the fourth-ventricle floor. Auditory-nerve compound action potentials (CAP) and cochlear microphonics (CM) were acquired in response to clicks and tones of several frequencies, using a round-window electrode. Electrical efferent stimulation produced CAP amplitude suppressions reaching up to 11 dB. They were higher for low to moderate sound levels. Additionally, CM amplitude increments were found, the largest (≤ 2.5 dB) for low intensity tones. CAP suppression was present at all stimulus frequencies, but was greatest for 2 kHz. CM increments were highest for low-frequency tones, and almost absent at high frequencies. We conclude that the effect obtained in chinchilla is similar to but smaller than that observed in cats, and that the effects seen in awake chinchillas, albeit different in magnitude, are consistent with the activation of efferent fibers.
Collapse
Affiliation(s)
- Diego Elgueda
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile.
| | | | | |
Collapse
|