1
|
Yuan S, Tan HT, Smith PF, Zheng Y. Lack of Amino Acid Alterations Within the Cochlear Nucleus and the Auditory Cortex in Acoustic Trauma-Induced Tinnitus Rats Using In Vivo Microdialysis. Audiol Res 2024; 14:1000-1013. [PMID: 39585005 PMCID: PMC11587119 DOI: 10.3390/audiolres14060083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024] Open
Abstract
Background/Objectives: Tinnitus is a debilitating auditory disorder commonly described as a ringing in the ears in the absence of an external sound source. Sound trauma is considered a primary cause. Neuronal hyperactivity is one potential mechanism for the genesis of tinnitus and has been identified in the cochlear nucleus (CN) and the auditory cortex (AC), where there may be an imbalance of excitatory and inhibitory neurotransmissions. However, no study has directly correlated tinnitus with the extracellular levels of amino acids in the CN and the AC using microdialysis, which reflects the functions of these neurochemicals. In the present study, rats were exposed to acoustic trauma and then subjected to behavioural confirmation of tinnitus after one month, followed by microdialysis. Methods: Rats were divided into sham (aged, n = 6; young, n = 6); tinnitus-positive (aged, n = 7; young, n = 7); and tinnitus-negative (aged, n = 3; young, n = 3) groups. In vivo microdialysis was utilized to collect samples from the CN and the AC, simultaneously, in the same rat. Extracellular levels of amino acids were quantified using high-performance liquid chromatography (HPLC) coupled with an electrochemical detector (ECD). The effects of sound stimulation and age on neurochemical changes associated with tinnitus were also examined. Results: There were no significant differences in either the basal levels or the sound stimulation-evoked changes of any of the amino acids examined in the CN and the AC between the sham and tinnitus animals. However, the basal levels of serine and threonine exhibited age-related alterations in the AC, and significant differences in threonine and glycine levels were observed in the responses to 4 kHz and 16 kHz stimuli in the CN. Conclusions: These results demonstrate the lack of a direct link between extracellular levels of amino acids in the CN and the AC and tinnitus perception in a rat model of tinnitus.
Collapse
Affiliation(s)
- Shanshan Yuan
- Department of Pharmacology and Toxicology, Faculty of Biomedical and Molecular Sciences, University of Otago, Dunedin 9054, New Zealand (H.T.T.)
- Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand
- The Eisdell Moore Centre for Research on Hearing and Balance Disorders, University of Auckland, Auckland 1010, New Zealand
| | - Huey Tieng Tan
- Department of Pharmacology and Toxicology, Faculty of Biomedical and Molecular Sciences, University of Otago, Dunedin 9054, New Zealand (H.T.T.)
- Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand
- The Eisdell Moore Centre for Research on Hearing and Balance Disorders, University of Auckland, Auckland 1010, New Zealand
| | - Paul F. Smith
- Department of Pharmacology and Toxicology, Faculty of Biomedical and Molecular Sciences, University of Otago, Dunedin 9054, New Zealand (H.T.T.)
- Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand
- The Eisdell Moore Centre for Research on Hearing and Balance Disorders, University of Auckland, Auckland 1010, New Zealand
| | - Yiwen Zheng
- Department of Pharmacology and Toxicology, Faculty of Biomedical and Molecular Sciences, University of Otago, Dunedin 9054, New Zealand (H.T.T.)
- Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand
- The Eisdell Moore Centre for Research on Hearing and Balance Disorders, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
2
|
Tan HT, Smith PF, Zheng Y. Time-dependent effects of acoustic trauma and tinnitus on extracellular levels of amino acids in the inferior colliculus of rats. Hear Res 2024; 443:108948. [PMID: 38219615 DOI: 10.1016/j.heares.2024.108948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024]
Abstract
Chronic tinnitus is a debilitating condition with very few management options. Acoustic trauma that causes tinnitus has been shown to induce neuronal hyperactivity in multiple brain areas in the auditory pathway, including the inferior colliculus. This neuronal hyperactivity could be attributed to an imbalance between excitatory and inhibitory neurotransmission. However, it is not clear how the levels of neurotransmitters, especially neurotransmitters in the extracellular space, change over time following acoustic trauma and the development of tinnitus. In the present study, a range of amino acids were measured in the inferior colliculus of rats during acoustic trauma as well as at 1 week and 5 months post-trauma using in vivo microdialysis and high-performance liquid chromatography. Amino acid levels in response to sound stimulation were also measured at 1 week and 5 months post-trauma. It was found that unilateral exposure to a 16 kHz pure tone at 115 dB SPL for 1 h caused immediate hearing loss in all the animals and chronic tinnitus in 58 % of the animals. Comparing to the sham condition, extracellular levels of GABA were significantly increased at both the acute and 1 week time points after acoustic trauma. However, there was no significant difference in any of the amino acid levels measured between sham, tinnitus positive and tinnitus negative animals at 5 months post-trauma. There was also no clear pattern in the relationship between neurochemical changes and sound frequency/acoustic trauma/tinnitus status, which might be due to the relatively poorer temporal resolution of the microdialysis compared to electrophysiological responses.
Collapse
Affiliation(s)
- Huey Tieng Tan
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Brain Health Research Centre, University of Otago, Dunedin, New Zealand; Eisdell Moore Centre for Research on Hearing and Balance Disorders, University of Auckland, New Zealand
| | - Paul F Smith
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Brain Health Research Centre, University of Otago, Dunedin, New Zealand; Eisdell Moore Centre for Research on Hearing and Balance Disorders, University of Auckland, New Zealand
| | - Yiwen Zheng
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Brain Health Research Centre, University of Otago, Dunedin, New Zealand; Eisdell Moore Centre for Research on Hearing and Balance Disorders, University of Auckland, New Zealand.
| |
Collapse
|
3
|
Liu P, Xue X, Zhang C, Zhou H, Ding Z, Wang L, Jiang Y, Shen W, Yang S, Wang F. Transcriptional Profile Changes after Noise-Induced Tinnitus in Rats. Brain Sci 2023; 13:brainsci13040573. [PMID: 37190538 DOI: 10.3390/brainsci13040573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
Tinnitus is an unpleasant symptom characterized by detective hearing without the actual sound input. Despite numerous studies elucidating a variety of pathomechanisms inducing tinnitus, the pathophysiology of tinnitus is not fully understood. The genes that are closely associated with this subtype of the auditory hallucination that could be utilized as potential treatment targets are still unknown. In this study, we explored the transcriptional profile changes of the auditory cortex after noise-induced tinnitus in rats using high throughput sequencing and verification of the detected genes using quantitative PCR (qPCR). Tinnitus models were established by analyzing startle behaviors through gap pre-pulse inhibition (PPI) of the acoustic startle. Two hundred and fifty-nine differential genes were identified, of which 162 genes were up-regulated and 97 genes were down-regulated. Analysis of the pathway enrichment indicated that the tinnitus group exhibited increased gene expression related to neurodegenerative disorders such as Huntington’s disease and Amyotrophic lateral sclerosis. Based on the identified genes, networks of protein–protein interaction were established and five hub genes were identified through degree rank, including Fos, Nr4a1, Nr4a3, Egr2, and Egr3. Therein, the Fos gene ranked first with the highest degree after noise exposure, and may be a potential target for the modulation of noise-induced tinnitus.
Collapse
|
4
|
Koch L, Gaese BH, Nowotny M. Strain Comparison in Rats Differentiates Strain-Specific from More General Correlates of Noise-Induced Hearing Loss and Tinnitus. J Assoc Res Otolaryngol 2021; 23:59-73. [PMID: 34796410 PMCID: PMC8782999 DOI: 10.1007/s10162-021-00822-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/19/2021] [Indexed: 11/20/2022] Open
Abstract
Experiments in rodent animal models help to reveal the characteristics and underlying mechanisms of pathologies related to hearing loss such as tinnitus or hyperacusis. However, a reliable understanding is still lacking. Here, four different rat strains (Sprague Dawley, Wistar, Long Evans, and Lister Hooded) underwent comparative analysis of electrophysiological (auditory brainstem responses, ABRs) and behavioral measures after noise trauma induction to differentiate between strain-dependent trauma effects and more consistent changes across strains, such as frequency dependence or systematic temporal changes. Several hearing- and trauma-related characteristics were clearly strain-dependent. Lister Hooded rats had especially high hearing thresholds and were unable to detect a silent gap in continuous background noise but displayed the highest startle amplitudes. After noise exposure, ABR thresholds revealed a strain-dependent pattern of recovery. ABR waveforms varied in detail among rat strains, and the difference was most prominent at later peaks arising approximately 3.7 ms after stimulus onset. However, changes in ABR waveforms after trauma were small compared to consistent strain-dependent differences between individual waveform components. At the behavioral level, startle-based gap-prepulse inhibition (gap-PPI) was used to evaluate the occurrence and characteristics of tinnitus after noise exposure. A loss of gap-PPI was found in 33% of Wistar, 50% of Sprague Dawley, and 75% of Long Evans rats. Across strains, the most consistent characteristic was a frequency-specific pattern of the loss of gap-PPI, with the highest rates at approximately one octave above trauma. An additional range exhibiting loss of gap-PPI directly below trauma frequency was revealed in Sprague Dawley and Long Evans rats. Further research should focus on these frequency ranges when investigating the underlying mechanisms of tinnitus induction.
Collapse
Affiliation(s)
- L Koch
- Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany
| | - B H Gaese
- Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany
| | - Manuela Nowotny
- Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany. .,Animal Physiology Group, Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University, Jena, Germany.
| |
Collapse
|
5
|
Zhang J, Firestone E, Elattma A. Animal Models of Tinnitus Treatment: Cochlear and Brain Stimulation. Curr Top Behav Neurosci 2021; 51:83-129. [PMID: 34282563 DOI: 10.1007/7854_2021_227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neuromodulation, via stimulation of a variety of peripheral and central structures, is used to suppress tinnitus. However, investigative limitations in humans due to ethical reasons have made it difficult to decipher the mechanisms underlying treatment-induced tinnitus relief, so a number of animal models have arisen to address these unknowns. This chapter reviews animal models of cochlear and brain stimulation and assesses their modulatory effects on behavioral evidence of tinnitus and its related neural correlates. When a structure is stimulated, localized modulation, often presenting as downregulation of spontaneous neuronal spike firing rate, bursting and neurosynchrony, occurs within the brain area. Through anatomical projections and transmitter pathways, the interventions activate both auditory- and non-auditory structures by taking bottom-up ascending and top-down descending modes to influence their target brain structures. Furthermore, it is the brain oscillations that cochlear or brain stimulation evoke and connect the prefrontal cortex, striatal systems, and other limbic structures to refresh neural networks and relieve auditory, attentive, conscious, as well as emotional reactive aspects of tinnitus. This oscillatory neural network connectivity is achieved via the thalamocorticothalamic circuitry including the lemniscal and non-lemniscal auditory brain structures. Beyond existing technologies, the review also reveals opportunities for developing advanced animal models using new modalities to achieve precision neuromodulation and tinnitus abatement, such as optogenetic cochlear and/or brain stimulation.
Collapse
Affiliation(s)
- Jinsheng Zhang
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, USA. .,Department of Communication Sciences and Disorders, Wayne State University College of Liberal Arts and Sciences, Detroit, MI, USA.
| | - Ethan Firestone
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ahmed Elattma
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
6
|
Duda V, Scully O, Baillargeon MS, Hébert S. Does Tinnitus Fill in the Gap Using Electrophysiology? A Scoping Review. Otolaryngol Clin North Am 2020; 53:563-582. [PMID: 32334868 DOI: 10.1016/j.otc.2020.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The results showed a trend of increased post-gap amplitudes and reduced gap salience; however, the small number of articles yield and limited consensus prohibit any conclusions for clinical use. Nevertheless, gap-induced EPs may be further explored as a potential tool for tinnitus detection.
Collapse
Affiliation(s)
- Victoria Duda
- École d'orthophonie et d'audiologie, Faculty of Medicine, Université de Montréal, Pavillon 7077, Parc, C.P. 6128, Succ. Centre-ville, Montreal H3C 3J7, Canada
| | - Olivia Scully
- École d'orthophonie et d'audiologie, Faculty of Medicine, Université de Montréal, Pavillon 7077, Parc, C.P. 6128, Succ. Centre-ville, Montreal H3C 3J7, Canada
| | - Marie-Sarah Baillargeon
- École d'orthophonie et d'audiologie, Faculty of Medicine, Université de Montréal, Pavillon 7077, Parc, C.P. 6128, Succ. Centre-ville, Montreal H3C 3J7, Canada
| | - Sylvie Hébert
- École d'orthophonie et d'audiologie, Faculty of Medicine, Université de Montréal, Pavillon 7077, Parc, C.P. 6128, Succ. Centre-ville, Montreal H3C 3J7, Canada; International Laboratory for Brain, Music and Sound Research (BRAMS), Outremont, Quebec, Canada.
| |
Collapse
|
7
|
Zhang J. Blast-induced tinnitus: Animal models. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3811. [PMID: 31795642 DOI: 10.1121/1.5132551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Blast-induced tinnitus is a prevalent problem among military personnel and veterans, as blast-related trauma damages the vulnerable microstructures within the cochlea, impacts auditory and non-auditory brain structures, and causes tinnitus and other disorders. Thus far, there is no effective treatment of blast-induced tinnitus due to an incomplete understanding of its underlying mechanisms, necessitating development of reliable animal models. This article focuses on recent animal studies using behavioral, electrophysiological, imaging, and pharmacological tools. The mechanisms underlying blast-induced tinnitus are largely similar to those underlying noise-induced tinnitus: increased spontaneous firing rates, bursting, and neurosynchrony, Mn++ accumulation, and elevated excitatory synaptic transmission. The differences mainly lie in the data variability and time course. Noise trauma-induced tinnitus mainly originates from direct peripheral deafferentation at the cochlea, and its etiology subsequently develops along the ascending auditory pathways. Blast trauma-induced tinnitus, on the other hand, results from simultaneous impact on both the peripheral and central auditory systems, and the resultant maladaptive neuroplasticity may also be related to the additional traumatic brain injury. Consequently, the neural correlates of blast-induced tinnitus have different time courses and less uniform manifestations of its neural correlates.
Collapse
Affiliation(s)
- Jinsheng Zhang
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, 4201 Saint Antoine, Detroit, Michigan 48201, USA
| |
Collapse
|
8
|
Holt AG, Kühl A, Braun RD, Altschuler R. The rat as a model for studying noise injury and otoprotection. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3681. [PMID: 31795688 DOI: 10.1121/1.5131344] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A major challenge for those studying noise-induced injury pre-clinically is the selection of an animal model. Noise injury models are particularly relevant in an age when people are constantly bombarded by loud noise due to occupation and/or recreation. The rat has been widely used for noise-related morphological, physiological, biochemical, and molecular assessment. Noise exposure resulting in a temporary (TTS) or permanent threshold shift (PTS) yields trauma in peripheral and central auditory related pathways. While the precise nature of noise-related injuries continues to be delineated, both PTS and TTS (with or without hidden hearing loss) result in homeostatic changes implicated in conditions such as tinnitus and hyperacusis. Compared to mice, rats generally tolerate exposure to loud sounds reasonably well, often without exhibiting other physical non-inner ear related symptoms such as death, loss of consciousness, or seizures [Skradski, Clark, Jiang, White, Fu, and Ptacek (2001). Neuron 31, 537-544; Faingold (2002). Hear. Res. 168, 223-237; Firstova, Abaimov, Surina, Poletaeva, Fedotova, and Kovalev (2012). Bull Exp. Biol. Med. 154, 196-198; De Sarro, Russo, Citraro, and Meldrum (2017). Epilepsy Behav. 71, 165-173]. This ability of the rat to thrive following noise exposure permits study of long-term effects. Like the mouse, the rat also offers a well-characterized genome allowing genetic manipulations (i.e., knock-out, viral-based gene expression modulation, and optogenetics). Rat models of noise-related injury also provide valuable information for understanding mechanistic changes to identify therapeutic targets for treatment. This article provides a framework for selection of the rat as a model for noise injury studies.
Collapse
Affiliation(s)
- Avril Genene Holt
- Department of Ophthalmology, Visual, and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, 550 East Canfield Avenue, 454 Lande Building, Detroit, Michigan 48201, USA
| | - André Kühl
- Department of Ophthalmology, Visual, and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, 550 East Canfield Avenue, 454 Lande Building, Detroit, Michigan 48201, USA
| | - Rod D Braun
- Department of Ophthalmology, Visual, and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, 550 East Canfield Avenue, 454 Lande Building, Detroit, Michigan 48201, USA
| | - Richard Altschuler
- Department of Otolaryngology; Cell and Developmental Biology, Kresge Hearing Research Institute, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
9
|
Chai Z, Ma C, Jin X. Homeostatic activity regulation as a mechanism underlying the effect of brain stimulation. Bioelectron Med 2019; 5:16. [PMID: 32232105 PMCID: PMC7098242 DOI: 10.1186/s42234-019-0032-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/23/2019] [Indexed: 01/10/2023] Open
Abstract
Hyperexcitability of the neural network often occurs after brain injuries or degeneration and is a key pathophysiological feature in certain neurological diseases such as epilepsy, neuropathic pain, and tinnitus. Although the standard approach of pharmacological treatments is to directly suppress the hyperexcitability through reducing excitation or enhancing inhibition, different techniques for stimulating brain activity are often used to treat refractory neurological conditions. However, it is unclear why stimulating brain activity would be effective for controlling hyperexcitability. Recent studies suggest that the pathogenesis in these disorders exhibits a transition from an initial activity loss after acute injury or progressive neurodegeneration to subsequent development of hyperexcitability. This process mimics homeostatic activity regulation and may contribute to developing network hyperexcitability that underlies neurological symptoms. This hypothesis also predicts that stimulating brain activity should be effective in reducing hyperexcitability due to homeostatic activity regulation and in relieving symptoms. Here we review current evidence of homeostatic plasticity in the development of hyperexcitability in some neurological diseases and the effects of brain stimulation. The homeostatic plasticity hypothesis may provide new insights into the pathophysiology of neurological diseases and may guide the use of brain stimulation techniques for treating them.
Collapse
Affiliation(s)
- Zhi Chai
- Neurobiology Research Center, College of Basic Medicine, Shanxi University of Chinese Medicine, Taiyuan, 030619 China
| | - Cungen Ma
- Neurobiology Research Center, College of Basic Medicine, Shanxi University of Chinese Medicine, Taiyuan, 030619 China
| | - Xiaoming Jin
- Department of Anatomy, Cell Biology and Physiology, Department of Neurological Surgery, Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 West 15th Street, NB 500C, Indianapolis, IN 46202 USA
| |
Collapse
|
10
|
Relationship Between Tinnitus Loudness Measure by Visual Analogue Scale and Psychoacoustic Matching of Tinnitus Loudness. Otol Neurotol 2019; 40:16-21. [DOI: 10.1097/mao.0000000000002070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Ouyang J, Pace E, Lepczyk L, Kaufman M, Zhang J, Perrine SA, Zhang J. Blast-Induced Tinnitus and Elevated Central Auditory and Limbic Activity in Rats: A Manganese-Enhanced MRI and Behavioral Study. Sci Rep 2017; 7:4852. [PMID: 28687812 PMCID: PMC5501813 DOI: 10.1038/s41598-017-04941-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 04/27/2017] [Indexed: 02/06/2023] Open
Abstract
Blast-induced tinitus is the number one service-connected disability that currently affects military personnel and veterans. To elucidate its underlying mechanisms, we subjected 13 Sprague Dawley adult rats to unilateral 14 psi blast exposure to induce tinnitus and measured auditory and limbic brain activity using manganese-enhanced MRI (MEMRI). Tinnitus was evaluated with a gap detection acoustic startle reflex paradigm, while hearing status was assessed with prepulse inhibition (PPI) and auditory brainstem responses (ABRs). Both anxiety and cognitive functioning were assessed using elevated plus maze and Morris water maze, respectively. Five weeks after blast exposure, 8 of the 13 blasted rats exhibited chronic tinnitus. While acoustic PPI remained intact and ABR thresholds recovered, the ABR wave P1-N1 amplitude reduction persisted in all blast-exposed rats. No differences in spatial cognition were observed, but blasted rats as a whole exhibited increased anxiety. MEMRI data revealed a bilateral increase in activity along the auditory pathway and in certain limbic regions of rats with tinnitus compared to age-matched controls. Taken together, our data suggest that while blast-induced tinnitus may play a role in auditory and limbic hyperactivity, the non-auditory effects of blast and potential traumatic brain injury may also exert an effect.
Collapse
Affiliation(s)
- Jessica Ouyang
- Department of Otolaryngology and Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Edward Pace
- Department of Otolaryngology and Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Laura Lepczyk
- Department of Otolaryngology and Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Michael Kaufman
- Department of Otolaryngology and Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Jessica Zhang
- Department of Otolaryngology and Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Shane A Perrine
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Jinsheng Zhang
- Department of Otolaryngology and Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Communication Sciences & Disorders, Wayne State University College of Liberal Arts and Sciences, Detroit, MI, 48201, USA.
| |
Collapse
|
12
|
Brozoski T, Brozoski D, Wisner K, Bauer C. Chronic tinnitus and unipolar brush cell alterations in the cerebellum and dorsal cochlear nucleus. Hear Res 2017; 350:139-151. [PMID: 28478300 DOI: 10.1016/j.heares.2017.04.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/18/2017] [Accepted: 04/28/2017] [Indexed: 12/19/2022]
Abstract
Animal model research has shown that the central features of tinnitus, the perception of sound without an acoustic correlate, include elevated spontaneous and stimulus-driven activity, enhanced burst-mode firing, decreased variance of inter-spike intervals, and distortion of tonotopic frequency representation. Less well documented are cell-specific correlates of tinnitus. Unipolar brush cell (UBC) alterations in animals with psychophysical evidence of tinnitus has recently been reported. UBCs are glutamatergic interneurons that appear to function as local-circuit signal amplifiers. UBCs are abundant in the dorsal cochlear nucleus (DCN) and very abundant in the flocculus (FL) and paraflocculus (PFL) of the cerebellum. In the present research, two indicators of UBC structure and function were examined: Doublecortin (DCX) and epidermal growth factor receptor substrate 8 (Eps8). DCX is a protein that binds to microtubules where it can modify their assembly and growth. Eps8 is a cell-surface tyrosine kinase receptor mediating the response to epidermal growth factor; it appears to have a role in actin polymerization as well as cytoskeletal protein interactions. Both functions could contribute to synaptic remodeling. In the present research UBC Eps8 and DCX immunoreactivity (IR) were determined in 4 groups of rats distinguished by their exposure to high-level sound and psychophysical performance: Unexposed, exposed to high-level sound with behavioral evidence of tinnitus, and two exposed groups without behavioral evidence of tinnitus. Compared to unexposed controls, exposed animals with tinnitus had Eps8 IR elevated in their PFL; other structures were not affected, nor was DCX IR affected. This was interpreted as UBC upregulation in animals with tinnitus. Exposure that failed to produce tinnitus did not increase either Eps8 or DCX IR. Rather Eps8 IR was decreased in the FL and DCN of one subgroup (Least-Tinnitus), while DCX IR decreased in the FL of the other subgroup (No-Tinnitus). Neuron degeneration was also documented in the cochlear nucleus and PFL of exposed animals, both with and without tinnitus. Degeneration was not found in unexposed animals. Implications for tinnitus neuropathy are discussed in the context of synaptic remodeling and cerebellar sensory modulation.
Collapse
Affiliation(s)
- Thomas Brozoski
- Division of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL 62794, United States.
| | - Daniel Brozoski
- Division of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL 62794, United States
| | - Kurt Wisner
- Division of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL 62794, United States
| | - Carol Bauer
- Division of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL 62794, United States
| |
Collapse
|
13
|
He J, Zhu Y, Aa J, Smith PF, De Ridder D, Wang G, Zheng Y. Brain Metabolic Changes in Rats following Acoustic Trauma. Front Neurosci 2017; 11:148. [PMID: 28392756 PMCID: PMC5364180 DOI: 10.3389/fnins.2017.00148] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/09/2017] [Indexed: 12/14/2022] Open
Abstract
Acoustic trauma is the most common cause of hearing loss and tinnitus in humans. However, the impact of acoustic trauma on system biology is not fully understood. It has been increasingly recognized that tinnitus caused by acoustic trauma is unlikely to be generated by a single pathological source, but rather a complex network of changes involving not only the auditory system but also systems related to memory, emotion and stress. One obvious and significant gap in tinnitus research is a lack of biomarkers that reflect the consequences of this interactive "tinnitus-causing" network. In this study, we made the first attempt to analyse brain metabolic changes in rats following acoustic trauma using metabolomics, as a pilot study prior to directly linking metabolic changes to tinnitus. Metabolites in 12 different brain regions collected from either sham or acoustic trauma animals were profiled using a gas chromatography mass spectrometry (GC/MS)-based metabolomics platform. After deconvolution of mass spectra and identification of the molecules, the metabolomic data were processed using multivariate statistical analysis. Principal component analysis showed that metabolic patterns varied among different brain regions; however, brain regions with similar functions had a similar metabolite composition. Acoustic trauma did not change the metabolite clusters in these regions. When analyzed within each brain region using the orthogonal projection to latent structures discriminant analysis sub-model, 17 molecules showed distinct separation between control and acoustic trauma groups in the auditory cortex, inferior colliculus, superior colliculus, vestibular nucleus complex (VNC), and cerebellum. Further metabolic pathway impact analysis and the enrichment overview with network analysis suggested the primary involvement of amino acid metabolism, including the alanine, aspartate and glutamate metabolic pathways, the arginine and proline metabolic pathways and the purine metabolic pathway. Our results provide the first metabolomics evidence that acoustic trauma can induce changes in multiple metabolic pathways. This pilot study also suggests that the metabolomic approach has the potential to identify acoustic trauma-specific metabolic shifts in future studies where metabolic changes are correlated with the animal's tinnitus status.
Collapse
Affiliation(s)
- Jun He
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University Nanjing, Jiangsu, China
| | - Yejin Zhu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University Nanjing, Jiangsu, China
| | - Jiye Aa
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University Nanjing, Jiangsu, China
| | - Paul F Smith
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of OtagoDunedin, New Zealand; Brain Health Research Centre, University of OtagoDunedin, New Zealand; Brain Research New ZealandDunedin, New Zealand; Eisdell Moore Centre for Hearing and Balance Research, University of AucklandAuckland, New Zealand
| | - Dirk De Ridder
- Brain Health Research Centre, University of OtagoDunedin, New Zealand; Brain Research New ZealandDunedin, New Zealand; Eisdell Moore Centre for Hearing and Balance Research, University of AucklandAuckland, New Zealand; Department of Neurosurgery, Dunedin Medical School, University of OtagoOtago, New Zealand
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University Nanjing, Jiangsu, China
| | - Yiwen Zheng
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of OtagoDunedin, New Zealand; Brain Health Research Centre, University of OtagoDunedin, New Zealand; Brain Research New ZealandDunedin, New Zealand; Eisdell Moore Centre for Hearing and Balance Research, University of AucklandAuckland, New Zealand
| |
Collapse
|
14
|
Liu B, Kim E, Meggo A, Gandhi S, Luo H, Kallakuri S, Xu Y, Zhang J. Enhanced biocompatibility of neural probes by integrating microstructures and delivering anti-inflammatory agents via microfluidic channels. J Neural Eng 2017; 14:026008. [PMID: 28155844 DOI: 10.1088/1741-2552/aa52dc] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Biocompatibility is a major issue for chronic neural implants, involving inflammatory and wound healing responses of neurons and glial cells. To enhance biocompatibility, we developed silicon-parylene hybrid neural probes with open architecture electrodes, microfluidic channels and a reservoir for drug delivery to suppress tissue responses. APPROACH We chronically implanted our neural probes in the rat auditory cortex and investigated (1) whether open architecture electrode reduces inflammatory reaction by measuring glial responses; and (2) whether delivery of antibiotic minocycline reduces inflammatory and tissue reaction. Four weeks after implantation, immunostaining for glial fibrillary acid protein (astrocyte marker) and ionizing calcium-binding adaptor molecule 1 (macrophages/microglia cell marker) were conducted to identify immunoreactive astrocyte and microglial cells, and to determine the extent of astrocytes and microglial cell reaction/activation. A comparison was made between using traditional solid-surface electrodes and newly-designed electrodes with open architecture, as well as between deliveries of minocycline and artificial cerebral-spinal fluid diffused through microfluidic channels. MAIN RESULTS The new probes with integrated micro-structures induced minimal tissue reaction compared to traditional electrodes at 4 weeks after implantation. Microcycline delivered through integrated microfluidic channels reduced tissue response as indicated by decreased microglial reaction around the neural probes implanted. SIGNIFICANCE The new design will help enhance the long-term stability of the implantable devices.
Collapse
Affiliation(s)
- Bin Liu
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Mulders WHAM, Vooys V, Makowiecki K, Tang AD, Rodger J. The effects of repetitive transcranial magnetic stimulation in an animal model of tinnitus. Sci Rep 2016; 6:38234. [PMID: 27905540 PMCID: PMC5131273 DOI: 10.1038/srep38234] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/07/2016] [Indexed: 02/04/2023] Open
Abstract
Tinnitus (phantom auditory perception associated with hearing loss) can seriously affect wellbeing. Its neural substrate is unknown however it has been linked with abnormal activity in auditory pathways. Though no cure currently exists, repetitive transcranial magnetic stimulation (rTMS) has been shown to reduce tinnitus in some patients, possibly via induction of cortical plasticity involving brain derived neurotrophic factor (BDNF). We examined whether low intensity rTMS (LI-rTMS) alleviates signs of tinnitus in a guinea pig model and whether this involves changes in BDNF expression and hyperactivity in inferior colliculus. Acoustic trauma was used to evoke hearing loss, central hyperactivity and tinnitus. When animals developed tinnitus, treatment commenced (10 sessions of 10 minutes 1 Hz LI-rTMS or sham over auditory cortex over 14 days). After treatment ceased animals were tested for tinnitus, underwent single-neuron recordings in inferior colliculus to assess hyperactivity and samples from cortex and inferior colliculus were taken for BDNF ELISA. Analysis revealed a significant reduction of tinnitus after LI-rTMS compared to sham, without a statistical significant effect on BDNF levels or hyperactivity. This suggests that LI-rTMS alleviates behavioural signs of tinnitus by a mechanism independent of inferior colliculus hyperactivity and BDNF levels and opens novel therapeutic avenues for tinnitus treatment.
Collapse
Affiliation(s)
- Wilhelmina H A M Mulders
- The Auditory Laboratory, School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
| | - Vanessa Vooys
- The Auditory Laboratory, School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
| | - Kalina Makowiecki
- School of Animal Biology, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
| | - Alex D Tang
- School of Animal Biology, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
| | - Jennifer Rodger
- School of Animal Biology, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
| |
Collapse
|
16
|
Robinson BL, Harper NS, McAlpine D. Meta-adaptation in the auditory midbrain under cortical influence. Nat Commun 2016; 7:13442. [PMID: 27883088 PMCID: PMC5123015 DOI: 10.1038/ncomms13442] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/04/2016] [Indexed: 11/17/2022] Open
Abstract
Neural adaptation is central to sensation. Neurons in auditory midbrain, for example, rapidly adapt their firing rates to enhance coding precision of common sound intensities. However, it remains unknown whether this adaptation is fixed, or dynamic and dependent on experience. Here, using guinea pigs as animal models, we report that adaptation accelerates when an environment is re-encountered-in response to a sound environment that repeatedly switches between quiet and loud, midbrain neurons accrue experience to find an efficient code more rapidly. This phenomenon, which we term meta-adaptation, suggests a top-down influence on the midbrain. To test this, we inactivate auditory cortex and find acceleration of adaptation with experience is attenuated, indicating a role for cortex-and its little-understood projections to the midbrain-in modulating meta-adaptation. Given the prevalence of adaptation across organisms and senses, meta-adaptation might be similarly common, with extensive implications for understanding how neurons encode the rapidly changing environments of the real world.
Collapse
Affiliation(s)
- Benjamin L. Robinson
- University College London Ear Institute, 332 Gray's Inn Road, London WC1X 8EE, UK
- Southwark and Central Integrated Psychological Therapies Team, The Maudsley Hospital, South London and Maudsley NHS Foundation Trust, Denmark Hill, London SE5 8AZ, UK
| | - Nicol S. Harper
- Department of Physiology, Anatomy, and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Headington, Oxford OX3 7DQ, UK
| | - David McAlpine
- University College London Ear Institute, 332 Gray's Inn Road, London WC1X 8EE, UK
- The Australian Hearing Hub, Macquarie University, 16 University Avenue, Sydney, NSW 2109, Australia
| |
Collapse
|
17
|
Yu H, Vikhe Patil K, Han C, Fabella B, Canlon B, Someya S, Cederroth CR. GLAST Deficiency in Mice Exacerbates Gap Detection Deficits in a Model of Salicylate-Induced Tinnitus. Front Behav Neurosci 2016; 10:158. [PMID: 27582696 PMCID: PMC4987341 DOI: 10.3389/fnbeh.2016.00158] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/03/2016] [Indexed: 12/04/2022] Open
Abstract
Gap detection or gap pre-pulse inhibition of the acoustic startle (GPIAS) has been successfully used in rat and guinea pig models of tinnitus, yet this system has been proven to have low efficacy in CBA mice, with low basal GPIAS and subtle tinnitus-like effects. Here, we tested five mouse strains (CBA, BalbC, CD-1, C57BL/6 and 129sv) for pre-pulse inhibition (PPI) and gap detection with varying interstimulus intervals (ISI) and found that mice from a CBA genetic background had the poorest capacities of suppressing the startle response in the presence of a pre-pulse or a gap. CD-1 mice displayed variable responses throughout all ISI. Interestingly, C57BL/6, 129sv and BalbC showed efficient suppression with either pre-pulses or gaps with shorter ISI. The glutamate aspartate transporter (GLAST) is expressed in support cells from the cochlea and buffers the excess of glutamate. We hypothesized that loss of GLAST function could sensitize the ear to tinnitus-inducing agents, such as salicylate. Using shorter ISI to obtain a greater dynamic range to assess tinnitus-like effects, we found that disruption of gap detection by salicylate was exacerbated across various intensities of a 32-kHz narrow band noise gap carrier in GLAST knockout (KO) mice when compared to their wild-type (WT) littermates. Auditory brainstem responses (ABR) and distortion-product otoacoustic emission (DPOAE) were performed to evaluate the effects on hearing functions. Salicylate caused greater auditory threshold shifts (near 15 dB) in GLAST KO mice than in WT mice across all tested frequencies, despite similarly reduced DPOAE. Despite these changes, inhibition using broad-band gap carriers and 32 kHz pre-pulses were not affected. Our study suggests that GLAST deficiency could become a useful experimental model to decipher the mechanisms underlying drug-induced tinnitus. Future studies addressing the neurological correlates of tinnitus in this model could provide additional insights into the mechanisms of tinnitus.
Collapse
Affiliation(s)
- Hong Yu
- Laboratory of Experimental Audiology, Department of Physiology and Pharmacology, Karolinska InstitutetStockholm, Sweden; Department of Otolaryngology, Head and Neck Surgery, First Hospital of JiLin UniversityChangchun, China
| | - Kim Vikhe Patil
- Laboratory of Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institutet Stockholm, Sweden
| | - Chul Han
- Department of Aging and Geriatric Research, University of Florida Gainesville, FL, USA
| | - Brian Fabella
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University New York, NY, USA
| | - Barbara Canlon
- Laboratory of Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institutet Stockholm, Sweden
| | - Shinichi Someya
- Department of Aging and Geriatric Research, University of Florida Gainesville, FL, USA
| | - Christopher R Cederroth
- Laboratory of Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institutet Stockholm, Sweden
| |
Collapse
|
18
|
Mwilambwe-Tshilobo L, Davis AJO, Aizenberg M, Geffen MN. Selective Impairment in Frequency Discrimination in a Mouse Model of Tinnitus. PLoS One 2015; 10:e0137749. [PMID: 26352864 PMCID: PMC4564173 DOI: 10.1371/journal.pone.0137749] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 08/20/2015] [Indexed: 01/26/2023] Open
Abstract
Tinnitus is an auditory disorder, which affects millions of Americans, including active duty service members and veterans. It is manifested by a phantom sound that is commonly restricted to a specific frequency range. Because tinnitus is associated with hearing deficits, understanding how tinnitus affects hearing perception is important for guiding therapies to improve the quality of life in this vast group of patients. In a rodent model of tinnitus, prolonged exposure to a tone leads to a selective decrease in gap detection in specific frequency bands. However, whether and how hearing acuity is affected for sounds within and outside those frequency bands is not well understood. We induced tinnitus in mice by prolonged exposure to a loud mid-range tone, and behaviorally assayed whether mice exhibited a change in frequency discrimination acuity for tones embedded within the mid-frequency range and high-frequency range at 1, 4, and 8 weeks post-exposure. A subset of tone-exposed mice exhibited tinnitus-like symptoms, as demonstrated by selective deficits in gap detection, which were restricted to the high frequency range. These mice exhibited impaired frequency discrimination both for tones in the mid-frequency range and high-frequency range. The remaining tone exposed mice, which did not demonstrate behavioral evidence of tinnitus, showed temporary deficits in frequency discrimination for tones in the mid-frequency range, while control mice remained unimpaired. Our findings reveal that the high frequency-specific deficits in gap detection, indicative of tinnitus, are associated with impairments in frequency discrimination at the frequency of the presumed tinnitus.
Collapse
Affiliation(s)
- Laetitia Mwilambwe-Tshilobo
- Department of Otorhinolaryngology HNS, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Andrew J. O. Davis
- Department of Otorhinolaryngology HNS, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mark Aizenberg
- Department of Otorhinolaryngology HNS, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Maria N. Geffen
- Department of Otorhinolaryngology HNS, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
19
|
Zhang J, Luo H, Pace E, Li L, Liu B. Psychophysical and neural correlates of noised-induced tinnitus in animals: Intra- and inter-auditory and non-auditory brain structure studies. Hear Res 2015; 334:7-19. [PMID: 26299842 DOI: 10.1016/j.heares.2015.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 08/04/2015] [Accepted: 08/17/2015] [Indexed: 12/19/2022]
Abstract
Tinnitus, a ringing in the ear or head without an external sound source, is a prevalent health problem. It is often associated with a number of limbic-associated disorders such as anxiety, sleep disturbance, and emotional distress. Thus, to investigate tinnitus, it is important to consider both auditory and non-auditory brain structures. This paper summarizes the psychophysical, immunocytochemical and electrophysiological evidence found in rats or hamsters with behavioral evidence of tinnitus. Behaviorally, we tested for tinnitus using a conditioned suppression/avoidance paradigm, gap detection acoustic reflex behavioral paradigm, and our newly developed conditioned licking suppression paradigm. Our new tinnitus behavioral paradigm requires relatively short baseline training, examines frequency specification of tinnitus perception, and achieves sensitive tinnitus testing at an individual level. To test for tinnitus-related anxiety and cognitive impairment, we used the elevated plus maze and Morris water maze. Our results showed that not all animals with tinnitus demonstrate anxiety and cognitive impairment. Immunocytochemically, we found that animals with tinnitus manifested increased Fos-like immunoreactivity (FLI) in both auditory and non-auditory structures. The manner in which FLI appeared suggests that lower brainstem structures may be involved in acute tinnitus whereas the midbrain and cortex are involved in more chronic tinnitus. Meanwhile, animals with tinnitus also manifested increased FLI in non-auditory brain structures that are involved in autonomic reactions, stress, arousal and attention. Electrophysiologically, we found that rats with tinnitus developed increased spontaneous firing in the auditory cortex (AC) and amygdala (AMG), as well as intra- and inter-AC and AMG neurosynchrony, which demonstrate that tinnitus may be actively produced and maintained by the interactions between the AC and AMG.
Collapse
Affiliation(s)
- Jinsheng Zhang
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University, School of Medicine, 4201 Saint Antoine, Detroit, MI 48201, USA; Department of Communication Sciences & Disorders, Wayne State University, College of Liberal Arts & Sciences, 60 Farnsworth St., Detroit, MI 48202, USA.
| | - Hao Luo
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University, School of Medicine, 4201 Saint Antoine, Detroit, MI 48201, USA
| | - Edward Pace
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University, School of Medicine, 4201 Saint Antoine, Detroit, MI 48201, USA
| | - Liang Li
- Department of Psychology, McGovern Institute for Brain Research at PKU, Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, 100080, China
| | - Bin Liu
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University, School of Medicine, 4201 Saint Antoine, Detroit, MI 48201, USA
| |
Collapse
|
20
|
Ku Y, Ahn JW, Kwon C, Suh MW, Lee JH, Oh SH, Kim HC. Gap prepulse inhibition of the auditory late response in healthy subjects. Psychophysiology 2015; 52:1511-9. [DOI: 10.1111/psyp.12507] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/12/2015] [Accepted: 07/15/2015] [Indexed: 01/07/2023]
Affiliation(s)
- Yunseo Ku
- Interdisciplinary Program for Bioengineering; Seoul National University; Seoul Korea
| | - Joong Woo Ahn
- Interdisciplinary Program for Bioengineering; Seoul National University; Seoul Korea
| | - Chiheon Kwon
- Interdisciplinary Program for Bioengineering; Seoul National University; Seoul Korea
| | - Myung-Whan Suh
- Department of Otorhinolaryngology-Head and Neck Surgery; Seoul National University Hospital; Seoul Korea
| | - Jun Ho Lee
- Department of Otorhinolaryngology-Head and Neck Surgery; Seoul National University Hospital; Seoul Korea
- Department of Otorhinolaryngology-Head and Neck Surgery; Seoul National University College of Medicine, Sensory Organ Research Institute, Seoul National University Biomedical Research Institute; Seoul Korea
| | - Seung Ha Oh
- Department of Otorhinolaryngology-Head and Neck Surgery; Seoul National University Hospital; Seoul Korea
- Department of Otorhinolaryngology-Head and Neck Surgery; Seoul National University College of Medicine, Sensory Organ Research Institute, Seoul National University Biomedical Research Institute; Seoul Korea
| | - Hee Chan Kim
- Department of Biomedical Engineering; Medical Research Center, Seoul National University College of Medicine; Seoul Korea
| |
Collapse
|
21
|
The olivocochlear reflex strength and cochlear sensitivity are independently modulated by auditory cortex microstimulation. J Assoc Res Otolaryngol 2015; 16:223-40. [PMID: 25663383 DOI: 10.1007/s10162-015-0509-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 01/21/2015] [Indexed: 12/20/2022] Open
Abstract
In mammals, efferent projections to the cochlear receptor are constituted by olivocochlear (OC) fibers that originate in the superior olivary complex. Medial and lateral OC neurons make synapses with outer hair cells and with auditory nerve fibers, respectively. In addition to the OC system, there are also descending projections from the auditory cortex that are directed towards the thalamus, inferior colliculus, cochlear nucleus, and superior olivary complex. Olivocochlear function can be assessed by measuring a brainstem reflex mediated by auditory nerve fibers, cochlear nucleus neurons, and OC fibers. Although it is known that the OC reflex is activated by contralateral acoustic stimulation and produces a suppression of cochlear responses, the influence of cortical descending pathways in the OC reflex is largely unknown. Here, we used auditory cortex electrical microstimulation in chinchillas to study a possible cortical modulation of cochlear and auditory nerve responses to tones in the absence and presence of contralateral noise. We found that cortical microstimulation produces two different peripheral modulations: (i) changes in cochlear sensitivity evidenced by amplitude modulation of cochlear microphonics and auditory nerve compound action potentials and (ii) enhancement or suppression of the OC reflex strength as measured by auditory nerve responses, which depended on the intersubject variability of the OC reflex. Moreover, both corticofugal effects were not correlated, suggesting the presence of two functionally different efferent pathways. These results demonstrate that auditory cortex electrical microstimulation independently modulates the OC reflex strength and cochlear sensitivity.
Collapse
|
22
|
Berger JI, Coomber B, Wells TT, Wallace MN, Palmer AR. Changes in the response properties of inferior colliculus neurons relating to tinnitus. Front Neurol 2014; 5:203. [PMID: 25346722 PMCID: PMC4191193 DOI: 10.3389/fneur.2014.00203] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/26/2014] [Indexed: 12/03/2022] Open
Abstract
Tinnitus is often identified in animal models by using the gap prepulse inhibition of acoustic startle. Impaired gap detection following acoustic over-exposure (AOE) is thought to be caused by tinnitus “filling in” the gap, thus, reducing its salience. This presumably involves altered perception, and could conceivably be caused by changes at the level of the neocortex, i.e., cortical reorganization. Alternatively, reduced gap detection ability might reflect poorer temporal processing in the brainstem, caused by AOE; in which case, impaired gap detection would not be a reliable indicator of tinnitus. We tested the latter hypothesis by examining gap detection in inferior colliculus (IC) neurons following AOE. Seven of nine unilaterally noise-exposed guinea pigs exhibited behavioral evidence of tinnitus. In these tinnitus animals, neural gap detection thresholds (GDTs) in the IC significantly increased in response to broadband noise stimuli, but not to pure tones or narrow-band noise. In addition, when IC neurons were sub-divided according to temporal response profile (onset vs. sustained firing patterns), we found a significant increase in the proportion of onset-type responses after AOE. Importantly, however, GDTs were still considerably shorter than gap durations commonly used in objective behavioral tests for tinnitus. These data indicate that the neural changes observed in the IC are insufficient to explain deficits in behavioral gap detection that are commonly attributed to tinnitus. The subtle changes in IC neuron response profiles following AOE warrant further investigation.
Collapse
Affiliation(s)
- Joel I Berger
- MRC Institute of Hearing Research, University Park , Nottingham , UK
| | - Ben Coomber
- MRC Institute of Hearing Research, University Park , Nottingham , UK
| | - Tobias T Wells
- MRC Institute of Hearing Research, University Park , Nottingham , UK
| | - Mark N Wallace
- MRC Institute of Hearing Research, University Park , Nottingham , UK
| | - Alan R Palmer
- MRC Institute of Hearing Research, University Park , Nottingham , UK
| |
Collapse
|
23
|
Therapeutic effect of sildenafil on blast-induced tinnitus and auditory impairment. Neuroscience 2014; 269:367-82. [DOI: 10.1016/j.neuroscience.2014.03.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 02/20/2014] [Accepted: 03/11/2014] [Indexed: 11/19/2022]
|
24
|
|
25
|
Mulders WHAM, Barry KM, Robertson D. Effects of furosemide on cochlear neural activity, central hyperactivity and behavioural tinnitus after cochlear trauma in guinea pig. PLoS One 2014; 9:e97948. [PMID: 24835470 PMCID: PMC4023991 DOI: 10.1371/journal.pone.0097948] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 04/27/2014] [Indexed: 11/19/2022] Open
Abstract
Cochlear trauma causes increased spontaneous activity (hyperactivity) to develop in central auditory structures, and this has been suggested as a neural substrate for tinnitus. Using a guinea pig model we have previously demonstrated that for some time after cochlear trauma, central hyperactivity is dependent on peripheral afferent drive and only later becomes generated intrinsically within central structures. Furosemide, a loop diuretic, reduces spontaneous firing of auditory afferents. We investigated in our guinea pig model the efficacy of furosemide in reducing 1) spontaneous firing of auditory afferents, using the spectrum of neural noise (SNN) from round window recording, 2) hyperactivity in inferior colliculus, using extracellular single neuron recordings and 3) tinnitus at early time-points after cochlear trauma. Tinnitus was assessed using gap prepulse inhibition of acoustic startle (GPIAS). Intraperitoneal furosemide, but not saline, caused a marked decrease in both SNN and central hyperactivity. Intracochlear perfusion with furosemide similarly reversed central hyperactivity. In animals in which GPIAS measurements suggested the presence of tinnitus (reduced GPIAS), this could be reversed with an intraperitoneal injection with furosemide but not saline. The results are consistent with furosemide reducing central hyperactivity and behavioural signs of tinnitus by acting peripherally to decrease spontaneous firing of auditory afferents. The data support the notion that hyperactivity may be involved in the generation of tinnitus and further suggest that there may be a therapeutic window after cochlear trauma using drug treatments that target peripheral spontaneous activity.
Collapse
Affiliation(s)
- Wilhelmina H. A. M. Mulders
- The Auditory Laboratory, School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia, Australia
- * E-mail:
| | - Kristin M. Barry
- The Auditory Laboratory, School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Donald Robertson
- The Auditory Laboratory, School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
26
|
Abstract
Tinnitus is one of the major audiological diseases, affecting a significant portion of the ageing society. Despite its huge personal and presumed economic impact there are only limited therapeutic options available. The reason for this deficiency lies in the very nature of the disease as it is deeply connected to elementary plasticity of auditory processing in the central nervous system. Understanding these mechanisms is essential for developing a therapy that reverses the plastic changes underlying the pathogenesis of tinnitus. This requires experiments that address individual neurons and small networks, something usually not feasible in human patients. However, in animals such invasive experiments on the level of single neurons with high spatial and temporal resolution are possible. Therefore, animal models are a very critical element in the combined efforts for engineering new therapies. This review provides an overview over the most important features of animal models of tinnitus: which laboratory species are suitable, how to induce tinnitus, and how to characterize the perceived tinnitus by behavioral means. In particular, these aspects of tinnitus animal models are discussed in the light of transferability to the human patients.
Collapse
|
27
|
Coomber B, Berger JI, Kowalkowski VL, Shackleton TM, Palmer AR, Wallace MN. Neural changes accompanying tinnitus following unilateral acoustic trauma in the guinea pig. Eur J Neurosci 2014; 40:2427-41. [PMID: 24702651 PMCID: PMC4215599 DOI: 10.1111/ejn.12580] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/03/2014] [Indexed: 12/31/2022]
Abstract
Animal models of tinnitus allow us to study the relationship between changes in neural activity and the tinnitus percept. Here, guinea pigs were subjected to unilateral noise trauma and tested behaviourally for tinnitus 8 weeks later. By comparing animals with tinnitus with those without, all of which were noise-exposed, we were able to identify changes unique to the tinnitus group. Three physiological markers known to change following noise exposure were examined: spontaneous firing rates (SFRs) and burst firing in the inferior colliculus (IC), evoked auditory brainstem responses (ABRs), and the number of neurons in the cochlear nucleus containing nitric oxide synthase (NOS). We obtained behavioural evidence of tinnitus in 12 of 16 (75%) animals. Both SFRs and incidences of burst firing were elevated in the IC of all noise-exposed animals, but there were no differences between tinnitus and no-tinnitus animals. There were significant decreases in ipsilateral ABR latencies in tinnitus animals, contrary to what might be expected with a small hearing loss. Furthermore, there was an ipsilateral-contralateral asymmetry in NOS staining in the ventral cochlear nucleus (VCN) that was only apparent in tinnitus animals. Tinnitus animals had a significantly greater number of NOS-containing neurons on the noise-exposed side, whereas no-tinnitus animals did not. These data suggest that measuring NOS in the VCN and recording ABRs supplement behavioural methods for confirming tinnitus in animals, and that nitric oxide is involved in plastic neural changes associated with tinnitus.
Collapse
Affiliation(s)
- Ben Coomber
- MRC Institute of Hearing Research, University Park, Nottingham, NG7 2RD, UK
| | | | | | | | | | | |
Collapse
|
28
|
Henry JA, Roberts LE, Caspary DM, Theodoroff SM, Salvi RJ. Underlying mechanisms of tinnitus: review and clinical implications. J Am Acad Audiol 2014; 25:5-22; quiz 126. [PMID: 24622858 PMCID: PMC5063499 DOI: 10.3766/jaaa.25.1.2] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND The study of tinnitus mechanisms has increased tenfold in the last decade. The common denominator for all of these studies is the goal of elucidating the underlying neural mechanisms of tinnitus with the ultimate purpose of finding a cure. While these basic science findings may not be immediately applicable to the clinician who works directly with patients to assist them in managing their reactions to tinnitus, a clear understanding of these findings is needed to develop the most effective procedures for alleviating tinnitus. PURPOSE The goal of this review is to provide audiologists and other health-care professionals with a basic understanding of the neurophysiological changes in the auditory system likely to be responsible for tinnitus. RESULTS It is increasingly clear that tinnitus is a pathology involving neuroplastic changes in central auditory structures that take place when the brain is deprived of its normal input by pathology in the cochlea. Cochlear pathology is not always expressed in the audiogram but may be detected by more sensitive measures. Neural changes can occur at the level of synapses between inner hair cells and the auditory nerve and within multiple levels of the central auditory pathway. Long-term maintenance of tinnitus is likely a function of a complex network of structures involving central auditory and nonauditory systems. CONCLUSIONS Patients often have expectations that a treatment exists to cure their tinnitus. They should be made aware that research is increasing to discover such a cure and that their reactions to tinnitus can be mitigated through the use of evidence-based behavioral interventions.
Collapse
Affiliation(s)
- James A. Henry
- VA RR&D National Center for Rehabilitative Auditory Research (NCRAR), VA Medical Center, Portland, OR
- Department of Otolaryngology/Head and Neck Surgery, Oregon Health and Science University, Portland, OR
| | - Larry E. Roberts
- Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Donald M. Caspary
- Pharmacology Department, Southern Illinois University School of Medicine, Springfield, IL
| | - Sarah M. Theodoroff
- VA RR&D National Center for Rehabilitative Auditory Research (NCRAR), VA Medical Center, Portland, OR
- Department of Otolaryngology/Head and Neck Surgery, Oregon Health and Science University, Portland, OR
| | - Richard J. Salvi
- Center for Hearing and Deafness, University of Buffalo, Buffalo, NY
| |
Collapse
|
29
|
Pace E, Zhang J. Noise-induced tinnitus using individualized gap detection analysis and its relationship with hyperacusis, anxiety, and spatial cognition. PLoS One 2013; 8:e75011. [PMID: 24069375 PMCID: PMC3771890 DOI: 10.1371/journal.pone.0075011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 08/10/2013] [Indexed: 01/12/2023] Open
Abstract
Tinnitus has a complex etiology that involves auditory and non-auditory factors and may be accompanied by hyperacusis, anxiety and cognitive changes. Thus far, investigations of the interrelationship between tinnitus and auditory and non-auditory impairment have yielded conflicting results. To further address this issue, we noise exposed rats and assessed them for tinnitus using a gap detection behavioral paradigm combined with statistically-driven analysis to diagnose tinnitus in individual rats. We also tested rats for hearing detection, responsivity, and loss using prepulse inhibition and auditory brainstem response, and for spatial cognition and anxiety using Morris water maze and elevated plus maze. We found that our tinnitus diagnosis method reliably separated noise-exposed rats into tinnitus(+) and tinnitus(−) groups and detected no evidence of tinnitus in tinnitus(−) and control rats. In addition, the tinnitus(+) group demonstrated enhanced startle amplitude, indicating hyperacusis-like behavior. Despite these results, neither tinnitus, hyperacusis nor hearing loss yielded any significant effects on spatial learning and memory or anxiety, though a majority of rats with the highest anxiety levels had tinnitus. These findings showed that we were able to develop a clinically relevant tinnitus(+) group and that our diagnosis method is sound. At the same time, like clinical studies, we found that tinnitus does not always result in cognitive-emotional dysfunction, although tinnitus may predispose subjects to certain impairment like anxiety. Other behavioral assessments may be needed to further define the relationship between tinnitus and anxiety, cognitive deficits, and other impairments.
Collapse
Affiliation(s)
- Edward Pace
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Jinsheng Zhang
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Communication Sciences & Disorders, Wayne State University College of Liberal Arts & Sciences, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
30
|
Langguth B, De Ridder D. Tinnitus: therapeutic use of superficial brain stimulation. HANDBOOK OF CLINICAL NEUROLOGY 2013; 116:441-467. [PMID: 24112915 DOI: 10.1016/b978-0-444-53497-2.00036-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Tinnitus is a common disorder and traditional treatment approaches such as medication, active or passive sound enhancement, and cognitive behavioral therapy have limited efficacy. Thus, there is an urgent need for more effective treatment approaches. Functional imaging studies in patients with tinnitus have revealed alterations in neuronal activity of central auditory pathways, probably resulting as a consequence of sensory deafferentation. However, nonauditory brain areas are also involved. These nonauditory brain areas might represent both an "awareness" network involved in the conscious perception of the tinnitus signal as well as areas related to a nontinnitus-specific distress network consisting of the anterior cingulate cortex, anterior insula, and amygdala. Moreover, memory mechanisms involving the hippocampus and the parahippocampal region may play a role in the persistence of the awareness of the phantom percept, as well as in the reinforcement of the associated distress. All of these networks represent potential targets for treatment via pharmacological treatment or noninvasive and invasive brain stimulation. Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive method of applying electromagnetic fields to the brain that can induce alterations of neuronal activity that outlast the stimulation period. Single sessions of rTMS over the temporal or temporoparietal cortex have been successful in transiently reducing tinnitus perception. Repeated sessions of rTMS have resulted in tinnitus relief in a subgroup of patients, lasting from several days to several months. However, effect sizes of rTMS in the treatment of tinnitus are only moderate, and interindividual variability is high. Larger and longer lasting effects have been observed with direct electrical stimulation of the auditory cortex via implanted epidural electrodes. Transcranial direct current stimulation (tDCS) has also shown potential for the treatment of tinnitus. Both auditory and frontal tDCS have shown tinnitus reduction in a subgroup of patients. In spite of the promising results of the different brain stimulation approaches, further research is needed before these techniques can be recommended for routine clinical use.
Collapse
Affiliation(s)
- Berthold Langguth
- Interdisciplinary Tinnitus Clinic, Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany.
| | | |
Collapse
|
31
|
Lobarinas E, Hayes SH, Allman BL. The gap-startle paradigm for tinnitus screening in animal models: limitations and optimization. Hear Res 2012; 295:150-60. [PMID: 22728305 DOI: 10.1016/j.heares.2012.06.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 04/27/2012] [Accepted: 06/04/2012] [Indexed: 11/17/2022]
Abstract
In 2006, Turner and colleagues (Behav. Neurosci., 120:188-195) introduced the gap-startle paradigm as a high-throughput method for tinnitus screening in rats. Under this paradigm, gap detection ability was assessed by determining the level of inhibition of the acoustic startle reflex produced by a short silent gap inserted in an otherwise continuous background sound prior to a loud startling stimulus. Animals with tinnitus were expected to show impaired gap detection ability (i.e., lack of inhibition of the acoustic startle reflex) if the background sound containing the gap was qualitatively similar to the tinnitus pitch. Thus, for the gap-startle paradigm to be a valid tool to screen for tinnitus, a robust startle response from which to inhibit must be present. Because recent studies have demonstrated that the acoustic startle reflex could be dramatically reduced following noise exposure, we endeavored to 1) modify the gap-startle paradigm to be more resilient in the presence of hearing loss, and 2) evaluate whether a reduction in startle reactivity could confound the interpretation of gap prepulse inhibition and lead to errors in screening for tinnitus. In the first experiment, the traditional broadband noise (BBN) startle stimulus was replaced by a bandpass noise in which the sound energy was concentrated in the lower frequencies (5-10 kHz) in order to maintain audibility of the startle stimulus after unilateral high-frequency noise exposure (16 kHz). However, rats still showed a 57% reduction in startle amplitude to the bandpass noise post-noise exposure. A follow-up experiment on a separate group of rats with transiently-induced conductive hearing loss revealed that startle reactivity was better preserved when the BBN startle stimulus was replaced by a rapid airpuff to the back of the rat's neck. Furthermore, it was found that transient unilateral conductive hearing loss, which was not likely to induce tinnitus, caused an impairment in gap prepulse inhibition as assessed with the traditional BBN gap-startle paradigm, resulting in a false-positive screening for tinnitus. Thus, the present study identifies significant caveats of the traditional gap-startle paradigm, and describes experimental parameters using an airpuff startle stimulus which may help to limit the negative consequences of reduced startle reactivity following noise exposure, thereby allowing researchers to better screen for tinnitus in animals with hearing loss.
Collapse
Affiliation(s)
- Edward Lobarinas
- Center for Hearing and Deafness, The State University of New York at Buffalo, 137 Cary Hall, Buffalo, NY 14214, USA.
| | | | | |
Collapse
|
32
|
Fournier P, Hébert S. Gap detection deficits in humans with tinnitus as assessed with the acoustic startle paradigm: does tinnitus fill in the gap? Hear Res 2012; 295:16-23. [PMID: 22688322 DOI: 10.1016/j.heares.2012.05.011] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 05/27/2012] [Accepted: 05/30/2012] [Indexed: 11/19/2022]
Abstract
The measurement of tinnitus in humans relies on subjective measures such as self-report, visual analog scales and questionnaires. Gap detection impairments have been tested in animals in an attempt to objectify the presence of tinnitus. The main purpose of this study was to investigate the gap startle paradigm in human participants with high-frequency tinnitus. Fifteen adults with bilateral high-frequency tinnitus but normal hearing at standard frequencies and seventeen matched controls without tinnitus were tested. The psychoacoustic characteristics of the tinnitus spectrum (pitch and loudness) were assessed using novel participant-directed custom-made methods. The startle task consisted of startle-alone, prepulse inhibition and gap-in-noise condition at low- and high-background noise frequencies. All measurements were retested after several months. Data indicate normal prepulse inhibition but higher reactivity to the startle sounds in the tinnitus group in comparison with controls. Most importantly, the tinnitus group displayed a consistent deficit in gap processing at both low- and high-background noise frequencies. All effects were identified consistently and were reproducible at retest. We propose that the higher reactivity to startle might reflect hyperacusis and that the gap deficit might be an index of abnormal cortical auditory processing in tinnitus.
Collapse
Affiliation(s)
- Philippe Fournier
- École d'orthophonie et d'audiologie, Faculty of medicine, Université de Montréal, C.P.6128, succ. Centre-Ville, Montréal, QC, Canada H3C 3J7
| | | |
Collapse
|
33
|
Zhang J. Auditory cortex stimulation to suppress tinnitus: mechanisms and strategies. Hear Res 2012; 295:38-57. [PMID: 22683861 DOI: 10.1016/j.heares.2012.05.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 05/06/2012] [Accepted: 05/14/2012] [Indexed: 01/08/2023]
Abstract
Brain stimulation is an important method used to modulate neural activity and suppress tinnitus. Several auditory and non-auditory brain regions have been targeted for stimulation. This paper reviews recent progress on auditory cortex (AC) stimulation to suppress tinnitus and its underlying neural mechanisms and stimulation strategies. At the same time, the author provides his opinions and hypotheses on both animal and human models. The author also proposes a medial geniculate body (MGB)-thalamic reticular nucleus (TRN)-Gating mechanism to reflect tinnitus-related neural information coming from upstream and downstream projection structures. The upstream structures include the lower auditory brainstem and midbrain structures. The downstream structures include the AC and certain limbic centers. Both upstream and downstream information is involved in a dynamic gating mechanism in the MGB together with the TRN. When abnormal gating occurs at the thalamic level, the spilled-out information interacts with the AC to generate tinnitus. The tinnitus signals at the MGB-TRN-Gating may be modulated by different forms of stimulations including brain stimulation. Each stimulation acts as a gain modulator to control the level of tinnitus signals at the MGB-TRN-Gate. This hypothesis may explain why different types of stimulation can induce tinnitus suppression. Depending on the tinnitus etiology, MGB-TRN-Gating may be different in levels and dynamics, which cause variability in tinnitus suppression induced by different gain controllers. This may explain why the induced suppression of tinnitus by one type of stimulation varies across individual patients.
Collapse
Affiliation(s)
- Jinsheng Zhang
- Department of Otolaryngology - Head and Neck Surgery, Wayne State University, School of Medicine, 5E-UHC, 4201 Saint Antoine, Detroit, MI 48201, USA.
| |
Collapse
|
34
|
Luo H, Zhang X, Nation J, Pace E, Lepczyk L, Zhang J. Tinnitus suppression by electrical stimulation of the rat dorsal cochlear nucleus. Neurosci Lett 2012; 522:16-20. [PMID: 22683504 DOI: 10.1016/j.neulet.2012.05.072] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 04/25/2012] [Accepted: 05/28/2012] [Indexed: 11/18/2022]
Abstract
Previous studies indicate that the dorsal cochlear nucleus (DCN) may serve as a generator and/or modulator of noise-induced tinnitus. This prompted an interest to investigate the modulatory role of the DCN in tinnitus suppression. In this study, we chronically implanted the DCN of rats with behavioral evidence of intense tone-induced tinnitus. Behavioral evidence of tinnitus was measured using a gap detection acoustic startle reflex paradigm. Our results demonstrated that electrical stimulation of the DCN suppressed behavioral evidence of tinnitus, especially at high frequencies. The data suggest that the DCN may be used as a target to suppress tinnitus through a bottom-up neuromodulation approach. The underlying mechanism of DCN-stimulation-induced tinnitus suppression was discussed by comparing it with other stimulation modalities.
Collapse
Affiliation(s)
- Hao Luo
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, 4201 Saint Antoine, Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|
35
|
León A, Elgueda D, Silva MA, Hamamé CM, Delano PH. Auditory cortex basal activity modulates cochlear responses in chinchillas. PLoS One 2012; 7:e36203. [PMID: 22558383 PMCID: PMC3340362 DOI: 10.1371/journal.pone.0036203] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 04/03/2012] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The auditory efferent system has unique neuroanatomical pathways that connect the cerebral cortex with sensory receptor cells. Pyramidal neurons located in layers V and VI of the primary auditory cortex constitute descending projections to the thalamus, inferior colliculus, and even directly to the superior olivary complex and to the cochlear nucleus. Efferent pathways are connected to the cochlear receptor by the olivocochlear system, which innervates outer hair cells and auditory nerve fibers. The functional role of the cortico-olivocochlear efferent system remains debated. We hypothesized that auditory cortex basal activity modulates cochlear and auditory-nerve afferent responses through the efferent system. METHODOLOGY/PRINCIPAL FINDINGS Cochlear microphonics (CM), auditory-nerve compound action potentials (CAP) and auditory cortex evoked potentials (ACEP) were recorded in twenty anesthetized chinchillas, before, during and after auditory cortex deactivation by two methods: lidocaine microinjections or cortical cooling with cryoloops. Auditory cortex deactivation induced a transient reduction in ACEP amplitudes in fifteen animals (deactivation experiments) and a permanent reduction in five chinchillas (lesion experiments). We found significant changes in the amplitude of CM in both types of experiments, being the most common effect a CM decrease found in fifteen animals. Concomitantly to CM amplitude changes, we found CAP increases in seven chinchillas and CAP reductions in thirteen animals. Although ACEP amplitudes were completely recovered after ninety minutes in deactivation experiments, only partial recovery was observed in the magnitudes of cochlear responses. CONCLUSIONS/SIGNIFICANCE These results show that blocking ongoing auditory cortex activity modulates CM and CAP responses, demonstrating that cortico-olivocochlear circuits regulate auditory nerve and cochlear responses through a basal efferent tone. The diversity of the obtained effects suggests that there are at least two functional pathways from the auditory cortex to the cochlea.
Collapse
Affiliation(s)
- Alex León
- Laboratorio de Neurobiología de la Audición, Programa de Fisiología y Biofísica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Diego Elgueda
- Laboratorio de Neurobiología de la Audición, Programa de Fisiología y Biofísica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Institute of Systems Research and Neuroscience and Cognitive Sciences Program, University of Maryland, College Park, Maryland, United States of America
| | - María A. Silva
- Laboratorio de Neurobiología de la Audición, Programa de Fisiología y Biofísica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Carlos M. Hamamé
- Laboratorio de Neurobiología de la Audición, Programa de Fisiología y Biofísica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Lyon Neuroscience Research Center (INSERM U1028 - CNRS UMR5292), Brain Dynamics and Cognition Team, Lyon, France
| | - Paul H. Delano
- Laboratorio de Neurobiología de la Audición, Programa de Fisiología y Biofísica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Servicio Otorrinolaringología, Hospital Clínico de la Universidad de Chile, Santiago, Chile
| |
Collapse
|
36
|
Langguth B, Schecklmann M, Lehner A, Landgrebe M, Poeppl TB, Kreuzer PM, Schlee W, Weisz N, Vanneste S, De Ridder D. Neuroimaging and neuromodulation: complementary approaches for identifying the neuronal correlates of tinnitus. Front Syst Neurosci 2012; 6:15. [PMID: 22509155 PMCID: PMC3321434 DOI: 10.3389/fnsys.2012.00015] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 03/01/2012] [Indexed: 11/13/2022] Open
Abstract
An inherent limitation of functional imaging studies is their correlational approach. More information about critical contributions of specific brain regions can be gained by focal transient perturbation of neural activity in specific regions with non-invasive focal brain stimulation methods. Functional imaging studies have revealed that tinnitus is related to alterations in neuronal activity of central auditory pathways. Modulation of neuronal activity in auditory cortical areas by repetitive transcranial magnetic stimulation (rTMS) can reduce tinnitus loudness and, if applied repeatedly, exerts therapeutic effects, confirming the relevance of auditory cortex activation for tinnitus generation and persistence. Measurements of oscillatory brain activity before and after rTMS demonstrate that the same stimulation protocol has different effects on brain activity in different patients, presumably related to interindividual differences in baseline activity in the clinically heterogeneous study cohort. In addition to alterations in auditory pathways, imaging techniques also indicate the involvement of non-auditory brain areas, such as the fronto-parietal "awareness" network and the non-tinnitus-specific distress network consisting of the anterior cingulate cortex, anterior insula, and amygdale. Involvement of the hippocampus and the parahippocampal region putatively reflects the relevance of memory mechanisms in the persistence of the phantom percept and the associated distress. Preliminary studies targeting the dorsolateral prefrontal cortex, the dorsal anterior cingulate cortex, and the parietal cortex with rTMS and with transcranial direct current stimulation confirm the relevance of the mentioned non-auditory networks. Available data indicate the important value added by brain stimulation as a complementary approach to neuroimaging for identifying the neuronal correlates of the various clinical aspects of tinnitus.
Collapse
Affiliation(s)
- Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg Regensburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Turner J, Larsen D, Hughes L, Moechars D, Shore S. Time course of tinnitus development following noise exposure in mice. J Neurosci Res 2012; 90:1480-8. [PMID: 22434653 DOI: 10.1002/jnr.22827] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 10/12/2011] [Accepted: 10/13/2011] [Indexed: 12/20/2022]
Abstract
Gap-induced prepulse inhibition of acoustic startle (GPIAS) has been used in rats and mice to study the problem of tinnitus. The current study demonstrates that similar methods can be used to study the temporal development of tinnitus over time in middle-aged mice. Six-month-old mice on a mixed C57Bl6 × 129 background were anesthetized with isoflurane and exposed to unilateral noise (n = 15), or sham exposure for controls (n = 8), for 1 hr (16-kHz octave band signal, 116-dB SPL). Tinnitus was tested in eight different sound frequency bands before and at postexposure time points of 1, 3-4, 7, 14, 21, and 30 days and monthly thereafter until 7 months postexposure. Noise-exposed mice displayed a number of changes in GPIAS consistent with the presence of hyperacusis and tinnitus. Noise exposure was associated with acute tinnitus measured 1 day later at several frequencies at and above the exposure frequency center. Consistent, chronic tinnitus then emerged in the 24-kHz range. Several time points following noise exposure suggested evidence of hyperacusis, often followed temporally by the development of deficits in GPIAS (reflecting tinnitus). Temporal development of these changes following noise exposure are discussed in the context of the interactions among aging, noise exposure, and the associated neurochemical changes that occur at early stages of auditory processing.
Collapse
Affiliation(s)
- Jeremy Turner
- Department of Surgery/Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL 62794, USA.
| | | | | | | | | |
Collapse
|
38
|
Longenecker RJ, Galazyuk AV. Methodological optimization of tinnitus assessment using prepulse inhibition of the acoustic startle reflex. Brain Res 2012; 1485:54-62. [PMID: 22513102 DOI: 10.1016/j.brainres.2012.02.067] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 02/23/2012] [Accepted: 02/25/2012] [Indexed: 12/31/2022]
Abstract
Recently prepulse inhibition of the acoustic startle reflex (ASR) became a popular technique for tinnitus assessment in laboratory animals. This method confers a significant advantage over the previously used time-consuming behavioral approaches utilizing basic mechanisms of conditioning. Although this technique has been successfully used to assess tinnitus in different laboratory animals, many of the finer details of this methodology have not been described enough to be replicated, but are critical for tinnitus assessment. Here we provide detail description of key procedures and methodological issues that provide guidance for newcomers with the process of learning to correctly apply gap detection techniques for tinnitus assessment in laboratory animals. The major categories of these issues include: refinement of hardware for best performance, optimization of stimulus parameters, behavioral considerations, and identification of optimal strategies for data analysis. This article is part of a Special Issue entitled: Tinnitus Neuroscience.
Collapse
Affiliation(s)
- R J Longenecker
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | | |
Collapse
|
39
|
Mao JC, Pace E, Pierozynski P, Kou Z, Shen Y, VandeVord P, Haacke EM, Zhang X, Zhang J. Blast-induced tinnitus and hearing loss in rats: behavioral and imaging assays. J Neurotrauma 2011; 29:430-44. [PMID: 21933015 DOI: 10.1089/neu.2011.1934] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Abstract The current study used a rat model to investigate the underlying mechanisms of blast-induced tinnitus, hearing loss, and associated traumatic brain injury (TBI). Seven rats were used to evaluate behavioral evidence of tinnitus and hearing loss, and TBI using magnetic resonance imaging following a single 10-msec blast at 14 psi or 194 dB sound pressure level (SPL). The results demonstrated that the blast exposure induced early onset of tinnitus and central hearing impairment at a broad frequency range. The induced tinnitus and central hearing impairment tended to shift towards high frequencies over time. Hearing threshold measured with auditory brainstem responses also showed an immediate elevation followed by recovery on day 14, coinciding with behaviorally-measured results. Diffusion tensor magnetic resonance imaging results demonstrated significant damage and compensatory plastic changes to certain auditory brain regions, with the majority of changes occurring in the inferior colliculus and medial geniculate body. No significant microstructural changes found in the corpus callosum indicates that the currently adopted blast exposure mainly exerts effects through the auditory pathways rather than through direct impact onto the brain parenchyma. The results showed that this animal model is appropriate for investigation of the mechanisms underlying blast-induced tinnitus, hearing loss, and related TBI. Continued investigation along these lines will help identify pathology with injury/recovery patterns, aiding development of effective treatment strategies.
Collapse
Affiliation(s)
- Johnny C Mao
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | | | | | | | | | | | | | | |
Collapse
|