1
|
Beaulieu MO, Thomas ED, Raible DW. Transdifferentiation is temporally uncoupled from progenitor pool expansion during hair cell regeneration in the zebrafish inner ear. Development 2024; 151:dev202944. [PMID: 39045613 PMCID: PMC11361639 DOI: 10.1242/dev.202944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
Death of mechanosensory hair cells in the inner ear is a common cause of auditory and vestibular impairment in mammals, which have a limited ability to regrow these cells after damage. In contrast, non-mammalian vertebrates, including zebrafish, can robustly regenerate hair cells after severe organ damage. The zebrafish inner ear provides an understudied model system for understanding hair cell regeneration in organs that are highly conserved with their mammalian counterparts. Here, we quantitatively examine hair cell addition during growth and regeneration of the larval zebrafish inner ear. We used a genetically encoded ablation method to induce hair cell death and we observed gradual regeneration with correct spatial patterning over a 2-week period following ablation. Supporting cells, which surround and are a source of new hair cells, divide in response to hair cell ablation, expanding the possible progenitor pool. In parallel, nascent hair cells arise from direct transdifferentiation of progenitor pool cells temporally uncoupled from supporting cell division. These findings reveal a previously unrecognized mechanism of hair cell regeneration with implications for how hair cells may be encouraged to regenerate in the mammalian ear.
Collapse
Affiliation(s)
- Marielle O. Beaulieu
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology - Head and Neck Surgery, University of Washington, Seattle, WA 98195, USA
| | - Eric D. Thomas
- Neuroscience Graduate Program, University of Washington, Seattle, WA 98195, USA
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - David W. Raible
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology - Head and Neck Surgery, University of Washington, Seattle, WA 98195, USA
- Neuroscience Graduate Program, University of Washington, Seattle, WA 98195, USA
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
2
|
Lipovsek M. Comparative biology of the amniote vestibular utricle. Hear Res 2024; 448:109035. [PMID: 38763033 DOI: 10.1016/j.heares.2024.109035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
The sensory epithelia of the auditory and vestibular systems of vertebrates have shared developmental and evolutionary histories. However, while the auditory epithelia show great variation across vertebrates, the vestibular sensory epithelia appear seemingly more conserved. An exploration of the current knowledge of the comparative biology of the amniote utricle, a vestibular sensory epithelium that senses linear acceleration, shows interesting instances of variability between birds and mammals. The distribution of sensory hair cell types, the position of the line of hair bundle polarity reversal and the properties of supporting cells show marked differences, likely impacting vestibular function and hair cell regeneration potential.
Collapse
Affiliation(s)
- Marcela Lipovsek
- Ear Institute, Faculty of Brain Sciences, University College London, London, UK.
| |
Collapse
|
3
|
Heffer A, Lee C, Holt JC, Kiernan AE. Notch1 is required to maintain supporting cell identity and vestibular function during maturation of the mammalian balance organs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600098. [PMID: 38948821 PMCID: PMC11212955 DOI: 10.1101/2024.06.21.600098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The inner ear houses two sensory modalities: the hearing organ, located in the cochlea, and the balance organs, located throughout the vestibular regions of the ear. Both hearing and vestibular sensory regions are composed of similar cell types, including hair cells and associated supporting cells. Recently, we showed that Notch1 is required for maintaining supporting cell survival postnatally during cochlear maturation. However, it is not known whether Notch1 plays a similar role in the balance organs of the inner ear. To characterize the role of Notch during vestibular maturation, we conditionally deleted Notch1 from Sox2-expressing cells of the vestibular organs in the mouse at P0/P1. Histological analyses showed a dramatic loss of supporting cells accompanied by an increase in type II hair cells without cell death, indicating the supporting cells are converting to hair cells in the maturing vestibular regions. Analysis of 6-week old animals indicate that the converted hair cells survive, despite the reduction of supporting cells. Interestingly, measurements of vestibular sensory evoked potentials (VsEPs), known to be generated in the striolar regions of the vestibular afferents in the maculae, failed to show a response, indicating that NOTCH1 expression is critical for striolar function postnatally. Consistent with this, we find that the specialized type I hair cells in the striola fail to develop the complex calyces typical of these cells. These defects are likely due to the reduction in supporting cells, which have previously been shown to express factors critical for the striolar region. Similar to other mutants that lack proper striolar development, Notch1 mutants do not exhibit typical vestibular behaviors such as circling and head shaking, but do show difficulties in some vestibular tests, including the balance beam and forced swim test. These results indicate that, unlike the hearing organ in which the supporting cells undergo cell death, supporting cells in the balance regions retain the ability to convert to hair cells during maturation, which survive into adulthood despite the reduction in supporting cells.
Collapse
Affiliation(s)
- Alison Heffer
- Flaum Eye Institute, Department of Ophthalmology, University of Rochester Medical Center, Rochester, New York, 14642, USA
| | - Choongheon Lee
- Department of Otolaryngology, University of Rochester, Rochester, NY, 14642, USA
| | - Joseph C. Holt
- Department of Otolaryngology, University of Rochester, Rochester, NY, 14642, USA
- Dept. of Neuroscience, University of Rochester, Rochester, New York 14642, USA
| | - Amy E. Kiernan
- Flaum Eye Institute, Department of Ophthalmology, University of Rochester Medical Center, Rochester, New York, 14642, USA
| |
Collapse
|
4
|
Borrajo M, Sedano D, Palou A, Giménez-Esbrí V, Barrallo-Gimeno A, Llorens J. Maturation of type I and type II rat vestibular hair cells in vivo and in vitro. Front Cell Dev Biol 2024; 12:1404894. [PMID: 38895157 PMCID: PMC11183282 DOI: 10.3389/fcell.2024.1404894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Vestibular sensory epithelia contain type I and type II sensory hair cells (HCI and HCII). Recent studies have revealed molecular markers for the identification of these cells, but the precise composition of each vestibular epithelium (saccule, utricle, lateral crista, anterior crista, posterior crista) and their postnatal maturation have not been described in detail. Moreover, in vitro methods to study this maturation are not well developed. We obtained total HCI and HCII counts in adult rats and studied the maturation of the epithelia from birth (P0) to postnatal day 28 (P28). Adult vestibular epithelia hair cells were found to comprise ∼65% HCI expressing osteopontin and PMCA2, ∼30% HCII expressing calretinin, and ∼4% HCII expressing SOX2 but neither osteopontin nor calretinin. At birth, immature HCs express both osteopontin and calretinin. P28 epithelia showed an almost adult-like composition but still contained 1.3% of immature HCs. In addition, we obtained free-floating 3D cultures of the epithelia at P1, which formed a fluid-filled cyst, and studied their survival and maturation in vitro up to day 28 (28 DIV). These cultures showed good HC resiliency and maturation. Using an enriched medium for the initial 4 days, a HCI/calretinin+-HCII ratio close to the in vivo ratio was obtained. These cultures are suitable to study HC maturation and mature HCs in pharmacological, toxicological and molecular research.
Collapse
Affiliation(s)
- Mireia Borrajo
- Departament de Ciències Fisiològiques, Universitat de Barcelona (UB), Hospitalet de Llobregat, Catalunya, Spain
- Institut de Neurociències, Universitat de Barcelona (UB), Barcelona, Catalunya, Spain
- Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Catalunya, Spain
| | - David Sedano
- Departament de Ciències Fisiològiques, Universitat de Barcelona (UB), Hospitalet de Llobregat, Catalunya, Spain
| | - Aïda Palou
- Departament de Ciències Fisiològiques, Universitat de Barcelona (UB), Hospitalet de Llobregat, Catalunya, Spain
- Institut de Neurociències, Universitat de Barcelona (UB), Barcelona, Catalunya, Spain
- Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Catalunya, Spain
| | - Víctor Giménez-Esbrí
- Departament de Ciències Fisiològiques, Universitat de Barcelona (UB), Hospitalet de Llobregat, Catalunya, Spain
- Institut de Neurociències, Universitat de Barcelona (UB), Barcelona, Catalunya, Spain
- Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Catalunya, Spain
| | - Alejandro Barrallo-Gimeno
- Departament de Ciències Fisiològiques, Universitat de Barcelona (UB), Hospitalet de Llobregat, Catalunya, Spain
- Institut de Neurociències, Universitat de Barcelona (UB), Barcelona, Catalunya, Spain
- Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Catalunya, Spain
| | - Jordi Llorens
- Departament de Ciències Fisiològiques, Universitat de Barcelona (UB), Hospitalet de Llobregat, Catalunya, Spain
- Institut de Neurociències, Universitat de Barcelona (UB), Barcelona, Catalunya, Spain
- Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Catalunya, Spain
| |
Collapse
|
5
|
Stansak KL, Baum LD, Ghosh S, Thapa P, Vanga V, Walters BJ. PCP auto count: a novel Fiji/ImageJ plug-in for automated quantification of planar cell polarity and cell counting. Front Cell Dev Biol 2024; 12:1394031. [PMID: 38827526 PMCID: PMC11140036 DOI: 10.3389/fcell.2024.1394031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/19/2024] [Indexed: 06/04/2024] Open
Abstract
Introdution: During development, planes of cells give rise to complex tissues and organs. The proper functioning of these tissues is critically dependent on proper inter- and intra-cellular spatial orientation, a feature known as planar cell polarity (PCP). To study the genetic and environmental factors affecting planar cell polarity, investigators must often manually measure cell orientations, which is a time-consuming endeavor. To automate cell counting and planar cell polarity data collection we developed a Fiji/ImageJ plug-in called PCP Auto Count (PCPA). Methods: PCPA analyzes binary images and identifies "chunks" of white pixels that contain "caves" of infiltrated black pixels. For validation, inner ear sensory epithelia including cochleae and utricles from mice were immunostained for βII-spectrin and imaged with a confocal microscope. Images were preprocessed using existing Fiji functionality to enhance contrast, make binary, and reduce noise. An investigator rated PCPA cochlear hair cell angle measurements for accuracy using a one to five agreement scale. For utricle samples, PCPA derived measurements were directly compared against manually derived angle measurements and the concordance correlation coefficient (CCC) and Bland-Altman limits of agreement were calculated. PCPA was also tested against previously published images examining PCP in various tissues and across various species suggesting fairly broad utility. Results: PCPA was able to recognize and count 99.81% of cochlear hair cells, and was able to obtain ideally accurate planar cell polarity measurements for at least 96% of hair cells. When allowing for a <10° deviation from "perfect" measurements, PCPA's accuracy increased to 98%-100% for all users and across all samples. When PCPA's measurements were compared with manual angle measurements for E17.5 utricles there was negligible bias (<0.5°), and a CCC of 0.999. Qualitative examination of example images of Drosophila ommatidia, mouse ependymal cells, and mouse radial progenitors revealed a high level of accuracy for PCPA across a variety of stains, tissue types, and species. Discussion: Altogether, the data suggest that the PCPA plug-in suite is a robust and accurate tool for the automated collection of cell counts and PCP angle measurements.
Collapse
Affiliation(s)
| | | | | | | | | | - Bradley J. Walters
- University of Mississippi Medical Center, Department of Otolaryngology—Head and Neck Surgery, Jackson, MS, United States
| |
Collapse
|
6
|
Beaulieu MO, Thomas ED, Raible DW. Transdifferentiation is uncoupled from progenitor pool expansion during hair cell regeneration in the zebrafish inner ear. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588777. [PMID: 38645220 PMCID: PMC11030336 DOI: 10.1101/2024.04.09.588777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Death of mechanosensory hair cells in the inner ear is a common cause of auditory and vestibular impairment in mammals, which have a limited ability to regrow these cells after damage. In contrast, non-mammalian vertebrates including zebrafish can robustly regenerate hair cells following severe organ damage. The zebrafish inner ear provides an understudied model system for understanding hair cell regeneration in organs that are highly conserved with their mammalian counterparts. Here we quantitatively examine hair cell addition during growth and regeneration of the larval zebrafish inner ear. We used a genetically encoded ablation method to induce hair cell death and observed gradual regeneration with correct spatial patterning over two weeks following ablation. Supporting cells, which surround and are a source of new hair cells, divide in response to hair cell ablation, expanding the possible progenitor pool. In parallel, nascent hair cells arise from direct transdifferentiation of progenitor pool cells uncoupled from progenitor division. These findings reveal a previously unrecognized mechanism of hair cell regeneration with implications for how hair cells may be encouraged to regenerate in the mammalian ear.
Collapse
Affiliation(s)
- Marielle O. Beaulieu
- Molecular and Cellular Biology Graduate Program, Seattle, WA
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology - Head and Neck Surgery, Seattle, WA
| | - Eric D. Thomas
- Neuroscience Graduate Program, Seattle, WA
- Department of Biological Structure University of Washington, Seattle, WA
| | - David W. Raible
- Molecular and Cellular Biology Graduate Program, Seattle, WA
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology - Head and Neck Surgery, Seattle, WA
- Neuroscience Graduate Program, Seattle, WA
- Department of Biological Structure University of Washington, Seattle, WA
| |
Collapse
|
7
|
Ascanelli C, Dahir R, Wilson CH. Manipulating Myc for reparative regeneration. Front Cell Dev Biol 2024; 12:1357589. [PMID: 38577503 PMCID: PMC10991803 DOI: 10.3389/fcell.2024.1357589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/15/2024] [Indexed: 04/06/2024] Open
Abstract
The Myc family of proto-oncogenes is a key node for the signal transduction of external pro-proliferative signals to the cellular processes required for development, tissue homoeostasis maintenance, and regeneration across evolution. The tight regulation of Myc synthesis and activity is essential for restricting its oncogenic potential. In this review, we highlight the central role that Myc plays in regeneration across the animal kingdom (from Cnidaria to echinoderms to Chordata) and how Myc could be employed to unlock the regenerative potential of non-regenerative tissues in humans for therapeutic purposes. Mastering the fine balance of harnessing the ability of Myc to promote transcription without triggering oncogenesis may open the door to many exciting opportunities for therapeutic development across a wide array of diseases.
Collapse
Affiliation(s)
| | | | - Catherine H. Wilson
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
8
|
Stansak KL, Baum LD, Ghosh S, Thapa P, Vanga V, Walters BJ. PCP Auto Count: A Novel Fiji/ImageJ plug-in for automated quantification of planar cell polarity and cell counting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.578047. [PMID: 38352473 PMCID: PMC10862842 DOI: 10.1101/2024.01.30.578047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Background During development, planes of cells give rise to complex tissues and organs. The proper functioning of these tissues is critically dependent on proper inter- and intra-cellular spatial orientation, a feature known as planar cell polarity (PCP). To study the genetic and environmental factors affecting planar cell polarity investigators must often manually measure cell orientations, which is a time-consuming endeavor. Methodology To automate cell counting and planar cell polarity data collection we developed a Fiji/ImageJ plug-in called PCP Auto Count (PCPA). PCPA analyzes binary images and identifies "chunks" of white pixels that contain "caves" of infiltrated black pixels. Inner ear sensory epithelia including cochleae (P4) and utricles (E17.5) from mice were immunostained for βII-spectrin and imaged on a confocal microscope. Images were preprocessed using existing Fiji functionality to enhance contrast, make binary, and reduce noise. An investigator rated PCPA cochlear angle measurements for accuracy using a 1-5 agreement scale. For utricle samples, we directly compared PCPA derived measurements against manually derived angle measurements using concordance correlation coefficients (CCC) and Bland-Altman limits of agreement. Finally, PCPA was tested against a variety of images copied from publications examining PCP in various tissues and across various species. Results PCPA was able to recognize and count 99.81% of cochlear hair cells (n = 1,1541 hair cells) in a sample set, and was able to obtain ideally accurate planar cell polarity measurements for over 96% of hair cells. When allowing for a <10° deviation from "perfect" measurements, PCPA's accuracy increased to >98%. When manual angle measurements for E17.5 utricles were compared, PCPA's measurements fell within -9 to +10 degrees of manually obtained mean angle measures with a CCC of 0.999. Qualitative examination of example images of Drosophila ommatidia, mouse ependymal cells, and mouse radial progenitors revealed a high level of accuracy for PCPA across a variety of stains, tissue types, and species. Altogether, the data suggest that the PCPA plug-in suite is a robust and accurate tool for the automated collection of cell counts and PCP angle measurements.
Collapse
Affiliation(s)
- Kendra L. Stansak
- Department of Otolaryngology - Head and Neck Surgery, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Luke D. Baum
- Department of Otolaryngology - Head and Neck Surgery, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Sumana Ghosh
- Department of Otolaryngology - Head and Neck Surgery, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Punam Thapa
- Department of Otolaryngology - Head and Neck Surgery, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Vineel Vanga
- Department of Otolaryngology - Head and Neck Surgery, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Bradley J. Walters
- Department of Otolaryngology - Head and Neck Surgery, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| |
Collapse
|
9
|
Božanić Urbančič N, Battelino S, Vozel D. Appropriate Vestibular Stimulation in Children and Adolescents-A Prerequisite for Normal Cognitive, Motor Development and Bodily Homeostasis-A Review. CHILDREN (BASEL, SWITZERLAND) 2023; 11:2. [PMID: 38275423 PMCID: PMC10814320 DOI: 10.3390/children11010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024]
Abstract
The structural development of the vestibular part of the inner ear is completed by birth but its central connections continue to develop until adolescence. Their development is dependent on vestibular stimulation-vestibular experience. Studies have shown that vestibular function, modulated by experience and epigenetic factors, is not solely an instrument for body position regulation, navigation, and stabilization of the head and images but also influences cognition, emotion, the autonomous nervous system and hormones. To emphasize the importance of appropriate vestibular stimulation, we present a literature review of its effect on bodily homeostasis, cognition and emotion.
Collapse
Affiliation(s)
- Nina Božanić Urbančič
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (N.B.U.); (S.B.)
- Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia
| | - Saba Battelino
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (N.B.U.); (S.B.)
- Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia
| | - Domen Vozel
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (N.B.U.); (S.B.)
- Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
10
|
Baeza-Loya S, Raible DW. Vestibular physiology and function in zebrafish. Front Cell Dev Biol 2023; 11:1172933. [PMID: 37143895 PMCID: PMC10151581 DOI: 10.3389/fcell.2023.1172933] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/06/2023] [Indexed: 05/06/2023] Open
Abstract
The vestibular system of the inner ear provides information about head motion and spatial orientation relative to gravity to ensure gaze stability, balance, and postural control. Zebrafish, like humans, have five sensory patches per ear that serve as peripheral vestibular organs, with the addition of the lagena and macula neglecta. The zebrafish inner ear can be easily studied due to its accessible location, the transparent tissue of larval fish, and the early development of vestibular behaviors. Thus, zebrafish are an excellent model for studying the development, physiology, and function of the vestibular system. Recent work has made great strides to elucidate vestibular neural circuitry in fish, tracing sensory transmission from receptors in the periphery to central computational circuits driving vestibular reflexes. Here we highlight recent work that illuminates the functional organization of vestibular sensory epithelia, innervating first-order afferent neurons, and second-order neuronal targets in the hindbrain. Using a combination of genetic, anatomical, electrophysiological, and optical techniques, these studies have probed the roles of vestibular sensory signals in fish gaze, postural, and swimming behaviors. We discuss remaining questions in vestibular development and organization that are tractable in the zebrafish model.
Collapse
Affiliation(s)
| | - David W. Raible
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-HNS and Biological Structure, University of Washington, Seattle, WA, United States
| |
Collapse
|
11
|
Wang Y, Zhang C, Peng W, Du H, Xi Y, Xu Z. RBM24 is required for mouse hair cell development through regulating pre-mRNA alternative splicing and mRNA stability. J Cell Physiol 2023; 238:1095-1110. [PMID: 36947695 DOI: 10.1002/jcp.31003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/24/2023]
Abstract
As the sensory receptor cells in vertebrate inner ear and lateral lines, hair cells are characterized by the hair bundle that consists of one tubulin-based kinocilium and dozens of actin-based stereocilia on the apical surface of each hair cell. Hair cell development is tightly regulated, and deficits in this process usually lead to hearing loss and/or balance dysfunctions. RNA-binding motif protein 24 (RBM24) is an RNA-binding protein that is specifically expressed in the hair cells in the inner ear. Previously, we showed that RBM24 affects hair cell development in zebrafish by regulating messenger RNA (mRNA) stability. In the present work, we further investigate the role of RBM24 in hearing and balance using conditional knockout mice. Our results show that Rbm24 knockout results in severe hearing and balance deficits. Hair cell development is significantly affected in Rbm24 knockout cochlea, as the hair bundles are poorly developed and eventually degenerated. Hair bundle disorganization is also observed in Rbm24 knockout vestibular hair cells, although to a lesser extent. Consistently, significant hair cell loss is observed in the cochlea but not vestibule. RNAseq analysis identified several genes whose mRNA stability or pre-mRNA alternative splicing is affected by Rbm24 knockout. Among them are Cdh23, Pcdh15, and Myo7a, which have been shown to play important roles in stereocilia development as well as mechano-electrical transduction. Taken together, our present work suggests that RBM24 is required for mouse hair cell development through regulating pre-mRNA alternative splicing as well as mRNA stability.
Collapse
Affiliation(s)
- Yanfei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Cuiqiao Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Wu Peng
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Haibo Du
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Yuehui Xi
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
- Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, Shandong, China
| |
Collapse
|
12
|
Oral Administration of TrkB Agonist, 7, 8-Dihydroxyflavone Regenerates Hair Cells and Restores Function after Gentamicin-Induced Vestibular Injury in Guinea Pig. Pharmaceutics 2023; 15:pharmaceutics15020493. [PMID: 36839815 PMCID: PMC9966733 DOI: 10.3390/pharmaceutics15020493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The causes of vestibular dysfunction include the loss of hair cells (HCs), synapses beneath the HCs, and nerve fibers. 7, 8-dihydroxyflavone (DHF) mimics the physiological functions of brain-derived neurotrophic factor. We investigated the effects of the orally-administered DHF in the guinea pig crista ampullaris after gentamicin (GM)-induced injury. Twenty animals treated with GM received daily administration of DHF or saline for 14 or 28 days (DHF (+) or DHF (-) group; N = 5, each). At 14 days after GM treatment, almost all of the HCs had disappeared in both groups. At 28 days, the HCs number in DHF (+) and DHF (-) groups was 74% and 49%, respectively, compared to GM-untreated control. In the ampullary nerves, neurofilament 200 positive rate in the DHF (+) group was 91% at 28 days, which was significantly higher than 42% in DHF (-). On day 28, the synaptic connections observed between C-terminal-binding protein 2-positive and postsynaptic density protein-95-positive puncta were restored, and caloric response was significantly improved in DHF (+) group (canal paresis: 57.4% in DHF (+) and 100% in DHF (-)). Taken together, the oral administration of DHF may be a novel therapeutic approach for treating vestibular dysfunction in humans.
Collapse
|
13
|
Ji YR, Tona Y, Wafa T, Christman ME, Tourney ED, Jiang T, Ohta S, Cheng H, Fitzgerald T, Fritzsch B, Jones SM, Cullen KE, Wu DK. Function of bidirectional sensitivity in the otolith organs established by transcription factor Emx2. Nat Commun 2022; 13:6330. [PMID: 36280667 PMCID: PMC9592604 DOI: 10.1038/s41467-022-33819-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 10/04/2022] [Indexed: 12/25/2022] Open
Abstract
Otolith organs of the inner ear are innervated by two parallel afferent projections to the brainstem and cerebellum. These innervations were proposed to segregate across the line of polarity reversal (LPR) within each otolith organ, which divides the organ into two regions of hair cells (HC) with opposite stereociliary orientation. The relationship and functional significance of these anatomical features are not known. Here, we show regional expression of Emx2 in otolith organs, which establishes LPR, mediates the neuronal segregation across LPR and constitutes the bidirectional sensitivity function. Conditional knockout (cKO) of Emx2 in HCs lacks LPR. Tmie cKO, in which mechanotransduction was abolished selectively in HCs within the Emx2 expression domain also lacks bidirectional sensitivity. Analyses of both mutants indicate that LPR is specifically required for mice to swim comfortably and to traverse a balance beam efficiently, but LPR is not required for mice to stay on a rotating rod.
Collapse
Affiliation(s)
- Young Rae Ji
- Section on Sensory Cell Regeneration and Development, Laboratory of Molecular Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
- Sensory & Motor Systems Research Group, Korea Brain Research Institute (KBRI), 61 Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea
| | - Yosuke Tona
- Section on Sensory Cell Regeneration and Development, Laboratory of Molecular Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
- Otolaryngology/Head and Neck Surgery, Kyoto University Hospital, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto City, Kyoto, 606-8507, Japan
| | - Talah Wafa
- Mouse Auditory Testing Core Facility, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Matthew E Christman
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Edward D Tourney
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Tao Jiang
- Section on Sensory Cell Regeneration and Development, Laboratory of Molecular Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Sho Ohta
- Section on Sensory Cell Regeneration and Development, Laboratory of Molecular Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Hui Cheng
- Bioinformatics and Biostatistics Collaboration Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tracy Fitzgerald
- Mouse Auditory Testing Core Facility, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bernd Fritzsch
- Department of Biology & Department of Otolaryngology, University of Iowa, Iowa City, IA, 52242, USA
| | - Sherri M Jones
- Department of Special Education and Communication Disorders, 301 Barkley Memorial Center, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Doris K Wu
- Section on Sensory Cell Regeneration and Development, Laboratory of Molecular Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
14
|
Chen ZR, Guo JY, He L, Liu S, Xu JY, Yang ZJ, Su W, Liu K, Gong SS, Wang GP. Co-transduction of dual-adeno-associated virus vectors in the neonatal and adult mouse utricles. Front Mol Neurosci 2022; 15:1020803. [PMID: 36340687 PMCID: PMC9629838 DOI: 10.3389/fnmol.2022.1020803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/23/2022] [Indexed: 01/09/2024] Open
Abstract
Adeno-associated virus (AAV)-mediated gene transfer is an efficient method of gene over-expression in the vestibular end organs. However, AAV has limited usefulness for delivering a large gene, or multiple genes, due to its small packaging capacity (< 5 kb). Co-transduction of dual-AAV vectors can be used to increase the packaging capacity for gene delivery to various organs and tissues. However, its usefulness has not been well validated in the vestibular sensory epithelium. In the present study, we characterized the co-transduction of dual-AAV vectors in mouse utricles following inoculation of two AAV-serotype inner ear (AAV-ie) vectors via canalostomy. Firstly, co-transduction efficiencies were compared between dual-AAV-ie vectors using two different promoters: cytomegalovirus (CMV) and CMV early enhancer/chicken β-actin (CAG). In the group of dual AAV-ie-CAG vectors, the co-transduction rates for striolar hair cells (HCs), extrastriolar HCs, striolar supporting cells (SCs), and extrastriolar SCs were 23.14 ± 2.25%, 27.05 ± 2.10%, 57.65 ± 7.21%, and 60.33 ± 5.69%, respectively. The co-transduction rates in the group of dual AAV-ie-CMV vectors were comparable to those in the dual AAV-ie-CAG group. Next, we examined the co-transduction of dual-AAV-ie-CAG vectors in the utricles of neonatal mice and damaged adult mice. In the neonatal mice, co-transduction rates were 52.88 ± 3.11% and 44.93 ± 2.06% in the striolar and extrastriolar HCs, respectively, which were significantly higher than those in adult mice. In the Pou4f3+/DTR mice, following diphtheria toxin administration, which eliminated most HCs and spared the SCs, the co-transduction rate of SCs was not significantly different to that of normal utricles. Transgene expression persisted for up to 3 months in the adult mice. Furthermore, sequential administration of two AAV-ie-CAG vectors at an interval of 1 week resulted in a higher co-transduction rate in HCs than concurrent delivery. The auditory brainstem responses and swim tests did not reveal any disruption of auditory or vestibular function after co-transduction with dual-AAV-ie vectors. In conclusion, dual-AAV-ie vectors allow efficient co-transduction in the vestibular sensory epithelium and facilitate the delivery of large or multiple genes for vestibular gene therapy.
Collapse
Affiliation(s)
- Zhong-Rui Chen
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, China
| | - Jing-Ying Guo
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, China
| | - Lu He
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, China
| | - Shan Liu
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, China
| | - Jun-Yi Xu
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, China
| | - Zi-Jing Yang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, China
| | - Wei Su
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, China
| | - Ke Liu
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, China
| | - Shu-Sheng Gong
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, China
| | - Guo-Peng Wang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
You D, Guo J, Zhang Y, Guo L, Lu X, Huang X, Sun S, Li H. The heterogeneity of mammalian utricular cells over the course of development. Clin Transl Med 2022; 12:e1052. [PMID: 36178017 PMCID: PMC9523683 DOI: 10.1002/ctm2.1052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The inner ear organ is a delicate tissue consisting of hair cells (HCs) and supporting cells (SCs).The mammalian inner ear HCs are terminally differentiated cells that cannot spontaneously regenerate in adults. Epithelial non-hair cells (ENHCs) in the utricle include HC progenitors and SCs, and the progenitors share similar characteristics with SCs in the neonatal inner ear. METHODS We applied single-cell sequencing to whole mouse utricles from the neonatal period to adulthood, including samples from postnatal day (P)2, P7 and P30 mice. Furthermore, using transgenic mice and immunostaining, we traced the source of new HC generation. RESULTS We identified several sensory epithelial cell clusters and further found that new HCs arose mainly through differentiation from Sox9+ progenitor cells and that only a few cells were produced by mitotic proliferation in both neonatal and adult mouse utricles. In addition, we identified the proliferative cells using the marker UbcH10 and demonstrated that in adulthood the mitotically generated HCs were primarily found in the extrastriola. Moreover, we observed that not only Type II, but also Type I HCs could be regenerated by either mitotic cell proliferation or progenitor cell differentiation. CONCLUSIONS Overall, our findings expand our understanding of ENHC cell fate and the characteristics of the vestibular organs in mammals over the course of development.
Collapse
Affiliation(s)
- Dan You
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina,Department of Otorhinolaryngology‐Head and Neck SurgeryZhongshan HospitalFudan UniversityShanghaiChina
| | - Jin Guo
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| | - Yunzhong Zhang
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| | - Luo Guo
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| | - Xiaoling Lu
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| | - Xinsheng Huang
- Department of Otorhinolaryngology‐Head and Neck SurgeryZhongshan HospitalFudan UniversityShanghaiChina
| | - Shan Sun
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| | - Huawei Li
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina,Institutes of Biomedical SciencesFudan UniversityShanghaiChina,NHC Key Laboratory of Hearing Medicine, Fudan UniversityShanghaiChina,The Institutes of Brain Science and the Collaborative Innovation Center for Brain ScienceFudan UniversityShanghaiChina
| |
Collapse
|
16
|
Scheibinger M, Janesick A, Benkafadar N, Ellwanger DC, Jan TA, Heller S. Cell-type identity of the avian utricle. Cell Rep 2022; 40:111432. [PMID: 36170825 PMCID: PMC9588199 DOI: 10.1016/j.celrep.2022.111432] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/18/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022] Open
Abstract
The avian utricle, a vestibular organ of the inner ear, displays turnover of sensory hair cells throughout life. This is in sharp contrast to the mammalian utricle, which shows limited regenerative capacity. Here, we use single-cell RNA sequencing to identify distinct marker genes for the different sensory hair cell subtypes of the chicken utricle, which we validated in situ. We provide markers for spatially distinct supporting cell populations and identify two transitional cell populations of dedifferentiating supporting cells and developing hair cells. Trajectory reconstruction resulted in an inventory of gene expression dynamics of natural hair cell generation in the avian utricle. Scheibinger et al. provide a single-cell transcriptomic atlas of the chicken utricle, a vestibular organ. Hair cell and supporting cell subtypes are defined by marker genes, and trajectories of gene expression dynamics during hair cell turnover are shown. This resource provides a baseline to study inner ear damage and regeneration.
Collapse
Affiliation(s)
- Mirko Scheibinger
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Amanda Janesick
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nesrine Benkafadar
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daniel C Ellwanger
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Taha A Jan
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stefan Heller
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
17
|
Liu Z, Hildebrand DGC, Morgan JL, Jia Y, Slimmon N, Bagnall MW. Organization of the gravity-sensing system in zebrafish. Nat Commun 2022; 13:5060. [PMID: 36030280 PMCID: PMC9420129 DOI: 10.1038/s41467-022-32824-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 08/18/2022] [Indexed: 01/07/2023] Open
Abstract
Motor circuits develop in sequence from those governing fast movements to those governing slow. Here we examine whether upstream sensory circuits are organized by similar principles. Using serial-section electron microscopy in larval zebrafish, we generated a complete map of the gravity-sensing (utricular) system spanning from the inner ear to the brainstem. We find that both sensory tuning and developmental sequence are organizing principles of vestibular topography. Patterned rostrocaudal innervation from hair cells to afferents creates an anatomically inferred directional tuning map in the utricular ganglion, forming segregated pathways for rostral and caudal tilt. Furthermore, the mediolateral axis of the ganglion is linked to both developmental sequence and neuronal temporal dynamics. Early-born pathways carrying phasic information preferentially excite fast escape circuits, whereas later-born pathways carrying tonic signals excite slower postural and oculomotor circuits. These results demonstrate that vestibular circuits are organized by tuning direction and dynamics, aligning them with downstream motor circuits and behaviors.
Collapse
Affiliation(s)
- Zhikai Liu
- Dept. of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Joshua L Morgan
- Dept. of Ophthalmology, Washington University in St. Louis, St. Louis, MO, USA
| | - Yizhen Jia
- Dept. of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Nicholas Slimmon
- Dept. of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Martha W Bagnall
- Dept. of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
18
|
Spaiardi P, Marcotti W, Masetto S, Johnson SL. Signal transmission in mature mammalian vestibular hair cells. Front Cell Neurosci 2022; 16:806913. [PMID: 35936492 PMCID: PMC9353129 DOI: 10.3389/fncel.2022.806913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
The maintenance of balance and gaze relies on the faithful and rapid signaling of head movements to the brain. In mammals, vestibular organs contain two types of sensory hair cells, type-I and type-II, which convert the head motion-induced movement of their hair bundles into a graded receptor potential that drives action potential activity in their afferent fibers. While signal transmission in both hair cell types involves Ca2+-dependent quantal release of glutamate at ribbon synapses, type-I cells appear to also exhibit a non-quantal mechanism that is believed to increase transmission speed. However, the reliance of mature type-I hair cells on non-quantal transmission remains unknown. Here we investigated synaptic transmission in mammalian utricular hair cells using patch-clamp recording of Ca2+ currents and changes in membrane capacitance (ΔCm). We found that mature type-II hair cells showed robust exocytosis with a high-order dependence on Ca2+ entry. By contrast, exocytosis was approximately 10 times smaller in type-I hair cells. Synaptic vesicle exocytosis was largely absent in mature vestibular hair cells of CaV1.3 (CaV1.3−/−) and otoferlin (Otof−/−) knockout mice. Even though Ca2+-dependent exocytosis was small in type-I hair cells of wild-type mice, or absent in CaV1.3−/− and Otof−/−mice, these cells were able to drive action potential activity in the postsynaptic calyces. This supports a functional role for non-quantal synaptic transmission in type-I cells. The large vesicle pools in type-II cells would facilitate sustained transmission of tonic or low-frequency signals. In type-I cells, the restricted vesicle pool size, together with a rapid non-quantal mechanism, could allow them to sustain high-frequency phasic signal transmission at their specialized large calyceal synapses.
Collapse
Affiliation(s)
- Paolo Spaiardi
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Walter Marcotti
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
- Sheffield Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Sergio Masetto
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Stuart L. Johnson
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
- Sheffield Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
- *Correspondence: Stuart L. Johnson
| |
Collapse
|
19
|
Kim GS, Wang T, Sayyid ZN, Fuhriman J, Jones SM, Cheng AG. Repair of surviving hair cells in the damaged mouse utricle. Proc Natl Acad Sci U S A 2022; 119:e2116973119. [PMID: 35380897 PMCID: PMC9169652 DOI: 10.1073/pnas.2116973119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/21/2022] [Indexed: 11/18/2022] Open
Abstract
Sensory hair cells (HCs) in the utricle are mechanoreceptors required to detect linear acceleration. After damage, the mammalian utricle partially restores the HC population and organ function, although regenerated HCs are primarily type II and immature. Whether native, surviving HCs can repair and contribute to this recovery is unclear. Here, we generated the Pou4f3DTR/+; Atoh1CreERTM/+; Rosa26RtdTomato/+ mouse to fate map HCs prior to ablation. After HC ablation, vestibular evoked potentials were abolished in all animals, with ∼57% later recovering responses. Relative to nonrecovery mice, recovery animals harbored more Atoh1-tdTomato+ surviving HCs. In both groups, surviving HCs displayed markers of both type I and type II subtypes and afferent synapses, despite distorted lamination and morphology. Surviving type II HCs remained innervated in both groups, whereas surviving type I HCs first lacked and later regained calyces in the recovery, but not the nonrecovery, group. Finally, surviving HCs initially displayed immature and subsequently mature-appearing bundles in the recovery group. These results demonstrate that surviving HCs are capable of self-repair and may contribute to the recovery of vestibular function.
Collapse
Affiliation(s)
- Grace S. Kim
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305
| | - Tian Wang
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305
| | - Zahra N. Sayyid
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305
| | - Jessica Fuhriman
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305
| | - Sherri M. Jones
- Department of Special Education and Communication Disorders, College of Education and Human Sciences, University of Nebraska, Lincoln, NE 68583
| | - Alan G. Cheng
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
20
|
Huang Y, Mao H, Chen Y. Regeneration of Hair Cells in the Human Vestibular System. Front Mol Neurosci 2022; 15:854635. [PMID: 35401109 PMCID: PMC8987309 DOI: 10.3389/fnmol.2022.854635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
The vestibular system is a critical part of the human balance system, malfunction of this system will lead to balance disorders, such as vertigo. Mammalian vestibular hair cells, the mechanical receptors for vestibular function, are sensitive to ototoxic drugs and virus infection, and have a limited restorative capacity after damage. Considering that no artificial device can be used to replace vestibular hair cells, promoting vestibular hair cell regeneration is an ideal way for vestibular function recovery. In this manuscript, the development of human vestibular hair cells during the whole embryonic stage and the latest research on human vestibular hair cell regeneration is summarized. The limitations of current studies are emphasized and future directions are discussed.
Collapse
Affiliation(s)
- Yikang Huang
- State Key Laboratory of Medical Neurobiology, Department of Otorhinolaryngology, Eye and ENT Hospital, MOE Frontiers Center for Brain Science, ENT Institute, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Huanyu Mao
- State Key Laboratory of Medical Neurobiology, Department of Otorhinolaryngology, Eye and ENT Hospital, MOE Frontiers Center for Brain Science, ENT Institute, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Yan Chen
- State Key Laboratory of Medical Neurobiology, Department of Otorhinolaryngology, Eye and ENT Hospital, MOE Frontiers Center for Brain Science, ENT Institute, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
- *Correspondence: Yan Chen,
| |
Collapse
|
21
|
Sung CYW, Barzik M, Costain T, Wang L, Cunningham LL. Semi-automated Quantification of Hair Cells in the Mature Mouse Utricle. Hear Res 2022; 416:108429. [PMID: 35081508 PMCID: PMC9034969 DOI: 10.1016/j.heares.2021.108429] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/19/2021] [Accepted: 12/28/2021] [Indexed: 02/09/2023]
Abstract
The mouse utricle model system is the best-characterized ex vivo preparation for studies of mature mammalian hair cells (HCs). Despite the many advantages of this model system, efficient and reliable quantification of HCs from cultured utricles has been a persistent challenge with this model system. Utricular HCs are commonly quantified by counting immunolabeled HCs in regions of interest (ROIs) placed over an image of the utricle. Our data indicate that the accuracy of HC counts obtained using this method can be impacted by variability in HC density across different regions of the utricle. In addition, the commonly used HC marker myosin 7a results in a diffuse cytoplasmic stain that is not conducive to automated quantification and must be quantified manually, a labor-intensive task. Furthermore, myosin 7a immunoreactivity is retained in dead HCs, resulting in inaccurate quantification of live HCs using this marker. Here we have developed a method for semi-automated quantification of surviving HCs that combines immunoreactivity for the HC-specific transcription factor Pou4f3 with labeling of activated caspase 3/7 (AC3/7) to detect apoptotic HCs. The discrete nuclear Pou4f3 signal allowed us to utilize the binary or threshold function within ImageJ to automate HC quantification. To further streamline this process, we created an ImageJ macro that automates the process from raw image loading to a final quantified image that can be immediately evaluated for accuracy. Within this quantified image, the user can manually correct the quantification via an image overlay indicating the counted HC nuclei. Pou4f3-positive HCs that also express AC3/7 are subtracted to yield accurate counts of surviving HCs. Overall, we present a semi-automated method that is faster than manual HC quantification and identifies surviving HCs with high accuracy.
Collapse
|
22
|
Guo J, Ma X, Skidmore JM, Cimerman J, Prieskorn DM, Beyer LA, Swiderski DL, Dolan DF, Martin DM, Raphael Y. GJB2 gene therapy and conditional deletion reveal developmental stage-dependent effects on inner ear structure and function. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 23:319-333. [PMID: 34729379 PMCID: PMC8531464 DOI: 10.1016/j.omtm.2021.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/24/2021] [Indexed: 11/15/2022]
Abstract
Pathogenic variants in GJB2, the gene encoding connexin 26, are the most common cause of autosomal-recessive hereditary deafness. Despite this high prevalence, pathogenic mechanisms leading to GJB2-related deafness are not well understood, and cures are absent. Humans with GJB2-related deafness retain at least some auditory hair cells and neurons, and their deafness is usually stable. In contrast, mice with conditional loss of Gjb2 in supporting cells exhibit extensive loss of hair cells and neurons and rapidly progress to profound deafness, precluding the application of therapies that require intact cochlear cells. In an attempt to design a less severe Gjb2 animal model, we generated mice with inducible Sox10iCre ERT2 -mediated loss of Gjb2. Tamoxifen injection led to reduced connexin 26 expression and impaired function, but cochlear hair cells and neurons survived for 2 months, allowing phenotypic rescue attempts within this time. AAV-mediated gene transfer of GJB2 in mature mutant ears did not demonstrate threshold improvement and in some animals exacerbated hearing loss and resulted in hair cell loss. We conclude that Sox10iCre ERT2 ;Gjb2 flox/flox mice are valuable for studying the biology of connexin 26 in the cochlea. In particular, these mice may be useful for evaluating gene therapy vectors and development of therapies for GJB2-related deafness.
Collapse
Affiliation(s)
- Jingying Guo
- Kresge Hearing Research Institute, Otolaryngology, Head and Neck Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.,Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaobo Ma
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jennifer M Skidmore
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jelka Cimerman
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Diane M Prieskorn
- Kresge Hearing Research Institute, Otolaryngology, Head and Neck Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Lisa A Beyer
- Kresge Hearing Research Institute, Otolaryngology, Head and Neck Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Donald L Swiderski
- Kresge Hearing Research Institute, Otolaryngology, Head and Neck Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - David F Dolan
- Kresge Hearing Research Institute, Otolaryngology, Head and Neck Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Donna M Martin
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.,Department of Human Genetics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Yehoash Raphael
- Kresge Hearing Research Institute, Otolaryngology, Head and Neck Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
23
|
Moulden J, Sung CYW, Brizic I, Jonjic S, Britt W. Murine Models of Central Nervous System Disease following Congenital Human Cytomegalovirus Infections. Pathogens 2021; 10:1062. [PMID: 34451526 PMCID: PMC8400215 DOI: 10.3390/pathogens10081062] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 11/17/2022] Open
Abstract
Human cytomegalovirus infection of the developing fetus is a leading cause of neurodevelopmental disorders in infants and children, leading to long-term neurological sequela in a significant number of infected children. Current understanding of the neuropathogenesis of this intrauterine infection is limited because of the complexity of this infection, which includes maternal immunological responses that are overlaid on virus replication in the CNS during neurodevelopment. Furthermore, available data from human cases are observational, and tissues from autopsy studies have been derived from only the most severe infections. Animal models of this human infection are also limited by the strict species specificity of cytomegaloviruses. However, informative models including non-human primates and small animal models have been developed. These include several different murine models of congenital HCMV infection for the study of CMV neuropathogenesis. Although individual murine models do not completely recapitulate all aspects of the human infection, each model has provided significant information that has extended current understanding of the neuropathogenesis of this human infection. This review will compare and contrast different murine models in the context of available information from human studies of CNS disease following congenital HCMV infections.
Collapse
Affiliation(s)
- Jerome Moulden
- Department of Microbiology, UAB School of Medicine, Birmingham, Al 35294, USA;
| | - Cathy Yea Won Sung
- Laboratory of Hearing Biology and Therapeutics, NIDCD, NIH, Bethesda, MD 20892, USA;
| | - Ilija Brizic
- Center for Proteomics and Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (I.B.); (S.J.)
| | - Stipan Jonjic
- Center for Proteomics and Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (I.B.); (S.J.)
| | - William Britt
- Department of Microbiology, UAB School of Medicine, Birmingham, Al 35294, USA;
- Department of Pediatrics and Neurobiology, UAB School of Medicine, Birmingham, Al 35294, USA
| |
Collapse
|
24
|
Stone JS, Pujol R, Nguyen TB, Cox BC. The Transcription Factor Sox2 Is Required to Maintain the Cell Type-Specific Properties and Innervation of Type II Vestibular Hair Cells in Adult Mice. J Neurosci 2021; 41:6217-6233. [PMID: 34099510 PMCID: PMC8287988 DOI: 10.1523/jneurosci.1831-20.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 04/11/2021] [Accepted: 05/25/2021] [Indexed: 11/21/2022] Open
Abstract
The sense of balance relies on vestibular hair cells, which detect head motions. Mammals have two types of vestibular hair cell, I and II, with unique morphological, molecular, and physiological properties. Furthermore, each hair cell type signals to a unique form of afferent nerve terminal. Little is known about the mechanisms in mature animals that maintain the specific features of each hair cell type or its postsynaptic innervation. We found that deletion of the transcription factor Sox2 from Type II hair cells in adult mice of both sexes caused many cells in utricles to acquire features unique to Type I hair cells and to lose Type II-specific features. This cellular transdifferentiation, which included changes in nuclear size, chromatin condensation, soma and stereocilium morphology, and marker expression, resulted in a significantly higher proportion of Type I-like hair cells in all epithelial zones. Furthermore, Sox2 deletion from Type II hair cells triggered non-cell autonomous changes in vestibular afferent neurons; they retracted bouton terminals (normally present on only Type II cells) from transdifferentiating hair cells and replaced them with a calyx terminal (normally present on only Type I cells). These changes were accompanied by significant expansion of the utricle's central zone, called the striola. Our study presents the first example of a transcription factor required to maintain the type-specific hair cell phenotype in adult inner ears. Furthermore, we demonstrate that a single genetic change in Type II hair cells is sufficient to alter the morphology of their postsynaptic partners, the vestibular afferent neurons.SIGNIFICANCE STATEMENT The sense of balance relies on two types of sensory cells in the inner ear, Type I and Type II hair cells. These two cell types have unique properties. Furthermore, their postsynaptic partners, the vestibular afferent neurons, have differently shaped terminals on Type I versus Type II hair cells. We show that the transcription factor Sox2 is required to maintain the cell-specific features of Type II hair cells and their postsynaptic terminals in adult mice. This is the first evidence of a molecule that maintains the phenotypes of hair cells and, non-cell autonomously, their postsynaptic partners in mature animals.
Collapse
Affiliation(s)
- Jennifer S Stone
- Department of Otolaryngology-Head and Neck Surgery and the Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington 98195-7923
| | - Rémy Pujol
- Department of Otolaryngology-Head and Neck Surgery and the Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington 98195-7923
- Institut National de la Santé et de la Recherche Médicale Unit 1051, Institute of Neuroscience, University of Montpellier, 34000 Montpellier, France
| | - Tot Bui Nguyen
- Department of Otolaryngology-Head and Neck Surgery and the Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington 98195-7923
| | - Brandon C Cox
- Departments of Pharmacology and Otolaryngology, Southern Illinois University School of Medicine, Springfield, Illinois 62794-9624
| |
Collapse
|
25
|
Jan TA, Eltawil Y, Ling AH, Chen L, Ellwanger DC, Heller S, Cheng AG. Spatiotemporal dynamics of inner ear sensory and non-sensory cells revealed by single-cell transcriptomics. Cell Rep 2021; 36:109358. [PMID: 34260939 PMCID: PMC8378666 DOI: 10.1016/j.celrep.2021.109358] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/25/2020] [Accepted: 06/17/2021] [Indexed: 11/28/2022] Open
Abstract
The utricle is a vestibular sensory organ that requires mechanosensitive hair cells to detect linear acceleration. In neonatal mice, new hair cells are derived from non-sensory supporting cells, yet cell type diversity and mechanisms of cell addition remain poorly characterized. Here, we perform computational analyses on single-cell transcriptomes to categorize cell types and resolve 14 individual sensory and non-sensory subtypes. Along the periphery of the sensory epithelium, we uncover distinct groups of transitional epithelial cells, marked by Islr, Cnmd, and Enpep expression. By reconstructing de novo trajectories and gene dynamics, we show that as the utricle expands, Islr+ transitional epithelial cells exhibit a dynamic and proliferative phase to generate new supporting cells, followed by coordinated differentiation into hair cells. Taken together, our study reveals a sequential and coordinated process by which non-sensory epithelial cells contribute to growth of the postnatal mouse sensory epithelium. The postnatal mouse utricle expands by more than 35% and doubles its number of hair cells during the first 8 days. Using single-cell transcriptomics, Jan et al. show that the surrounding transitional epithelial cells proliferate and contribute to the expansion of the sensory epithelium through a stepwise differentiation mechanism.
Collapse
Affiliation(s)
- Taha A Jan
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA; Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, CA 94115, USA
| | - Yasmin Eltawil
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Angela H Ling
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA; Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, CA 94115, USA
| | - Leon Chen
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Daniel C Ellwanger
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA; Genome Analysis Unit, Amgen Research, Amgen Inc., South San Francisco, CA 94080, USA
| | - Stefan Heller
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA.
| | - Alan G Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA.
| |
Collapse
|
26
|
Kastan N, Gnedeva K, Alisch T, Petelski AA, Huggins DJ, Chiaravalli J, Aharanov A, Shakked A, Tzahor E, Nagiel A, Segil N, Hudspeth AJ. Small-molecule inhibition of Lats kinases may promote Yap-dependent proliferation in postmitotic mammalian tissues. Nat Commun 2021; 12:3100. [PMID: 34035288 PMCID: PMC8149661 DOI: 10.1038/s41467-021-23395-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/20/2021] [Indexed: 02/04/2023] Open
Abstract
Hippo signaling is an evolutionarily conserved pathway that restricts growth and regeneration predominantly by suppressing the activity of the transcriptional coactivator Yap. Using a high-throughput phenotypic screen, we identified a potent and non-toxic activator of Yap. In vitro kinase assays show that the compound acts as an ATP-competitive inhibitor of Lats kinases-the core enzymes in Hippo signaling. The substance prevents Yap phosphorylation and induces proliferation of supporting cells in the murine inner ear, murine cardiomyocytes, and human Müller glia in retinal organoids. RNA sequencing indicates that the inhibitor reversibly activates the expression of transcriptional Yap targets: upon withdrawal, a subset of supporting-cell progeny exits the cell cycle and upregulates genes characteristic of sensory hair cells. Our results suggest that the pharmacological inhibition of Lats kinases may promote initial stages of the proliferative regeneration of hair cells, a process thought to be permanently suppressed in the adult mammalian inner ear.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Cell Line
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Proliferation/genetics
- Ependymoglial Cells/cytology
- Ependymoglial Cells/drug effects
- Ependymoglial Cells/metabolism
- HEK293 Cells
- Hair Cells, Auditory, Inner/cytology
- Hair Cells, Auditory, Inner/drug effects
- Hair Cells, Auditory, Inner/metabolism
- Humans
- Mice, Knockout
- Mice, Transgenic
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Small Molecule Libraries/pharmacology
- Tumor Suppressor Proteins/antagonists & inhibitors
- Tumor Suppressor Proteins/metabolism
- YAP-Signaling Proteins
- Mice
Collapse
Affiliation(s)
- Nathaniel Kastan
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
- Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY, USA
| | - Ksenia Gnedeva
- Tina and Rick Caruso Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angles, CA, USA.
| | - Theresa Alisch
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
- Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY, USA
| | - Aleksandra A Petelski
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
- Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY, USA
- Department of Bioengineering and Barnett Institute, Northeastern University, Boston, MA, USA
| | - David J Huggins
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Jeanne Chiaravalli
- High-Throughput Screening Resource Center, The Rockefeller University, New York, NY, USA
- Institut Pasteur, Paris, France
| | - Alla Aharanov
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Avraham Shakked
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Eldad Tzahor
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Aaron Nagiel
- Department of Surgery Children's Hospital Los Angeles, Vision Center, Los Angeles, CA, USA
- Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Neil Segil
- Tina and Rick Caruso Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angles, CA, USA
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angles, CA, USA
| | - A J Hudspeth
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
- Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY, USA
| |
Collapse
|
27
|
Wilkerson BA, Zebroski HL, Finkbeiner CR, Chitsazan AD, Beach KE, Sen N, Zhang RC, Bermingham-McDonogh O. Novel cell types and developmental lineages revealed by single-cell RNA-seq analysis of the mouse crista ampullaris. eLife 2021; 10:e60108. [PMID: 34003106 PMCID: PMC8189719 DOI: 10.7554/elife.60108] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
This study provides transcriptomic characterization of the cells of the crista ampullaris, sensory structures at the base of the semicircular canals that are critical for vestibular function. We performed single-cell RNA-seq on ampullae microdissected from E16, E18, P3, and P7 mice. Cluster analysis identified the hair cells, support cells and glia of the crista as well as dark cells and other nonsensory epithelial cells of the ampulla, mesenchymal cells, vascular cells, macrophages, and melanocytes. Cluster-specific expression of genes predicted their spatially restricted domains of gene expression in the crista and ampulla. Analysis of cellular proportions across developmental time showed dynamics in cellular composition. The new cell types revealed by single-cell RNA-seq could be important for understanding crista function and the markers identified in this study will enable the examination of their dynamics during development and disease.
Collapse
Affiliation(s)
- Brent A Wilkerson
- Department of Biological Structure, University of WashingtonSeattleUnited States
- Institute for Stem Cells and Regenerative Medicine, University of WashingtonSeattleUnited States
| | - Heather L Zebroski
- Department of Biological Structure, University of WashingtonSeattleUnited States
- Institute for Stem Cells and Regenerative Medicine, University of WashingtonSeattleUnited States
| | - Connor R Finkbeiner
- Department of Biological Structure, University of WashingtonSeattleUnited States
- Institute for Stem Cells and Regenerative Medicine, University of WashingtonSeattleUnited States
| | - Alex D Chitsazan
- Department of Biological Structure, University of WashingtonSeattleUnited States
- Institute for Stem Cells and Regenerative Medicine, University of WashingtonSeattleUnited States
- Department of Biochemistry, University of WashingtonSeattleUnited States
| | - Kylie E Beach
- Department of Biological Structure, University of WashingtonSeattleUnited States
- Institute for Stem Cells and Regenerative Medicine, University of WashingtonSeattleUnited States
| | - Nilasha Sen
- Department of Biological Structure, University of WashingtonSeattleUnited States
| | - Renee C Zhang
- Department of Biological Structure, University of WashingtonSeattleUnited States
| | - Olivia Bermingham-McDonogh
- Department of Biological Structure, University of WashingtonSeattleUnited States
- Institute for Stem Cells and Regenerative Medicine, University of WashingtonSeattleUnited States
| |
Collapse
|
28
|
Ballesteros A, Fitzgerald TS, Swartz KJ. Expression of a membrane-targeted fluorescent reporter disrupts auditory hair cell mechanoelectrical transduction and causes profound deafness. Hear Res 2021; 404:108212. [PMID: 33667877 PMCID: PMC8035305 DOI: 10.1016/j.heares.2021.108212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 11/22/2022]
Abstract
The reporter mT/mG mice expressing a membrane-targeted fluorescent protein are becoming widely used to study the auditory and vestibular system due to its versatility. Here we show that high expression levels of the fluorescent mtdTomato reporter affect the function of the sensory hair cells and the auditory performance of mT/mG transgenic mice. Auditory brainstem responses and distortion product otoacoustic emissions revealed that adult mT/mG homozygous mice are profoundly deaf, whereas heterozygous mice present high frequency loss. We explore whether this line would be useful for studying and visualizing the membrane of auditory hair cells by airyscan super-resolution confocal microscopy. Membrane localization of the reporter was observed in hair cells of the cochlea, facilitating imaging of both cell bodies and stereocilia bundles without altering cellular architecture or the expression of the integral membrane motor protein prestin. Remarkably, hair cells from mT/mG homozygous mice failed to uptake the FM1-43 dye and to locate TMC1 at the stereocilia, indicating defective mechanotransduction machinery. Our work emphasizes that precautions must be considered when working with reporter mice and highlights the potential role of the cellular membrane in maintaining functional hair cells and ensuring proper hearing.
Collapse
Affiliation(s)
- Angela Ballesteros
- Molecular Physiology and Biophysics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, United States.
| | - Tracy S Fitzgerald
- Mouse Auditory Testing Core, National Institute on Deafness and other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, United States
| | - Kenton J Swartz
- Molecular Physiology and Biophysics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
29
|
Borse V, Barton M, Arndt H, Kaur T, Warchol ME. Dynamic patterns of YAP1 expression and cellular localization in the developing and injured utricle. Sci Rep 2021; 11:2140. [PMID: 33495483 PMCID: PMC7835353 DOI: 10.1038/s41598-020-77775-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/12/2020] [Indexed: 12/25/2022] Open
Abstract
The Hippo signaling pathway is a key regulator of tissue development and regeneration. Activation of the Hippo pathway leads to nuclear translocation of the YAP1 transcriptional coactivator, resulting in changes in gene expression and cell cycle entry. Recent studies have demonstrated the nuclear translocation of YAP1 during the development of the sensory organs of the inner ear, but the possible role of YAP1 in sensory regeneration of the inner ear is unclear. The present study characterized the cellular localization of YAP1 in the utricles of mice and chicks, both under normal conditions and after HC injury. During neonatal development, YAP1 expression was observed in the cytoplasm of supporting cells, and was transiently expressed in the cytoplasm of some differentiating hair cells. We also observed temporary nuclear translocation of YAP1 in supporting cells of the mouse utricle after short periods in organotypic culture. However, little or no nuclear translocation of YAP1 was observed in the utricles of neonatal or mature mice after ototoxic injury. In contrast, substantial YAP1 nuclear translocation was observed in the chicken utricle after streptomycin treatment in vitro and in vivo. Together, these data suggest that differences in YAP1 signaling may partially account for the differing regenerative abilities of the avian vs. mammalian inner ear.
Collapse
Affiliation(s)
- Vikrant Borse
- Department of Otolaryngology, School of Medicine, Washington University in Saint Louis, 660 South Euclid Ave, Box 8115, St Louis, MO, 63110, USA.
| | - Matthew Barton
- Department of Otolaryngology, School of Medicine, Washington University in Saint Louis, 660 South Euclid Ave, Box 8115, St Louis, MO, 63110, USA
| | - Harry Arndt
- Department of Otolaryngology, School of Medicine, Washington University in Saint Louis, 660 South Euclid Ave, Box 8115, St Louis, MO, 63110, USA
| | - Tejbeer Kaur
- Department of Biomedical Sciences, Creighton University School of Medicine, Nebraska, USA
| | - Mark E Warchol
- Department of Otolaryngology, School of Medicine, Washington University in Saint Louis, 660 South Euclid Ave, Box 8115, St Louis, MO, 63110, USA.
| |
Collapse
|
30
|
Qian X, He Z, Wang Y, Chen B, Hetrick A, Dai C, Chi F, Li H, Ren D. Hair cell uptake of gentamicin in the developing mouse utricle. J Cell Physiol 2020; 236:5235-5252. [PMID: 33368220 DOI: 10.1002/jcp.30228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 11/27/2020] [Accepted: 12/08/2020] [Indexed: 12/27/2022]
Abstract
Intratympanic injection of gentamicin has proven to be an effective therapy for intractable vestibular dysfunction. However, most studies to date have focused on the cochlea, so little is known about the distribution and uptake of gentamicin by the counterpart of the auditory system, specifically vestibular hair cells (HCs). Here, with a combination of in vivo and in vitro approaches, we used a gentamicin-Texas Red (GTTR) conjugate to investigate the mechanisms of gentamicin vestibulotoxicity in the developing mammalian utricular HCs. In vivo, GTTR fluorescence was concentrated in the apical cytoplasm and the cellular membrane of neonatal utricular HCs, but scarce in the nucleus of HCs and supporting cells. Quantitative analysis showed the GTTR uptake by striolar HCs was significantly higher than that in the extrastriola. In addition, the GTTR fluorescence intensity in the striola was increased gradually from 1 to 8 days, peaking at 8-9 days postnatally. In vitro, utricle explants were incubated with GTTR and candidate uptake conduits, including mechanotransduction (MET) channels and endocytosis in the HC, were inhibited separately. GTTR uptake by HCs could be inhibited by quinine, a blocker of MET channels, under both normal and stressed conditions. Meanwhile, endocytic inhibition only reduced GTTR uptake in the CoCl2 hypoxia model. In sum, the maturation of MET channels mediated uptake of GTTR into vestibular HCs. Under stressed conditions, MET channels play a pronounced role, manifested by channel-dependent stress enhanced GTTR permeation, while endocytosis participates in GTTR entry in a more selective manner.
Collapse
Affiliation(s)
- Xiaoqing Qian
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, China
| | - Ziyu He
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, China
| | - Yanmei Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, China
| | - Binjun Chen
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, China
| | - Alisa Hetrick
- Research Service, VA Loma Linda Healthcare System, Loma Linda, California, USA
| | - Chunfu Dai
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, China
| | - Fanglu Chi
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, China
| | - Hongzhe Li
- Research Service, VA Loma Linda Healthcare System, Loma Linda, California, USA.,Department of Otolaryngology-Head and Neck Surgery, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Dongdong Ren
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, China
| |
Collapse
|
31
|
Ratzan EM, Moon AM, Deans MR. Fgf8 genetic labeling reveals the early specification of vestibular hair cell type in mouse utricle. Development 2020; 147:dev.192849. [PMID: 33046506 DOI: 10.1242/dev.192849] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/07/2020] [Indexed: 01/16/2023]
Abstract
FGF8 signaling plays diverse roles in inner ear development, acting at multiple stages from otic placode induction to cellular differentiation in the organ of Corti. As a secreted morphogen with diverse functions, Fgf8 expression is likely to be spatially restricted and temporally dynamic throughout inner ear development. We evaluated these characteristics using genetic labeling mediated by Fgf8 mcm gene-targeted mice and determined that Fgf8 expression is a specific and early marker of Type-I vestibular hair cell identity. Fgf8 mcm expression initiates at E11.5 in the future striolar region of the utricle, labeling hair cells following EdU birthdating, and demonstrates that sub-type identity is determined shortly after terminal mitosis. This early fate specification is not apparent using markers or morphological criteria that are not present before birth in the mouse. Although analyses of Fgf8 conditional knockout mice did not reveal developmental phenotypes, the restricted pattern of Fgf8 expression suggests that functionally redundant FGF ligands may contribute to vestibular hair cell differentiation and supports a developmental model in which Type-I and Type-II hair cells develop in parallel rather than from an intermediate precursor.
Collapse
Affiliation(s)
- Evan M Ratzan
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.,Interdepartmental Program in Neuroscience, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Anne M Moon
- Departments of Molecular and Functional Genomics and Pediatrics, Weis Center for Research, Geisinger Clinic and Geisinger Commonwealth School of Medicine, Danville, PA 17822, USA.,Departments of Pediatrics and Human Genetics, University of Utah, Salt Lake City, UT 84112 USA
| | - Michael R Deans
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA .,Department of Surgery, Division of Otolaryngology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| |
Collapse
|
32
|
Zhang Y, Zhang S, Zhang Z, Dong Y, Ma X, Qiang R, Chen Y, Gao X, Zhao C, Chen F, He S, Chai R. Knockdown of Foxg1 in Sox9+ supporting cells increases the trans-differentiation of supporting cells into hair cells in the neonatal mouse utricle. Aging (Albany NY) 2020; 12:19834-19851. [PMID: 33099273 PMCID: PMC7655167 DOI: 10.18632/aging.104009] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/15/2020] [Indexed: 05/30/2023]
Abstract
Foxg1 plays important roles in regeneration of hair cell (HC) in the cochlea of neonatal mouse. Here, we used Sox9-CreER to knock down Foxg1 in supporting cells (SCs) in the utricle in order to investigate the role of Foxg1 in HC regeneration in the utricle. We found Sox9 an ideal marker of utricle SCs and bred Sox9CreER/+Foxg1loxp/loxp mice to conditionally knock down Foxg1 in utricular SCs. Conditional knockdown (cKD) of Foxg1 in SCs at postnatal day one (P01) led to increased number of HCs at P08. These regenerated HCs had normal characteristics, and could survive to at least P30. Lineage tracing showed that a significant portion of newly regenerated HCs originated from SCs in Foxg1 cKD mice compared to the mice subjected to the same treatment, which suggested SCs trans-differentiate into HCs in the Foxg1 cKD mouse utricle. After neomycin treatment in vitro, more HCs were observed in Foxg1 cKD mice utricle compared to the control group. Together, these results suggest that Foxg1 cKD in utricular SCs may promote HC regeneration by inducing trans-differentiation of SCs. This research therefore provides theoretical basis for the effects of Foxg1 in trans-differentiation of SCs and regeneration of HCs in the mouse utricle.
Collapse
Affiliation(s)
- Yuan Zhang
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Shasha Zhang
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Zhonghong Zhang
- Department of Ophthalmology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Ying Dong
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Xiangyu Ma
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Ruiying Qiang
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Yin Chen
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
| | - Chunjie Zhao
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Fangyi Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Shuangba He
- Department of Otolaryngology Head and Neck, Nanjing Tongren Hospital, School of Medicine, Southeast University, China
| | - Renjie Chai
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| |
Collapse
|
33
|
Shibata SB, West MB, Du X, Iwasa Y, Raphael Y, Kopke RD. Gene therapy for hair cell regeneration: Review and new data. Hear Res 2020; 394:107981. [DOI: 10.1016/j.heares.2020.107981] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023]
|
34
|
Lentz JJ, Pan B, Ponnath A, Tran CM, Nist-Lund C, Galvin A, Goldberg H, Robillard KN, Jodelka FM, Farris HE, Huang J, Chen T, Zhu H, Zhou W, Rigo F, Hastings ML, Géléoc GSG. Direct Delivery of Antisense Oligonucleotides to the Middle and Inner Ear Improves Hearing and Balance in Usher Mice. Mol Ther 2020; 28:2662-2676. [PMID: 32818431 PMCID: PMC7704764 DOI: 10.1016/j.ymthe.2020.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/05/2020] [Accepted: 08/02/2020] [Indexed: 12/16/2022] Open
Abstract
Usher syndrome is a syndromic form of hereditary hearing impairment that includes sensorineural hearing loss and delayed-onset retinitis pigmentosa (RP). Type 1 Usher syndrome (USH1) is characterized by congenital profound sensorineural hearing impairment and vestibular areflexia, with adolescent-onset RP. Systemic treatment with antisense oligonucleotides (ASOs) targeting the human USH1C c.216G>A splicing mutation in a knockin mouse model of USH1 restores hearing and balance. Herein, we explore the effect of delivering ASOs locally to the ear to treat hearing and vestibular dysfunction associated with Usher syndrome. Three localized delivery strategies were investigated in USH1C mice: inner ear injection, trans-tympanic membrane injection, and topical tympanic membrane application. We demonstrate, for the first time, that ASOs delivered directly to the ear correct Ush1c expression in inner ear tissue, improve cochlear hair cell transduction currents, restore vestibular afferent irregularity, spontaneous firing rate, and sensitivity to head rotation, and successfully recover hearing thresholds and balance behaviors in USH1C mice. We conclude that local delivery of ASOs to the middle and inner ear reach hair cells and can rescue both hearing and balance. These results also demonstrate the therapeutic potential of ASOs to treat hearing and balance deficits associated with Usher syndrome and other ear diseases.
Collapse
Affiliation(s)
- Jennifer J Lentz
- Department of Otorhinolaryngology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| | - Bifeng Pan
- Department of Otolaryngology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Abhilash Ponnath
- Department of Otorhinolaryngology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Christopher M Tran
- Department of Otorhinolaryngology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Carl Nist-Lund
- Department of Otolaryngology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alice Galvin
- Department of Otolaryngology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hannah Goldberg
- Department of Otolaryngology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Katelyn N Robillard
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Francine M Jodelka
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Hamilton E Farris
- Department of Otorhinolaryngology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Jun Huang
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Tianwen Chen
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Hong Zhu
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Wu Zhou
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Frank Rigo
- Ionis Pharmaceuticals, Inc., Carlsbad, CA 92008, USA
| | - Michelle L Hastings
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Gwenaëlle S G Géléoc
- Department of Otolaryngology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
35
|
Organ of Corti size is governed by Yap/Tead-mediated progenitor self-renewal. Proc Natl Acad Sci U S A 2020; 117:13552-13561. [PMID: 32482884 DOI: 10.1073/pnas.2000175117] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Precise control of organ growth and patterning is executed through a balanced regulation of progenitor self-renewal and differentiation. In the auditory sensory epithelium-the organ of Corti-progenitor cells exit the cell cycle in a coordinated wave between E12.5 and E14.5 before the initiation of sensory receptor cell differentiation, making it a unique system for studying the molecular mechanisms controlling the switch between proliferation and differentiation. Here we identify the Yap/Tead complex as a key regulator of the self-renewal gene network in organ of Corti progenitor cells. We show that Tead transcription factors bind directly to the putative regulatory elements of many stemness- and cell cycle-related genes. We also show that the Tead coactivator protein, Yap, is degraded specifically in the Sox2-positive domain of the cochlear duct, resulting in down-regulation of Tead gene targets. Further, conditional loss of the Yap gene in the inner ear results in the formation of significantly smaller auditory and vestibular sensory epithelia, while conditional overexpression of a constitutively active version of Yap, Yap5SA, is sufficient to prevent cell cycle exit and to prolong sensory tissue growth. We also show that viral gene delivery of Yap5SA in the postnatal inner ear sensory epithelia in vivo drives cell cycle reentry after hair cell loss. Taken together, these data highlight the key role of the Yap/Tead transcription factor complex in maintaining inner ear progenitors during development, and suggest new strategies to induce sensory cell regeneration.
Collapse
|
36
|
Rudolf MA, Andreeva A, Kozlowski MM, Kim CE, Moskowitz BA, Anaya-Rocha A, Kelley MW, Corwin JT. YAP Mediates Hair Cell Regeneration in Balance Organs of Chickens, But LATS Kinases Suppress Its Activity in Mice. J Neurosci 2020; 40:3915-3932. [PMID: 32341094 PMCID: PMC7219294 DOI: 10.1523/jneurosci.0306-20.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/07/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023] Open
Abstract
Loss of sensory hair cells causes permanent hearing and balance deficits in humans and other mammals, but for nonmammals such deficits are temporary. Nonmammals recover hearing and balance sensitivity after supporting cells proliferate and differentiate into replacement hair cells. Evidence of mechanical differences between those sensory epithelia and their supporting cells prompted us to investigate whether the capacity to activate YAP, an effector in the mechanosensitive Hippo pathway, correlates with regenerative capacity in acceleration-sensing utricles of chickens and mice of both sexes. After hair cell ablation, YAP accumulated in supporting cell nuclei in chicken utricles and promoted regenerative proliferation, but YAP remained cytoplasmic and little proliferation occurred in mouse utricles. YAP localization in supporting cells was also more sensitive to shape change and inhibition of MST1/2 in chicken utricles than in mouse utricles. Genetic manipulations showed that in vivo expression of the YAP-S127A variant caused robust proliferation of neonatal mouse supporting cells, which produced progeny that expressed hair cell markers, but proliferative responses declined postnatally. Expression of YAP-5SA, which more effectively evades inhibitory phosphorylation, resulted in TEAD-dependent proliferation of striolar supporting cells, even in adult utricles. Conditional deletion of LATS1/2 kinases abolished the inhibitory phosphorylation of endogenous YAP and led to striolar proliferation in adult mouse utricles. The findings suggest that damage overcomes inhibitory Hippo signaling and facilitates regenerative proliferation in nonmammalian utricles, whereas constitutive LATS1/2 kinase activity suppresses YAP-TEAD signaling in mammalian utricles and contributes to maintaining the proliferative quiescence that appears to underlie the permanence of sensory deficits.SIGNIFICANCE STATEMENT Loud sounds, ototoxic drugs, infections, and aging kill sensory hair cells in the ear, causing irreversible hearing loss and balance deficits for millions. In nonmammals, damage evokes shape changes in supporting cells, which can divide and regenerate hair cells. Such shape changes are limited in mammalian ears, where supporting cells develop E-cadherin-rich apical junctions reinforced by robust F-actin bands, and the cells fail to divide. Here, we find that damage readily activates YAP in supporting cells within balance epithelia of chickens, but not mice. Deleting LATS kinases or expressing YAP variants that evade LATS-mediated inhibitory phosphorylation induces proliferation in supporting cells of adult mice. YAP signaling eventually may be harnessed to overcome proliferative quiescence that limits regeneration in mammalian ears.
Collapse
Affiliation(s)
- Mark A Rudolf
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Anna Andreeva
- School of Sciences and Humanities, Nazarbayev University, Nursultan 010000, Republic of Kazakhstan
| | - Mikolaj M Kozlowski
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Christina E Kim
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Bailey A Moskowitz
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Alejandro Anaya-Rocha
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland 20892
| | - Matthew W Kelley
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland 20892
| | - Jeffrey T Corwin
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia 22908
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| |
Collapse
|
37
|
Prins TJ, Myers ZA, Saldate JJ, Hoffman LF. Calbindin expression in adult vestibular epithelia. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:623-637. [PMID: 32350587 DOI: 10.1007/s00359-020-01418-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/28/2020] [Accepted: 04/01/2020] [Indexed: 01/11/2023]
Abstract
The mammalian vestibular epithelia exhibit a remarkably stereotyped organization featuring cellular characteristics under planar cell polarity (PCP) control. PCP mechanisms are responsible for the organization of hair cell morphologic polarization vectors, and are thought to be responsible for the postsynaptic expression of the calcium-binding protein calretinin that defines the utricular striola and cristae central zone. However, recent analyses revealed that subtle differences in the topographic expression of oncomodulin, another calcium-binding protein, reflects heterogeneous factors driving the subtle variations in expression. Calbindin represents a third calcium-binding protein that has been previously described to be expressed in both hair cells and afferent calyces in proximity to the utricular striola and crista central zone. The objective of the present investigation was to determine calbindin's topographic pattern of expression to further elucidate the extent to which PCP mechanisms might exert control over the organization of vestibular neuroepithelia. The findings revealed that calbindin exhibited an expression pattern strikingly similar to oncomodulin. However, within calyces of the central zone calbindin was colocalized with calretinin. These results indicate that organizational features of vestibular epithelia are governed by a suite of factors that include PCP mechanisms as well others yet to be defined.
Collapse
Affiliation(s)
- Terry J Prins
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Box 951624, Los Angeles, CA, 90095-1624, USA.,Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, 90095, USA
| | - Zachary A Myers
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Box 951624, Los Angeles, CA, 90095-1624, USA
| | - Johnny J Saldate
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Box 951624, Los Angeles, CA, 90095-1624, USA
| | - Larry F Hoffman
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Box 951624, Los Angeles, CA, 90095-1624, USA. .,Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
38
|
Forge A, Jagger DJ, Gale JE. Restoring the balance: regeneration of hair cells in the vestibular system of the inner ear. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2019.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Notch Signalling: The Multitask Manager of Inner Ear Development and Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1218:129-157. [DOI: 10.1007/978-3-030-34436-8_8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
40
|
Lu J, Hu L, Ye B, Hu H, Tao Y, Shu Y, Hao Chiang, Borse V, Xiang M, Wu H, Edge ASB, Shi F. Increased Type I and Decreased Type II Hair Cells after Deletion of Sox2 in the Developing Mouse Utricle. Neuroscience 2019; 422:146-160. [PMID: 31678344 PMCID: PMC10858341 DOI: 10.1016/j.neuroscience.2019.09.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 09/21/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022]
Abstract
The vestibular system of the inner ear contains Type I and Type II hair cells (HCs) generated from sensory progenitor cells; however, little is known about how the HC subtypes are formed. Sox2 (encoding SRY-box 2) is expressed in Type II, but not in Type I, HCs. The present study aimed to investigate the role of SOX2 in cell fate determination in Type I vs. Type II HCs. First, we confirmed that Type I HCs developed from Sox2-expressing cells through lineage tracing of Sox2-positive cells using a CAG-tdTomato reporter mouse crossed with a Sox2-CreER mouse. Then, Sox2 loss of function was induced in HCs, using Sox2flox transgenic mice crossed with a Gfi1-Cre driver mouse. Knockout of Sox2 in HCs increased the number of Type I HCs and decreased the number of Type II HCs, while the total number of HCs and Sox2-positive supporting cells did not change. In addition, the effect of Sox2-knockout persisted into adulthood, resulting in an increased number of Type I HCs. These results demonstrate that SOX2 plays a critical role in the determination of Type II vs. Type I HC fate. The results suggested that Sox2 is a potential target for generating Type I HCs, which may be important for regenerative strategies for balance disorders.
Collapse
Affiliation(s)
- Jingrong Lu
- Department of Otolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, China
| | - Lingxiang Hu
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, China; Department of Otolaryngology Head & Neck Surgery, Shanghai 9th People's Hospital/Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Bin Ye
- Department of Otolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, China
| | - Haixia Hu
- Department of Otolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, China
| | - Yong Tao
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, China; Department of Otolaryngology Head & Neck Surgery, Shanghai 9th People's Hospital/Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Yilai Shu
- ENT Institute and Otorhinolaryngology Department, Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China; Key Laboratory of Hearing Medicine of National Health and Family Planning Commission (NHFPC), Shanghai, China
| | - Hao Chiang
- Department of Otolaryngology, Harvard Medical School, Boston, MA 02115, USA; Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, MA 02114, USA
| | - Vikrant Borse
- Department of Otolaryngology, Harvard Medical School, Boston, MA 02115, USA; Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, MA 02114, USA
| | - Mingliang Xiang
- Department of Otolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, China
| | - Hao Wu
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, China; Department of Otolaryngology Head & Neck Surgery, Shanghai 9th People's Hospital/Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China.
| | - Albert S B Edge
- Department of Otolaryngology, Harvard Medical School, Boston, MA 02115, USA; Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, MA 02114, USA
| | - Fuxin Shi
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Decibel Therapeutics, Boston, MA 02215, USA.
| |
Collapse
|
41
|
Novel insights into inner ear development and regeneration for targeted hearing loss therapies. Hear Res 2019; 397:107859. [PMID: 31810596 DOI: 10.1016/j.heares.2019.107859] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/06/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
Sensorineural hearing loss is the most common sensory deficit in humans. Despite the global scale of the problem, only limited treatment options are available today. The mammalian inner ear is a highly specialized postmitotic organ, which lacks proliferative or regenerative capacity. Since the discovery of hair cell regeneration in non-mammalian species however, much attention has been placed on identifying possible strategies to reactivate similar responses in humans. The development of successful regenerative approaches for hearing loss strongly depends on a detailed understanding of the mechanisms that control human inner ear cellular specification, differentiation and function, as well as on the development of robust in vitro cellular assays, based on human inner ear cells, to study these processes and optimize therapeutic interventions. We summarize here some aspects of inner ear development and strategies to induce regeneration that have been investigated in rodents. Moreover, we discuss recent findings in human inner ear development and compare the results with findings from animal models. Finally, we provide an overview of strategies for in vitro generation of human sensory cells from pluripotent and somatic progenitors that may provide a platform for drug development and validation of therapeutic strategies in vitro.
Collapse
|
42
|
Wang T, Niwa M, Sayyid ZN, Hosseini DK, Pham N, Jones SM, Ricci AJ, Cheng AG. Uncoordinated maturation of developing and regenerating postnatal mammalian vestibular hair cells. PLoS Biol 2019; 17:e3000326. [PMID: 31260439 PMCID: PMC6602158 DOI: 10.1371/journal.pbio.3000326] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 05/30/2019] [Indexed: 11/18/2022] Open
Abstract
Sensory hair cells are mechanoreceptors required for hearing and balance functions. From embryonic development, hair cells acquire apical stereociliary bundles for mechanosensation, basolateral ion channels that shape receptor potential, and synaptic contacts for conveying information centrally. These key maturation steps are sequential and presumed coupled; however, whether hair cells emerging postnatally mature similarly is unknown. Here, we show that in vivo postnatally generated and regenerated hair cells in the utricle, a vestibular organ detecting linear acceleration, acquired some mature somatic features but hair bundles appeared nonfunctional and short. The utricle consists of two hair cell subtypes with distinct morphological, electrophysiological and synaptic features. In both the undamaged and damaged utricle, fate-mapping and electrophysiology experiments showed that Plp1+ supporting cells took on type II hair cell properties based on molecular markers, basolateral conductances and synaptic properties yet stereociliary bundles were absent, or small and nonfunctional. By contrast, Lgr5+ supporting cells regenerated hair cells with type I and II properties, representing a distinct hair cell precursor subtype. Lastly, direct physiological measurements showed that utricular function abolished by damage was partially regained during regeneration. Together, our data reveal a previously unrecognized aberrant maturation program for hair cells generated and regenerated postnatally and may have broad implications for inner ear regenerative therapies. During development, sensory hair cells undergo a series of critical maturation steps that are sequential and presumed coupled, but whether regenerated hair cells mature similarly is unknown. This study shows that regenerated vestibular hair cells acquired some mature somatic features, but the apical bundles remained immature.
Collapse
Affiliation(s)
- Tian Wang
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mamiko Niwa
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Zahra N. Sayyid
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Davood K. Hosseini
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Nicole Pham
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Sherri M. Jones
- Department of Special Education and Communication Disorders, College of Education and Human Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Anthony J. Ricci
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (AGC); (AJR)
| | - Alan G. Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (AGC); (AJR)
| |
Collapse
|
43
|
Holman HA, Poppi LA, Frerck M, Rabbitt RD. Spontaneous and Acetylcholine Evoked Calcium Transients in the Developing Mouse Utricle. Front Cell Neurosci 2019; 13:186. [PMID: 31133810 PMCID: PMC6514437 DOI: 10.3389/fncel.2019.00186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/12/2019] [Indexed: 11/13/2022] Open
Abstract
Spontaneous calcium transients are present during early postnatal development in the mouse retina and cochlea, and play an important role in maturation of the sensory organs and neural circuits in the central nervous system (CNS). It is not known whether similar calcium transients occur during postnatal development in the vestibular sensory organs. Here we demonstrate spontaneous intracellular calcium transients in sensory hair cells (HCs) and supporting cells (SCs) in the murine utricular macula during the first two postnatal weeks. Calcium transients were monitored using a genetically encoded calcium indicator, GCaMP5G (G5), at 100 ms-frame−1 in excised utricle sensory epithelia, including HCs, SCs, and neurons. The reporter line expressed G5 and tdTomato (tdT) in a Gad2-Cre dependent manner within a subset of utricular HCs, SCs and neurons. Kinetics of the G5 reporter limited temporal resolution to calcium events lasting longer than 200 ms. Spontaneous calcium transients lasting 1-2 s were observed in the expressing population of HCs at birth and slower spontaneous transients lasting 10-30 s appeared in SCs by P3. Beginning at P5, calcium transients could be modulated by application of the efferent neurotransmitter acetylcholine (ACh). In mature mice, calcium transients in the utricular macula occurred spontaneously, had a duration 1-2 s, and could be modulated by the exogenous application of acetylcholine (ACh) or muscarine. Long-lasting calcium transients evoked by ACh in mature mice were blocked by atropine, consistent with previous reports describing the role of muscarinic receptors expressed in calyx bearing afferents in efferent control of vestibular sensation. Large spontaneous and ACh evoked transients were reversibly blocked by the inositol trisphosphate receptor (IP3R) antagonist aminoethoxydiphenyl borate (2-APB). Results demonstrate long-lasting calcium transients are present in the utricular macula during the first postnatal week, and that responses to ACh mature over this same time period.
Collapse
Affiliation(s)
- Holly A Holman
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| | - Lauren A Poppi
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States.,School of Biomedical Science and Pharmacy, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Micah Frerck
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| | - Richard D Rabbitt
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States.,Neuroscience Program, University of Utah, Salt Lake City, UT, United States.,Otolaryngology-Head and Neck Surgery, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
44
|
Deletion of Brg1 causes stereocilia bundle fusion and cuticular plate loss in vestibular hair cells. Hear Res 2019; 377:247-259. [PMID: 31003036 DOI: 10.1016/j.heares.2019.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/16/2019] [Accepted: 04/03/2019] [Indexed: 11/22/2022]
Abstract
Brg1 is an ATPase subunit of the SWI/SNF chromatin-remodeling complex, and it is indispensable for the development and homeostasis of various organs. Conditional deletion of Brg1 in cochlea hair cells (HCs) leads to multiple structural defects and profound deafness. However, the premature death of Brg1-deficient cochlea HCs hindered further study of the role of Brg1. In contrast to cochlea HCs, Brg1-deficient vestibular HCs survived for a long time. Therefore, HC apical structure and vestibular function were examined in inner HC-specific conditional Brg1 knockout mice. Vestibular HCs exhibited fused and elongated stereocilia bundles after deletion of Brg1, and the cuticular plate was absent in most HCs with fused stereocilia bundles. HC loss was observed in conditional Brg1 knockout mice at the age of 12 months. Morphological defects and HC loss were primarily restricted in the striolar region of the utricle and saccule and in the central region of ampulla. The behavioral tests revealed that Brg1 deletion in HCs caused vestibular dysfunction in older adult mice. These results suggest that Brg1 may play specific roles in the maintenance of the HC stereocilia bundle and the cuticular plate.
Collapse
|
45
|
Warchol ME, Massoodnia R, Pujol R, Cox BC, Stone JS. Development of hair cell phenotype and calyx nerve terminals in the neonatal mouse utricle. J Comp Neurol 2019; 527:1913-1928. [PMID: 30724338 DOI: 10.1002/cne.24658] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/26/2019] [Accepted: 02/01/2019] [Indexed: 01/03/2023]
Abstract
The vestibular organs of reptiles, birds, and mammals possess Type I and Type II sensory hair cells, which have distinct morphologies, physiology, and innervation. Little is known about how vestibular hair cells adopt a Type I or Type II identity or acquire proper innervation. One distinguishing marker is the transcription factor Sox2, which is expressed in all developing hair cells but persists only in Type II hair cells in maturity. We examined Sox2 expression and formation of afferent nerve terminals in mouse utricles between postnatal days 0 (P0) and P17. Between P3 and P14, many hair cells lost Sox2 immunoreactivity and the density of calyceal afferent nerve terminals (specific to Type I hair cells) increased in all regions of the utricle. At early time points, many calyces enclosed Sox2-labeled hair cells, while some Sox2-negative hair cells within the striola had not yet developed a calyx. These observations indicate that calyx maturation is not temporally correlated with loss of Sox2 expression in Type I hair cells. To determine which type(s) of hair cells are formed postnatally, we fate-mapped neonatal supporting cells by injecting Plp-CreER T2 :Rosa26 tdTomato mice with tamoxifen at P2 and P3. At P9, tdTomato-positive hair cells were immature and not classifiable by type. At P30, tdTomato-positive hair cells increased 1.8-fold compared to P9, and 91% of tdTomato-labeled hair cells were Type II. Our findings show that most neonatally-derived hair cells become Type II, and many Type I hair cells (formed before P2) downregulate Sox2 and acquire calyces between P0 and P14.
Collapse
Affiliation(s)
- Mark E Warchol
- Department of Otolaryngology, Washington University, St Louis, Missouri
| | - Roxanna Massoodnia
- Department of Otolaryngology-Head and Neck Surgery and the Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington
| | - Remy Pujol
- Department of Otolaryngology-Head and Neck Surgery and the Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington.,INSERM Unit 1051, Institute of Neuroscience, University of Montpellier, Montpellier, France
| | - Brandon C Cox
- Departments of Pharmacology and Surgery, Division of Otolaryngology, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Jennifer S Stone
- Department of Otolaryngology-Head and Neck Surgery and the Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington
| |
Collapse
|
46
|
McGovern MM, Randle MR, Cuppini CL, Graves KA, Cox BC. Multiple supporting cell subtypes are capable of spontaneous hair cell regeneration in the neonatal mouse cochlea. Development 2019; 146:146/4/dev171009. [PMID: 30770379 DOI: 10.1242/dev.171009] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/09/2019] [Indexed: 12/20/2022]
Abstract
Supporting cells (SCs) are known to spontaneously regenerate hair cells (HCs) in the neonatal mouse cochlea, yet little is known about the relative contribution of distinct SC subtypes which differ in morphology and function. We have previously shown that HC regeneration is linked to Notch signaling, and some SC subtypes, but not others, lose expression of the Notch effector Hes5 Other work has demonstrated that Lgr5-positive SCs have an increased capacity to regenerate HCs; however, several SC subtypes express Lgr5. To further investigate the source for spontaneous HC regeneration, we used three CreER lines to fate-map distinct groups of SCs during regeneration. Fate-mapping either alone or combined with a mitotic tracer showed that pillar and Deiters' cells contributed more regenerated HCs overall. However, when normalized to the total fate-mapped population, pillar, Deiters', inner phalangeal and border cells had equal capacity to regenerate HCs, and all SC subtypes could divide after HC damage. Investigating the mechanisms that allow individual SC subtypes to regenerate HCs and the postnatal changes that occur in each group during maturation could lead to therapies for hearing loss.
Collapse
Affiliation(s)
- Melissa M McGovern
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62711, USA
| | - Michelle R Randle
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62711, USA
| | - Candice L Cuppini
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62711, USA
| | - Kaley A Graves
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62711, USA
| | - Brandon C Cox
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62711, USA .,Department of Surgery, Division of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL 62711, USA
| |
Collapse
|
47
|
McInturff S, Burns JC, Kelley MW. Characterization of spatial and temporal development of Type I and Type II hair cells in the mouse utricle using new cell-type-specific markers. Biol Open 2018; 7:bio038083. [PMID: 30455179 PMCID: PMC6262869 DOI: 10.1242/bio.038083] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 09/14/2018] [Indexed: 12/16/2022] Open
Abstract
The utricle of the inner ear, a vestibular sensory structure that mediates perception of linear acceleration, is comprised of two morphologically and physiologically distinct types of mechanosensory hair cells, referred to as Type Is and Type IIs. While these cell types are easily discriminated in an adult utricle, understanding their development has been hampered by a lack of molecular markers that can be used to identify each cell type prior to maturity. Therefore, we collected single hair cells at three different ages and used single cell RNAseq to characterize the transcriptomes of those cells. Analysis of differential gene expression identified Spp1 as a specific marker for Type I hair cells and Mapt and Anxa4 as specific markers for Type II hair cells. Antibody labeling confirmed the specificity of these markers which were then used to examine the temporal and spatial development of utricular hair cells. While Type I hair cells develop in a gradient that extends across the utricle from posterior-medial to anterior-lateral, Type II hair cells initially develop in the central striolar region and then extend uniformly towards the periphery. Finally, by combining these markers with genetic fate mapping, we demonstrate that over 98% of all Type I hair cells develop prior to birth while over 98% of Type II hair cells develop post-natally. These results are consistent with previous findings suggesting that Type I hair cells develop first and refute the hypothesis that Type II hair cells represent a transitional form between immature and Type I hair cells.
Collapse
Affiliation(s)
- Stephen McInturff
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, Bethesda, MD 20892, USA
| | - Joseph C Burns
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, Bethesda, MD 20892, USA
| | - Matthew W Kelley
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, Bethesda, MD 20892, USA
| |
Collapse
|
48
|
Elliott KL, Fritzsch B, Duncan JS. Evolutionary and Developmental Biology Provide Insights Into the Regeneration of Organ of Corti Hair Cells. Front Cell Neurosci 2018; 12:252. [PMID: 30135646 PMCID: PMC6092489 DOI: 10.3389/fncel.2018.00252] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/23/2018] [Indexed: 01/19/2023] Open
Abstract
We review the evolution and development of organ of Corti hair cells with a focus on their molecular differences from vestibular hair cells. Such information is needed to therapeutically guide organ of Corti hair cell development in flat epithelia and generate the correct arrangement of different hair cell types, orientation of stereocilia, and the delayed loss of the kinocilium that are all essential for hearing, while avoiding driving hair cells toward a vestibular fate. Highlighting the differences from vestibular organs and defining what is known about the regulation of these differences will help focus future research directions toward successful restoration of an organ of Corti following long-term hair cell loss.
Collapse
Affiliation(s)
- Karen L Elliott
- Department of Biology, University of Iowa, Iowa City, IA, United States
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA, United States
| | - Jeremy S Duncan
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, United States
| |
Collapse
|
49
|
Mass spectrometry quantitation of proteins from small pools of developing auditory and vestibular cells. Sci Data 2018; 5:180128. [PMID: 30015805 PMCID: PMC6049031 DOI: 10.1038/sdata.2018.128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/20/2018] [Indexed: 01/15/2023] Open
Abstract
Hair cells of the inner ear undergo postnatal development that leads to formation of their sensory organelles, synaptic machinery, and in the case of cochlear outer hair cells, their electromotile mechanism. To examine how the proteome changes over development from postnatal days 0 through 7, we isolated pools of 5000 Pou4f3-Gfp positive or negative cells from the cochlea or utricles; these cell pools were analysed by data-dependent and data-independent acquisition (DDA and DIA) mass spectrometry. DDA data were used to generate spectral libraries, which enabled identification and accurate quantitation of specific proteins using the DIA datasets. DIA measurements were extremely sensitive; we were able to detect proteins present at less than one part in 100,000 from only 312 hair cells. The DDA and DIA datasets will be valuable for accurately quantifying proteins in hair cells and non-hair cells over this developmental window.
Collapse
|
50
|
Stone JS, Wisner SR, Bucks SA, Mellado Lagarde MM, Cox BC. Characterization of Adult Vestibular Organs in 11 CreER Mouse Lines. J Assoc Res Otolaryngol 2018; 19:381-399. [PMID: 29869046 DOI: 10.1007/s10162-018-0676-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/07/2018] [Indexed: 10/14/2022] Open
Abstract
Utricles are vestibular sense organs that encode linear head movements. They are composed of a sensory epithelium with type I and type II hair cells and supporting cells, sitting atop connective tissue, through which vestibular nerves project. We characterized utricular Cre expression in 11 murine CreER lines using the ROSA26tdTomato reporter line and tamoxifen induction at 6 weeks of age. This characterization included Calbindin2CreERT2, Fgfr3-iCreERT2, GFAP-A-CreER™, GFAP-B-CreER™, GLAST-CreERT2, Id2CreERT2, OtoferlinCreERT2, ParvalbuminCreERT2, Prox1CreERT2, Sox2CreERT2, and Sox9-CreERT2. OtoferlinCreERT2 mice had inducible Cre activity specific to hair cells. GLAST-CreERT2, Id2CreERT2, and Sox9-CreERT2 had inducible Cre activity specific to supporting cells. Sox2CreERT2 had inducible Cre activity in supporting cells and most type II hair cells. ParvalbuminCreERT2 mice had small numbers of labeled vestibular nerve afferents. Calbindin2CreERT2 mice had labeling of most type II hair cells and some type I hair cells and supporting cells. Only rare (or no) tdTomato-positive cells were detected in utricles of Fgfr3-iCreERT2, GFAP-A-CreER™, GFAP-B-CreER™, and Prox1CreERT2 mice. No Cre leakiness (tdTomato expression in the absence of tamoxifen) was observed in OtoferlinCreERT2 mice. A small degree of leakiness was seen in GLAST-CreERT2, Id2CreERT2, Sox2CreERT2, and Sox9-CreERT2 lines. Calbindin2CreERT2 mice had similar tdTomato expression with or without tamoxifen, indicating lack of inducible control under the conditions tested. In conclusion, 5 lines-GLAST-CreERT2, Id2CreERT2, OtoferlinCreERT2, Sox2CreERT2, and Sox9-CreERT2-showed cell-selective, inducible Cre activity with little leakiness, providing new genetic tools for researchers studying the vestibular periphery.
Collapse
Affiliation(s)
- Jennifer S Stone
- Department of Otolaryngology-Head and Neck Surgery, Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, USA
| | - Serena R Wisner
- Department of Otolaryngology-Head and Neck Surgery, Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, USA
| | - Stephanie A Bucks
- Department of Otolaryngology-Head and Neck Surgery, Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, USA
| | - Marcia M Mellado Lagarde
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Brandon C Cox
- Departments of Pharmacology and Surgery, Division of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL, USA.
| |
Collapse
|