1
|
Tan JXM, Ang RJW, Wee CL. Larval Zebrafish as a Model for Mechanistic Discovery in Mental Health. Front Mol Neurosci 2022; 15:900213. [PMID: 35813062 PMCID: PMC9263853 DOI: 10.3389/fnmol.2022.900213] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/25/2022] [Indexed: 12/23/2022] Open
Abstract
Animal models are essential for the discovery of mechanisms and treatments for neuropsychiatric disorders. However, complex mental health disorders such as depression and anxiety are difficult to fully recapitulate in these models. Borrowing from the field of psychiatric genetics, we reiterate the framework of 'endophenotypes' - biological or behavioral markers with cellular, molecular or genetic underpinnings - to reduce complex disorders into measurable behaviors that can be compared across organisms. Zebrafish are popular disease models due to the conserved genetic, physiological and anatomical pathways between zebrafish and humans. Adult zebrafish, which display more sophisticated behaviors and cognition, have long been used to model psychiatric disorders. However, larvae (up to 1 month old) are more numerous and also optically transparent, and hence are particularly suited for high-throughput screening and brain-wide neural circuit imaging. A number of behavioral assays have been developed to quantify neuropsychiatric phenomena in larval zebrafish. Here, we will review these assays and the current knowledge regarding the underlying mechanisms of their behavioral readouts. We will also discuss the existing evidence linking larval zebrafish behavior to specific human behavioral traits and how the endophenotype framework can be applied. Importantly, many of the endophenotypes we review do not solely define a diseased state but could manifest as a spectrum across the general population. As such, we make the case for larval zebrafish as a promising model for extending our understanding of population mental health, and for identifying novel therapeutics and interventions with broad impact.
Collapse
Affiliation(s)
| | | | - Caroline Lei Wee
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
2
|
Popper AN, Sisneros JA. The Sound World of Zebrafish: A Critical Review of Hearing Assessment. Zebrafish 2022; 19:37-48. [PMID: 35439045 DOI: 10.1089/zeb.2021.0063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Zebrafish, like all fish species, use sound to learn about their environment. Thus, human-generated (anthropogenic) sound added to the environment has the potential to disrupt the detection of biologically relevant sounds, alter behavior, impact fitness, and produce stress and other effects that can alter the well-being of animals. This review considers the bioacoustics of zebrafish in the laboratory with two goals. First, we discuss zebrafish hearing and the problems and issues that must be considered in any studies to get a clear understanding of hearing capabilities. Second, we focus on the potential effects of sounds in the tank environment and its impact on zebrafish physiology and health. To do this, we discuss underwater acoustics and the very specialized acoustics of fish tanks, in which zebrafish live and are studied. We consider what is known about zebrafish hearing and what is known about the potential impacts of tank acoustics on zebrafish and their well-being. We conclude with suggestions regarding the major gaps in what is known about zebrafish hearing as well as questions that must be explored to better understand how well zebrafish tolerate and deal with the acoustic world they live in within laboratories.
Collapse
Affiliation(s)
- Arthur N Popper
- Department of Biology, University of Maryland, College Park, Maryland, USA
| | - Joseph A Sisneros
- Department of Psychology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Lara RA, Breitzler L, Lau IH, Gordillo-Martinez F, Chen F, Fonseca PJ, Bass AH, Vasconcelos RO. Noise-induced hearing loss correlates with inner ear hair cell decrease in larval zebrafish. J Exp Biol 2022; 225:274643. [PMID: 35258623 DOI: 10.1242/jeb.243743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/27/2022] [Indexed: 11/20/2022]
Abstract
Anthropogenic noise can be hazardous for the auditory system and wellbeing of animals, including humans. However, very limited information is known on how this global environmental pollutant affects auditory function and inner ear sensory receptors in early ontogeny. The zebrafish (Danio rerio) is a valuable model in hearing research, including to investigate developmental processes of the vertebrate inner ear. We tested the effects of chronic exposure to white noise in larval zebrafish on inner ear saccular sensitivity and morphology at 3 and 5 days post fertilization (dpf), as well as on auditory-evoked swimming responses using the prepulse inhibition paradigm (PPI) at 5 dpf. Noise-exposed larvae showed significant increase in microphonic potential thresholds at low frequencies, 100 and 200 Hz, while PPI revealed a hypersensitisation effect and similar threshold shift at 200 Hz. Auditory sensitivity changes were accompanied by a decrease in saccular hair cell number and epithelium area. In aggregate, the results reveal noise-induced effects on inner ear structure-function in a larval fish paralleled by a decrease in auditory-evoked sensorimotor responses. More broadly, this study highlights the importance of investigating the impact of environmental noise on early development of sensory and behavioural responsiveness to acoustic stimuli.
Collapse
Affiliation(s)
- Rafael A Lara
- Institute of Science and Environment, University of Saint Joseph, Macao S.A.R., China.,Departamento de Biología, Universidad de Sevilla, Spain
| | - Lukas Breitzler
- Institute of Science and Environment, University of Saint Joseph, Macao S.A.R., China
| | - Ieng Hou Lau
- Institute of Science and Environment, University of Saint Joseph, Macao S.A.R., China
| | | | - Fangyi Chen
- Department of Biomedical Engineering, South University of Science and Technology of China, Guangdong, China
| | - Paulo J Fonseca
- Departamento de Biologia Animal and cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Andrew H Bass
- Department of Neurobiology and Behavior, Cornell University, NY, USA
| | - Raquel O Vasconcelos
- Institute of Science and Environment, University of Saint Joseph, Macao S.A.R., China
| |
Collapse
|
4
|
Guh YJ, Tseng YC, Shao YT. To cope with a changing aquatic soundscape: Neuroendocrine and antioxidant responses to chronic noise stress in fish. Gen Comp Endocrinol 2021; 314:113918. [PMID: 34555413 DOI: 10.1016/j.ygcen.2021.113918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 11/17/2022]
Abstract
Anthropogenic underwater noises that change aquatic soundscapes represent an important issue in marine conservation. While it is evident that strong underwater acoustic pollutants may cause significant damage to fish at short ranges, the physiological effects of long-term exposure to relatively quiet but continuous noise are less well understood. Here, we present a summary of the known impacts of long-term underwater noise on hypothalamic-pituitary-interrenal (HPI) axis-mediated physiological responses, oxidant/antioxidant balance, and neurotransmitter regulation in fish. Cortisol is known to play a central role in physiological stress response, most often as a mediator of acute response. However, recent research indicates that noise exposure may also induce chronic corticosteroid responses, which involve increased rates of cortisol turnover. Moreover, continuous noise affects oxidative stress and antioxidant systems in vertebrates and fish, suggesting that oxidative species may mediate some noise-induced physiological responses and make these systems valuable noise stress markers. Lastly, noise stress is also known to affect neurotransmitters in the brain that may cause neurophysiological and behavioral changes. The neurochemical mechanisms underlying observed behavioral disorders in fish after exposure to changing acoustic environments are a topic of active research. Overall, a growing body of evidence suggests that chronic noise pollution could be a threat to fish populations. In future work, systematic and comparative investigations into long-term and transgenerational adaptive neuronal and metabolic responses to noise will be important to understand the physiological patterns and dynamics of noise response relevant to fish conservation.
Collapse
Affiliation(s)
- Ying-Jey Guh
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Taiwan
| | - Yung-Che Tseng
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Taiwan.
| | - Yi-Ta Shao
- Institute of Marine Biology, National Taiwan Ocean University, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Taiwan; Intelligent Maritime Research Center, National Taiwan Ocean University, Taiwan
| |
Collapse
|
5
|
Wang J, Wang D, Hu G, Yang L, Liu Z, Yan D, Serikuly N, Alpyshov E, Demin KA, Strekalova T, Gil Barcellos LJ, Barcellos HHA, Amstislavskaya TG, de Abreu MS, Kalueff AV. The role of auditory and vibration stimuli in zebrafish neurobehavioral models. Behav Processes 2021; 193:104505. [PMID: 34547376 DOI: 10.1016/j.beproc.2021.104505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022]
Abstract
Strongly affecting human and animal physiology, sounds and vibration are critical environmental factors whose complex role in behavioral and brain functions necessitates further clinical and experimental studies. Zebrafish are a promising model organism for neuroscience research, including probing the contribution of auditory and vibration stimuli to neurobehavioral processes. Here, we summarize mounting evidence on the role of sound and vibration in zebrafish behavior and brain function, and outline future directions of translational research in this field. With the growing environmental exposure to noise and vibration, we call for more active use of zebrafish models for probing neurobehavioral and bioenvironmental consequences of acute and long-term exposure to sounds and vibration in complex biological systems.
Collapse
Affiliation(s)
- Jingtao Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Dongmei Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Guojun Hu
- School of Pharmacy, Southwest University, Chongqing, China
| | - LongEn Yang
- School of Pharmacy, Southwest University, Chongqing, China
| | - ZiYuan Liu
- School of Pharmacy, Southwest University, Chongqing, China
| | - Dongni Yan
- School of Pharmacy, Southwest University, Chongqing, China
| | - Nazar Serikuly
- School of Pharmacy, Southwest University, Chongqing, China
| | - Erik Alpyshov
- School of Pharmacy, Southwest University, Chongqing, China
| | - Konstantin A Demin
- St. Petersburg State University, St. Petersburg, Russia; Neurobiology Program, Sirius University, Sochi, Russia
| | - Tatiana Strekalova
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Maastricht University, Maastricht, The Netherlands; Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Leonardo J Gil Barcellos
- Graduate Programs in Bio-experimentation and Environmental Sciences, University of Passo Fundo, Passo Fundo, Brazil; Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | | | | | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil; Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia.
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia.
| |
Collapse
|
6
|
Chen Z, Zhu S, Kindig K, Wang S, Chou SW, Davis RW, Dercoli MR, Weaver H, Stepanyan R, McDermott BM. Tmc proteins are essential for zebrafish hearing where Tmc1 is not obligatory. Hum Mol Genet 2021; 29:2004-2021. [PMID: 32167554 DOI: 10.1093/hmg/ddaa045] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 02/13/2020] [Indexed: 12/19/2022] Open
Abstract
Perception of sound is initiated by mechanically gated ion channels at the tips of stereocilia. Mature mammalian auditory hair cells require transmembrane channel-like 1 (TMC1) for mechanotransduction, and mutations of the cognate genetic sequences result in dominant or recessive heritable deafness forms in humans and mice. In contrast, zebrafish lateral line hair cells, which detect water motion, require Tmc2a and Tmc2b. Here, we use standard and multiplex genome editing in conjunction with functional and behavioral assays to determine the reliance of zebrafish hearing and vestibular organs on Tmc proteins. Surprisingly, our approach using multiple mutant alleles demonstrates that hearing in zebrafish is not dependent on Tmc1, nor is it fully dependent on Tmc2a and Tmc2b. Hearing however is absent in triple-mutant zebrafish that lack Tmc1, Tmc2a and Tmc2b. These outcomes reveal a striking resemblance of Tmc protein reliance in the vestibular sensory epithelia of mammals to the maculae of zebrafish. Moreover, our findings disclose a logic of Tmc use where hearing depends on a complement of Tmc proteins beyond those employed to sense water motion.
Collapse
Affiliation(s)
- Zongwei Chen
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Shaoyuan Zhu
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Kayla Kindig
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Shengxuan Wang
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Shih-Wei Chou
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Robin Woods Davis
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Michael R Dercoli
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Hannah Weaver
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ruben Stepanyan
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Brian M McDermott
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
7
|
Sheets L, Holmgren M, Kindt KS. How Zebrafish Can Drive the Future of Genetic-based Hearing and Balance Research. J Assoc Res Otolaryngol 2021; 22:215-235. [PMID: 33909162 PMCID: PMC8110678 DOI: 10.1007/s10162-021-00798-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
Over the last several decades, studies in humans and animal models have successfully identified numerous molecules required for hearing and balance. Many of these studies relied on unbiased forward genetic screens based on behavior or morphology to identify these molecules. Alongside forward genetic screens, reverse genetics has further driven the exploration of candidate molecules. This review provides an overview of the genetic studies that have established zebrafish as a genetic model for hearing and balance research. Further, we discuss how the unique advantages of zebrafish can be leveraged in future genetic studies. We explore strategies to design novel forward genetic screens based on morphological alterations using transgenic lines or behavioral changes following mechanical or acoustic damage. We also outline how recent advances in CRISPR-Cas9 can be applied to perform reverse genetic screens to validate large sequencing datasets. Overall, this review describes how future genetic studies in zebrafish can continue to advance our understanding of inherited and acquired hearing and balance disorders.
Collapse
Affiliation(s)
- Lavinia Sheets
- Department of Otolaryngology-Head & Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Melanie Holmgren
- Department of Otolaryngology-Head & Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Katie S Kindt
- Section On Sensory Cell Development and Function, National Institutes On Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, USA.
| |
Collapse
|
8
|
Lara RA, Vasconcelos RO. Impact of noise on development, physiological stress and behavioural patterns in larval zebrafish. Sci Rep 2021; 11:6615. [PMID: 33758247 PMCID: PMC7988139 DOI: 10.1038/s41598-021-85296-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/26/2021] [Indexed: 01/31/2023] Open
Abstract
Noise pollution is increasingly present in aquatic ecosystems, causing detrimental effects on growth, physiology and behaviour of organisms. However, limited information exists on how this stressor affects animals in early ontogeny, a critical period for development and establishment of phenotypic traits. We tested the effects of chronic noise exposure to increasing levels (130 and 150 dB re 1 μPa, continuous white noise) and different temporal regimes on larval zebrafish (Danio rerio), an important vertebrate model in ecotoxicology. The acoustic treatments did not affect general development or hatching but higher noise levels led to increased mortality. The cardiac rate, yolk sac consumption and cortisol levels increased significantly with increasing noise level at both 3 and 5 dpf (days post fertilization). Variation in noise temporal patterns (different random noise periods to simulate shipping activity) suggested that the time regime is more important than the total duration of noise exposure to down-regulate physiological stress. Moreover, 5 dpf larvae exposed to 150 dB continuous noise displayed increased dark avoidance in anxiety-related dark/light preference test and impaired spontaneous alternation behaviour. We provide first evidence of noise-induced physiological stress and behavioural disturbance in larval zebrafish, showing that both noise amplitude and timing negatively impact key developmental endpoints in early ontogeny.
Collapse
Affiliation(s)
- Rafael A Lara
- Institute of Science and Environment, University of Saint Joseph, Macao S.A.R., China.
- Departamento de Biología, Universidad de Sevilla, Seville, Spain.
| | - Raquel O Vasconcelos
- Institute of Science and Environment, University of Saint Joseph, Macao S.A.R., China.
| |
Collapse
|
9
|
Ramos J, Balasch JC, Tort L. About Welfare and Stress in the Early Stages of Fish. Front Vet Sci 2021; 8:634434. [PMID: 33693043 PMCID: PMC7937697 DOI: 10.3389/fvets.2021.634434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/25/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- Juan Ramos
- Department Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, Bellaterra, Spain
| | - Joan Carles Balasch
- Department Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, Bellaterra, Spain
| | - Lluis Tort
- Department Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
10
|
Marchetto L, Barcellos LJG, Koakoski G, Soares SM, Pompermaier A, Maffi VC, Costa R, da Silva CG, Zorzi NR, Demin KA, Kalueff AV, de Alcantara Barcellos HH. Auditory environmental enrichment prevents anxiety-like behavior, but not cortisol responses, evoked by 24-h social isolation in zebrafish. Behav Brain Res 2021; 404:113169. [PMID: 33577884 DOI: 10.1016/j.bbr.2021.113169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/31/2020] [Accepted: 02/03/2021] [Indexed: 12/16/2022]
Abstract
The zebrafish (Danio rerio) is widely used as a promising translational model organism for studying various brain disorders. Zebrafish are also commonly used in behavioral and drug screening assays utilizing individually tested (socially isolated) fish. Various sounds represent important exogenous factors that may affect fish behavior. Mounting evidence shows that musical/auditory environmental enrichment can improve welfare of laboratory animals, including fishes. Here, we show that auditory environmental enrichment mitigates anxiogenic-like effects caused by acute 24-h social isolation in adult zebrafish. Thus, auditory environmental enrichment may offer an inexpensive, feasible and simple tool to improve welfare of zebrafish stocks in laboratory facilities, reduce unwanted procedural stress, lower non-specific behavioral variance and, hence, collectively improve zebrafish data reliability and reproducibility.
Collapse
Affiliation(s)
- Letícia Marchetto
- Veterinary Medicine Integrated Residency Program, University of Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, Brazil
| | - Leonardo J G Barcellos
- Postgraduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil; Postgraduate Program in Bioexperimentation, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil; Veterinary Medicine Course, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil; Postgraduate Program in Environmental Sciences, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil.
| | - Gessi Koakoski
- Veterinary Medicine Course, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Suelen M Soares
- Postgraduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Aline Pompermaier
- Postgraduate Program in Bioexperimentation, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Victoria C Maffi
- Veterinary Medicine Course, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Roberta Costa
- Veterinary Medicine Course, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Carolina G da Silva
- Veterinary Medicine Course, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Natalie R Zorzi
- Postgraduate Program in Bioexperimentation, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov Medical Research Centre, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Granov Scientific Research Center for Radiology and Surgical Technologies, St. Petersburg, Russia; Biology School, Moscow Institute of Physics and Technology, Dolgoprudny, Russia; Neuroscience Program, Sirius National Technical University, Sochi, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia
| | - Heloisa H de Alcantara Barcellos
- Veterinary Medicine Integrated Residency Program, University of Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, Brazil; Veterinary Medicine Course, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil.
| |
Collapse
|
11
|
A model-based quantification of startle reflex habituation in larval zebrafish. Sci Rep 2021; 11:846. [PMID: 33436805 PMCID: PMC7804396 DOI: 10.1038/s41598-020-79923-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/14/2020] [Indexed: 01/29/2023] Open
Abstract
Zebrafish is an established animal model for the reproduction and study of neurobiological pathogenesis of human neurological conditions. The 'startle reflex' in zebrafish larvae is an evolutionarily preserved defence response, manifesting as a quick body-bend in reaction to sudden sensory stimuli. Changes in startle reflex habituation characterise several neuropsychiatric disorders and hence represent an informative index of neurophysiological health. This study aimed at establishing a simple and reliable experimental protocol for the quantification of startle reflex response and habituation. The fish were stimulated with 20 repeated pulses of specific vibratory frequency, acoustic intensity/power, light-intensity and interstimulus-interval, in three separate studies. The cumulative distance travelled, namely the sum of the distance travelled (mm) during all 20 stimuli, was computed as a group-level description for all the experimental conditions in each study. Additionally, by the use of bootstrapping, the data was fitted to a model of habituation with a first-order exponential representing the decay of locomotor distance travelled over repeated stimulation. Our results suggest that startle habituation is a stereotypic first-order process with a decay constant ranging from 1 to 2 stimuli. Habituation memory lasts no more than 5 min, as manifested by the locomotor activity recovering to baseline levels. We further observed significant effects of vibratory frequency, acoustic intensity/power and interstimulus-interval on the amplitude, offset, decay constant and cumulative distance travelled. Instead, the intensity of the flashed light did not contribute to significant behavioural variations. The findings provide novel insights as to the influence of different stimuli parameters on the startle reflex habituation and constitute a helpful reference framework for further investigation.
Collapse
|
12
|
Retrograde Mitochondrial Transport Is Essential for Organelle Distribution and Health in Zebrafish Neurons. J Neurosci 2020; 41:1371-1392. [PMID: 33376159 PMCID: PMC7896009 DOI: 10.1523/jneurosci.1316-20.2020] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
In neurons, mitochondria are transported by molecular motors throughout the cell to form and maintain functional neural connections. These organelles have many critical functions in neurons and are of high interest as their dysfunction is associated with disease. While the mechanics and impact of anterograde mitochondrial movement toward axon terminals are beginning to be understood, the frequency and function of retrograde (cell body directed) mitochondrial transport in neurons are still largely unexplored. While existing evidence indicates that some mitochondria are retrogradely transported for degradation in the cell body, the precise impact of disrupting retrograde transport on the organelles and the axon was unknown. Using long-term, in vivo imaging, we examined mitochondrial motility in zebrafish sensory and motor axons. We show that retrograde transport of mitochondria from axon terminals allows replacement of the axon terminal population within a day. By tracking these organelles, we show that not all mitochondria that leave the axon terminal are degraded; rather, they persist over several days. Disrupting retrograde mitochondrial flux in neurons leads to accumulation of aged organelles in axon terminals and loss of cell body mitochondria. Assays of neural circuit activity demonstrated that disrupting mitochondrial transport and function has no effect on sensory axon terminal activity but does negatively impact motor neuron axons. Taken together, our work supports a previously unappreciated role for retrograde mitochondrial transport in the maintenance of a homeostatic distribution of mitochondria in neurons and illustrates the downstream effects of disrupting this process on sensory and motor circuits. SIGNIFICANCE STATEMENT Disrupted mitochondrial transport has been linked to neurodegenerative disease. Retrograde transport of this organelle has been implicated in turnover of aged organelles through lysosomal degradation in the cell body. Consistent with this, we provide evidence that retrograde mitochondrial transport is important for removing aged organelles from axons; however, we show that these organelles are not solely degraded, rather they persist in neurons for days. Disrupting retrograde mitochondrial transport impacts the homeostatic distribution of mitochondria throughout the neuron and the function of motor, but not sensory, axon synapses. Together, our work shows the conserved reliance on retrograde mitochondrial transport for maintaining a healthy mitochondrial pool in neurons and illustrates the disparate effects of disrupting this process on sensory versus motor circuits.
Collapse
|