1
|
Rajput SS, Singh SB, Subramanyam D, Patil S. Soft glassy rheology of single cells with pathogenic protein aggregates. SOFT MATTER 2024; 20:6266-6274. [PMID: 39054893 DOI: 10.1039/d4sm00595c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
A correlation between the mechanical properties of cells and various diseases has been emerging in recent years. Atomic force microscopy (AFM) has been widely used to measure a single cell's apparent Young's modulus by treating it as a fully elastic object. More recently, quantitative characterization of the complete viscoelasticity of single cells has become possible. We performed AFM-based nano-indentation experiments on hemocytes isolated from third instar larvae to determine their viscoelasticity and found that live hemocytes, like many other cells, follow a scale-free power-law rheology (PLR) akin to soft glasses. Further, we examined the changes in the rheological response of hemocytes in the presence of pathogenic protein aggregates known to cause neurodegenerative diseases such as Huntington's disorder and amyotrophic lateral sclerosis. Our results show that cells lose their fluidity and appear more solid-like in the presence of certain aggregates, in a manner correlated to actin reorganization. More solid-like cells also display reduced intracellular transport through clathrin-mediated endocytosis (CME). However, the cell's rheology remains largely unaffected and is similar to that of wild-type (WT) hemocytes, if aggregates do not perturb the actin organization and CME. Moreover, the fluid-like nature was significantly recovered when actin organization was rescued by overexpressing specific actin interacting proteins or chaperones. Our study, for the first time, underscores a direct correlation between parameters governing glassy dynamics, actin organization and CME.
Collapse
Affiliation(s)
- Shatruhan Singh Rajput
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Surya Bansi Singh
- National Centre for Cell Science, SP Pune University Campus, Pune 411007, India.
- SP Pune University, Pune 411007, India
| | - Deepa Subramanyam
- National Centre for Cell Science, SP Pune University Campus, Pune 411007, India.
| | - Shivprasad Patil
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India.
| |
Collapse
|
2
|
Cai Y, Chen S, Xu D, Guo T, Jin J, Chen H. Automatic elasticity measurement of single cells using a microfluidic system with real-time image processing. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083301 DOI: 10.1109/embc40787.2023.10340799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The mechanical properties of cells are closely related to their physiological states and functions. Due to the limitations of conventional cell elasticity measurement technologies such as low throughput, cell-invasiveness, and high cost, microfluidic systems are emerging as powerful tools for high-throughput cell mechanical property studies. This paper introduces a microfluidic system to automatically measure the elastic modulus of single cells in real time. The system integrated a microfluidic chip with a microchannel for cell constriction, a pressure pump, a precision differential pressure sensor, and a program for online analysis of cell deformation. The program used a fast U-net to segment cell images and measure protrusion length during cell deformation. Subsequently, the cell elasticity was determined in real-time based on the deformation and required pressure using the power law rheological model. Finally, Young's modulus of BMSCs, Huh-7 cells, EMSCs, and K562 cells was measured as 25.13 ± 15.19 Pa, 69.74 ± 92.01 Pa, 54.50 ± 59.31 Pa and 58.43 ± 27.27 Pa, respectively. The microfluidic system has significant application potential in the automated evaluation of cell mechanical properties.Clinical Relevance-The technique in this paper may be used for the automatic and high throughput study of the stiffness of cells, such as stem cells and cancer cells. The stiffness data may contribute to stem cell therapy and cancer research.
Collapse
|
3
|
Ko J, Jeong J, Son S, Lee J. Cellular and biomolecular detection based on suspended microchannel resonators. Biomed Eng Lett 2021; 11:367-382. [PMID: 34616583 DOI: 10.1007/s13534-021-00207-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/23/2021] [Accepted: 09/03/2021] [Indexed: 12/31/2022] Open
Abstract
Suspended microchannel resonators (SMRs) have been developed to measure the buoyant mass of single micro-/nanoparticles and cells suspended in a liquid. They have significantly improved the mass resolution with the aid of vacuum packaging and also increased measurement throughput by fast resonance frequency tracking while target objects travel through the microchannel without stopping or even slowing down. Since their invention, various biological applications have been enabled, including simultaneous measurements of cell growth and cell cycle progression, and measurements of disease associated physicochemical change, to name a few. Extension and advancement towards other promising applications with SMRs are continuously ongoing by adding multiple functionalities or incorporating other complementary analytical metrologies. In this paper, we will thoroughly review the development history, basic and advanced operations, and key applications of SMRs to introduce them to researchers working in biological and biomedical sciences who mostly rely on classical and conventional methodologies. We will also provide future perspectives and projections for SMR technologies.
Collapse
Affiliation(s)
- Juhee Ko
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daehak-ro 291, Daejeon, South Korea
| | - Jaewoo Jeong
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daehak-ro 291, Daejeon, South Korea
| | - Sukbom Son
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daehak-ro 291, Daejeon, South Korea
| | - Jungchul Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daehak-ro 291, Daejeon, South Korea
| |
Collapse
|
4
|
DiNapoli KT, Robinson DN, Iglesias PA. Tools for computational analysis of moving boundary problems in cellular mechanobiology. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2020; 13:e1514. [PMID: 33305503 DOI: 10.1002/wsbm.1514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/08/2020] [Accepted: 10/20/2020] [Indexed: 12/29/2022]
Abstract
A cell's ability to change shape is one of the most fundamental biological processes and is essential for maintaining healthy organisms. When the ability to control shape goes awry, it often results in a diseased system. As such, it is important to understand the mechanisms that allow a cell to sense and respond to its environment so as to maintain cellular shape homeostasis. Because of the inherent complexity of the system, computational models that are based on sound theoretical understanding of the biochemistry and biomechanics and that use experimentally measured parameters are an essential tool. These models involve an inherent feedback, whereby shape is determined by the action of regulatory signals whose spatial distribution depends on the shape. To carry out computational simulations of these moving boundary problems requires special computational techniques. A variety of alternative approaches, depending on the type and scale of question being asked, have been used to simulate various biological processes, including cell motility, division, mechanosensation, and cell engulfment. In general, these models consider the forces that act on the system (both internally generated, or externally imposed) and the mechanical properties of the cell that resist these forces. Moving forward, making these techniques more accessible to the non-expert will help improve interdisciplinary research thereby providing new insight into important biological processes that affect human health. This article is categorized under: Cancer > Cancer>Computational Models Cancer > Cancer>Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Kathleen T DiNapoli
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Douglas N Robinson
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Pablo A Iglesias
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Electrical & Computer Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Efremov YM, Okajima T, Raman A. Measuring viscoelasticity of soft biological samples using atomic force microscopy. SOFT MATTER 2020; 16:64-81. [PMID: 31720656 DOI: 10.1039/c9sm01020c] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mechanical properties play important roles at different scales in biology. At the level of a single cell, the mechanical properties mediate mechanosensing and mechanotransduction, while at the tissue and organ levels, changes in mechanical properties are closely connected to disease and physiological processes. Over the past three decades, atomic force microscopy (AFM) has become one of the most widely used tools in the mechanical characterization of soft samples, ranging from molecules, cell organoids and cells to whole tissue. AFM methods can be used to quantify both elastic and viscoelastic properties, and significant recent developments in the latter have been enabled by the introduction of new techniques and models for data analysis. Here, we review AFM techniques developed in recent years for examining the viscoelastic properties of cells and soft gels, describe the main steps in typical data acquisition and analysis protocols, and discuss relevant viscoelastic models and how these have been used to characterize the specific features of cellular and other biological samples. We also discuss recent trends and potential directions for this field.
Collapse
Affiliation(s)
- Yuri M Efremov
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA. and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, USA and Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Takaharu Okajima
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Arvind Raman
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA. and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
6
|
Huang L, Liang F, Feng Y, Zhao P, Wang W. On-chip integrated optical stretching and electrorotation enabling single-cell biophysical analysis. MICROSYSTEMS & NANOENGINEERING 2020; 6:57. [PMID: 34567668 PMCID: PMC8433418 DOI: 10.1038/s41378-020-0162-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/08/2020] [Accepted: 03/31/2020] [Indexed: 05/05/2023]
Abstract
Cells have different intrinsic markers such as mechanical and electrical properties, which may be used as specific characteristics. Here, we present a microfluidic chip configured with two opposing optical fibers and four 3D electrodes for multiphysical parameter measurement. The chip leverages optical fibers to capture and stretch a single cell and uses 3D electrodes to achieve rotation of the single cell. According to the stretching deformation and rotation spectrum, the mechanical and dielectric properties can be extracted. We provided proof of concept by testing five types of cells (HeLa, A549, HepaRG, MCF7 and MCF10A) and determined five biophysical parameters, namely, shear modulus, steady-state viscosity, and relaxation time from the stretching deformation and area-specific membrane capacitance and cytoplasm conductivity from the rotation spectra. We showed the potential of the chip in cancer research by observing subtle changes in the cellular properties of transforming growth factor beta 1 (TGF-β1)-induced epithelial-mesenchymal transition (EMT) A549 cells. The new chip provides a microfluidic platform capable of multiparameter characterization of single cells, which can play an important role in the field of single-cell research.
Collapse
Affiliation(s)
- Liang Huang
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instrument, Tsinghua University, Beijing, China
- School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei, China
| | - Fei Liang
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instrument, Tsinghua University, Beijing, China
| | - Yongxiang Feng
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instrument, Tsinghua University, Beijing, China
| | - Peng Zhao
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instrument, Tsinghua University, Beijing, China
| | - Wenhui Wang
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instrument, Tsinghua University, Beijing, China
| |
Collapse
|
7
|
Rajagopal V, Holmes WR, Lee PVS. Computational modeling of single-cell mechanics and cytoskeletal mechanobiology. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2018; 10:e1407. [PMID: 29195023 PMCID: PMC5836888 DOI: 10.1002/wsbm.1407] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/19/2017] [Accepted: 09/07/2017] [Indexed: 01/10/2023]
Abstract
Cellular cytoskeletal mechanics plays a major role in many aspects of human health from organ development to wound healing, tissue homeostasis and cancer metastasis. We summarize the state-of-the-art techniques for mathematically modeling cellular stiffness and mechanics and the cytoskeletal components and factors that regulate them. We highlight key experiments that have assisted model parameterization and compare the advantages of different models that have been used to recapitulate these experiments. An overview of feed-forward mechanisms from signaling to cytoskeleton remodeling is provided, followed by a discussion of the rapidly growing niche of encapsulating feedback mechanisms from cytoskeletal and cell mechanics to signaling. We discuss broad areas of advancement that could accelerate research and understanding of cellular mechanobiology. A precise understanding of the molecular mechanisms that affect cell and tissue mechanics and function will underpin innovations in medical device technologies of the future. WIREs Syst Biol Med 2018, 10:e1407. doi: 10.1002/wsbm.1407 This article is categorized under: Models of Systems Properties and Processes > Mechanistic Models Physiology > Mammalian Physiology in Health and Disease Models of Systems Properties and Processes > Cellular Models.
Collapse
Affiliation(s)
- Vijay Rajagopal
- Cell Structure and Mechanobiology Group, Department of Biomedical EngineeringUniversity of MelbourneMelbourneAustralia
| | - William R. Holmes
- Department of Physics and AstronomyVanderbilt UniversityNashvilleTNUSA
| | - Peter Vee Sin Lee
- Cell and Tissue Biomechanics Laboratory, Department of Biomedical EngineeringUniversity of MelbourneMelbourneAustralia
| |
Collapse
|
8
|
Seriani R, de Souza CEC, Krempel PG, Frias DP, Matsuda M, Correia AT, Ferreira MZJ, Alencar AM, Negri EM, Saldiva PHN, Mauad T, Macchione M. Human bronchial epithelial cells exposed in vitro to diesel exhaust particles exhibit alterations in cell rheology and cytotoxicity associated with decrease in antioxidant defenses and imbalance in pro- and anti-apoptotic gene expression. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:9862-9870. [PMID: 26856867 DOI: 10.1007/s11356-016-6228-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 02/01/2016] [Indexed: 06/05/2023]
Abstract
Diesel exhaust particles (DEPs) from diesel engines produce adverse alterations in cells of the airways by activating intracellular signaling pathways and apoptotic gene overexpression, and also by influencing metabolism and cytoskeleton changes. This study used human bronchial epithelium cells (BEAS-2B) in culture and evaluates their exposure to DEPs (15ug/mL for 1 and 2 h) in order to determine changes to cell rheology (viscoelasticity) and gene expression of the enzymes involved in oxidative stress, apoptosis, and cytotoxicity. BEAS-2B cells exposed to DEPs were found to have a significant loss in stiffness, membrane stability, and mitochondrial activity. The genes involved in apoptosis [B cell lymphoma 2 (BCL-2 and caspase-3)] presented inversely proportional expressions (p = 0.05, p = 0.01, respectively), low expression of the genes involved in antioxidant responses [SOD1 (superoxide dismutase 1); SOD2 (superoxide dismutase 2), and GPx (glutathione peroxidase) (p = 0.01)], along with an increase in cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1) (p = 0.01). These results suggest that alterations in cell rheology and cytotoxicity could be associated with oxidative stress and imbalance between pro- and anti-apoptotic genes.
Collapse
Affiliation(s)
- Robson Seriani
- Laboratory of Experimental Air Pollution (LIM05), Department of Pathology, School of Medicine, University of São Paulo, Av. Dr. Arnaldo 455, 1°andar, sala 1150, Cerqueira César, São Paulo, SP, CEP:01246-903, Brazil.
- FAM - Faculdades das Américas, Rua Augusta, 1508, 3°andar, São Paulo, SP, 01304-001, Brazil.
| | - Claudia Emanuele Carvalho de Souza
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Bioscience, University of São Paulo, Rua do Matão - travessa 14, Cidade Universitária, 05508900, São Paulo, SP, Brazil
| | - Paloma Gava Krempel
- Laboratory for Investigations in Ophthalmology (LIM-33), University of São Paulo Medical School São Paulo, Dr. Arnaldo 455, 5°andar, Cerqueira César, São Paulo, SP, CEP:01246-903, Brazil
| | - Daniela Perroni Frias
- Laboratory of Experimental Air Pollution (LIM05), Department of Pathology, School of Medicine, University of São Paulo, Av. Dr. Arnaldo 455, 1°andar, sala 1150, Cerqueira César, São Paulo, SP, CEP:01246-903, Brazil
| | - Monique Matsuda
- Laboratory for Investigations in Ophthalmology (LIM-33), University of São Paulo Medical School São Paulo, Dr. Arnaldo 455, 5°andar, Cerqueira César, São Paulo, SP, CEP:01246-903, Brazil
| | - Aristides Tadeu Correia
- Heart Institute (InCor), Department of Cardiopulmonology, University of São Paulo Medical School, Av. Dr. Enéas de Carvalho Aguiar, 44, Cerqueira Cesar, 05403-000, Sao Paulo, SP, Brazil
| | - Márcia Zotti Justo Ferreira
- Laboratory of Microrheology and Molecular Physiology, Institute of Physics, University of São Paulo, Rua do Matão, Travessa R Número 187, Cidade Universitária, 05508-090, Sao Paulo, SP, Brazil
| | - Adriano Mesquita Alencar
- Laboratory of Microrheology and Molecular Physiology, Institute of Physics, University of São Paulo, Rua do Matão, Travessa R Número 187, Cidade Universitária, 05508-090, Sao Paulo, SP, Brazil
| | - Elnara Marcia Negri
- Laboratory of Experimental Air Pollution (LIM05), Department of Pathology, School of Medicine, University of São Paulo, Av. Dr. Arnaldo 455, 1°andar, sala 1150, Cerqueira César, São Paulo, SP, CEP:01246-903, Brazil
| | - Paulo Hilário Nascimento Saldiva
- Laboratory of Experimental Air Pollution (LIM05), Department of Pathology, School of Medicine, University of São Paulo, Av. Dr. Arnaldo 455, 1°andar, sala 1150, Cerqueira César, São Paulo, SP, CEP:01246-903, Brazil
| | - Thais Mauad
- Laboratory of Experimental Air Pollution (LIM05), Department of Pathology, School of Medicine, University of São Paulo, Av. Dr. Arnaldo 455, 1°andar, sala 1150, Cerqueira César, São Paulo, SP, CEP:01246-903, Brazil
| | - Mariangela Macchione
- Laboratory of Experimental Air Pollution (LIM05), Department of Pathology, School of Medicine, University of São Paulo, Av. Dr. Arnaldo 455, 1°andar, sala 1150, Cerqueira César, São Paulo, SP, CEP:01246-903, Brazil
| |
Collapse
|
9
|
Enriched inorganic compounds in diesel exhaust particles induce mitogen-activated protein kinase activation, cytoskeleton instability, and cytotoxicity in human bronchial epithelial cells. ACTA ACUST UNITED AC 2015; 67:323-9. [PMID: 25769681 DOI: 10.1016/j.etp.2015.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 02/20/2015] [Indexed: 11/23/2022]
Abstract
This study assessed the effects of the diesel exhaust particles on ERK and JNK MAPKs activation, cell rheology (viscoelasticity), and cytotoxicity in bronchial epithelial airway cells (BEAS-2B). Crude DEP and DEP after extraction with hexane (DEP/HEX) were utilized. The partial reduction of some DEP/HEX organics increased the biodisponibility of many metallic elements. JNK and ERK were activated simultaneously by crude DEP with no alterations in viscoelasticity of the cells. Mitochondrial activity, however, revealed a decrease through the MTT assay. DEP/HEX treatment increased viscoelasticity and cytotoxicity (membrane damage), and also activated JNK. Our data suggest that the greater bioavailability of metals could be involved in JNK activation and, consequently, in the reduction of fiber coherence and increase in the viscoelasticity and cytotoxicity of BEAS cells. The adverse findings detected after exposure to crude DEP and to DEP/HEX reflect the toxic potential of diesel compounds. Considering the fact that the cells of the respiratory epithelium are the first line of defense between the body and the environment, our data contribute to a better understanding of the pathways leading to respiratory cell injury and provide evidence for the onset of or worsening of respiratory diseases caused by inorganic compounds present in DEP.
Collapse
|
10
|
Hu B, Shi W, Wu YL, Leow WR, Cai P, Li S, Chen X. Orthogonally engineering matrix topography and rigidity to regulate multicellular morphology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:5786-5793. [PMID: 25066463 DOI: 10.1002/adma.201402489] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Indexed: 06/03/2023]
Abstract
Programmable polymer substrates, which mimic the variable extracellular matrices in living systems, are used to regulate multicellular morphology, via orthogonally modulating the matrix topography and elasticity. The multicellular morphology is dependent on the competition between cell-matrix adhesion and cell-cell adhesion. Decreasing the cell-matrix adhesion provokes cytoskeleton reorganization, inhibits lamellipodial crawling, and thus enhances the leakiness of multicellular morphology.
Collapse
Affiliation(s)
- Benhui Hu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | | | | | | | | | | | | |
Collapse
|
11
|
Niu T, Cao G. Power-law rheology characterization of biological cell properties under AFM indentation measurement. RSC Adv 2014. [DOI: 10.1039/c4ra03111c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
12
|
Ma X, Schickel ME, Stevenson MD, Sarang-Sieminski AL, Gooch KJ, Ghadiali SN, Hart RT. Fibers in the extracellular matrix enable long-range stress transmission between cells. Biophys J 2013; 104:1410-8. [PMID: 23561517 DOI: 10.1016/j.bpj.2013.02.017] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 01/15/2013] [Accepted: 02/12/2013] [Indexed: 10/27/2022] Open
Abstract
Cells can sense, signal, and organize via mechanical forces. The ability of cells to mechanically sense and respond to the presence of other cells over relatively long distances (e.g., ∼100 μm, or ∼10 cell-diameters) across extracellular matrix (ECM) has been attributed to the strain-hardening behavior of the ECM. In this study, we explore an alternative hypothesis: the fibrous nature of the ECM makes long-range stress transmission possible and provides an important mechanism for long-range cell-cell mechanical signaling. To test this hypothesis, confocal reflectance microscopy was used to develop image-based finite-element models of stress transmission within fibroblast-seeded collagen gels. Models that account for the gel's fibrous nature were compared with homogenous linear-elastic and strain-hardening models to investigate the mechanisms of stress propagation. Experimentally, cells were observed to compact the collagen gel and align collagen fibers between neighboring cells within 24 h. Finite-element analysis revealed that stresses generated by a centripetally contracting cell boundary are concentrated in the relatively stiff ECM fibers and are propagated farther in a fibrous matrix as compared to homogeneous linear elastic or strain-hardening materials. These results support the hypothesis that ECM fibers, especially aligned ones, play an important role in long-range stress transmission.
Collapse
Affiliation(s)
- Xiaoyue Ma
- The Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Effects of plasma membrane cholesterol level and cytoskeleton F-actin on cell protrusion mechanics. PLoS One 2013; 8:e57147. [PMID: 23451167 PMCID: PMC3579816 DOI: 10.1371/journal.pone.0057147] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 01/17/2013] [Indexed: 12/12/2022] Open
Abstract
Protrusions are deformations that form at the surface of living cells during biological activities such as cell migration. Using combined optical tweezers and fluorescent microscopy, we quantified the mechanical properties of protrusions in adherent human embryonic kidney cells in response to application of an external force at the cell surface. The mechanical properties of protrusions were analyzed by obtaining the associated force-length plots during protrusion formation, and force relaxation at constant length. Protrusion mechanics were interpretable by a standard linear solid (Kelvin) model, consisting of two stiffness parameters, k0 and k1 (with k0>k1), and a viscous coefficient. While both stiffness parameters contribute to the time-dependant mechanical behavior of the protrusions, k0 and k1 in particular dominated the early and late stages of the protrusion formation and elongation process, respectively. Lowering the membrane cholesterol content by 25% increased the k0 stiffness by 74%, and shortened the protrusion length by almost half. Enhancement of membrane cholesterol content by nearly two-fold increased the protrusion length by 30%, and decreased the k0 stiffness by nearly two-and-half-fold as compared with control cells. Cytoskeleton integrity was found to make a major contribution to protrusion mechanics as evidenced by the effects of F-actin disruption on the resulting mechanical parameters. Viscoelastic behavior of protrusions was further characterized by hysteresis and force relaxation after formation. The results of this study elucidate the coordination of plasma membrane composition and cytoskeleton during protrusion formation.
Collapse
|