1
|
Samalova M, Melnikava A, Elsayad K, Peaucelle A, Gahurova E, Gumulec J, Spyroglou I, Zemlyanskaya EV, Ubogoeva EV, Balkova D, Demko M, Blavet N, Alexiou P, Benes V, Mouille G, Hejatko J. Hormone-regulated expansins: Expression, localization, and cell wall biomechanics in Arabidopsis root growth. PLANT PHYSIOLOGY 2023; 194:209-228. [PMID: 37073485 PMCID: PMC10762514 DOI: 10.1093/plphys/kiad228] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Expansins facilitate cell expansion by mediating pH-dependent cell wall (CW) loosening. However, the role of expansins in controlling CW biomechanical properties in specific tissues and organs remains elusive. We monitored hormonal responsiveness and spatial specificity of expression and localization of expansins predicted to be the direct targets of cytokinin signaling in Arabidopsis (Arabidopsis thaliana). We found EXPANSIN1 (EXPA1) homogenously distributed throughout the CW of columella/lateral root cap, while EXPA10 and EXPA14 localized predominantly at 3-cell boundaries in the epidermis/cortex in various root zones. EXPA15 revealed cell-type-specific combination of homogenous vs. 3-cell boundaries localization. By comparing Brillouin frequency shift and AFM-measured Young's modulus, we demonstrated Brillouin light scattering (BLS) as a tool suitable for non-invasive in vivo quantitative assessment of CW viscoelasticity. Using both BLS and AFM, we showed that EXPA1 overexpression upregulated CW stiffness in the root transition zone (TZ). The dexamethasone-controlled EXPA1 overexpression induced fast changes in the transcription of numerous CW-associated genes, including several EXPAs and XYLOGLUCAN:XYLOGLUCOSYL TRANSFERASEs (XTHs), and associated with rapid pectin methylesterification determined by in situ Fourier-transform infrared spectroscopy in the root TZ. The EXPA1-induced CW remodeling is associated with the shortening of the root apical meristem, leading to root growth arrest. Based on our results, we propose that expansins control root growth by a delicate orchestration of CW biomechanical properties, possibly regulating both CW loosening and CW remodeling.
Collapse
Affiliation(s)
- Marketa Samalova
- CEITEC – Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Alesia Melnikava
- CEITEC – Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Kareem Elsayad
- Division of Anatomy, Centre for Anatomy & Cell Biology, Medical University of Vienna, Vienna 1090, Austria
| | | | - Evelina Gahurova
- CEITEC – Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Jaromir Gumulec
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno 625 00, Czech Republic
| | - Ioannis Spyroglou
- CEITEC – Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Elena V Zemlyanskaya
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630073, Russia
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Elena V Ubogoeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Darina Balkova
- CEITEC – Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Martin Demko
- CEITEC – Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Nicolas Blavet
- CEITEC – Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Panagiotis Alexiou
- CEITEC – Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | | | - Jan Hejatko
- CEITEC – Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| |
Collapse
|
2
|
Samalova M, Gahurova E, Hejatko J. Expansin-mediated developmental and adaptive responses: A matter of cell wall biomechanics? QUANTITATIVE PLANT BIOLOGY 2022; 3:e11. [PMID: 37077967 PMCID: PMC10095946 DOI: 10.1017/qpb.2022.6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 03/16/2022] [Accepted: 03/29/2022] [Indexed: 05/03/2023]
Abstract
Biomechanical properties of the cell wall (CW) are important for many developmental and adaptive responses in plants. Expansins were shown to mediate pH-dependent CW enlargement via a process called CW loosening. Here, we provide a brief overview of expansin occurrence in plant and non-plant species, their structure and mode of action including the role of hormone-regulated CW acidification in the control of expansin activity. We depict the historical as well as recent CW models, discuss the role of expansins in the CW biomechanics and address the developmental importance of expansin-regulated CW loosening in cell elongation and new primordia formation. We summarise the data published so far on the role of expansins in the abiotic stress response as well as the rather scarce evidence and hypotheses on the possible mechanisms underlying expansin-mediated abiotic stress resistance. Finally, we wrap it up by highlighting possible future directions in expansin research.
Collapse
Affiliation(s)
- Marketa Samalova
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Evelina Gahurova
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biotechnological Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jan Hejatko
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biotechnological Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
3
|
Genome-wide identification of expansin in Fragaria vesca and expression profiling analysis of the FvEXPs in different fruit development. Gene 2022; 814:146162. [PMID: 34995732 DOI: 10.1016/j.gene.2021.146162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/28/2021] [Accepted: 12/06/2021] [Indexed: 12/21/2022]
Abstract
Strawberry is a highly efficient and economical horticultural crop plant, and strawberry fruits are easy to soften after ripening and decay after harvest, which severely impacts the economic benefits. Expansins are plant cell-wall loosening proteins involved in the process of fruit softening, loosening cell walls and reducing fruit firmness. In this study, 35 FvEXPs genes were identified in the F. vesaca genome. These genes were divided into four subfamilies (27 FvEXPAs, 5 FvEXPBs, 1 FvEXLAs, and 2 FvEXLBs) and were unevenly distributed on 7 chromosomes. Gene structure and motif analysis showed the conserved structure and motif in same subgroup, however, the different motifs and structures may reveal functional divergence of multigene family members of FvEXPs in different developmental stages of fruits. The expression profiling by RNA-seq and qRT-PCR analysis revealed that the FvEXP genes have distinct expression patterns among different stages of strawberry development and ripening. Among them, 3 genes (FvEXPA9, FvEXPA12, and FvEXPA27) were highly expressed in the ripening stage, FvEXPA9 and FvEXPA12 were especially highly expressed in turning stage, whereas FvEXPA27 was especially highly expressed in red stage. Our study provides a better understanding of the FvEXP genes, which may benefit strawberry biotechnological breeding and genetic modification for improving fruit quality and delaying fruit softening.
Collapse
|
4
|
Iwai H. Virtual issue: cell wall functions in plant growth and environmental responses. JOURNAL OF PLANT RESEARCH 2021; 134:1155-1158. [PMID: 34613490 DOI: 10.1007/s10265-021-01351-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plant cell walls have multiple functions, including determining cell shape and size, cell-cell adhesion, controlling cell differentiation and growth, and promoting abiotic and biotic stress tolerance. This virtual issue introduces the physiological functions of cell walls in growth and environmental responses. The articles detail research on (1) embryogenesis and seed development, (2) vegetative growth, (3) reproductive growth, and (4) environmental responses. These articles, published in the Journal of Plant Research, will provide valuable information for future research on the function and dynamics of cell walls at various growth stages, and in response to environmental factors.
Collapse
Affiliation(s)
- Hiroaki Iwai
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
5
|
Valenzuela-Riffo F, Parra-Palma C, Ramos P, Morales-Quintana L. Molecular and structural insights into FaEXPA5, an alpha-expansin protein related with cell wall disassembly during ripening of strawberry fruit. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:581-589. [PMID: 32711363 DOI: 10.1016/j.plaphy.2020.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Cell wall modification is one of the main factors that produce the tissue softening during ripening of many fruit including strawberry (Fragaria x ananassa). Expansins have been studied for over 20 years as a class of the important cell growth regulators, and in the last years these have been related with the fruit softening. In strawberry, five partial sequences of the expansins genes were described in the past, this analysis showed that FaEXP5 partial gene was present throughout fruit development, but was more strongly expressed during ripening. Now, we reported the full length of this α-expansin (FaEXPA5), whose had been related with fruit softening, and the protein structural was described by homology model. Their transcript accumulation during softening was confirmed by qRT-PCR, displaying a high accumulation rate during fruit ripening. In silico analysis of promoter sequence showed four ABA and two auxin cis-regulatory elements, potentially responsible for the expression patterns observed in response to the hormone treatments. Additionally, 3D protein model displayed two domains and one open groove characteristic of expansin structures. The protein-ligand interactions were evaluated by molecular dynamic (MD) simulation using three different long structure ligands (a cellulose fiber, a xyloglucan fiber (XXXG type), and a pectin fiber as control). Favorable interactions were observed with xyloglucan and cellulose, being cellulose the best ligand with lower RMSD value. Additionally, MD simulations showed that FaEXPA5 can interact with the ligands through residues present in the open groove along the two domains.
Collapse
Affiliation(s)
- Felipe Valenzuela-Riffo
- Programa de Doctorado en Ciencias Mención Ingeniería Genética, Instituto de Ciencias Biológicas, Universidad de Talca, Chile
| | - Carolina Parra-Palma
- Programa de Doctorado en Ciencias Mención Ingeniería Genética, Instituto de Ciencias Biológicas, Universidad de Talca, Chile
| | - Patricio Ramos
- Instituto de Ciencias Biológicas, Universidad de Talca, Chile; Núcleo Científico Multidisciplinario-DI, Universidad de Talca, Chile.
| | - Luis Morales-Quintana
- Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Biomédica, Facultad Ciencias de La Salud, Universidad Autónoma de Chile, Talca, Chile.
| |
Collapse
|
6
|
Valenzuela-Riffo F, Morales-Quintana L. Study of the structure and binding site features of FaEXPA2, an α-expansin protein involved in strawberry fruit softening. Comput Biol Chem 2020; 87:107279. [PMID: 32505880 DOI: 10.1016/j.compbiolchem.2020.107279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/09/2020] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
Abstract
Tissue softening accompanies the ripening of many fruits and initiates the processes of irreversible deterioration. Expansins are plant cell wall proteins that have been proposed to disrupt hydrogen bonds within the cell wall polymer matrix. Several authors have shown that FaEXPA2 is a key gene that shows an increased expression level during ripening and softening of the strawberry fruit. For this reason, FaEXPA2 is frequently used as a molecular marker of softening in strawberry fruit, and changes in its relative expression have been related to changes in fruit firmness. In this context, we previously reported that FaEXPA2 has a high accumulation rate during fruit ripening in four different strawberry cultivars; however, the molecular mechanism of FaEXPA2 or expansins in general is not yet clear. Herein, a 3D model of the FaEXPA2 protein was built by comparative modeling to understand how FaEXPA2 interacts with different cell wall components at the molecular level. First, the structure was shown to display two domains characteristic of the other expansins that were previously described. The protein-ligand interaction was evaluated by molecular dynamic (MD) simulation using four different long ligands (a cellulose fiber, two of the more important xyloglucan (XG) fibers found in strawberry (XXXG and XXFG type), and a pectin (homogalacturonic acid type)). The results showed that FaEXPA2 formed a more stable complex with cellulose than other ligands via the different residues present in the open groove surface of its two domains, while FaEXPA2 did not interact with the pectin ligand.
Collapse
Affiliation(s)
- Felipe Valenzuela-Riffo
- Instituto de Ciencias Biológicas, Universidad de Talca, Chile; Programa de Doctorado en Ciencias Mención Ingeniería Genética Vegetal, Universidad de Talca, Chile
| | - Luis Morales-Quintana
- Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Biomédica, Facultad Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile.
| |
Collapse
|
7
|
Valenzuela-Riffo F, Gaete-Eastman C, Stappung Y, Lizana R, Herrera R, Moya-León MA, Morales-Quintana L. Comparative in silico study of the differences in the structure and ligand interaction properties of three alpha-expansin proteins from Fragaria chiloensis fruit. J Biomol Struct Dyn 2018; 37:3245-3258. [PMID: 30175949 DOI: 10.1080/07391102.2018.1517610] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Expansins are cell wall proteins associated with several processes, including changes in the cell wall during ripening of fruit, which matches softening of the fruit. We have previously reported an increase in expression of specific expansins transcripts during softening of Fragaria chiloensis fruit. Here, we characterized three α-expansins. Their full-length sequences were obtained, and through qRT-PCR (real-time PCR) analyses, their transcript accumulation during softening of F. chiloensis fruit was confirmed. Interestingly, differential but overlapping expression patterns were observed. With the aim of elucidating their roles, 3D protein models were built using comparative modeling methodology. The models obtained were similar and displayed cellulose binding module(CBM ) with a β-sandwich structure, and a catalytic domain comparable to the catalytic core of protein of the family 45 glycosyl hydrolase. An open groove located at the central part of each expansin was described; however, the shape and size are different. Their protein-ligand interactions were evaluated, showing favorable binding affinity energies with xyloglucan, homogalacturonan, and cellulose, cellulose being the best ligand. However, small differences were observed between the protein-ligand conformations. Molecular mechanics-generalized Born-surface area (MM-GBSA) analyses indicate the major contribution of van der Waals forces and non-polar interactions. The data provide a dynamic view of interaction between expansins and cellulose as putative cell wall ligands at the molecular scale. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Felipe Valenzuela-Riffo
- a Functional genomics, biochemistry and plant physiology group , Instituto de Ciencias Biológicas , Universidad de Talca , Talca , Chile.,b Phytohormone Research Laboratory , Instituto de Ciencias Biológicas, Universidad de Talca , Talca , Chile
| | - Carlos Gaete-Eastman
- a Functional genomics, biochemistry and plant physiology group , Instituto de Ciencias Biológicas , Universidad de Talca , Talca , Chile
| | - Yazmina Stappung
- a Functional genomics, biochemistry and plant physiology group , Instituto de Ciencias Biológicas , Universidad de Talca , Talca , Chile
| | - Rodrigo Lizana
- a Functional genomics, biochemistry and plant physiology group , Instituto de Ciencias Biológicas , Universidad de Talca , Talca , Chile
| | - Raúl Herrera
- a Functional genomics, biochemistry and plant physiology group , Instituto de Ciencias Biológicas , Universidad de Talca , Talca , Chile
| | - María Alejandra Moya-León
- a Functional genomics, biochemistry and plant physiology group , Instituto de Ciencias Biológicas , Universidad de Talca , Talca , Chile
| | - Luis Morales-Quintana
- a Functional genomics, biochemistry and plant physiology group , Instituto de Ciencias Biológicas , Universidad de Talca , Talca , Chile.,c Multidisciplinary Agroindustry Research Laboratory , Carrera de Ingeniería en Informática, Universidad Autónoma de Chile , Talca , Chile.,d Instituto de Ciencias Biomédicas , Universidad Autónoma de Chile Sede Talca , Talca , del Maule , Chile
| |
Collapse
|
8
|
Computational study of FaEXPA1, a strawberry alpha expansin protein, through molecular modeling and molecular dynamics simulation studies. Comput Biol Chem 2018; 76:79-86. [DOI: 10.1016/j.compbiolchem.2018.05.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/26/2018] [Accepted: 05/15/2018] [Indexed: 11/22/2022]
|
9
|
Tovar-Herrera OE, Rodríguez M, Olarte-Lozano M, Sampedro-Guerrero JA, Guerrero A, Pinto-Cámara R, Alvarado-Affantranger X, Wood CD, Moran-Mirabal JM, Pastor N, Segovia L, Martínez-Anaya C. Analysis of the Binding of Expansin Exl1, from Pectobacterium carotovorum, to Plant Xylem and Comparison to EXLX1 from Bacillus subtilis. ACS OMEGA 2018; 3:7008-7018. [PMID: 30221235 PMCID: PMC6130903 DOI: 10.1021/acsomega.8b00406] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/11/2018] [Indexed: 05/27/2023]
Abstract
The plant xylem is a preferred niche for some important bacterial phytopathogens, some of them encoding expansin proteins, which bind plant cell walls. Yet, the identity of the substrate for bacterial expansins within the plant cell wall and the nature of its interaction with it are poorly known. Here, we determined the localization of two bacterial expansins with differing isoelectric points (and with differing binding patterns to cell wall extracts) on plant tissue through in vitro fluorophore labeling and confocal imaging. Differential localization was observed, in which Exl1 from Pectobacterium carotovorum located into the intercellular spaces between xylem vessels and adjacent cells of the plant xylem, whereas EXLX1 from Bacillus subtilis bound cell walls of most cell types. In isolated vascular tissue, however, both PcExl1 and BsEXLX1 preferentially bound to tracheary elements over the xylem fibers, even though both are composed of secondary cell walls. Fluorescence correlation spectroscopy, employed to analyze the interaction of expansins with isolated xylem, indicates that binding is governed by more than one factor, which could include interaction with more than one type of polymer in the fibers, such as cellulose and hemicellulose or pectin. Binding to different polysaccharides could explain the observed reduction of cellulolytic and xylanolytic activities in the presence of expansin, possibly because of competition for the substrate. Our findings are relevant for the comprehensive understanding of the pathogenesis by P. carotovorum during xylem invasion, a process in which Exl1 might be involved.
Collapse
Affiliation(s)
- Omar E. Tovar-Herrera
- Departamento
de Ingeniería Celular y Biocatálisis,
Instituto de Biotecnología, and Laboratorio Nacional de Microscopía
Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, 62210 Cuernavaca, Mexico
| | - Mabel Rodríguez
- Departamento
de Ingeniería Celular y Biocatálisis,
Instituto de Biotecnología, and Laboratorio Nacional de Microscopía
Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, 62210 Cuernavaca, Mexico
- Centro
de Investigación en Dinámica Celular-IICBA, Universidad
Autónoma del Estado de Morelos, Av. Universidad 1001, Chamilpa, 62209 Cuernavaca, Mexico
| | - Miguel Olarte-Lozano
- Departamento
de Ingeniería Celular y Biocatálisis,
Instituto de Biotecnología, and Laboratorio Nacional de Microscopía
Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, 62210 Cuernavaca, Mexico
| | - Jimmy Andrés Sampedro-Guerrero
- Departamento
de Ingeniería Celular y Biocatálisis,
Instituto de Biotecnología, and Laboratorio Nacional de Microscopía
Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, 62210 Cuernavaca, Mexico
| | - Adán Guerrero
- Departamento
de Ingeniería Celular y Biocatálisis,
Instituto de Biotecnología, and Laboratorio Nacional de Microscopía
Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, 62210 Cuernavaca, Mexico
| | - Raúl Pinto-Cámara
- Departamento
de Ingeniería Celular y Biocatálisis,
Instituto de Biotecnología, and Laboratorio Nacional de Microscopía
Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, 62210 Cuernavaca, Mexico
| | - Xóchitl Alvarado-Affantranger
- Departamento
de Ingeniería Celular y Biocatálisis,
Instituto de Biotecnología, and Laboratorio Nacional de Microscopía
Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, 62210 Cuernavaca, Mexico
| | - Christopher D. Wood
- Departamento
de Ingeniería Celular y Biocatálisis,
Instituto de Biotecnología, and Laboratorio Nacional de Microscopía
Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, 62210 Cuernavaca, Mexico
| | - Jose M. Moran-Mirabal
- Department
of Chemistry and Chemical Biology, McMaster
University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
| | - Nina Pastor
- Centro
de Investigación en Dinámica Celular-IICBA, Universidad
Autónoma del Estado de Morelos, Av. Universidad 1001, Chamilpa, 62209 Cuernavaca, Mexico
| | - Lorenzo Segovia
- Departamento
de Ingeniería Celular y Biocatálisis,
Instituto de Biotecnología, and Laboratorio Nacional de Microscopía
Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, 62210 Cuernavaca, Mexico
| | - Claudia Martínez-Anaya
- Departamento
de Ingeniería Celular y Biocatálisis,
Instituto de Biotecnología, and Laboratorio Nacional de Microscopía
Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, 62210 Cuernavaca, Mexico
| |
Collapse
|
10
|
Yang Y, Yu Y, Liang Y, Anderson CT, Cao J. A Profusion of Molecular Scissors for Pectins: Classification, Expression, and Functions of Plant Polygalacturonases. FRONTIERS IN PLANT SCIENCE 2018; 9:1208. [PMID: 30154820 PMCID: PMC6102391 DOI: 10.3389/fpls.2018.01208] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/27/2018] [Indexed: 05/21/2023]
Abstract
In plants, the construction, differentiation, maturation, and degradation of the cell wall are essential for development. Pectins, which are major constituents of primary cell walls in eudicots, function in multiple developmental processes through their synthesis, modification, and degradation. Several pectin modifying enzymes regulate pectin degradation via different modes of action. Polygalacturonases (PGs), which function in the last step of pectin degradation, are a crucial class of pectin-modifying enzymes. Based on differences in their hydrolyzing activities, PGs can be divided into three main types: exo-PGs, endo-PGs, and rhamno-PGs. Their functions were initially investigated based on the expression patterns of PG genes and measurements of total PG activity in organs. In most plant species, PGs are encoded by a large, multigene family. However, due to the lack of genome sequencing data in early studies, the number of identified PG genes was initially limited. Little was initially known about the evolution and expression patterns of PG family members in different species. Furthermore, the functions of PGs in cell dynamics and developmental processes, as well as the regulatory pathways that govern these functions, are far from fully understood. In this review, we focus on how recent studies have begun to fill in these blanks. On the basis of identified PG family members in multiple species, we review their structural characteristics, classification, and molecular evolution in terms of plant phylogenetics. We also highlight the diverse expression patterns and biological functions of PGs during various developmental processes, as well as their mechanisms of action in cell dynamic processes. How PG functions are potentially regulated by hormones, transcription factors, environmental factors, pH and Ca2+ is discussed, indicating directions for future research into PG function and regulation.
Collapse
Affiliation(s)
- Yang Yang
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture – Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
| | - Youjian Yu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
- Department of Horticulture, College of Agriculture and Food Science, Zhejiang A & F University, Hangzhou, China
| | - Ying Liang
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture – Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
| | - Charles T. Anderson
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, PA, United States
- Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, Pennsylvania, PA, United States
| | - Jiashu Cao
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture – Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
- *Correspondence: Jiashu Cao,
| |
Collapse
|
11
|
Keadtidumrongkul P, Suttangkakul A, Pinmanee P, Pattana K, Kittiwongwattana C, Apisitwanich S, Vuttipongchaikij S. Growth modulation effects of CBM2a under the control of AtEXP4 and CaMV35S promoters in Arabidopsis thaliana, Nicotiana tabacum and Eucalyptus camaldulensis. Transgenic Res 2017; 26:447-463. [PMID: 28349287 DOI: 10.1007/s11248-017-0015-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 03/21/2017] [Indexed: 11/29/2022]
Abstract
The expression of cell-wall-targeted Carbohydrate Binding Modules (CBMs) can alter cell wall properties and modulate growth and development in plants such as tobacco and potato. CBM2a identified in xylanase 10A from Cellulomonas fimi is of particular interest for its ability to bind crystalline cellulose. However, its potential for promoting plant growth has not been explored. In this work, we tested the ability of CBM2a to promote growth when expressed using both CaMV35S and a vascular tissue-specific promoter derived from Arabidopsis expansin4 (AtEXP4) in three plant species: Arabidopsis, Nicotiana tabacum and Eucalyptus camaldulensis. In Arabidopsis, the expression of AtEXP4pro:CBM2a showed trends for growth promoting effects including the increase of root and hypocotyl lengths and the enlargements of the vascular xylem area, fiber cells and vessel cells. However, in N. tabacum, the expression of CBM2a under the control of either CaMV35S or AtEXP4 promoter resulted in subtle changes in the plant growth, and the thickness of secondary xylem and vessel and fiber cell sizes were generally reduced in the transgenic lines with AtEXP4pro:CBM2a. In Eucalyptus, while transgenics expressing CaMV35S:CBM2a showed very subtle changes compared to wild type, those transgenics with AtEXP4pro:CBM2a showed increases in plant height, enlargement of xylem areas and xylem fiber and vessel cells. These data provide comparative effects of expressing CBM2a protein in different plant species, and this finding can be applied for plant biomass improvement.
Collapse
Affiliation(s)
- Pornthep Keadtidumrongkul
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Anongpat Suttangkakul
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
- Special Research Unit in Microalgal Molecular Genetics and Functional Genomics (MMGFG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
- Center of Advanced Studies for Tropical Natural Resources, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok, 10900, Thailand
| | - Phitsanu Pinmanee
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Kanokwan Pattana
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Chokchai Kittiwongwattana
- Department of Biology, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Chalongkrung Road, Ladkrabang, Bangkok, 10520, Thailand
| | - Somsak Apisitwanich
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
- Special Research Unit in Microalgal Molecular Genetics and Functional Genomics (MMGFG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
- Center of Advanced Studies for Tropical Natural Resources, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok, 10900, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Supachai Vuttipongchaikij
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand.
- Special Research Unit in Microalgal Molecular Genetics and Functional Genomics (MMGFG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand.
- Center of Advanced Studies for Tropical Natural Resources, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok, 10900, Thailand.
| |
Collapse
|
12
|
Mateluna P, Valenzuela-Riffo F, Morales-Quintana L, Herrera R, Ramos P. Transcriptional and computational study of expansins differentially expressed in response to inclination in radiata pine. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 115:12-24. [PMID: 28300728 DOI: 10.1016/j.plaphy.2017.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 06/06/2023]
Abstract
Plants have the ability to reorient their vertical growth when exposed to inclination. This response can be as quick as 2 h in inclined young pine (Pinus radiata D. Don) seedlings, with over accumulation of lignin observed after 9 days s. Several studies have identified expansins involved in cell expansion among other developmental processes in plants. Six putative expansin genes were identified in cDNA libraries isolated from inclined pine stems. A differential transcript abundance was observed by qPCR analysis over a time course of inclination. Five genes changed their transcript accumulation in both stem sides in a spatial and temporal manner compared with non-inclined stem. To compare these expansin genes, and to suggest a possible mechanism of action at molecular level, the structures of the predicted proteins were built by comparative modeling methodology. An open groove on the surface of the proteins composed of conserved zresidues was observed. Using a cellulose polymer as ligand the protein-ligand interaction was evaluated, with the results showing differences in the protein-ligand interaction mode. Differences in the binding energy interaction can be explained by changes in some residues that generate differences in electrostatic surface in the open groove region, supporting the participation of six members of multifamily proteins in this specific process. The data suggests participation of different expansin proteins in the dissembling and remodeling of the complex cell wall matrix during the reorientation response to inclination.
Collapse
Affiliation(s)
- Patricio Mateluna
- Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile
| | - Felipe Valenzuela-Riffo
- Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile
| | - Luis Morales-Quintana
- Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile
| | - Raúl Herrera
- Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile
| | - Patricio Ramos
- Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile.
| |
Collapse
|
13
|
Perini MA, Sin IN, Villarreal NM, Marina M, Powell ALT, Martínez GA, Civello PM. Overexpression of the carbohydrate binding module from Solanum lycopersicum expansin 1 (Sl-EXP1) modifies tomato fruit firmness and Botrytis cinerea susceptibility. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 113:122-132. [PMID: 28196350 DOI: 10.1016/j.plaphy.2017.01.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 01/29/2017] [Accepted: 01/31/2017] [Indexed: 05/02/2023]
Abstract
Firmness, one of the major determinants of postharvest quality and shelf life of fruits is determined by the mechanical resistance imposed by the plant cell wall. Expansins (EXP) are involved in the non-hydrolytic metabolic disassembly of plant cell walls, particularly in processes where relaxation of the wall is necessary, such as fruit development and ripening. As many carbohydrate-associated proteins, expansins have a putative catalytic domain and a carbohydrate-binding module (CBM). Several strategies have been pursued to control the loss of fruit firmness during storage. Most of the approaches have been to suppress the expression of key enzymes involved in the cell wall metabolism, but this is the first time that a CBM was overexpressed in a fruit aimed to control cell wall degradation and fruit softening. We report the constitutive overexpression of the CBM of Solanum lycopersicum expansin 1 (CBM-SlExp1) in the cell wall of tomato plants, and its effects on plant and fruit phenotype. Overexpression of CBM-SlExp1 increased the mechanical resistance of leaves, whereas it did not modify plant growth and general phenotype. However, transgenic plants showed delayed softening and firmer fruits. In addition, fruits were less susceptible to Botrytis cinerea infection, and the "in vitro" growth of the fungus on media containing AIR from the pericarp of transgenic fruits was lower than controls. The possibility of overexpressing a CBM of a fruit-specific expansin to control cell wall degradation and fruit softening is discussed.
Collapse
Affiliation(s)
- M A Perini
- INFIVE (CONICET-UNLP), 113 n°495 - C.c 327, La Plata, 1900, Pcia Buenos Aires, Argentina; Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, 1900, La Plata, Pcia Buenos Aires, Argentina
| | - I N Sin
- INFIVE (CONICET-UNLP), 113 n°495 - C.c 327, La Plata, 1900, Pcia Buenos Aires, Argentina
| | - N M Villarreal
- IIB-INTECH (CONICET-UNSAM), Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Avenida Intendente Marino km 8,2, B7130IWA, Chascomús. Pcia, Buenos Aires, Argentina
| | - M Marina
- IIB-INTECH (CONICET-UNSAM), Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Avenida Intendente Marino km 8,2, B7130IWA, Chascomús. Pcia, Buenos Aires, Argentina
| | - A L T Powell
- Plant Sciences Department, University of California, Davis, CA 95616, USA
| | - G A Martínez
- IIB-INTECH (CONICET-UNSAM), Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Avenida Intendente Marino km 8,2, B7130IWA, Chascomús. Pcia, Buenos Aires, Argentina; Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, 1900, La Plata, Pcia Buenos Aires, Argentina
| | - P M Civello
- INFIVE (CONICET-UNLP), 113 n°495 - C.c 327, La Plata, 1900, Pcia Buenos Aires, Argentina; Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, 1900, La Plata, Pcia Buenos Aires, Argentina.
| |
Collapse
|
14
|
Liu Y, Zhang Z, Fu J, Wang G, Wang J, Liu Y. Transcriptome Analysis of Maize Immature Embryos Reveals the Roles of Cysteine in Improving Agrobacterium Infection Efficiency. FRONTIERS IN PLANT SCIENCE 2017; 8:1778. [PMID: 29089955 PMCID: PMC5651077 DOI: 10.3389/fpls.2017.01778] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 09/29/2017] [Indexed: 05/14/2023]
Abstract
Maize Agrobacterium-mediated transformation efficiency has been greatly improved in recent years. Antioxidants, such as, cysteine, can significantly improve maize transformation frequency through improving the Agrobacterium infection efficiency. However, the mechanism underlying the transformation improvement after cysteine exposure has not been elucidated. In this study, we showed that the addition of cysteine to the co-cultivation medium significantly increased the Agrobacterium infection efficiency of hybrid HiII and inbred line Z31 maize embryos. Reactive oxygen species contents were higher in embryos treated with cysteine than that without cysteine. We further investigated the mechanism behind cysteine-related infection efficiency increase using transcriptome analysis. The results showed that the cysteine treatment up-regulated 939 genes and down-regulated 549 genes in both Z31 and HiII. Additionally, more differentially expressed genes were found in HiII embryos than those in Z31 embryos, suggesting that HiII was more sensitive to the cysteine treatment than Z31. GO analysis showed that the up-regulated genes were mainly involved in the oxidation reduction process. The up-regulation of these genes could help maize embryos to cope with the oxidative stress stimulated by Agrobacterium infection. The down-regulated genes were mainly involved in the cell wall and membrane metabolism, such as, aquaporin and expansin genes. Decreased expression of these cell wall integrity genes could loosen the cell wall, thereby improving the entry of Agrobacterium into plant cells. This study offers insight into the role of cysteine in improving Agrobacterium-mediated transformation of maize immature embryos.
Collapse
Affiliation(s)
- Yan Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiqiang Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junjie Fu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guoying Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianhua Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- *Correspondence: Jianhua Wang
| | - Yunjun Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Yunjun Liu
| |
Collapse
|
15
|
Wang Q, Chen L, Lin H, Yu D, Shen Q, Wan L, Zhao Y. The binding, synergistic and structural characteristics of BsEXLX1 for loosening the main components of lignocellulose: Lignin, xylan, and cellulose. Enzyme Microb Technol 2016; 92:67-75. [DOI: 10.1016/j.enzmictec.2016.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 06/27/2016] [Accepted: 06/27/2016] [Indexed: 01/03/2023]
|
16
|
Sin IN, Perini MA, Martínez GA, Civello PM. Analysis of the carbohydrate-binding-module from Fragaria x ananassa α-L-arabinofuranosidase 1. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 107:96-103. [PMID: 27262101 DOI: 10.1016/j.plaphy.2016.05.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/18/2016] [Accepted: 05/18/2016] [Indexed: 06/05/2023]
Abstract
α-L-arabinofuranosidases (EC 3.2.1.55) are enzymes involved in the catabolism of several cell-wall polysaccharides such as pectins and hemicelluloses, catalyzing the hydrolysis of terminal non-reducing α-L-arabinofuranosil residues. Bioinformatic analysis of the aminoacidic sequences of Fragaria x ananassa α-L-arabinofuranosidases predict a putative carbohydrate-binding-module of the family CBM_4_9, associated to a wide range of carbohydrate affinities. In this study, we report the characterization of the binding affinity profile to different cell wall polysaccharides of the putative CBM of α-L-arabinofuranosidase 1 from Fragaria x ananassa (CBM-FaARA1). The sequence encoding for the putative CBM was cloned and expressed in Escherichia coli, and the resultant recombinant protein was purified from inclusion bodies by a Nickel affinity chromatography under denaturing conditions. The refolded recombinant protein was then subjected to binding assays and affinity gel electrophoresis, which indicated its ability to bind cellulose and also high affinity for homogalacturonans.
Collapse
Affiliation(s)
- I N Sin
- INFIVE (CONICET-UNLP), Instituto de Fisiología Vegetal, Diag. 113 n°495 - C.c 327, 1900, La Plata, Argentina
| | - M A Perini
- INFIVE (CONICET-UNLP), Instituto de Fisiología Vegetal, Diag. 113 n°495 - C.c 327, 1900, La Plata, Argentina
| | - G A Martínez
- IIB-INTECH (CONICET-UNSAM), Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Avenida Intendente Marino km 8,2, B7130IWA, Chascomús, Pcia. Buenos Aires, Argentina; Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, 1900, La Plata, Argentina
| | - P M Civello
- INFIVE (CONICET-UNLP), Instituto de Fisiología Vegetal, Diag. 113 n°495 - C.c 327, 1900, La Plata, Argentina; Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, 1900, La Plata, Argentina.
| |
Collapse
|
17
|
Cosgrove DJ. Plant expansins: diversity and interactions with plant cell walls. CURRENT OPINION IN PLANT BIOLOGY 2015; 25:162-72. [PMID: 26057089 PMCID: PMC4532548 DOI: 10.1016/j.pbi.2015.05.014] [Citation(s) in RCA: 289] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/11/2015] [Accepted: 05/15/2015] [Indexed: 05/18/2023]
Abstract
Expansins were discovered two decades ago as cell wall proteins that mediate acid-induced growth by catalyzing loosening of plant cell walls without lysis of wall polymers. In the interim our understanding of expansins has gotten more complex through bioinformatic analysis of expansin distribution and evolution, as well as through expression analysis, dissection of the upstream transcription factors regulating expression, and identification of additional classes of expansin by sequence and structural similarities. Molecular analyses of expansins from bacteria have identified residues essential for wall loosening activity and clarified the bifunctional nature of expansin binding to complex cell walls. Transgenic modulation of expansin expression modifies growth and stress physiology of plants, but not always in predictable or even understandable ways.
Collapse
Affiliation(s)
- Daniel J Cosgrove
- Department of Biology, Penn State University, University Park, PA 16802, USA.
| |
Collapse
|
18
|
Nardi CF, Villarreal NM, Rossi FR, Martínez S, Martínez GA, Civello PM. Overexpression of the carbohydrate binding module of strawberry expansin2 in Arabidopsis thaliana modifies plant growth and cell wall metabolism. PLANT MOLECULAR BIOLOGY 2015; 88:101-17. [PMID: 25837738 DOI: 10.1007/s11103-015-0311-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/18/2015] [Indexed: 05/03/2023]
Abstract
Several cell wall enzymes are carbohydrate active enzymes that contain a putative Carbohydrate Binding Module (CBM) in their structures. The main function of these non-catalitic modules is to facilitate the interaction between the enzyme and its substrate. Expansins are non-hydrolytic proteins present in the cell wall, and their structure includes a CBM in the C-terminal that bind to cell wall polymers such as cellulose, hemicelluloses and pectins. We studied the ability of the Expansin2 CBM (CBMFaEXP2) from strawberry (Fragaria x ananassa, Duch) to modify the cell wall of Arabidopsis thaliana. Plants overexpressing CBMFaEXP2 were characterized phenotypically and biochemically. Transgenic plants were taller than wild type, possibly owing to a faster growth of the main stem. Cell walls of CBMFaEXP2-expressing plants were thicker and contained higher amount of pectins. Lower activity of a set of enzymes involved in cell wall degradation (PG, β-Gal, β-Xyl) was found, and the expression of the corresponding genes (AtPG, Atβ-Gal, Atβ-Xyl5) was reduced also. In addition, a decrease in the expression of two A. thaliana Expansin genes (AtEXP5 and AtEXP8) was observed. Transgenic plants were more resistant to Botrytis cinerea infection than wild type, possibly as a consequence of higher cell wall integrity. Our results support the hypothesis that the overexpression of a putative CBM is able to modify plant cell wall structure leading to modulation of wall loosening and plant growth. These findings might offer a tool to controlling physiological processes where cell wall disassembly is relevant, such as fruit softening.
Collapse
Affiliation(s)
- Cristina F Nardi
- IIB-INTECH (CONICET-UNSAM), Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Camino de Circunvalación Laguna, Km 8, (B7130IWA) Chascomús, Pcia, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
19
|
Georgelis N, Nikolaidis N, Cosgrove DJ. Bacterial expansins and related proteins from the world of microbes. Appl Microbiol Biotechnol 2015; 99:3807-23. [PMID: 25833181 PMCID: PMC4427351 DOI: 10.1007/s00253-015-6534-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/05/2015] [Accepted: 03/09/2015] [Indexed: 12/31/2022]
Abstract
The discovery of microbial expansins emerged from studies of the mechanism of plant cell growth and the molecular basis of plant cell wall extensibility. Expansins are wall-loosening proteins that are universal in the plant kingdom and are also found in a small set of phylogenetically diverse bacteria, fungi, and other organisms, most of which colonize plant surfaces. They loosen plant cell walls without detectable lytic activity. Bacterial expansins have attracted considerable attention recently for their potential use in cellulosic biomass conversion for biofuel production, as a means to disaggregate cellulosic structures by nonlytic means ("amorphogenesis"). Evolutionary analysis indicates that microbial expansins originated by multiple horizontal gene transfers from plants. Crystallographic analysis of BsEXLX1, the expansin from Bacillus subtilis, shows that microbial expansins consist of two tightly packed domains: the N-terminal domain D1 has a double-ψ β-barrel fold similar to glycosyl hydrolase family-45 enzymes but lacks catalytic residues usually required for hydrolysis; the C-terminal domain D2 has a unique β-sandwich fold with three co-linear aromatic residues that bind β-1,4-glucans by hydrophobic interactions. Genetic deletion of expansin in Bacillus and Clavibacter cripples their ability to colonize plant tissues. We assess reports that expansin addition enhances cellulose breakdown by cellulase and compare expansins with distantly related proteins named swollenin, cerato-platanin, and loosenin. We end in a speculative vein about the biological roles of microbial expansins and their potential applications. Advances in this field will be aided by a deeper understanding of how these proteins modify cellulosic structures.
Collapse
Affiliation(s)
| | - Nikolas Nikolaidis
- Department of Biological Science, California State University, Fullerton, CA 92831, USA
| | - Daniel J. Cosgrove
- Department of Biology, Penn State University, University Park, PA 16802, USA
| |
Collapse
|
20
|
Gaete-Eastman C, Morales-Quintana L, Herrera R, Moya-León MA. In-silico analysis of the structure and binding site features of an α-expansin protein from mountain papaya fruit (VpEXPA2), through molecular modeling, docking, and dynamics simulation studies. J Mol Model 2015; 21:115. [PMID: 25863690 DOI: 10.1007/s00894-015-2656-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 03/16/2015] [Indexed: 11/25/2022]
Abstract
Fruit softening is associated to cell wall modifications produced by a set of hydrolytic enzymes and proteins. Expansins are proteins with no catalytic activity, which have been associated with several processes during plant growth and development. A role for expansins has been proposed during softening of fruits, and many fruit-specific expansins have been identified in a variety of species. A 3D model for VpEXPA2, an α-expansin involved in softening of Vasconcellea pubescens fruit, was built for the first time by comparative modeling strategy. The model was validated and refined by molecular dynamics simulation. The VpEXPA2 model shows a cellulose binding domain with a β-sandwich structure, and a catalytic domain with a similar structure to the catalytic core of endoglucanase V (EGV) from Humicola insolens, formed by six β-strands with interconnected loops. VpEXPA2 protein contains essential structural moieties related to the catalytic mechanism of EGV, such as the conserved HFD motif. Nevertheless, changes in the catalytic environment are observed in the protein model, influencing its mode of action. The lack of catalytic activity of this expansin and its preference for cellulose are discussed in light of the structural information obtained from the VpEXPA2 protein model, regarding the distance between critical amino acid residues. Finally, the VpEXPA2 model improves our understanding on the mechanism of action of α-expansins on plant cell walls during softening of V. pubescens fruit.
Collapse
Affiliation(s)
- Carlos Gaete-Eastman
- Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, Casilla 747, Talca, Chile,
| | | | | | | |
Collapse
|
21
|
Boron AK, Van Loock B, Suslov D, Markakis MN, Verbelen JP, Vissenberg K. Over-expression of AtEXLA2 alters etiolated arabidopsis hypocotyl growth. ANNALS OF BOTANY 2015; 115:67-80. [PMID: 25492062 PMCID: PMC4284114 DOI: 10.1093/aob/mcu221] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND AIMS Plant stature and shape are largely determined by cell elongation, a process that is strongly controlled at the level of the cell wall. This is associated with the presence of many cell wall proteins implicated in the elongation process. Several proteins and enzyme families have been suggested to be involved in the controlled weakening of the cell wall, and these include xyloglucan endotransglucosylases/hydrolases (XTHs), yieldins, lipid transfer proteins and expansins. Although expansins have been the subject of much research, the role and involvement of expansin-like genes/proteins remain mostly unclear. This study investigates the expression and function of AtEXLA2 (At4g38400), a member of the expansin-like A (EXLA) family in arabidposis, and considers its possible role in cell wall metabolism and growth. METHODS Transgenic plants of Arabidopsis thaliana were grown, and lines over-expressing AtEXLA2 were identified. Plants were grown in the dark, on media containing growth hormones or precursors, or were gravistimulated. Hypocotyls were studied using transmission electron microscopy and extensiometry. Histochemical GUS (β-glucuronidase) stainings were performed. KEY RESULTS AtEXLA2 is one of the three EXLA members in arabidopsis. The protein lacks the typical domain responsible for expansin activity, but contains a presumed cellulose-interacting domain. Using promoter::GUS lines, the expression of AtEXLA2 was seen in germinating seedlings, hypocotyls, lateral root cap cells, columella cells and the central cylinder basally to the elongation zone of the root, and during different stages of lateral root development. Furthermore, promoter activity was detected in petioles, veins of leaves and filaments, and also in the peduncle of the flowers and in a zone just beneath the papillae. Over-expression of AtEXLA2 resulted in an increase of >10 % in the length of dark-grown hypocotyls and in slightly thicker walls in non-rapidly elongating etiolated hypocotyl cells. Biomechanical analysis by creep tests showed that AtEXLA2 over-expression may decrease the wall strength in arabidopsis hypocotyls. CONCLUSIONS It is concluded that AtEXLA2 may function as a positive regulator of cell elongation in the dark-grown hypocotyl of arabidopsis by possible interference with cellulose metabolism, deposition or its organization.
Collapse
MESH Headings
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Arabidopsis/metabolism
- Arabidopsis/ultrastructure
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Base Sequence
- Cell Wall/metabolism
- Cell Wall/ultrastructure
- Cloning, Molecular
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- Gene Expression Regulation, Plant
- Microscopy, Electron, Transmission
- Molecular Sequence Data
- Phylogeny
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/growth & development
- Plants, Genetically Modified/metabolism
- Plants, Genetically Modified/ultrastructure
Collapse
Affiliation(s)
- Agnieszka Karolina Boron
- Biology Department, Plant Growth and Development, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium and Saint-Petersburg State University, Faculty of Biology, Department of Plant Physiology and Biochemistry, Universitetskaya emb. 7/9, 199034 Saint-Petersburg, Russia
| | - Bram Van Loock
- Biology Department, Plant Growth and Development, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium and Saint-Petersburg State University, Faculty of Biology, Department of Plant Physiology and Biochemistry, Universitetskaya emb. 7/9, 199034 Saint-Petersburg, Russia
| | - Dmitry Suslov
- Biology Department, Plant Growth and Development, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium and Saint-Petersburg State University, Faculty of Biology, Department of Plant Physiology and Biochemistry, Universitetskaya emb. 7/9, 199034 Saint-Petersburg, Russia Biology Department, Plant Growth and Development, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium and Saint-Petersburg State University, Faculty of Biology, Department of Plant Physiology and Biochemistry, Universitetskaya emb. 7/9, 199034 Saint-Petersburg, Russia
| | - Marios Nektarios Markakis
- Biology Department, Plant Growth and Development, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium and Saint-Petersburg State University, Faculty of Biology, Department of Plant Physiology and Biochemistry, Universitetskaya emb. 7/9, 199034 Saint-Petersburg, Russia
| | - Jean-Pierre Verbelen
- Biology Department, Plant Growth and Development, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium and Saint-Petersburg State University, Faculty of Biology, Department of Plant Physiology and Biochemistry, Universitetskaya emb. 7/9, 199034 Saint-Petersburg, Russia
| | - Kris Vissenberg
- Biology Department, Plant Growth and Development, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium and Saint-Petersburg State University, Faculty of Biology, Department of Plant Physiology and Biochemistry, Universitetskaya emb. 7/9, 199034 Saint-Petersburg, Russia
| |
Collapse
|