1
|
Nazir MM, Li G, Nawaz M, Noman M, Zulfiqar F, Ahmed T, Jalil S, Ijaz M, Kuzyakov Y, Du D. Ionic and nano calcium to reduce cadmium and arsenic toxicity in plants: Review of mechanisms and potentials. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109169. [PMID: 39369650 DOI: 10.1016/j.plaphy.2024.109169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/12/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
Contamination of agricultural soils with heavy metal(loid)s like arsenic (As) and cadmium (Cd) is an ever increasing concern for crop production, quality, and global food security. Numerous in-situ and ex-situ remediation approaches have been developed to reduce As and Cd contamination in soils. However, field-scale applications of conventional remediation techniques are limited due to the associated environmental risks, low efficacy, and large capital investments. Recently, calcium (Ca) and Ca-based nano-formulations have emerged as promising solutions with the large potential to mitigate As and Cd toxicity in soil for plants. This review provides comprehensive insights into the phytotoxic effects of As and Cd stress/toxicity and discusses the applications of Ca-based ionic and nano-agrochemicals to alleviate As and Cd toxicity in important crops such as rice, wheat, maize, and barley. Further, various molecular and physiological mechanisms induced by ionic and nano Ca to mitigate As and Cd stress/toxicity in plants are discussed. This review also critically analyzes the efficiency of these emerging Ca-based approaches, both ionic and nano-formulations, in mitigating As and Cd toxicity in comparison to conventional remediation techniques. Additionally, future perspectives and ecological concerns of the remediation approaches encompassing ionic and nano Ca have been discussed. Overall, the review provides an updated and in-depth knowledge for developing sustainable and effective strategies to address the challenges posed by As and Cd contamination in agricultural crops.
Collapse
Affiliation(s)
- Muhammad Mudassir Nazir
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, China
| | - Guanlin Li
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Mohsin Nawaz
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, China
| | - Muhammad Noman
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; College of Arts and Sciences, Gulf University for Science and Technology, Kuwait
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Temoor Ahmed
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Department of Life Sciences, Western Caspian University, Baku, Azerbaijan; MEU Research Unit, Middle East University, Amman, Jordan
| | - Sanaullah Jalil
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Munazza Ijaz
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, University of Göttingen, Göttingen, Germany
| | - Daolin Du
- Jingjiang College, Institute of Environment and Ecology, School of Emergency Management, School of Environment and Safety Engineering, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
2
|
El-Sappah AH, Zhu Y, Huang Q, Chen B, Soaud SA, Abd Elhamid MA, Yan K, Li J, El-Tarabily KA. Plants' molecular behavior to heavy metals: from criticality to toxicity. FRONTIERS IN PLANT SCIENCE 2024; 15:1423625. [PMID: 39280950 PMCID: PMC11392792 DOI: 10.3389/fpls.2024.1423625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/22/2024] [Indexed: 09/18/2024]
Abstract
The contamination of soil and water with high levels of heavy metals (HMs) has emerged as a significant obstacle to agricultural productivity and overall crop quality. Certain HMs, although serving as essential micronutrients, are required in smaller quantities for plant growth. However, when present in higher concentrations, they become very toxic. Several studies have shown that to balance out the harmful effects of HMs, complex systems are needed at the molecular, physiological, biochemical, cellular, tissue, and whole plant levels. This could lead to more crops being grown. Our review focused on HMs' resources, occurrences, and agricultural implications. This review will also look at how plants react to HMs and how they affect seed performance as well as the benefits that HMs provide for plants. Furthermore, the review examines HMs' transport genes in plants and their molecular, biochemical, and metabolic responses to HMs. We have also examined the obstacles and potential for HMs in plants and their management strategies.
Collapse
Affiliation(s)
- Ahmed H El-Sappah
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Yumin Zhu
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Qiulan Huang
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Bo Chen
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Salma A Soaud
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Kuan Yan
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Jia Li
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
3
|
Zhang M, Gao JY, Dong SC, Chang MH, Zhu JX, Guo DL, Guo CH, Bi YD. Alfalfa MsbHLH115 confers tolerance to cadmium stress through activating the iron deficiency response in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2024; 15:1358673. [PMID: 38410731 PMCID: PMC10894947 DOI: 10.3389/fpls.2024.1358673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/29/2024] [Indexed: 02/28/2024]
Abstract
Cadmium (Cd) pollution severely affects plant growth and development, posing risks to human health throughout the food chain. Improved iron (Fe) nutrients could mitigate Cd toxicity in plants, but the regulatory network involving Cd and Fe interplay remains unresolved. Here, a transcription factor gene of alfalfa, MsbHLH115 was verified to respond to iron deficiency and Cd stress. Overexpression of MsbHLH115 enhanced tolerance to Cd stress, showing better growth and less ROS accumulation in Arabidopsis thaliana. Overexpression of MsbHLH115 significantly enhanced Fe and Zn accumulation and did not affect Cd, Mn, and Cu concentration in Arabidopsis. Further investigations revealed that MsbHLH115 up-regulated iron homeostasis regulation genes, ROS-related genes, and metal chelation and detoxification genes, contributing to attenuating Cd toxicity. Y1H, EMSA, and LUC assays confirmed the physical interaction between MsbHLH115 and E-box, which is present in the promoter regions of most of the above-mentioned iron homeostasis regulatory genes. The transient expression experiment showed that MsbHLH115 interacted with MsbHLH121pro. The results suggest that MsbHLH115 may directly regulate the iron-deficiency response system and indirectly regulate the metal detoxification response mechanism, thereby enhancing plant Cd tolerance. In summary, enhancing iron accumulation through transcription factor regulation holds promise for improving plant tolerance to Cd toxicity, and MsbHLH115 is a potential candidate for addressing Cd toxicity issues.
Collapse
Affiliation(s)
- Miao Zhang
- Heilongjiang Provincial Key Laboratory of Molecular Cell Genetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Jing-Yun Gao
- Heilongjiang Provincial Key Laboratory of Molecular Cell Genetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Shi-Chen Dong
- Heilongjiang Provincial Key Laboratory of Molecular Cell Genetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Meng-Han Chang
- Heilongjiang Provincial Key Laboratory of Molecular Cell Genetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Jing-Xuan Zhu
- Heilongjiang Provincial Key Laboratory of Molecular Cell Genetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Dong-Lin Guo
- Heilongjiang Provincial Key Laboratory of Molecular Cell Genetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Chang-Hong Guo
- Heilongjiang Provincial Key Laboratory of Molecular Cell Genetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Ying-Dong Bi
- Institute of Crops Tillage and Cultivation, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
4
|
Zhang M, Chang MH, Li H, Shu YJ, Bai Y, Gao JY, Zhu JX, Dong XY, Guo DL, Guo CH. MsYSL6, A Metal Transporter Gene of Alfalfa, Increases Iron Accumulation and Benefits Cadmium Resistance. PLANTS (BASEL, SWITZERLAND) 2023; 12:3485. [PMID: 37836225 PMCID: PMC10575464 DOI: 10.3390/plants12193485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
Iron (Fe) is necessary for plant growth and development. The mechanism of uptake and translocation in Cadmium (Cd) is similar to iron, which shares iron transporters. Yellow stripe-like transporter (YSL) plays a pivotal role in transporting iron and other metal ions in plants. In this study, MsYSL6 and its promoter were cloned from leguminous forage alfalfa. The transient expression of MsYSL6-GFP indicated that MsYSL6 was localized to the plasma membrane and cytoplasm. The expression of MsYSL6 was induced in alfalfa by iron deficiency and Cd stress, which was further proved by GUS activity driven by the MsYSL6 promoter. To further identify the function of MsYSL6, it was heterologously overexpressed in tobacco. MsYSL6-overexpressed tobacco showed better growth and less oxidative damage than WT under Cd stress. MsYSL6 overexpression elevated Fe and Cd contents and induced a relatively high Fe translocation rate in tobacco under Cd stress. The results suggest that MsYSL6 might have a dual function in the absorption of Fe and Cd, playing a role in the competitive absorption between Fe and Cd. MsYSL6 might be a regulatory factor in plants to counter Cd stress. This study provides a novel gene for application in heavy metal enrichment or phytoremediation and new insights into plant tolerance to toxic metals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dong-Lin Guo
- Heilongjiang Provincial Key Laboratory of Molecular Cell Genetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; (M.Z.); (M.-H.C.); (H.L.); (Y.-J.S.); (Y.B.); (J.-Y.G.); (J.-X.Z.); (X.-Y.D.)
| | - Chang-Hong Guo
- Heilongjiang Provincial Key Laboratory of Molecular Cell Genetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; (M.Z.); (M.-H.C.); (H.L.); (Y.-J.S.); (Y.B.); (J.-Y.G.); (J.-X.Z.); (X.-Y.D.)
| |
Collapse
|
5
|
Qu M, Song J, Ren H, Zhao B, Zhang J, Ren B, Liu P. Differences of cadmium uptake and accumulation in roots of two maize varieties (Zea mays L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:96993-97004. [PMID: 37584802 DOI: 10.1007/s11356-023-29340-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 08/10/2023] [Indexed: 08/17/2023]
Abstract
Different maize varieties respond differentially to cadmium (Cd) stress. As the first organ in contact with the soil, the response of the root is particularly important. However, the physiological mechanisms that determine the response are not well defined. Here, we compared the differences in Cd-induced related gene expression, ionic homeostasis, and ultrastructural changes in roots of Cd-tolerant maize variety (XR57) and Cd-sensitive maize variety (LY296), and assessed their effects on Cd uptake and accumulation. Our findings indicate that XR57 absorbed a significantly lower Cd than LY296 did, and that the expression levels of genes related to Cd uptake (ZmNRAMP5 and ZmZIP4) and efflux (ZmABCG4) in the root were consistent with the Cd absorption at the physiological levels. Compared with LY296, the lower Cd concentration in the roots of XR57 caused less interference with the ion balance. Transmission electron microscope images revealed that the roots from XR57 exposed to Cd had developed thicker cell walls than LY296. In addition, the large increase ZmABCC1 and ZmABCC2 expression levels in XR57 mediated the appearance of numerous electron-dense granules in the vacuoles present in the roots. As a result, the high Cd tolerance of XR57 is the result of a multi-level response that involves increased resistance to Cd uptake, a stronger capacity for vacuolar regionalization, and the formation of thicker cell walls. These findings may provide a theoretical basis for maize cultivation in Cd-contaminated areas.
Collapse
Affiliation(s)
- Mengxue Qu
- College of Agronomy, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Jie Song
- College of Agronomy, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Hao Ren
- College of Agronomy, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Bin Zhao
- College of Agronomy, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Jiwang Zhang
- College of Agronomy, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Baizhao Ren
- College of Agronomy, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Peng Liu
- College of Agronomy, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
6
|
Nosek M, Kaczmarczyk A, Jędrzejczyk RJ, Supel P, Kaszycki P, Miszalski Z. Expression of Genes Involved in Heavy Metal Trafficking in Plants Exposed to Salinity Stress and Elevated Cd Concentrations. PLANTS 2020; 9:plants9040475. [PMID: 32283631 PMCID: PMC7238198 DOI: 10.3390/plants9040475] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 03/26/2020] [Accepted: 04/07/2020] [Indexed: 11/16/2022]
Abstract
Many areas intended for crop production suffer from the concomitant occurrence of heavy metal pollution and elevated salinity; therefore, halophytes seem to represent a promising perspective for the bioremediation of contaminated soils. In this study, the influence of Cd treatment (0.01-10.0 mM) and salinity stress (0.4 M NaCl) on the expression of genes involved in heavy metal uptake (irt2-iron-regulated protein 2, zip4-zinc-induced protein 4), vacuolar sequestration (abcc2-ATP-binding cassette 2, cax4-cation exchanger 2 pcs1-phytochelatin synthase 1) and translocation into aerial organs (hma4-heavy metal ATPase 4) were analyzed in a soil-grown semi-halophyte Mesembryanthemum crystallinum. The upregulation of irt2 expression induced by salinity was additionally enhanced by Cd treatment. Such changes were not observed for zip4. Stressor-induced alterations in abcc2, cax4, hma4 and pcs1 expression were most pronounced in the root tissue, and the expression of cax4, hma4 and pcs1 was upregulated in response to salinity and Cd. However, the cumulative effect of both stressors, similar to the one described for irt2, was observed only in the case of pcs1. The importance of salt stress in the irt2 expression regulation mechanism is proposed. To the best of our knowledge, this study is the first to report the combined effect of salinity and heavy metal stress on genes involved in heavy metal trafficking.
Collapse
Affiliation(s)
- Michał Nosek
- Institute of Biology, Pedagogical University, Podchorążych 2, 30-084 Kraków, Poland
- Correspondence: e-mail: ; Tel.: +48-12-662-78-32
| | - Adriana Kaczmarczyk
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (A.K.); (Z.M.)
| | - Roman J. Jędrzejczyk
- Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Kraków, Poland;
| | - Paulina Supel
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. 29 Listopada 54, 31-425 Kraków, Poland; (P.S.); (P.K.)
| | - Paweł Kaszycki
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. 29 Listopada 54, 31-425 Kraków, Poland; (P.S.); (P.K.)
| | - Zbigniew Miszalski
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (A.K.); (Z.M.)
- Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Kraków, Poland;
| |
Collapse
|
7
|
Panthri M, Gupta M. Facets of iron in arsenic exposed Oryza sativa varieties: A manifestation of plant's adjustment at morpho-biochemical and enzymatic levels ☆. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113289. [PMID: 31606664 DOI: 10.1016/j.envpol.2019.113289] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/12/2019] [Accepted: 09/19/2019] [Indexed: 06/10/2023]
Abstract
Rice consumption is one of the primary sources of arsenic (As) exposure as the grains contain relatively higher concentration of inorganic As. Abundant studies on the ability of iron (Fe) plaque in hampering As uptake by plants has been reported earlier. However, little is known about its role in the mitigation of As mediated oxidative damage in rice plants. The present study highlights the effect of As and Fe co-supplementation on growth response, oxidative stress, Fe uptake related enzymes and nutrient status in rice varieties. Eight different Indica rice varieties were screened and finally four varieties (Varsha, Jaya, PB-1 and IR-64) were selected for detailed investigations. Improved germination and chlorophyll/protein levels during As+Fe co-exposure indicate healthier plants than As(III) treated ones. Interestingly Fe was found act both as an antagonist and also as a synergist of As treatments. It acted by reducing As translocation and improving the nutritional levels and enhancing the oxidative stress. Fe uptake related enzymes (nitrite reductase and ferric chelate reductase) and phytosiderophores analysis revealed that Fe supplementation can reduce its deficiency in rice plants. Morpho-biochemical, oxidative stress and nutrient analysis symbolizes higher tolerance of PB-1 towards As, while Varsha being most sensitive, efficiently combated the As(III) stress in the presence of Fe.
Collapse
Affiliation(s)
- Medha Panthri
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
| | - Meetu Gupta
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
8
|
Ben Abdallah H, Mai HJ, Slatni T, Fink-Straube C, Abdelly C, Bauer P. Natural Variation in Physiological Responses of Tunisian Hedysarum carnosum Under Iron Deficiency. FRONTIERS IN PLANT SCIENCE 2018; 9:1383. [PMID: 30333841 PMCID: PMC6176081 DOI: 10.3389/fpls.2018.01383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 08/30/2018] [Indexed: 05/31/2023]
Abstract
Iron (Fe) is an essential element for plant growth and development. The cultivation of leguminous plants has generated strong interest because of their growth even on poor soils. Calcareous and saline soils with poor mineral availability are wide-spread in Tunisia. In an attempt to select better forage crops adapted to Tunisian soils, we characterized Fe deficiency responses of three different isolates of Hedysarum carnosum, an endemic Tunisian extremophile species growing in native stands in salt and calcareous soil conditions. H. carnosum is a non-model crop. The three isolates, named according to their habitats Karkar, Thelja, and Douiret, differed in the expression of Fe deficiency symptoms like morphology, leaf chlorosis with compromised leaf chlorophyll content and photosynthetic capacity and leaf metal contents. Across these parameters Thelja was found to be tolerant, while Karkar and Douiret were susceptible to Fe deficiency stress. The three physiological and molecular indicators of the iron deficiency response in roots, Fe reductase activity, growth medium acidification and induction of the IRON-REGULATED TRANSPORTER1 homolog, indicated that all lines responded to -Fe, however, varied in the strength of the different responses. We conclude that the individual lines have distinct adaptation capacities to react to iron deficiency, presumably involving mechanisms of whole-plant iron homeostasis and internal metal distribution. The Fe deficiency tolerance of Thelja might be linked with adaptation to its natural habitat on calcareous soil.
Collapse
Affiliation(s)
| | - Hans Jörg Mai
- Institute of Botany, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tarek Slatni
- Laboratory of Extremophile Plant, Center of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | | | - Chedly Abdelly
- Laboratory of Extremophile Plant, Center of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
9
|
Fontanini D, Andreucci A, Ruffini Castiglione M, Basile A, Sorbo S, Petraglia A, Degola F, Bellini E, Bruno L, Varotto C, Sanità di Toppi L. The phytochelatin synthase from Nitella mucronata (Charophyta) plays a role in the homeostatic control of iron(II)/(III). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 127:88-96. [PMID: 29554573 DOI: 10.1016/j.plaphy.2018.03.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/10/2018] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
Although some charophytes (sister group to land plants) have been shown to synthesize phytochelatins (PCs) in response to cadmium (Cd), the functional characterization of their phytochelatin synthase (PCS) is still completely lacking. To investigate the metal response and the presence of PCS in charophytes, we focused on the species Nitella mucronata. A 40 kDa immunoreactive PCS band was revealed in mono-dimensional western blot by using a polyclonal antibody against Arabidopsis thaliana PCS1. In two-dimensional western blot, the putative PCS showed various spots with acidic isoelectric points, presumably originated by post-translational modifications. Given the PCS constitutive expression in N. mucronata, we tested its possible involvement in the homeostasis of metallic micronutrients, using physiological concentrations of iron (Fe) and zinc (Zn), and verified its role in the detoxification of a non-essential metal, such as Cd. Neither in vivo nor in vitro exposure to Zn resulted in PCS activation and PC significant biosynthesis, while Fe(II)/(III) and Cd were able to activate the PCS in vitro, as well as to induce PC accumulation in vivo. While Cd toxicity was evident from electron microscopy observations, the normal morphology of cells and organelles following Fe treatments was preserved. The overall results support a function of PCS and PCs in managing Fe homeostasis in the carophyte N. mucronata.
Collapse
Affiliation(s)
| | | | | | - Adriana Basile
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Sergio Sorbo
- CeSMA, Microscopy Section, University of Naples "Federico II", Naples, Italy
| | - Alessandro Petraglia
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Francesca Degola
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Erika Bellini
- Department of Biology, University of Pisa, Pisa, Italy; Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Laura Bruno
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Claudio Varotto
- Department of Biodiversity and Molecular Ecology, "Edmund Mach" Foundation, S. Michele all'Adige (TN), Italy
| | | |
Collapse
|
10
|
Gama F, Saavedra T, da Silva JP, Miguel MG, de Varennes A, Correia PJ, Pestana M. The memory of iron stress in strawberry plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 104:36-44. [PMID: 27010743 DOI: 10.1016/j.plaphy.2016.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/11/2016] [Accepted: 03/12/2016] [Indexed: 05/26/2023]
Abstract
To provide information towards optimization of strategies to treat Fe deficiency, experiments were conducted to study the responses of Fe-deficient plants to the resupply of Fe. Strawberry (Fragaria × ananassa Duch.) was used as model plant. Bare-root transplants of strawberry (cv. 'Diamante') were grown for 42 days in Hoagland's nutrient solutions without Fe (Fe0) and containing 10 μM of Fe as Fe-EDDHA (control, Fe10). For plants under Fe0 the total chlorophyll concentration of young leaves decreased progressively on time, showing the typical symptoms of iron chlorosis. After 35 days the Fe concentration was 6% of that observed for plants growing under Fe10. Half of plants growing under Fe0 were then Fe-resupplied by adding 10 μM of Fe to the Fe0 nutrient solution (FeR). Full Chlorophyll recovery of young leaves took place within 12 days. Root ferric chelate-reductase activity (FCR) and succinic and citric acid concentrations increased in FeR plants. Fe partition revealed that FeR plants expressively accumulated this nutrient in the crown and flowers. This observation can be due to a passive deactivation mechanism of the FCR activity, associated with continuous synthesis of succinic and citric acids at root level, and consequent greater uptake of Fe.
Collapse
Affiliation(s)
- Florinda Gama
- MeditBio - Center for Mediterranean Bioresources and Food, University of Algarve, FCT, Ed8, Campus of Gambelas, 8005-139, Faro, Portugal.
| | - Teresa Saavedra
- MeditBio - Center for Mediterranean Bioresources and Food, University of Algarve, FCT, Ed8, Campus of Gambelas, 8005-139, Faro, Portugal
| | - José Paulo da Silva
- MeditBio - Center for Mediterranean Bioresources and Food, University of Algarve, FCT, Ed8, Campus of Gambelas, 8005-139, Faro, Portugal
| | - Maria Graça Miguel
- MeditBio - Center for Mediterranean Bioresources and Food, University of Algarve, FCT, Ed8, Campus of Gambelas, 8005-139, Faro, Portugal
| | - Amarilis de Varennes
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Pedro José Correia
- MeditBio - Center for Mediterranean Bioresources and Food, University of Algarve, FCT, Ed8, Campus of Gambelas, 8005-139, Faro, Portugal
| | - Maribela Pestana
- MeditBio - Center for Mediterranean Bioresources and Food, University of Algarve, FCT, Ed8, Campus of Gambelas, 8005-139, Faro, Portugal
| |
Collapse
|
11
|
Muneer S, Jeong BR. Genotypic Variation under Fe Deficiency Results in Rapid Changes in Protein Expressions and Genes Involved in Fe Metabolism and Antioxidant Mechanisms in Tomato Seedlings (Solanum lycopersicum L.). Int J Mol Sci 2015; 16:28022-37. [PMID: 26602920 PMCID: PMC4691033 DOI: 10.3390/ijms161226086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 11/29/2022] Open
Abstract
To investigate Fe deficiency tolerance in tomato cultivars, quantification of proteins and genes involved in Fe metabolism and antioxidant mechanisms were performed in “Roggusanmaru” and “Super Doterang”. Fe deficiency (Moderate, low and –Fe) significantly decreased the biomass, total, and apoplastic Fe concentration of “Roggusanmaru”, while a slight variation was observed in “Super Doterang” cultivar. The quantity of important photosynthetic pigments such as total chlorophyll and carotenoid contents significantly decreased in “Roggusanmaru” than “Super Doterang” cultivar. The total protein profile in leaves and roots determines that “Super Doterang” exhibited an optimal tolerance to Fe deficiency compared to “Roggusanmaru” cultivar. A reduction in expression of PSI (photosystem I), PSII (photosystem II) super-complexes and related thylakoid protein contents were detected in “Roggusanmaru” than “Super Doterang” cultivar. Moreover, the relative gene expression of SlPSI and SlPSII were well maintained in “Super Doterang” than “Roggusanmaru” cultivar. The relative expression of genes involved in Fe-transport (SlIRT1 and SlIRT2) and Fe(III) chelates reductase oxidase (SlFRO1) were relatively reduced in “Roggusanmaru”, while increased in “Super Doterang” cultivar under Fe deficient conditions. The H+-ATPase relative gene expression (SlAHA1) in roots were maintained in “Super Doterang” compared to “Roggusanmaru”. Furthermore, the gene expressions involved in antioxidant defense mechanisms (SlSOD, SlAPX and SlCAT) in leaves and roots showed that these genes were highly increased in “Super Doterang”, whereas decreased in “Roggusanmaru” cultivar under Fe deficiency. The present study suggested that “Super Doterang” is better tomato cultivar than “Roggusanmaru” for calcareous soils.
Collapse
Affiliation(s)
- Sowbiya Muneer
- Division of Applied Life Science (BK21 Plus), Graduate School, Gyeongsang National University, Jinju 660-701, Korea.
| | - Byoung Ryong Jeong
- Division of Applied Life Science (BK21 Plus), Graduate School, Gyeongsang National University, Jinju 660-701, Korea.
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 660-701, Korea.
- Research Institute of Life Science, Gyeongsang National University, Jinju 660-701, Korea.
| |
Collapse
|