1
|
An L, Fang H, Zhang X, Tang J, Gong J, Yi Y, Tang M. Genome-Wide Identification and Characterization of the CDPK Family of Genes and Their Response to High-Calcium Stress in Yinshania henryi. Genes (Basel) 2025; 16:109. [PMID: 39858656 PMCID: PMC11764810 DOI: 10.3390/genes16010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/09/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Calcium-dependent protein kinases (CDPKs) are a crucial class of calcium-signal-sensing and -response proteins that significantly regulate abiotic stress. Yinshania henryi is a member of the Brassicaceae family that primarily grows in the karst regions of southwestern China, with a notable tolerance to high-calcium soils. Currently, the function of the CDPK family of genes in Y. henryi has yet to be explored. Methods: This study employed a comprehensive approach starting with bioinformatic methods to analyze the whole-genome sequencing data of Y. henryi and identified YhCDPK genes by combining phylogenetic characteristics and protein domain analysis. Results: It then delved into the physicochemical properties, gene structure, chromosomal localization, phylogenetic tree, and promoter cis-acting elements of these YhCDPK genes. Subsequently, RNA-seq data and qRT-PCR analysis were utilized to understand the expression patterns of YhCDPK genes. Twenty-eight YhCDPK genes were found to be unevenly distributed across six chromosomes; these can be classified into four subfamilies, with many cis-acting elements in their promoter regions involved in plant growth and stress responses. Furthermore, the differential expression patterns of YhCDPK genes under different concentrations of calcium treatments were investigated using RNA-seq data and qRT-PCR analysis. Conclusions: These results are a critical first step in understanding the functions of YhCDPK genes, and they lay a foundation for further elucidating the adaptability and response mechanism of YhCDPK genes in Y. henryi to the karst environment.
Collapse
Affiliation(s)
- Liangfeng An
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (L.A.); (H.F.); (X.Z.); (J.T.); (J.G.)
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang 550025, China;
| | - Huihui Fang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (L.A.); (H.F.); (X.Z.); (J.T.); (J.G.)
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang 550025, China;
| | - Ximin Zhang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (L.A.); (H.F.); (X.Z.); (J.T.); (J.G.)
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang 550025, China;
- Engineering Research Center of Carbon Neutrality in Karst Areas, Ministry of Education, Guizhou Normal University, Guiyang 550025, China
| | - Jing Tang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (L.A.); (H.F.); (X.Z.); (J.T.); (J.G.)
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang 550025, China;
- Engineering Research Center of Carbon Neutrality in Karst Areas, Ministry of Education, Guizhou Normal University, Guiyang 550025, China
| | - Jiyi Gong
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (L.A.); (H.F.); (X.Z.); (J.T.); (J.G.)
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang 550025, China;
- Engineering Research Center of Carbon Neutrality in Karst Areas, Ministry of Education, Guizhou Normal University, Guiyang 550025, China
| | - Yin Yi
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang 550025, China;
| | - Ming Tang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (L.A.); (H.F.); (X.Z.); (J.T.); (J.G.)
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang 550025, China;
- Engineering Research Center of Carbon Neutrality in Karst Areas, Ministry of Education, Guizhou Normal University, Guiyang 550025, China
| |
Collapse
|
2
|
Liu X, Fan Y, Ni M, Wang Z. The sorption of algal organic matter by extracellular polymeric substances: Trade-offs in disinfection byproduct formation influenced by divalent ions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178239. [PMID: 39721540 DOI: 10.1016/j.scitotenv.2024.178239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Disinfection by-products (DBPs), formed from biofilm extracellular polymeric substances (EPS) and organic matter during regular disinfection practices in drinking water distribution systems, poses a potential threat to drinking water safety. However, the diverse DBP formations induced by the intertwined algal organic matter (AOM) and bacterial EPS remains elusive. In this study, we show substantial variations in EPS and DBP formation patterns driven by AOM biosorption with divalent ions (Ca2+ and Mg2+). Divalent ions in bulk water can significantly inhibit carbonaceous DBPs (C-DBPs) and nitrogenous DBPs (N-DBPs) formation. Mechanistically, divalent ions promote the complexation of negative charged groups and thus inhibit C-DBP formation, while the hindering chlorine substitution of hydrogen atoms on α‑carbon and amine groups reduces N-DBP formation. Conversely, Ca2+ and Mg2+ could facilitate biosorption processes that increased the yields of C-DBPs and N-DBPs. Both EPS and AOM provide halogenated reactive sites for DBP formation, exhibiting diverse aromatic substances and unsaturated (lignin and tannins) compounds. Our results highlight divalent ions acting as a fundamental driving force in DBP formation, suggesting the need for cautious monitoring of divalent ions in karst water.
Collapse
Affiliation(s)
- Xingyu Liu
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Yichun Fan
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Maofei Ni
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Zhikang Wang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China.
| |
Collapse
|
3
|
Huang H, Yang Y, Li J, Gao Y, Wang X, Wang R, Zhou Z, Wang P, Zhao L. Effects of Rocky Desertification Stress on Oat ( Avena sativa L.) Seed Germination and Seedling Growth in the Karst Areas of Southwest China. PLANTS (BASEL, SWITZERLAND) 2024; 13:3260. [PMID: 39599469 PMCID: PMC11598031 DOI: 10.3390/plants13223260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
Oat is an important crop widely distributed in temperate zones and is also commonly planted in the karst areas of southwest China. However, due to severe rocky desertification, the complex soil in this area is characterized by high calcium content, alkaline conditions, and drought, which significantly negatively impact the growth of oat seedlings. To study the adaptability of oats to rocky desertification stress at the seedling stage, we investigated the effects of CaCl2 (0-150 mM), the pH (3-9), and drought stress (PEG-6000 solution at 0 to -0.79 MPa) on seed germination and seedling growth. The results showed that (1) calcium stress had dual effects on seed germination within the range of 5-150 mM CaCl2. Low concentrations of CaCl2 (5 mM) promoted the germination potential, germination rate, germination index, and vigor index of oats, as well as the growth and biomass accumulation of radicles in oat seedlings; however, high concentrations of CaCl2 inhibited these germination parameters. (2) Under drought stress, moderate concentrations of a PEG-6000 solution significantly improved the germination potential and germination rate of oat seeds, but the germination index and vigor index decreased with an increasing PEG-6000 concentration. When the PEG-6000 concentration corresponded to -0.06 MPa, the root growth and fresh weight accumulation of oat seedlings were significantly promoted; however, as the concentration increased to -0.53 MPa and -0.79 MPa, seed germination and seedling growth were significantly inhibited. (3) pH treatments had no significant effect on oat seed germination, but all growth indexes of oats showed a downward trend under alkaline conditions. These results suggest that suitable conditions for oat planting in karst rocky desertification areas are 5 mM CaCl2, pH levels of 5-8, and drought stress between 0 and -0.32 MPa. This study provides a theoretical basis for oat introduction, cultivation, and stress-resistant breeding in this area.
Collapse
Affiliation(s)
- Haiyan Huang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.H.); (Y.Y.); (J.L.); (X.W.); (R.W.); (Z.Z.)
| | - Yuting Yang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.H.); (Y.Y.); (J.L.); (X.W.); (R.W.); (Z.Z.)
| | - Junqin Li
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.H.); (Y.Y.); (J.L.); (X.W.); (R.W.); (Z.Z.)
| | - Yang Gao
- School of Karst Science, Guizhou Normal University, Guiyang 550025, China;
| | - Xiangtao Wang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.H.); (Y.Y.); (J.L.); (X.W.); (R.W.); (Z.Z.)
| | - Rui Wang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.H.); (Y.Y.); (J.L.); (X.W.); (R.W.); (Z.Z.)
| | - Zijun Zhou
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.H.); (Y.Y.); (J.L.); (X.W.); (R.W.); (Z.Z.)
| | - Puchang Wang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.H.); (Y.Y.); (J.L.); (X.W.); (R.W.); (Z.Z.)
| | - Lili Zhao
- College of Animal Science, Guizhou University, Guiyang 550025, China;
| |
Collapse
|
4
|
Li Y, Yao RX, Xu B, Liu YJ, Li BZ, Tang M, Yi Y, Wen ZR, Wang XY, Tang XX. The reproductive strategy of a typical distylous Ophiorrhiza alatiflora (Rubiaceae), in fragmented habitat. FRONTIERS IN PLANT SCIENCE 2024; 15:1492402. [PMID: 39559768 PMCID: PMC11570894 DOI: 10.3389/fpls.2024.1492402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024]
Abstract
Introduction Heterostyly is a genetically controlled style polymorphism, that plays an important role in promoting outcrossing and improving reproductive fitness. Although distyly is often studied in plants of the Rubiaceae family, little attention has been paid to the reproductive strategies of distylous species in fragmented habitats. Here, We report for the first time the growth of Ophiorrhiza alatiflora, a type distylous species, in karst areas and evaluate its reciprocity between long styled morph and short one. We analyze the two distyly morph differences in the ancillary polymorphic of flowers and explore their reproductive strategy in fragmented habitats. Methods In this study, we measured the floral characteristics of different morphs and performed differential secondary metabolite analysis on different morphs and tissue organs; Different pollination treatments were carried out to observe the fruit set, pollen germination, and pollen tube elongation of O. alatiflora. Results and discussion Our research indicates that O. alatiflora is a typical distylous plant for the distyly has high reciprocity. Both morphs exhibit the highest fruit set of intermorph outcrossing; The pollen germination and pollen tube elongation experiments have also demonstrated that the affinity of pollen from intermorph outcrossing is highest, regardless of whether it is the long or short morph as the maternal parent; Meanwhile, O. alatiflora is an incompletely self-incompatible plant that exhibits a certain degree of self-pollination and intramorph outcrossing, which may be one of the important means to ensure sustainable reproduction in severely disturbed habitats. In the ancillary polymorphic of flowers, L-morphs flowers produce more pollen, and S-morph flowers produce more ovules to improve their male-female fitness and compensate for the asymmetry of pollen flow; Compared with S-morphs, L-morphs contain significantly higher levels of several kinds of terpenoids. S-morphs produce more flavonoids than L-morphs. The differences in secondary metabolites between L-morphs and S-morphs are mainly reflected in the different nutritional organs (including stems and leaves). Overall, our work has revealed the unique reproductive strategy of O. alatiflora in fragmented habitats based on the characteristics of distyly, verifying the hypothesis that the distyly of O. alatiflora promotes outcrossing and avoids male-female interference, improving male-female fitness and this is the first time in the Ophiorrhiza genus.
Collapse
Affiliation(s)
- Yu Li
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, College of Life Science, Guizhou Normal University, Guiyang, China
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Ren-Xiu Yao
- Engineering Research Center of Carbon Neutrality in Karst Areas, Guizhou Normal University, Guiyang, China
- School of Life Sciences, Southwest University, Chongqing, China
| | - Bo Xu
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, College of Life Science, Guizhou Normal University, Guiyang, China
- Engineering Research Center of Carbon Neutrality in Karst Areas, Guizhou Normal University, Guiyang, China
| | - Yun-Jing Liu
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, College of Life Science, Guizhou Normal University, Guiyang, China
- Engineering Research Center of Carbon Neutrality in Karst Areas, Guizhou Normal University, Guiyang, China
| | - Bai-Zhu Li
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Ming Tang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, College of Life Science, Guizhou Normal University, Guiyang, China
- Engineering Research Center of Carbon Neutrality in Karst Areas, Guizhou Normal University, Guiyang, China
| | - Yin Yi
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, College of Life Science, Guizhou Normal University, Guiyang, China
- Engineering Research Center of Carbon Neutrality in Karst Areas, Guizhou Normal University, Guiyang, China
| | - Zhi-Rui Wen
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, College of Life Science, Guizhou Normal University, Guiyang, China
- Guizhou Collaborative Innovation Center of Green Finance and Ecological Environment Protection, Guizhou University of Finance and Economics, Guiyang, China
| | - Xiao-Yue Wang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, College of Life Science, Guizhou Normal University, Guiyang, China
- Engineering Research Center of Carbon Neutrality in Karst Areas, Guizhou Normal University, Guiyang, China
| | - Xiao-Xin Tang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, College of Life Science, Guizhou Normal University, Guiyang, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore
| |
Collapse
|
5
|
Jiang Y, Chen Z, Lin H, Deng R, Liang Z, Li Y, Liang S. Trait-based community assembly and functional strategies across three subtropical karst forests, Southwestern China. FRONTIERS IN PLANT SCIENCE 2024; 15:1451981. [PMID: 39315372 PMCID: PMC11417004 DOI: 10.3389/fpls.2024.1451981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024]
Abstract
Background Variations in community-level plant functional traits are widely used to elucidate vegetation adaptation strategies across different environmental gradients. Moreover, studying functional variation among different forest types aids in understanding the mechanisms by which environmental factors and functional strategies shift community structure. Methods Based on five plant functional traits, including four leaf and one wood trait, for 150 woody species, we analyzed shifts in the community-weighted mean trait values across three forest types in a karst forest landscape: deciduous, mixed, and evergreen forests. We also assessed the relative contributions of stochastic processes, environmental filtering, and niche differentiation to drive community structure using a trait-based null model approach. Results We found marked changes in functional strategy, from resource acquisition on dry, fertile soil plots in deciduous forests to resource conservation on moist, infertile soil conditions in evergreen forests. The trait-based null model showed strong evidence of environmental filtering and convergent patterns in traits across three forest types, as well as low niche differentiation in most functional traits. Some evidence of overdispersion of LDMC and LT occurred to partially support the recent theory of Scheffer and Van Nes that competition could result in a clumped pattern of species along a niche axis. Discussion Our findings suggest a change in environmental gradient from deciduous to evergreen forest, together with a shift from acquisitive to conservative traits. Environmental filtering, stochastic processes, niche differentiation, and overdispersion mechanisms together drive community assembly in karst forest landscapes. These findings will contribute to a deeper understanding of the changes in functional traits among karst plants and their adaptive strategies, with important implications for understanding other community assemblies in subtropical forest systems.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shichu Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection,
Ministry of Education, College of Life Sciences, Guangxi Normal University, Guilin, China
| |
Collapse
|
6
|
Wu C, Liu B, Zhang X, Wang M, Liang H. Phytohormone Response of Drought-Acclimated Illicium difengpi (Schisandraceae). Int J Mol Sci 2023; 24:16443. [PMID: 38003632 PMCID: PMC10671654 DOI: 10.3390/ijms242216443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Illicium difengpi (Schisandraceae), which is an endemic, medicinal, and endangered species found in small and isolated populations that inhabit karst mountain areas, has evolved strategies to adapt to arid environments and is thus an excellent material for exploring the mechanisms of tolerance to severe drought. In experiment I, I. difengpi plants were subjected to three soil watering treatments (CK, well-watered treatment at 50% of the dry soil weight for 18 days; DS, drought stress treatment at 10% of the dry soil weight for 18 days; DS-R, drought-rehydration treatment at 10% of the dry soil weight for 15 days followed by rewatering to 50% of the dry soil weight for another 3 days). The effects of the drought and rehydration treatments on leaf succulence, phytohormones, and phytohormonal signal transduction in I. difengpi plants were investigated. In experiment II, exogenous abscisic acid (ABA, 60 mg L-1) and zeatin riboside (ZR, 60 mg L-1) were sprayed onto DS-treated plants to verify the roles of exogenous phytohormones in alleviating drought injury. Leaf succulence showed marked changes in response to the DS and DS-R treatments. The relative concentrations of ABA, methyl jasmonate (MeJA), salicylic acid glucoside (SAG), and cis-zeatin riboside (cZR) were highly correlated with relative leaf succulence. The leaf succulence of drought-treated I. difengpi plants recovered to that observed with the CK treatment after exogenous application of ABA or ZR. Differentially expressed genes involved in biosynthesis and signal transduction of phytohormones (ABA and JA) in response to drought stress were identified by transcriptomic profiling. The current study suggested that the phytohormones ABA, JA, and ZR may play important roles in the response to severe drought and provides a preliminary understanding of the physiological mechanisms involved in phytohormonal regulation in I. difengpi, an endemic, medicinal, and highly drought-tolerant plant found in extremely small populations in the karst region of South China.
Collapse
|
7
|
Hu G, Zhang Z, Wu H, Li L. Factors influencing the distribution of woody plants in tropical karst hills, south China. PeerJ 2023; 11:e16331. [PMID: 37908415 PMCID: PMC10615033 DOI: 10.7717/peerj.16331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 09/30/2023] [Indexed: 11/02/2023] Open
Abstract
The seasonal rainforests distributed across the tropical karst hills of south China are of high biodiversity conservation value and serve many important ecosystem functions. However, knowledge surrounding distribution patterns of woody plants in tropical karst hills remains limited. In this study, we surveyed the distribution of families, genera and species of woody flora at four slope positions (depression, lower slope, middle slope, and upper slope), and analyzed the influence of topographic and soil variables on the distribution of woody plants in the tropical karst hills of south China. Forty forest plots (each 20 m × 20 m) contained 306 species of woody plants with a diameter at breast height (DBH) ≥1 cm, representing 187 genera and 66 families. As slope increased, the number of families increased slowly, and the number of genera and species followed a concave-shaped trend, with the lowest number of genera and species in the lower slope position. Differences in species composition were significantly stronger between slope positions than within slope positions. The topographic and soil variables explained 22.4% and 19.6%, respectively, of the distribution of woody plants, with slope position, slope degree, soil potassium and soil water content as the most significant variables. The results of generalized linear mixed model analysis showed that total R2 of fixed effects on variation of woody species richness was 0.498, and rock outcrop rate and soil total phosphorus were the best fitting effects. Our results help to explain the community assembly mechanism and to inform management and protection strategies for species-rich seasonal rainforests in the karst area.
Collapse
Affiliation(s)
- Gang Hu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
- Key Laboratory of Wildlife Evolution and Conservation in Mountain Ecosystem of Guangxi, School of Environmental and Life Sciences, Nanning Normal University, Nanning, Guangxi, China
| | - Zhonghua Zhang
- Key Laboratory of Wildlife Evolution and Conservation in Mountain Ecosystem of Guangxi, School of Environmental and Life Sciences, Nanning Normal University, Nanning, Guangxi, China
| | - Hongping Wu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Lei Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| |
Collapse
|
8
|
Wei X, Fu T, He G, Zhong Z, Yang M, Lou F, He T. Types of vegetables shape composition, diversity, and co-occurrence networks of soil bacteria and fungi in karst areas of southwest China. BMC Microbiol 2023; 23:194. [PMID: 37468849 PMCID: PMC10354930 DOI: 10.1186/s12866-023-02929-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Microorganisms are of significant importance in soil. Yet their association with specific vegetable types remains poorly comprehended. This study investigates the composition of bacterial and fungal communities in soil by employing high-throughput sequencing of 16 S rRNA genes and ITS rRNA genes while considering the cultivation of diverse vegetable varieties. RESULTS The findings indicate that the presence of cultivated vegetables influenced the bacterial and fungal communities leading to discernible alterations when compared to uncultivated soil. In particular, the soil of leafy vegetables (such as cabbage and kale) exhibited higher bacterial α-diversity than melon and fruit vegetable (such as cucumber and tomato), while fungal α-diversity showed an inverse pattern. The prevailing bacterial phyla in both leafy vegetable and melon and fruit vegetable soils were Proteobacteria, Acidobacteriota, Actinobacteriota, and Chloroflexi. In leafy vegetable soil, dominant fungal phyla included Ascomycota, Olpidiomycota, Mortierellomycota, and Basidiomycota whereas in melon and fruit vegetable soil. Ascomycota, Mortierellomycota, Basidiomycota, and Rozellomycota held prominence. Notably, the relative abundance of Ascomycota was lower in leafy vegetable soil compared to melon and fruit vegetable soil. Moreover, leafy vegetable soil exhibited a more complex and stable co-occurrence network in comparison to melon and fruit vegetable soil. CONCLUSION The findings enhance our understanding of how cultivated soil bacteria and fungi respond to human disturbance, thereby providing a valuable theoretical basis for soil health in degraded karst areas of southwest China.
Collapse
Affiliation(s)
- Xiaoliao Wei
- College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Tianling Fu
- Institute of New Rural Development, Engineering Key Laboratory for Pollution Control and Resource Reuse Technology of Mountain Livestock Breeding, Guizhou University, Huaxi District, Guiyang City, 550025, Guizhou Province, PR China
| | - Guandi He
- College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Zhuoyan Zhong
- College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Mingfang Yang
- College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Fei Lou
- College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Tengbing He
- College of Agriculture, Guizhou University, Guiyang, 550025, PR China.
- Institute of New Rural Development, Engineering Key Laboratory for Pollution Control and Resource Reuse Technology of Mountain Livestock Breeding, Guizhou University, Huaxi District, Guiyang City, 550025, Guizhou Province, PR China.
| |
Collapse
|
9
|
Wang D, Wang S, Li LX, Wang YS, Ling-Hu KN, Chen JX. Contrasting effects of experiencing temporally heterogeneous light availability versus homogenous shading on plant subsequent responses to light conditions. BMC PLANT BIOLOGY 2023; 23:232. [PMID: 37131187 PMCID: PMC10155447 DOI: 10.1186/s12870-023-04229-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 04/11/2023] [Indexed: 05/04/2023]
Abstract
Temporally heterogeneous environments is hypothesized to correlate with greater plasticity of plants, which has rarely been supported by direct evidence. To address this issue, we subjected three species from different ranges of habitats to a first round of alternating full light and heavy shading (temporally heterogeneous light experience), constant moderate shading and full light conditions (temporally homogeneous light experiences, control) and a second round of light-gradient treatments. We measured plant performance in a series of morphological, biomass, physiological and biochemical traits at the end of each round. Compared to constant full light experience, temporally heterogeneous light conditions induced immediate active biochemical responses (in the first round) with improved late growth in biomass (during the second round); constant moderate shading experience increased photosynthetic physiological and biomass performances of plants in early response, and decreased their late growth in biomass. The karst endemic species of Kmeria septentrionalis showed greater improvement in late growth of biomass and lower decrease in biochemical performance, due to early heterogeneous experience, compared to the non-karst species of Lithocarpus glaber and the karst adaptable species of Celtis sinensis. Results suggested plants will prefer to produce morphological and physiological responses that are less reversible and more costly in the face of more reliable environmental cues at early stage in spite of decreased future growth potential, but to produce immediate biochemical responses for higher late growth potential when early environmental cues are less reliable, to avoid the loss of high costs and low profits. Typical karst species should be more able to benefit from early temporally heterogeneous experience, due to long-term adaptation to karst habitats of high environmental heterogeneity and low resource availability.
Collapse
Affiliation(s)
- Deng Wang
- College of Urban and Rural Construction, Shaoyang University, Shaoyang, 422000, China
- College of Forestry, Forest Ecology Research Center, Guizhou University, Guiyang, 550025, China
| | - Shu Wang
- College of Forestry, Forest Ecology Research Center, Guizhou University, Guiyang, 550025, China.
| | - Li-Xia Li
- College of Forestry, Forest Ecology Research Center, Guizhou University, Guiyang, 550025, China
| | - Ye-She Wang
- College of Urban and Rural Construction, Shaoyang University, Shaoyang, 422000, China
| | - Ke-Nian Ling-Hu
- College of Forestry, Forest Ecology Research Center, Guizhou University, Guiyang, 550025, China
| | - Jia-Xing Chen
- College of Forestry, Forest Ecology Research Center, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
10
|
Behzad HM, Arif M, Duan S, Kavousi A, Cao M, Liu J, Jiang Y. Seasonal variations in water uptake and transpiration for plants in a karst critical zone in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160424. [PMID: 36436637 DOI: 10.1016/j.scitotenv.2022.160424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/13/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
Despite substantial drought conditions in the karst critical zone (KCZ), the KCZ landscapes are often covered with forest woody plants. However, it is not well understood how these plants balance water supply and demand to survive in such a water-limited environment. This study investigated the water uptake and transpiration relationships of four coexisting woody species in a subtropical karst forest ecosystem using measurements of microclimate, soil moisture, stable isotopes (δ18O, δ2H, and δ13C), intrinsic water-use efficiency (WUEi), sap flow, and rooting depth. The focus was on identifying differences within- and between-species across soil- and rock-dominated habitats (SDH and RDH) during the rainy growing season (September 2017) and dry season (February 2018). Species across both habitats tended to have higher transpiration with lower WUEi during the rainy season and lower transpiration with higher WUEi during the dry season. Compared to those in the SDH, species in the RDH showed lower transpiration with higher WUEi in both seasons. The dominant water sources were soil water and rainwater for supporting rainy-season transpiration in the SDH and RDH, respectively, and groundwater was the main water source for supporting dry-season transpiration in both habitats. A clear ecohydrological niche differentiation was also revealed among species. Across both habitats, shallower-rooted species with higher soil-water uptake, compared to deeper-rooted species with higher groundwater uptake, showed higher transpiration and lower WUEi during the rainy season and vice versa during the dry season. This study provides integrated insights into how forest woody plants in the KCZ regulate transpiration and WUEi in response to drought stress through interactions with seasonal water sources in the environment.
Collapse
Affiliation(s)
- Hamid M Behzad
- Chongqing Key Laboratory of Karst Environment & School of Geographical Sciences, Southwest University, Chongqing 400715, China
| | - Muhammad Arif
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China; Biological Science Research Center, Academy for Advanced Interdisciplinary Studies, Southwest University, Chongqing 400715, China
| | - Shihui Duan
- Chongqing Key Laboratory of Karst Environment & School of Geographical Sciences, Southwest University, Chongqing 400715, China
| | - Alireza Kavousi
- Institute of Groundwater Management, Technische Universität Dresden, 01069 Dresden, Germany
| | - Min Cao
- Chongqing Key Laboratory of Karst Environment & School of Geographical Sciences, Southwest University, Chongqing 400715, China; School of Earth Sciences, Yunnan University, 650500, China
| | - Jiuchan Liu
- Chongqing Key Laboratory of Karst Environment & School of Geographical Sciences, Southwest University, Chongqing 400715, China
| | - Yongjun Jiang
- Chongqing Key Laboratory of Karst Environment & School of Geographical Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
11
|
Wang W, Wang X, Shi Y, Yin Q, Gao R, Wang M, Xiang L, Wu L. Identification of Laportea bulbifera using the complete chloroplast genome as a potentially effective super-barcode. J Appl Genet 2023; 64:231-245. [PMID: 36633756 DOI: 10.1007/s13353-022-00746-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/12/2022] [Accepted: 12/27/2022] [Indexed: 01/13/2023]
Abstract
Laportea bulbifera, a Miao medicine grown in karst areas, has exerted a unique curative effect on skin itching in the elderly, with an annual sales of > 100 million Yuan. Owing to the shortage of resources and large morphological variations in L. bulbifera, it is difficult to identify the species correctly using only traditional methods, which seriously affects the safety of drug usage for patients. This study obtained the complete high-quality L. bulbifera chloroplast (cp) genome, using second- and third-generation high-throughput sequencing. The cp genome was 149,911 bp in length, with a typical quadripartite structure. A total of 127 genes were annotated, including 83 protein-coding genes, 36 tRNA genes, and 8 rRNA genes. There was an inverted small single copy (SSC) structure in the L. bulbifera cp genome, one large-scale rearrangement of ~ 39 kb excised in the SSC and IR regions. The complete cp genome sequence is used as a potentially effective super-barcode and the highly variable regions (ycf1, matK, and ndhD) can be used as potentially specific barcodes to accurately distinguish L. bulbifera from counterfeits and closely related species. This study is important for the identification of L. bulbifera and lays a theoretical foundation for elucidating the phylogenetic relationship of the species.
Collapse
Affiliation(s)
- Wenting Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xingwen Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuhua Shi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qinggang Yin
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ranran Gao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mengyue Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Xiang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Lan Wu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
12
|
Gesneriads, a Source of Resurrection and Double-Tolerant Species: Proposal of New Desiccation- and Freezing-Tolerant Plants and Their Physiological Adaptations. BIOLOGY 2023; 12:biology12010107. [PMID: 36671798 PMCID: PMC9855904 DOI: 10.3390/biology12010107] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
Gesneriaceae is a pantropical family of plants that, thanks to their lithophytic and epiphytic growth forms, have developed different strategies for overcoming water scarcity. Desiccation tolerance or "resurrection" ability is one of them: a rare phenomenon among angiosperms that involves surviving with very little relative water content in their tissues until water is again available. Physiological responses of desiccation tolerance are also activated during freezing temperatures, a stress that many of the resurrection gesneriads suffer due to their mountainous habitat. Therefore, research on desiccation- and freezing-tolerant gesneriads is a great opportunity for crop improvement, and some of them have become reference resurrection angiosperms (Dorcoceras hygrometrica, Haberlea rhodopensis and Ramonda myconi). However, their difficult indoor cultivation and outdoor accessibility are major obstacles for their study. Therefore, this review aims to identify phylogenetic, geoclimatic, habitat, and morphological features in order to propose new tentative resurrection gesneriads as a way of making them more reachable to the scientific community. Additionally, shared and species-specific physiological responses to desiccation and freezing stress have been gathered as a stress response metabolic basis of the family.
Collapse
|
13
|
Xiao J, Xiong K. A review of agroforestry ecosystem services and its enlightenment on the ecosystem improvement of rocky desertification control. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158538. [PMID: 36067859 DOI: 10.1016/j.scitotenv.2022.158538] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Agroforestry (AF) has become an important strategy in reconciling the contradictory requirements of environmental protection and economic development in ecologically fragile areas, and whose multiple ecosystem services provide effective ways to promote the restoration of degraded ecosystems in the region. However, agroforestry ecosystem services (AFES) are usually constrained by their generative elements (vulnerability, structure, function, and ecological assets) and service management-both crucial for informed decision-making which enhances AFES supply capacity and AF sustainable management. Karst rocky desertification (KRD) is a typical case in an ecologically fragile area, and within the KRD region greatly relevant for promoting AFES as a strategy for restoring degraded regional ecosystems and for achieving sustainable development goals. In this study, a total of 164 publications related to AFES that met a set of inclusion criteria were obtained through the Scopus database using the literature review method of searching, appraisal, synthesis, and analysis. From the systematic literature review results, (i) we found that the number of relevant publications generally exhibited a year-on-year growth trend, with AFES generation elements being the most common topic (68.11 % of publications), and service management research being the second most common (31.89 % of publications); (ii) we summarised the main progress and landmark results of AFES generation elements and service management research and explored the relevant key scientific questions; and (iii) the above information enlightened the key improvement areas of KRD control ecosystem within three aspects: natural environment, agricultural development, and human-environment relationship. This study provides agroforestry practitioners and relevant decision-makers with information for improving and managing the supply capacity of AFES, and also presents important insights on the KRD control ecosystem to land degradation restoration technicians.
Collapse
Affiliation(s)
- Jie Xiao
- School of Karst Science, Guizhou Normal University, Guiyang 550001, People's Republic of China; State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang 550001, People's Republic of China
| | - Kangning Xiong
- School of Karst Science, Guizhou Normal University, Guiyang 550001, People's Republic of China; State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang 550001, People's Republic of China.
| |
Collapse
|
14
|
Plastomes of limestone karst gesneriad genera Petrocodon and Primulina, and the comparative plastid phylogenomics of Gesneriaceae. Sci Rep 2022; 12:15800. [PMID: 36138079 PMCID: PMC9500069 DOI: 10.1038/s41598-022-19812-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/05/2022] [Indexed: 11/23/2022] Open
Abstract
Petrocodon and Primulina are two characteristic genera of Gesneriaceae that exhibit remarkable species and floral diversity, and high endemism across the Sino-Vietnamese Limestone Karsts. To better understand the evolution of limestone gesneriad plastomes, we report nine complete plastomes of seven Primulina and two Petrocodon which have never been assembled before. The newly generated plastomes range from 152,323 to 153,786 bp in size and display a typical quadripartite structure. To further explore the plastome evolution across Gesneriaceae, we assembled five additional plastomes from public reads data and incorporated 38 complete Gesneriaceae plastomes available online into comparative and phylogenomic analyses. The comparison of 52 Gesneriaceae plastomes reveals that not only Primulina and Petrocodon but all gesneriad genera analyzed are highly conserved in genome size, genome structure, gene contents, IR boundary configurations, and codon usage bias. Additionally, sliding window analyses were implemented across alignments of Primulina and Petrocodon for identifying highly variable regions, providing informative markers for future studies. Meanwhile, the SSRs and long repeats of Gesneriaceae plastomes were characterized, serving as useful data in studying population and repetitive sequence evolutions. The results of plastome phylogenetics represent a preliminary but highly resolved maternal backbone genealogy of Primulina and the Old World subtribes of Gesneriaceae.
Collapse
|
15
|
Qu R, Han G. Effects of high Ca and Mg stress on plants water use efficiency in a Karst ecosystem. PeerJ 2022; 10:e13925. [PMID: 35996669 PMCID: PMC9392448 DOI: 10.7717/peerj.13925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/30/2022] [Indexed: 01/19/2023] Open
Abstract
Background Karst ecosystems are widely distributed in the world, with one of the largest continuous Karst landforms in Southwest China. Karst regions are characterized by water shortage, high soil calcium (Ca) and magnesium (Mg) content, and soil nutrient leaching, resulting in drought stress and growth limitation of plants. Methods This study compared nitrogen (N), phosphorus (P), potassium (K), Ca, and Mg of herbaceous and woody plants in a small Karst ecosystem in Southwest China. The indexes of water use efficiency (WUE) were calculated to identify the drought stress of plants in this Karst ecosystem. Meanwhile, the relationship between Ca and Mg accumulation and WUE was evaluated in herbaceous and woody plants. Results Herbaceous plants showed a higher content of leaf N (13.4 to 40.1 g·kg-1), leaf P (2.2 to 4.8 g·kg-1) and leaf K (14.6 to 35.5 g·kg-1) than woody plants (N: 10.4 g to 22.4 g·kg-1; P: 0.4 to 2.3 g·kg-1; K: 5.7 to 15.5 g·kg-1). Herbaceous plants showed a significantly positive correlation between WUE and K:Ca ratio (R = 0.79), while WUE has a strongly positive correlation with K:Mg ratio in woody plants (R = 0.63). Conclusion Herbaceous plants suffered from nitrogen (N) limitation, and woody plants were constrained by P or N+P content. Herbaceous plants had higher leaf N, P, and K than woody plants, while Ca and Mg showed no significant differences, probably resulting from the Karst environment of high Ca and Mg contents. Under high Karst Ca and Mg stress, herbaceous and woody plants responded differently to Ca and Mg stress, respectively. WUE of herbaceous plants is more sensitive to Ca stress, while that of woody plants is more sensitive to Mg stress. These findings establish a link between plant nutrients and hydraulic processes in a unique Karst ecosystem, further facilitating studies of the nutrient-water cycling system in the ecosystem.
Collapse
|
16
|
Effects of Dodonaea viscosa Afforestation on Soil Nutrients and Aggregate Stability in Karst Graben Basin. LAND 2022. [DOI: 10.3390/land11081140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Dodonaea viscosa is widely cultivated in the karst graben basin and is crucial for recovering land after rocky desertification. However, the effect of long–time D. viscosa afforestation on changes in the quality of soil remains unclear. Soil nutrients and aggregate composition can be used to evaluate the beneficial effects of afforestation of D. viscosa in improving soil functional stability. In this study, soil nutrients and aggregate stability were investigated using cropland, 10–year, 20–year, and 40–year D. viscosa afforestation and secondary succession shrub. Compared to the cropland, D. viscosa afforestation significantly increased the soil water content (WC), soil organic carbon (SOC), and total nitrogen (TN) contents, with an enhanced effect observed with prolonged afforestation. Soil nutrient contents under D. viscosa afforestation rapidly reached the level of the shrub. Dodonaea viscosa afforestation promoted the formation of >2 mm aggregates and decreased the ratio of 0.053–0.25 mm aggregates, which varied with afforestation years. Compared to the cropland, the content of >0.25 mm water–stable aggregates (R>0.25), mean weight diameter (MWD), and geometric mean weight diameter (GMD) of soil increased exponentially. However, soil erodibility factor (K) and unstable aggregates index (EIt) decreased exponentially with prolonged D. viscosa afforestation, and the latter two indicators did not reach the level of the shrub. These results indicated that soil nutrients, aggregate stability, and erosion resistance increased with prolonged D. viscosa afforestation. However, the aggregate stability and erosion resistance exhibited by D. viscosa could not reach the level of secondary shrub for a long time.
Collapse
|
17
|
Somteds A, Kanokmedhakul K, Chaiyosang B, Yahuafai J, Laphookhieo S, Phukhatmuen P, Pornpongrungrueng P, Kanokmedhakul S. Cytotoxic and α-glucosidase inhibitory metabolites from twigs and leaves of Phyllanthus mirabilis, a species endemic to limestone mountains. PHYTOCHEMISTRY 2022; 194:113028. [PMID: 34847377 DOI: 10.1016/j.phytochem.2021.113028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
The first investigation of Phyllanthus mirabilis Müll.Arg. led to the isolation of six undescribed compounds including two tyramine derivatives: phyllatyramines A and B; three butenolide analogues, phyllantenolide, phyllantenocoside-O-gallate and epi-phyllantenocoside-O-gallate; and a flavanonol gallate, (-)-taxifolin-3-O-gallate; as well as two first isolated natural products, phyllatyramine C and phyllantenocoside; together with twenty-three known compounds. Their structures were elucidated by spectroscopic means. ECD spectra of all isolated butenolides were compared and assigned the configurations. Phyllatyramine A displayed weak cytotoxicity against the KB cell line, while phyllatyramines B and C showed weak cytotoxicity against KB and HeLa cell lines. In addition, phyllatyramine B and (-)-taxifolin-3-O-gallate showed more potent α-glucosidase inhibitory activity than the standard acarbose 3.4 and 5.8 fold, respectively.
Collapse
Affiliation(s)
- Apisara Somteds
- Natural Products Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kwanjai Kanokmedhakul
- Natural Products Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Boonyanoot Chaiyosang
- Natural Products Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Jantana Yahuafai
- Natural Product Research Section, Research Division National Cancer Institute, Bangkok, 10400, Thailand
| | - Surat Laphookhieo
- Center of Chemical Innovation for Sustainability (CIS), School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Piyaporn Phukhatmuen
- Center of Chemical Innovation for Sustainability (CIS), School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Pimwadee Pornpongrungrueng
- Applied Taxonomic Research Center, Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Somdej Kanokmedhakul
- Natural Products Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
18
|
Wang Y, Wen F, Hong X, Li Z, Mi Y, Zhao B. Comparative chloroplast genome analyses of Paraboea (Gesneriaceae): Insights into adaptive evolution and phylogenetic analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:1019831. [PMID: 36275537 PMCID: PMC9581172 DOI: 10.3389/fpls.2022.1019831] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/16/2022] [Indexed: 05/22/2023]
Abstract
Paraboea (Gesneriaceae) distributed in the karst areas of South and Southwest China and Southeast Asia, is an ideal genus to study the phylogeny and adaptive evolution of karst plants. In this study, the complete chloroplast genomes of twelve Paraboea species were sequenced and analyzed. Twelve chloroplast genomes ranged in size from 153166 to 154245 bp. Each chloroplast genome had a typical quartile structure, and relatively conserved type and number of gene components, including 131 genes which are composed of 87 protein coding genes, 36 transfer RNAs and 8 ribosomal RNAs. A total of 600 simple sequence repeats and 389 non-overlapped sequence repeats were obtained from the twelve Paraboea chloroplast genomes. We found ten divergent regions (trnH-GUG-psbA, trnM-CAU, trnC-GCA, atpF-atpH, ycf1, trnK-UUU-rps16, rps15, petL, trnS-GCU-trnR-UCU and psaJ-rpl33) among the 12 Paraboea species to be potential molecular markers. In the phylogenetic tree of 31 Gesneriaceae plants including twelve Paraboea species, all Paraboea species clustered in a clade and confirmed the monophyly of Paraboea. Nine genes with positive selection sites were detected, most of which were related to photosynthesis and protein synthesis, and might played crucial roles in the adaptability of Paraboea to diverse karst environments. These findings are valuable for further study of the phylogeny and karst adaptability of Gesneriaceae plants.
Collapse
Affiliation(s)
- Yifei Wang
- Department of Pharmacognosy, Guilin Medical University, Guilin, China
- Department of Pharmacy, Guilin Medical University, Guilin, China
| | - Fang Wen
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Xin Hong
- Anhui Provincial Engineering Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, China
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Zhenglong Li
- Anhui Provincial Engineering Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, China
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yaolei Mi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Bo Zhao, ; Yaolei Mi,
| | - Bo Zhao
- Department of Pharmacognosy, Guilin Medical University, Guilin, China
- Department of Pharmacy, Guilin Medical University, Guilin, China
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
- *Correspondence: Bo Zhao, ; Yaolei Mi,
| |
Collapse
|
19
|
Katsuhara M. New Year's greetings 2022 from the Journal of Plant Research. JOURNAL OF PLANT RESEARCH 2022; 135:1-2. [PMID: 35029774 DOI: 10.1007/s10265-021-01363-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Maki Katsuhara
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan.
| |
Collapse
|
20
|
Leaf Elemental Concentrations, Stoichiometry, and Resorption in Guam’s Coastal Karst Forests. DIVERSITY 2021. [DOI: 10.3390/d13110545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Greater knowledge concerning the interspecific diversity of the plant leaf ionome is required to effectively understand the spatiotemporal dynamics of biogeochemistry, but Micronesia has been ignored in this literature. The objectives of this study were to quantify the leaf ionome, resorption efficiency, and stoichiometry of leaves from 25 plant species representing Guam’s coastal karst forests. Carbon and nitrogen were quantified by dry combustion, and other minerals and metals were quantified by spectrometry. Nitrogen and calcium concentrations in Guam’s green leaves exceeded the published global means, but manganese and copper concentrations were less than the global means. The remainder of the elements were within the expected ranges. Nutrient resorption rates exhibited a decreasing order of potassium > phosphorus > nitrogen > zinc > copper. The term “accretion efficiency” is introduced to describe the accumulation of an element throughout leaf aging and senescence, and calcium and iron exhibited substantial accretion efficiency in this study. Stoichiometry relations indicated that Guam’s karst forest is most limited by phosphorus and then secondarily limited by nitrogen, although several individual taxa exhibited co-limitation by potassium. Five of the species are officially listed on extinction threat lists. Of these, the Malvaceae tree Heriteria longipetiolata exhibited leaf traits depicting the most recalcitrant litter characteristics, and the Fabaceae tree Serianthes nelsonii exhibited leaf traits depicting the most labile litter characteristics. The contributions of these two tree species to spatiotemporal diversity in biogeochemistry appear to be profound, indicating species recovery efforts are of paramount importance for maintaining ecosystem function and soil heterotroph biodiversity in northern Guam.
Collapse
|