1
|
Warner SO, Dai Y, Sheanon N, Yao MV, Cason RL, Arbabi S, Patel SB, Lindquist D, Winnick JJ. Short-term fasting lowers glucagon levels under euglycemic and hypoglycemic conditions in healthy humans. JCI Insight 2023; 8:e169789. [PMID: 37166980 PMCID: PMC10371233 DOI: 10.1172/jci.insight.169789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/09/2023] [Indexed: 05/12/2023] Open
Abstract
Fasting is associated with increased susceptibility to hypoglycemia in people with type 1 diabetes, thereby making it a significant health risk. To date, the relationship between fasting and insulin-induced hypoglycemia has not been well characterized, so our objective was to determine whether insulin-independent factors, such as counterregulatory hormone responses, are adversely impacted by fasting in healthy control individuals. Counterregulatory responses to insulin-induced hypoglycemia were measured in 12 healthy people during 2 metabolic studies. During one study, participants ate breakfast and lunch, after which they underwent a 2-hour bout of insulin-induced hypoglycemia (FED). During the other study, participants remained fasted prior to hypoglycemia (FAST). As expected, hepatic glycogen concentrations were lower in FAST, and associated with diminished peak glucagon levels and reduced endogenous glucose production (EGP) during hypoglycemia. Accompanying lower EGP in FAST was a reduction in peripheral glucose utilization, and a resultant reduction in the amount of exogenous glucose required to maintain glycemia. These data suggest that whereas a fasting-induced lowering of glucose utilization could potentially delay the onset of insulin-induced hypoglycemia, subsequent reductions in glucagon levels and EGP are likely to encumber recovery from it. As a result of this diminished metabolic flexibility in response to fasting, susceptibility to hypoglycemia could be enhanced in patients with type 1 diabetes under similar conditions.
Collapse
Affiliation(s)
- Shana O. Warner
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Yufei Dai
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Nicole Sheanon
- Department of Pediatrics, Division of Pediatric Endocrinology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Michael V. Yao
- Department of Pediatrics, Division of Endocrinology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Rebecca L. Cason
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Shahriar Arbabi
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Shailendra B. Patel
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Diana Lindquist
- Imaging Research Center, Department of Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jason J. Winnick
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
2
|
Laursen JC, Hansen CS, Bordino M, Frimodt-Møller M, Hansen TW, Bernardi L, Groop PH, Rossing P. The association between blood oxygen saturation and baroreflex sensitivity in adults with type 1 diabetes with and without albuminuria. J Diabetes Complications 2023; 37:108473. [PMID: 37121117 DOI: 10.1016/j.jdiacomp.2023.108473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/27/2023] [Accepted: 04/08/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND Low baroreflex sensitivity is an indicator of early cardiovascular autonomic neuropathy. We explored the association between baroreflex sensivity and blood oxygen saturation (SpO2) in type 1 diabetes and various degrees of microvascular disease. METHODS In this Danish-Finnish cross-sectional multicentre study, baroreflex sensivity and SpO2 (pulse oximetry) were examined in persons with type 1 diabetes and normoalbuminuria (n = 98), microalbuminuria (n = 28), or macroalbuminuria (n = 43), and in non-diabetic controls (n = 54). Associations and differences between groups were analysed using regression models and adjustment included age, sex, smoking, HbA1c, blood haemoglobin, urine albumin creatinine ratio, body mass index, and estimated glomerular filtration rate. RESULTS In type 1 diabetes, higher baroreflex sensitivity was associated with higher SpO2 before adjustment (% increase per one % increase in SpO2 = 20 % (95%CI: 11-30); p < 0.001) and the association remained significant after adjustment (p = 0.02). Baroreflex sensitivity was not different between non-diabetic controls and persons with type 1 diabetes and normoalbuminuria (p = 0.052). Compared with type 1 diabetes and normoalbuminuria, baroreflex sensitivity was lower in micro- (p < 0.001) and macroalbuminuria (p < 0.001). SpO2 was lower in persons with type 1 diabetes and normoalbuminuria compared with non-diabetic controls (p < 0.01). Within the participants with type 1 diabetes, SpO2 was not different in micro- or macroalbuminuria compared with normoalbuminuria (p-values > 0.05), but lower in macro-compared with microalbuminuria (p < 0.01). CONCLUSIONS Lower baroreflex sensitivity was associated with lower SpO2 in type 1 diabetes. The present study support the hypothesis that hypoxia could be a therapeutic target in persons with type 1 diabetes.
Collapse
Affiliation(s)
| | | | - Marco Bordino
- Folkhälsen Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland; Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Program for Clinical and Molecular Medicine, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | | | - Luciano Bernardi
- Folkhälsen Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland; Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Program for Clinical and Molecular Medicine, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Per-Henrik Groop
- Folkhälsen Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland; Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Program for Clinical and Molecular Medicine, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, Herlev, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Hagelqvist PG, Andersen A, Maytham KB, Andreasen CR, Engberg S, Lindhardt TB, Faber J, Holst JJ, Forman JL, Pedersen-Bjergaard U, Knop FK, Vilsbøll T. Exercise-related hypoglycaemia induces QTc-interval prolongation in individuals with type 1 diabetes. Diabetes Obes Metab 2023; 25:1186-1195. [PMID: 36593718 DOI: 10.1111/dom.14964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/20/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023]
Abstract
AIMS To investigate changes in cardiac repolarisation during exercise-related hypoglycaemia compared to hypoglycaemia induced at rest in people with type 1 diabetes. MATERIAL AND METHODS In a randomised crossover study, 15 men with type 1 diabetes underwent two separate hyperinsulinaemic euglycaemic-hypoglycaemic clamp experiments during Holter-ECG monitoring. One experiment included a bout of moderate-intensity cycling exercise (60 min) along with declining plasma glucose (PG; Clamp-exercise). In the other experiment, hypoglycaemia was induced with the participants at rest (Clamp-rest). We studied QTc interval, T-peak to T-end (Tpe) interval and hormonal responses during three steady-state phases: (i) baseline (PG 4.0-8.0 mmol/L); (ii) hypoglycaemic phase (PG <3.0 mmol/L); and (iii) recovery phase (PG 4.0-8.0 mmol/L). RESULTS Both QTc interval and Tpe interval increased significantly from baseline during the hypoglycaemic phase but with no significant difference between test days. These changes were accompanied by an increase in plasma adrenaline and a decrease in plasma potassium on both days. During the recovery phase, ΔQTc interval was longer during Clamp-rest compared to Clamp-exercise, whereas ΔTpe interval remained similar on the two test days. CONCLUSIONS We found that both exercise-related hypoglycaemia and hypoglycaemia induced at rest can cause QTc-interval prolongation and Tpe-interval prolongation in people with type 1 diabetes. Thus, both scenarios may increase susceptibility to ventricular arrhythmias.
Collapse
Affiliation(s)
- Per G Hagelqvist
- Clinical Research, Copenhagen University Hospital, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Andreas Andersen
- Clinical Research, Copenhagen University Hospital, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Kaisar B Maytham
- Clinical Research, Copenhagen University Hospital, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Christine R Andreasen
- Clinical Research, Copenhagen University Hospital, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Susanne Engberg
- Clinical Research, Copenhagen University Hospital, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Tommi B Lindhardt
- Department of Cardiology, Nordsjaellands Hospital Hillerød, University of Copenhagen, Hillerød, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Faber
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Endocrinology, Herlev Hospital, Herlev, Denmark
| | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Julie L Forman
- Section of Biostatistics, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Pedersen-Bjergaard
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Endocrinology and Nephrology, Nordsjaellands Hospital Hillerød, University of Copenhagen, Hillerød, Denmark
| | - Filip K Knop
- Clinical Research, Copenhagen University Hospital, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Clinical Research, Copenhagen University Hospital, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Haas A, Borsook D, Adler G, Freeman R. Stress, hypoglycemia, and the autonomic nervous system. Auton Neurosci 2022; 240:102983. [PMID: 35417827 DOI: 10.1016/j.autneu.2022.102983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/29/2022]
Abstract
Stress can be classified as either psychosocial or physiologic. Physiologic stress refers to stresses due to acute illness, trauma, pain, hypoglycemia, and sleep deprivation-much less is known regarding its health consequences. This review focuses on hypoglycemia as a model to further investigate physiological stress. Experimental mild to moderate hypoglycemia is a paradigmatic physiological stress that evokes autonomic, neuroendocrine, and immune responses. Hypoglycemic stress is an ideal model to examine the interactions and consequences of physiological stress on the autonomic nervous system. Acute hypoglycemia has been demonstrated to increase inflammatory markers, prolong QTc, and impair cardiac-vagal baroreflex sensitivity. Some of these consequences may not reverse completely when euglycemia is restored. For example, there is attenuation of the cardiac-vagal baroreflex, attenuation of the vascular sympathetic baroreflex (muscle sympathetic nerve activity response to transient hypotension), and attenuation of the catecholamine response to lower body negative pressure that is present the next day after hypoglycemia has resolved.
Collapse
Affiliation(s)
- Andrea Haas
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA, USA
| | - David Borsook
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Gail Adler
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA, USA
| | - Roy Freeman
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Ang L, Kidwell KM, Dillon B, Reiss J, Fang F, Leone V, Mizokami-Stout K, Pop-Busui R. Dapagliflozin and measures of cardiovascular autonomic function in patients with type 2 diabetes (T2D). J Diabetes Complications 2021; 35:107949. [PMID: 34024686 DOI: 10.1016/j.jdiacomp.2021.107949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 01/08/2023]
Abstract
AIMS Sodium-glucose cotransporter-2 (SGLT-2) inhibitors reduce blood pressure without compensatory heart rate elevation, possibly by modulating sympathetic/parasympathetic activity. This may contribute to their cardiovascular benefits in type 2 diabetes (T2D). We evaluated the effects of dapagliflozin (DAPA) on measures of cardiovascular autonomic neuropathy (CAN), cardiac function, and glucose variability (GV) in T2D. METHODS Pilot, randomized, two-period crossover trial comparing 12-week DAPA versus 12-week glimepiride treatment on CAN measures (cardiovascular autonomic reflex tests and heart rate variability), B-type natriuretic peptide (BNP), and GV (Abbott's Libre Pro devices) using signed rank tests and mixed models from baseline to 12 weeks within and between each period. RESULTS Forty-five T2D participants on metformin monotherapy (mean age 57 ± 8 years, duration 7 ± 6 years, HbA1c 7.8 ± 1.3%) were enrolled with 41 completing the trial. There were no differences in CAN indices or BNP with each drug compared to baseline and each other. Participants on DAPA demonstrated greater weight loss, reduced time in hypoglycemia, and improved GV compared to glimepiride. CONCLUSIONS Short term treatment with DAPA did not affect CAN measures or BNP in uncomplicated and relatively healthy T2D participants. Longer prospective studies in patients with advanced disease are needed to better understand relationships between SGLT-2 inhibitors and CAN. CLINICAL TRIAL REGISTRATION NCT02973477.
Collapse
Affiliation(s)
- Lynn Ang
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, United States of America.
| | - Kelley M Kidwell
- School of Public Health, Department of Biostatistics, University of Michigan, Ann Arbor, MI, United States of America
| | - Brendan Dillon
- University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Jacob Reiss
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, United States of America
| | - Fang Fang
- School of Public Health, Department of Biostatistics, University of Michigan, Ann Arbor, MI, United States of America
| | - Virginia Leone
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, United States of America
| | - Kara Mizokami-Stout
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, United States of America; Ann Arbor Veteran Affairs Hospital, Ann Arbor, MI, United States of America
| | - Rodica Pop-Busui
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
6
|
Chaudhary P, Das-Earl P, Schreihofer AM. Preserved glycemic control and baroreflex efficacy in young adult hypertensive female obese Zucker rats. Am J Physiol Regul Integr Comp Physiol 2021; 321:R62-R78. [PMID: 33978481 PMCID: PMC8321785 DOI: 10.1152/ajpregu.00341.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Obese Zucker rats (OZRs) develop hypertension and hyperinsulinemia by 3 mo of age. Male OZRs also have diminished baroreflex-mediated activation of nucleus tractus solitarius (NTS) and bradycardia, which are improved by correcting their hyperglycemia. Conversely, 3-mo-old female OZRs and lean Zucker rats (LZRs) have equivalent baroreflex-mediated bradycardia that is impaired in 6-mo-old OZRs. We hypothesized that 3-mo-old female OZRs maintain NTS activation and baroreflexes coincident with glycemic control. We also hypothesized that 6-mo-old female OZRs develop impaired baroreflexes with hyperglycemia and diminished NTS activation. In 12- to 16-wk-old females, sympathetic nerve activity (SNA) and arterial pressure (AP) were higher in OZRs than LZRs. However, baroreflex-mediated inhibition of SNA and bradycardia were equivalent in female OZRs and LZRs. Unlike deficits in male OZRs, female OZRs and LZRs had no differences in phenylephrine-induced c-Fos expression in NTS or decreases in SNA and AP evoked by glutamate into NTS. Compared with hyperglycemia in male OZRs (217.9 ± 34.4 mg/dL), female OZRs had normal fed blood glucose levels (108.2 ± 1.6 mg/dL in LZRs and 113.6 ± 3.5 mg/dL in OZRs) with emerging glucose intolerance. Conscious 24- to 27-wk-old female OZRs had impaired baroreflex-mediated bradycardia, but fed blood glucose was modestly elevated (124.2 ± 5.2 mg/dL) and phenylephrine-induced c-Fos expression in NTS was comparable to LZRs. These data suggest that better glycemic control in 3-mo-old female OZRs prevents diminished NTS activation and baroreflexes, supporting the notion that hyperglycemia impairs these responses in male OZRs. However, 6-mo-old female OZRs had impaired baroreflex efficacy without diminished NTS activation or pronounced hyperglycemia, suggesting baroreflex deficits develop by different mechanisms in female and male OZRs.
Collapse
Affiliation(s)
- Parul Chaudhary
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Paromita Das-Earl
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Ann M Schreihofer
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
7
|
Lin YK, Fisher SJ, Pop‐Busui R. Hypoglycemia unawareness and autonomic dysfunction in diabetes: Lessons learned and roles of diabetes technologies. J Diabetes Investig 2020; 11:1388-1402. [PMID: 32403204 PMCID: PMC7610104 DOI: 10.1111/jdi.13290] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/01/2020] [Accepted: 05/07/2020] [Indexed: 12/18/2022] Open
Abstract
Impaired awareness of hypoglycemia (IAH) is a reduction in the ability to recognize low blood glucose levels that would otherwise prompt an appropriate corrective therapy. Identified in approximately 25% of patients with type 1 diabetes, IAH has complex pathophysiology, and might lead to serious and potentially lethal consequences in patients with diabetes, particularly in those with more advanced disease and comorbidities. Continuous glucose monitoring systems can provide real-time glucose information and generate timely alerts on rapidly falling or low blood glucose levels. Given their improvements in accuracy, affordability and integration with insulin pump technology, continuous glucose monitoring systems are emerging as critical tools to help prevent serious hypoglycemia and mitigate its consequences in patients with diabetes. This review discusses the current knowledge on IAH and effective diagnostic methods, the relationship between hypoglycemia and cardiovascular autonomic neuropathy, a practical approach to evaluating cardiovascular autonomic neuropathy for clinicians, and recent evidence from clinical trials assessing the effects of the use of CGM technologies in patients with type 1 diabetes with IAH.
Collapse
Affiliation(s)
- Yu Kuei Lin
- Division of Metabolism, Endocrinology and DiabetesDepartment of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Simon J Fisher
- Division of Endocrinology, Metabolism and DiabetesDepartment of Internal MedicineUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Rodica Pop‐Busui
- Division of Metabolism, Endocrinology and DiabetesDepartment of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| |
Collapse
|
8
|
Andersen A, Jørgensen PG, Knop FK, Vilsbøll T. Hypoglycaemia and cardiac arrhythmias in diabetes. Ther Adv Endocrinol Metab 2020; 11:2042018820911803. [PMID: 32489579 PMCID: PMC7238305 DOI: 10.1177/2042018820911803] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/30/2020] [Indexed: 01/11/2023] Open
Abstract
Hypoglycaemia remains an inevitable risk in insulin-treated type 1 diabetes and type 2 diabetes and has been associated with multiple adverse outcomes. Whether hypoglycaemia is a cause of fatal cardiac arrhythmias in diabetes, or merely a marker of vulnerability, is still unknown. Since a pivotal report in 1991, hypoglycaemia has been suspected to induce cardiac arrhythmias in patients with type 1 diabetes, the so-called 'dead-in-bed syndrome'. This suspicion has subsequently been supported by the coexistence of an increased mortality and a three-fold increase in severe hypoglycaemia in patients with type 2 diabetes receiving intensive glucose-lowering treatment in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial. Studies have investigated the association between hypoglycaemia-induced cardiac arrhythmias. In a rat-model, severe hypoglycaemia resulted in a specific pattern of cardiac arrhythmias including QT-prolongation, ventricular tachycardia, second- and third-degree AV block and ultimately cardiorespiratory arrest. In clinical studies of experimentally induced hypoglycaemia, QTc-prolongation, a risk factor of ventricular arrhythmias, is an almost consistent finding. The extent of QT-prolongation seems to be modified by several factors, including antecedent hypoglycaemia, diabetes duration and cardiac autonomic neuropathy. Observational studies indicate diurnal differences in the pattern of electrocardiographic alterations during hypoglycaemia with larger QTc-prolongations during daytime, whereas the risk of bradyarrhythmias may be increased during sleep. Daytime periods of hypoglycaemia are characterized by shorter duration, increased awareness and a larger increase in catecholamines. The counterregulatory response is reduced during nightly episodes of hypoglycaemia, resulting in prolonged periods of hypoglycaemia with multiple nadirs. An initial sympathetic activity at plasma glucose nadir is replaced by increased vagal activity, which results in bradycardia. Here, we provide an overview of the existing literature exploring potential mechanisms for hypoglycaemia-induced cardiac arrhythmias and studies linking hypoglycaemia to cardiac arrhythmias in patients with diabetes.
Collapse
Affiliation(s)
- Andreas Andersen
- Steno Diabetes Center Copenhagen, Gentofte
Hospital, Hellerup, Denmark
- Center for Clinical Metabolic Research, Herlev
and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Peter G. Jørgensen
- Department of Cardiology, Herlev and Gentofte
Hospital, University of Copenhagen, Hellerup, Denmark
| | - Filip K. Knop
- Center for Clinical Metabolic Research, Herlev
and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Steno Diabetes Center Copenhagen, Gentofte
Hospital, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of
Health and Medical Sciences, University of Copenhagen, Copenhagen,
Denmark
- Novo Nordisk Foundation Center for Basic
Metabolic Research, Faculty of Health and Medical Sciences, University of
Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Steno Diabetes Centre Copenhagen, Gentofte
Hospital, Kildegårdsvej 28, Hellerup, 2900, Denmark
- Center for Clinical Metabolic Research, Herlev
and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of
Health and Medical Sciences, University of Copenhagen, Copenhagen,
Denmark
| |
Collapse
|
9
|
Ang L, Dillon B, Mizokami-Stout K, Pop-Busui R. Cardiovascular autonomic neuropathy: A silent killer with long reach. Auton Neurosci 2020; 225:102646. [PMID: 32106052 DOI: 10.1016/j.autneu.2020.102646] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/30/2020] [Accepted: 02/11/2020] [Indexed: 02/07/2023]
Abstract
Cardiovascular autonomic neuropathy (CAN) is a common and deadly complication of diabetes mellitus, which is frequently overlooked in clinical practice due to its characteristic subtle presentation earlier in disease. Yet, timely detection of CAN may help implementation of tailored interventions to prevent its progression and mitigate the risk of associated complications, including cardiovascular disease (CVD), cardiac arrhythmias, myocardial dysfunction leading to congestive heart failure and all-cause mortality. This review highlights current CAN epidemiology trends, novel mechanisms linking CAN with other diabetes complications and current recommendations for diagnosis and management of the disease in the clinical setting.
Collapse
Affiliation(s)
- Lynn Ang
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, United States of America
| | - Brendan Dillon
- University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Kara Mizokami-Stout
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, United States of America
| | - Rodica Pop-Busui
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, United States of America.
| |
Collapse
|
10
|
Chaudhary P, Schreihofer AM. Improved glucose homeostasis in male obese Zucker rats coincides with enhanced baroreflexes and activation of the nucleus tractus solitarius. Am J Physiol Regul Integr Comp Physiol 2018; 315:R1195-R1209. [PMID: 30256679 DOI: 10.1152/ajpregu.00195.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Young adult male obese Zucker rats (OZR) develop insulin resistance and hypertension with impaired baroreflex-mediated bradycardia and activation of nucleus tractus solitarius (NTS). Because type 1 diabetic rats also develop impaired baroreflex-mediated NTS activation, we hypothesized that improving glycemic control in OZR would enhance compromised baroreflexes and NTS activation. Fasting blood glucose measured by telemetry was comparable in OZR and lean Zucker rats (LZR) at 12-17 wk. However, with access to food, OZR were chronically hyperglycemic throughout this age range. By 15-17 wk of age, tail samples yielded higher glucose values than those measured by telemetry in OZR but not LZR, consistent with reports of exaggerated stress responses in OZR. Injection of glucose (1g/kg ip) produced larger rises in glucose and areas under the curve in OZR than LZR. Treatment with metformin (300 mg·kg-1·day-1) or pioglitazone (5 mg·kg-1·day-1) in drinking water for 2-3 wk normalized fed glucose levels in OZR with no effect in LZR. After metformin treatment, area under the curve for blood glucose after glucose injection was reduced in OZR and comparable to LZR. Hyperinsulinemia was slightly reduced by each treatment in OZR, but insulin was still greatly elevated compared with LZR. Neither treatment reduced hypertension in OZR, but both treatments significantly improved the blunted phenylephrine-induced bradycardia and NTS c-Fos expression in OZR with no effect in LZR. These data suggest that restoring glycemic control in OZR enhances baroreflex control of heart rate by improving the response of the NTS to raising arterial pressure, even in the presence of hyperinsulinemia and hypertension.
Collapse
Affiliation(s)
- Parul Chaudhary
- Department of Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas
| | - Ann M Schreihofer
- Department of Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas
| |
Collapse
|
11
|
Holmes AP, Ray CJ, Thompson EL, Alshehri Z, Coney AM, Kumar P. Adrenaline activation of the carotid body: Key to CO 2 and pH homeostasis in hypoglycaemia and potential pathological implications in cardiovascular disease. Respir Physiol Neurobiol 2018; 265:92-99. [PMID: 29807139 DOI: 10.1016/j.resp.2018.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/17/2018] [Accepted: 05/21/2018] [Indexed: 12/30/2022]
Abstract
Ventilatory and neuroendocrine counter-regulatory responses during hypoglycaemia are essential in order to maintain glycolysis and prevent rises in PaCO2 leading to systemic acidosis. The mammalian carotid body has emerged as an important driver of hyperpnoea and glucoregulation in hypoglycaemia. However, the adequate stimulus for CB stimulation in hypoglycaemia has remained controversial for over a decade. The recent finding that adrenaline is a physiological activator of CB in hypoglycaemia raises the intriguing possibility that CB stimulation and hyperpnoea may be necessary to maintain pH in other adrenaline-related hypermetabolic states such as exercise. This review will therefore focus on 1) The important functional contribution of the CB in the counter-regulatory and ventilatory response to hypoglycaemia, 2) the proposed mechanisms that cause CB stimulation in hypoglycaemia including hormonal activation by adrenaline and direct low glucose sensing and 3) the possible pathological consequences of repetitive CB activation by adrenaline that could potentially be targeted to reduce CB-mediated cardiovascular disease.
Collapse
Affiliation(s)
- Andrew P Holmes
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B12 2TT, UK
| | - Clare J Ray
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B12 2TT, UK
| | - Emma L Thompson
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B12 2TT, UK
| | - Ziyad Alshehri
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B12 2TT, UK
| | - Andrew M Coney
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B12 2TT, UK
| | - Prem Kumar
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B12 2TT, UK.
| |
Collapse
|
12
|
Chow E, Bernjak A, Walkinshaw E, Lubina-Solomon A, Freeman J, Macdonald IA, Sheridan PJ, Heller SR. Cardiac Autonomic Regulation and Repolarization During Acute Experimental Hypoglycemia in Type 2 Diabetes. Diabetes 2017; 66:1322-1333. [PMID: 28137792 PMCID: PMC5860266 DOI: 10.2337/db16-1310] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/25/2017] [Indexed: 02/03/2023]
Abstract
Hypoglycemia is associated with increased cardiovascular mortality in trials of intensive therapy in type 2 diabetes mellitus (T2DM). We previously observed an increase in arrhythmias during spontaneous prolonged hypoglycemia in patients with T2DM. We examined changes in cardiac autonomic function and repolarization during sustained experimental hypoglycemia. Twelve adults with T2DM and 11 age- and BMI-matched control participants without diabetes underwent paired hyperinsulinemic clamps separated by 4 weeks. Glucose was maintained at euglycemia (6.0 mmol/L) or hypoglycemia (2.5 mmol/L) for 1 h. Heart rate, blood pressure, and heart rate variability were assessed every 30 min and corrected QT intervals and T-wave morphology every 60 min. Heart rate initially increased in participants with T2DM but then fell toward baseline despite maintained hypoglycemia at 1 h accompanied by reactivation of vagal tone. In control participants, vagal tone remained depressed during sustained hypoglycemia. Participants with T2DM exhibited greater heterogeneity of repolarization during hypoglycemia as demonstrated by T-wave symmetry and principal component analysis ratio compared with control participants. Epinephrine levels during hypoglycemia were similar between groups. Cardiac autonomic regulation during hypoglycemia appears to be time dependent. Individuals with T2DM demonstrate greater repolarization abnormalities for a given hypoglycemic stimulus despite comparable sympathoadrenal responses. These mechanisms could contribute to arrhythmias during clinical hypoglycemic episodes.
Collapse
Affiliation(s)
- Elaine Chow
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, U.K
| | - Alan Bernjak
- INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, U.K
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, U.K
| | - Emma Walkinshaw
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, U.K
| | | | - Jenny Freeman
- Leeds Institute of Health Sciences, University of Leeds, Leeds, U.K
| | - Ian A Macdonald
- School of Life Sciences, University of Nottingham, Nottingham, U.K
| | - Paul J Sheridan
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, U.K
| | - Simon R Heller
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, U.K.
| |
Collapse
|
13
|
Kiec-Wilk B, Matejko B, Razny U, Stankiewicz M, Skupien J, Klupa T, Malecki MT. Hypoglycemic episodes are associated with inflammatory status in patients with type 1 diabetes mellitus. Atherosclerosis 2016; 251:334-338. [PMID: 27237074 DOI: 10.1016/j.atherosclerosis.2016.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 04/05/2016] [Accepted: 05/01/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUD Glycemic control may be associated with inflammatory status in type 1 diabetes (T1DM). We examined the association between glucose control parameters and circulating inflammation markers in T1DM. METHODS The study included 101 T1DM patients treated with personal insulin pumps (T1DM duration 15.2 + 7.3 years). The analysed glycemic parameters included HbA1c, mean glucose level, standard deviation and number of hypoglycemic episodes (glucose <55 mg/dL) from the last 7 days. Blood was collected for testing inflammatory markers (IL-6, VCAM, ICAM, E-selectin). RESULTS The T1DM cohort had good glycemic control (HbA1c 7.1 ± 0.8%, mean daily glucose 141.5 ± 27.1 mg/dL and the mean number of hypoglycemic episodes was 5.6 ± 4.0/week). In a forward stepwise multiple linear regression analysis the number of hypoglycemic episodes predicted the levels of the investigated markers (sICAM p = 0.0019, sVCAM p = 0.021, sE-selectin p = 0.048, and IL-6 p = 0.049). None of the other glycemic parameters was shown to be an independent predictor. CONCLUSIONS For the first time, we report an association between the number of mild hypoglycemic episodes, recorded in a real life setting, and the level of inflammatory markers in T1DM patients with good glycemic control.
Collapse
Affiliation(s)
- Beata Kiec-Wilk
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland; University Hospital, Krakow, Poland
| | - Bartlomiej Matejko
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland
| | - Urszula Razny
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Krakow, Poland
| | | | - Jan Skupien
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland; University Hospital, Krakow, Poland
| | - Tomasz Klupa
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland; University Hospital, Krakow, Poland
| | - Maciej T Malecki
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland; University Hospital, Krakow, Poland.
| |
Collapse
|
14
|
Klimontov VV, Myakina NE, Tyan NV. Heart rate variability is associated with interstitial glucose fluctuations in type 2 diabetic women treated with insulin. SPRINGERPLUS 2016; 5:337. [PMID: 27066358 PMCID: PMC4792833 DOI: 10.1186/s40064-016-1932-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/24/2016] [Indexed: 01/21/2023]
Abstract
Heart rate variability (HRV) analysis is a commonly used tool for assessment of autonomic function in diabetic subjects. Nevertheless, the effects of glucose fluctuations on HRV remain to be clarified. In this study we investigated the associations of frequency-domain HRV parameters with current and antecedent interstitial glucose fluctuations in insulin-treated type 2 diabetic women at high cardiovascular risk. Sixty-seven women with type 2 diabetes, from 48 to 78 years of age, including 46 ones with cardiovascular autonomic neuropathy (CAN), underwent simultaneous continuous glucose monitoring (CGM) and Holter recording. Eight glucose variability (GV) indices, including standard deviation, 2-h continuous overlapping net glycemic action (CONGA2), lability index, J-index, mean amplitude of glucose excursions, mean absolute glucose (MAG), low blood glucose index (LBGI) and high blood glucose index (HBGI), were calculated from CGM data. The low frequency (LF) and high frequency (HF) power values were estimated on 5-min intervals at fasting and postprandial daytime periods, at night and during CGM-defined hypoglycemia. The values of LF and HF power declined after meals in diabetic women with normal autonomic function tests. Patients with CAN demonstrated blunted postprandial LF and HF reduction and diminished LF/HF ratio during daytime hypoglycemic events. Daytime LF and HF at fasting state correlated negatively with MAG derived from antecedent nocturnal CGM recordings. Positive correlation was found between fasting LF and nocturnal LBGI. The LF power during daytime hypoglycemia demonstrated negative correlations with nocturnal CONGA2, J-index, HBGI and MAG. The nocturnal HBGI and CONGA2, along with HbA1c and daily insulin dose, were predictors of LF during daytime hypoglycemia in multiple regression analysis. Both postprandial and antecedent nocturnal glucose fluctuations affect daytime frequency-domain HRV parameters in insulin-treated type 2 diabetic women. In patients with increased GV the results of short-term assessment of HRV should be interpreted with caution. Fasting state rather than postprandial one seems to be preferable for HRV estimation.
Collapse
Affiliation(s)
- Vadim V Klimontov
- Laboratory of Endocrinology, Scientific Institute of Clinical and Experimental Lymphology, Timakov Str., 2, Novosibirsk, Russian Federation 630060
| | - Natalia E Myakina
- Laboratory of Endocrinology, Scientific Institute of Clinical and Experimental Lymphology, Timakov Str., 2, Novosibirsk, Russian Federation 630060
| | - Nadezda V Tyan
- Laboratory of Endocrinology, Scientific Institute of Clinical and Experimental Lymphology, Timakov Str., 2, Novosibirsk, Russian Federation 630060
| |
Collapse
|
15
|
Kenny GP, Sigal RJ, McGinn R. Body temperature regulation in diabetes. Temperature (Austin) 2016; 3:119-45. [PMID: 27227101 PMCID: PMC4861190 DOI: 10.1080/23328940.2015.1131506] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/09/2015] [Accepted: 12/09/2015] [Indexed: 01/06/2023] Open
Abstract
The effects of type 1 and type 2 diabetes on the body's physiological response to thermal stress is a relatively new topic in research. Diabetes tends to place individuals at greater risk for heat-related illness during heat waves and physical activity due to an impaired capacity to dissipate heat. Specifically, individuals with diabetes have been reported to have lower skin blood flow and sweating responses during heat exposure and this can have important consequences on cardiovascular regulation and glycemic control. Those who are particularly vulnerable include individuals with poor glycemic control and who are affected by diabetes-related complications. On the other hand, good glycemic control and maintenance of aerobic fitness can often delay the diabetes-related complications and possibly the impairments in heat loss. Despite this, it is alarming to note the lack of information regarding diabetes and heat stress given the vulnerability of this population. In contrast, few studies have examined the effects of cold exposure on individuals with diabetes with the exception of its therapeutic potential, particularly for type 2 diabetes. This review summarizes the current state of knowledge regarding the impact of diabetes on heat and cold exposure with respect to the core temperature regulation, cardiovascular adjustments and glycemic control while also considering the beneficial effects of maintaining aerobic fitness.
Collapse
Affiliation(s)
- Glen P Kenny
- Human and Environmental Physiology Research Unit, Faculty of Health Sciences, Ottawa, ON, Canada; Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Ronald J Sigal
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Departments of Medicine, Cardiac Sciences, and Community Health Sciences, Cumming School of Medicine, Faculties of Medicine and Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Ryan McGinn
- Human and Environmental Physiology Research Unit, Faculty of Health Sciences, Ottawa, ON, Canada; Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
16
|
Russell NE, Higgins MF, Kinsley BF, Foley ME, McAuliffe FM. Heart rate variability in neonates of type 1 diabetic pregnancy. Early Hum Dev 2016; 92:51-5. [PMID: 26658058 DOI: 10.1016/j.earlhumdev.2015.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 11/02/2015] [Accepted: 11/08/2015] [Indexed: 01/21/2023]
Abstract
BACKGROUND Cardiomyopathy is a common finding in offspring of pre-gestational type 1 diabetic pregnancy. Echocardiographic and biochemical evidence of fetal cardiac dysfunction have also been reported. Studies suggest that offspring of diabetic mothers (ODM) undergo a fetal programming effect due to the hyperglycaemic intrauterine milieu which increases their risk of cardiovascular morbidity in adult life. Decreased neonatal heart rate variability (HRV) has been described in association with in-utero growth restriction, prematurity, sudden infant death syndrome and congenital heart disease. The effect of in-utero exposure to hyperglycaemia in diabetic pregnancy on neonatal HRV is unknown. AIMS Our aim was to determine if neonatal HRV differs between normal and diabetic pregnancy. STUDY DESIGN AND SUBJECTS This was a prospective observational study of 38 patients with pregestational type 1 diabetes and 26 controls. HRV assessment was performed using Powerlab (ADI Instruments Ltd). OUTCOME MEASURES Heart rate variability assessment and cord blood sampling for pH and glucose were performed for all neonates. Maternal glycaemic control was assessed via measurement of glycosylated haemoglobin in each trimester in the diabetic cohort. RESULTS Neonates of diabetic mothers had evidence of altered heart rate variability, with increased low frequency to high frequency ratio (LF: HF), suggestive of a shift towards sympathetic predominance (p<0.05). This altered HRV was significantly related to fetal acidaemia, cord blood glucose values and maternal glycaemic control during pregnancy (p<0.05). CONCLUSION Neonates of pregestational diabetic pregnancy have altered HRV which is related to maternal hyperglycaemia, fetal acidaemia and fetal glycaemia. Exposure of the developing heart to fluctuations in maternal glycaemia with subsequent alterations in HRV may explain why infants of diabetic mothers are at greater risk of cardiovascular disease in later life.
Collapse
Affiliation(s)
- Noirin E Russell
- UCD Obstetrics and Gynaecology, School of Medicine and Medical Science, University College Dublin National Maternity Hospital, Dublin 2, Ireland
| | - Mary F Higgins
- UCD Obstetrics and Gynaecology, School of Medicine and Medical Science, University College Dublin National Maternity Hospital, Dublin 2, Ireland
| | - Brendan F Kinsley
- Dublin Diabetes Pregnancy Care Centre, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Michael E Foley
- UCD Obstetrics and Gynaecology, School of Medicine and Medical Science, University College Dublin National Maternity Hospital, Dublin 2, Ireland
| | - Fionnuala M McAuliffe
- UCD Obstetrics and Gynaecology, School of Medicine and Medical Science, University College Dublin National Maternity Hospital, Dublin 2, Ireland.
| |
Collapse
|
17
|
Rao AD, Bonyhay I, Dankwa J, Baimas-George M, Kneen L, Ballatori S, Freeman R, Adler GK. Baroreflex Sensitivity Impairment During Hypoglycemia: Implications for Cardiovascular Control. Diabetes 2016; 65:209-15. [PMID: 26438610 PMCID: PMC4686952 DOI: 10.2337/db15-0871] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/28/2015] [Indexed: 11/13/2022]
Abstract
Studies have shown associations between exposure to hypoglycemia and increased mortality, raising the possibility that hypoglycemia has adverse cardiovascular effects. In this study, we determined the acute effects of hypoglycemia on cardiovascular autonomic control. Seventeen healthy volunteers were exposed to experimental hypoglycemia (2.8 mmol/L) for 120 min. Cardiac vagal baroreflex function was assessed using the modified Oxford method before the initiation of the hypoglycemic-hyperinsulinemic clamp protocol and during the last 30 min of hypoglycemia. During hypoglycemia, compared with baseline euglycemic conditions, 1) baroreflex sensitivity decreases significantly (19.2 ± 7.5 vs. 32.9 ± 16.6 ms/mmHg, P < 0.005), 2) the systolic blood pressure threshold for baroreflex activation increases significantly (the baroreflex function shifts to the right; 120 ± 14 vs. 112 ± 12 mmHg, P < 0.005), and 3) the maximum R-R interval response (1,088 ± 132 vs. 1,496 ± 194 ms, P < 0.001) and maximal range of the R-R interval response (414 ± 128 vs. 817 ± 183 ms, P < 0.001) decrease significantly. These findings indicate reduced vagal control and impaired cardiovascular homeostasis during hypoglycemia.
Collapse
Affiliation(s)
- Ajay D Rao
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, Temple University School of Medicine, Philadelphia, PA
| | - Istvan Bonyhay
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Joel Dankwa
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Maria Baimas-George
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Lindsay Kneen
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Sarah Ballatori
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Roy Freeman
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Gail K Adler
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
18
|
Limberg JK, Dube S, Kuijpers M, Farni KE, Basu A, Rizza RA, Curry TB, Basu R, Joyner MJ. Effect of hypoxia on heart rate variability and baroreflex sensitivity during hypoglycemia in type 1 diabetes mellitus. Clin Auton Res 2015; 25:243-50. [PMID: 26141615 PMCID: PMC4569520 DOI: 10.1007/s10286-015-0301-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/12/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE Patients with type 1 diabetes mellitus exhibit impairments in autonomic and cardiovascular control which are worsened with acute hypoglycemia--thus increasing the risk of adverse cardiovascular events. Hypoxia, as seen with the common comorbidity of sleep apnea, may lead to further autonomic dysfunction and an increased risk of ventricular arrhythmias. Therefore, we hypothesized that heart rate variability (HRV) and baroreflex sensitivity (BRS) would be reduced during hypoglycemia in adults with type 1 diabetes, with a further decline when combined with hypoxia. METHODS Subjects with type 1 diabetes (n = 13; HbA1c = 7.5 ± 0.3 %, duration of diabetes = 17 ± 5 yrs) completed two 180 min hyperinsulinemic (2 mU/kg TBW/min), hypoglycemic (~3.3 µmol/mL) clamps separated by a minimum of 1 week and randomized to normoxia (SpO2 ~98 %) or hypoxia (SpO2 ~85 %). Heart rate (electrocardiogram) and blood pressure (finger photoplethysmography) were analyzed at baseline and during the hypoglycemic clamp for measures of HRV and spontaneous cardiac BRS (sCBRS). RESULTS Hypoglycemia resulted in significant reductions in HRV and sCBRS when compared with baseline levels (main effect of hypoglycemia: p < 0.05). HRV and sCBRS were further impaired during hypoxia (main effect of hypoxia: p < 0.05). CONCLUSIONS Acute hypoxia worsens hypoglycemia-mediated impairments in autonomic and cardiovascular control in patients with type 1 diabetes and may increase the risk of cardiovascular mortality. These results highlight the potential cumulative dangers of hypoglycemia and hypoxia in this vulnerable population.
Collapse
Affiliation(s)
- Jacqueline K Limberg
- Department of Anesthesiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55901, USA.
| | - Simmi Dube
- Department of Endocrinology, Mayo Clinic, Rochester, MN, USA
| | - Myrthe Kuijpers
- Department of Anesthesiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55901, USA
| | - Kathryn E Farni
- Department of Anesthesiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55901, USA
| | - Ananda Basu
- Department of Endocrinology, Mayo Clinic, Rochester, MN, USA
| | - Robert A Rizza
- Department of Endocrinology, Mayo Clinic, Rochester, MN, USA
| | - Timothy B Curry
- Department of Anesthesiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55901, USA
| | - Rita Basu
- Department of Endocrinology, Mayo Clinic, Rochester, MN, USA
| | - Michael J Joyner
- Department of Anesthesiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55901, USA
| |
Collapse
|
19
|
McGinn R, Kenny GP. Autonomic dysfunction associated with Type 1 diabetes: a role for fitness? Clin Auton Res 2014; 24:249-51. [PMID: 25398261 DOI: 10.1007/s10286-014-0262-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 11/07/2014] [Indexed: 01/09/2023]
Affiliation(s)
- Ryan McGinn
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | | |
Collapse
|