1
|
Zhao K, Si T, Liu S, Liu G, Li D, Li F. Co-metabolism of microorganisms: A study revealing the mechanism of antibiotic removal, progress of biodegradation transformation pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176561. [PMID: 39362550 DOI: 10.1016/j.scitotenv.2024.176561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Abstract
The widespread use of antibiotics has resulted in large quantities of antibiotic residues entering aquatic environments, which can lead to the development of antibiotic-resistant bacteria and antibiotic-resistant genes, posing a potential environmental risk and jeopardizing human health. Constructing a microbial co-metabolism system has become an effective measure to improve the removal efficiency of antibiotics by microorganisms. This paper reviews the four main mechanisms involved in microbial removal of antibiotics: bioaccumulation, biosorption, biodegradation and co-metabolism. The promotion of extracellular polymeric substances for biosorption and extracellular degradation and the regulation mechanism of enzymes in biodegradation by microorganisms processes are detailed therein. Transformation pathways for microbial removal of antibiotics are discussed. Bacteria, microalgae, and microbial consortia's roles in antibiotic removal are outlined. The factors influencing the removal of antibiotics by microbial co-metabolism are also discussed. Overall, this review summarizes the current understanding of microbial co-metabolism for antibiotic removal and outlines future research directions.
Collapse
Affiliation(s)
- Ke Zhao
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun 130118, China
| | - Tingting Si
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun 130118, China; Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shenghe Liu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun 130118, China
| | - Gaolei Liu
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Donghao Li
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fengxiang Li
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
2
|
Ilieva Y, Zaharieva MM, Najdenski H, Kroumov AD. Antimicrobial Activity of Arthrospira (Former Spirulina) and Dunaliella Related to Recognized Antimicrobial Bioactive Compounds. Int J Mol Sci 2024; 25:5548. [PMID: 38791586 PMCID: PMC11122404 DOI: 10.3390/ijms25105548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
With the increasing rate of the antimicrobial resistance phenomenon, natural products gain our attention as potential drug candidates. Apart from being used as nutraceuticals and for biotechnological purposes, microalgae and phytoplankton have well-recognized antimicrobial compounds and proved anti-infectious potential. In this review, we comprehensively outline the antimicrobial activity of one genus of cyanobacteria (Arthrospira, formerly Spirulina) and of eukaryotic microalgae (Dunaliella). Both, especially Arthrospira, are mostly used as nutraceuticals and as a source of antioxidants for health supplements, cancer therapy and cosmetics. Their diverse bioactive compounds provide other bioactivities and potential for various medical applications. Their antibacterial and antifungal activity vary in a broad range and are strain specific. There are strains of Arthrospira platensis with very potent activity and minimum inhibitory concentrations (MICs) as low as 2-15 µg/mL against bacterial fish pathogens including Bacillus and Vibrio spp. Arthrospira sp. has demonstrated an inhibition zone (IZ) of 50 mm against Staphylococcus aureus. Remarkable is the substantial amount of in vivo studies of Arthrospira showing it to be very promising for preventing vibriosis in shrimp and Helicobacter pylori infection and for wound healing. The innovative laser irradiation of the chlorophyll it releases can cause photodynamic destruction of bacteria. Dunaliella salina has exhibited MIC values lower than 300 µg/mL and an IZ value of 25.4 mm on different bacteria, while Dunaliella tertiolecta has demonstrated MIC values of 25 and 50 μg/mL against some Staphylococcus spp. These values fulfill the criteria for significant antimicrobial activity and sometimes are comparable or exceed the activity of the control antibiotics. The bioactive compounds which are responsible for that action are fatty acids including PUFAs, polysaccharides, glycosides, peptides, neophytadiene, etc. Cyanobacteria, such as Arthrospira, also particularly have antimicrobial flavonoids, terpenes, alkaloids, saponins, quinones and some unique-to-them compounds, such as phycobiliproteins, polyhydroxybutyrate, the peptide microcystin, etc. These metabolites can be optimized by using stress factors in a two-step process of fermentation in closed photobioreactors (PBRs).
Collapse
Affiliation(s)
| | | | | | - Alexander Dimitrov Kroumov
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria; (Y.I.); (M.M.Z.); (H.N.)
| |
Collapse
|
3
|
Rhodes ME, Pace AD, Benjamin MM, Ghent H, Dawson KS. Establishment of a Halophilic Bloom in a Sterile and Isolated Hypersaline Mesocosm. Microorganisms 2023; 11:2886. [PMID: 38138031 PMCID: PMC10745797 DOI: 10.3390/microorganisms11122886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/11/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Extreme environments, including hypersaline pools, often serve as biogeographical islands. Putative colonizers would need to survive transport across potentially vast distances of inhospitable terrain. Hyperhalophiles, in particular, are often highly sensitive to osmotic pressure. Here, we assessed whether hyperhalophiles are capable of rapidly colonizing an isolated and sterile hypersaline pool and the order of succession of the ensuing colonizers. A sterile and isolated 1 m3 hypersaline mesocosm pool was constructed on a rooftop in Charleston, SC. Within months, numerous halophilic lineages successfully navigated the 20 m elevation and the greater than 1 km distance from the ocean shore, and a vibrant halophilic community was established. All told, in a nine-month period, greater than a dozen halophilic genera colonized the pool. The first to arrive were members of the Haloarchaeal genus Haloarcula. Like a weed, the Haloarcula rapidly colonized and dominated the mesocosm community but were later supplanted by other hyperhalophilic genera. As a possible source of long-distance inoculum, both aerosol and water column samples were obtained from the Great Salt Lake and its immediate vicinity. Members of the same genus, Haloarcula, were preferentially enriched in the aerosol sample relative to the water column samples. Therefore, it appears that a diverse array of hyperhalophiles are capable of surviving aeolian long-distance transport and that some lineages, in particular, have possibly adapted to that strategy.
Collapse
Affiliation(s)
- Matthew E. Rhodes
- Department of Biology, College of Charleston, Charleston, SC 29424, USA; (A.D.P.); (H.G.)
| | - Allyson D. Pace
- Department of Biology, College of Charleston, Charleston, SC 29424, USA; (A.D.P.); (H.G.)
| | - Menny M. Benjamin
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Heather Ghent
- Department of Biology, College of Charleston, Charleston, SC 29424, USA; (A.D.P.); (H.G.)
| | - Katherine S. Dawson
- Institute of Earth, Ocean, and Atmospheric Science, Rutgers University, Piscataway, NJ 08854, USA;
| |
Collapse
|
4
|
Lu K, Wang F, Chen L, Zhang W. Overexpression of S-R enhances the accumulation of biomass, fatty acids, and β-carotene in Schizochytrium. BIORESOURCE TECHNOLOGY 2023; 385:129452. [PMID: 37406830 DOI: 10.1016/j.biortech.2023.129452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Strategies for enhancing biomass accumulation and increasing the production of fatty acids and β-carotene in Schizochytrium are hindered by the lack of suitable targets. In this study, S-R, a RING (really interesting new gene) finger domain-containing protein, was identified in Schizochytrium, with homologs found in the family Thraustochytriaceae. Transgenic strains overexpressing S-R showed a minor improvement in cell growth but a significant increase in total fatty acids content by 1.29- to 1.36-fold. Almost all individual saturated fatty acids exhibited significant increases, with the greatest increase observed in the C14:0 content, by 1.52- to 1.78-fold. Additionally, the β-carotene content of S-R strains was significantly upregulated. Overexpression of s-r conferred hypersaline tolerance in Schizochytrium, with a significant increase in dry cell weight, total fatty acids and β-carotene, likely due to the upregulation of glycerol and proline. This study provides a feasible strategy to engineer Thraustochytriaceae for efficient biomass and biochemical production.
Collapse
Affiliation(s)
- Kongyong Lu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China; Frontier Science Center of Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, PR China
| | - Fangzhong Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China; Frontier Science Center of Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, PR China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin, PR China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China; Frontier Science Center of Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, PR China.
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China; Frontier Science Center of Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, PR China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin, PR China
| |
Collapse
|
5
|
Guermazi W, Masmoudi S, Trabelsi NA, Gammoudi S, Ayadi H, Morant-Manceau A, Hotos GN. Physiological and Biochemical Responses in Microalgae Dunaliella salina, Cylindrotheca closterium and Phormidium versicolor NCC466 Exposed to High Salinity and Irradiation. Life (Basel) 2023; 13:life13020313. [PMID: 36836671 PMCID: PMC9961930 DOI: 10.3390/life13020313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Dunaliella salina (Chlorophyceae), Phormidium versicolor (Cyanophyceae), and Cylindrotheca closterium (Bacillariophyceae) were isolated from three ponds in the solar saltern of Sfax (Tunisia). Growth, pigment contents, and photosynthetic and antioxidant enzyme activities were measured under controlled conditions of three light levels (300, 500, and 1000 µmol photons m-2 s-1) and three NaCl concentrations (40, 80, and 140 g L-1). The highest salinity reduced the growth of D. salina and P. versicolor NCC466 and strongly inhibited that of C. closterium. According to ΦPSII values, the photosynthetic apparatus of P. versicolor was stimulated by increasing salinity, whereas that of D. salina and C. closterium was decreased by irradiance rise. The production of carotenoids in D. salina and P. versicolor was stimulated when salinity and irradiance increased, whereas it decreased in the diatom. Catalase (CAT), Superoxide dismutase (SOD), and Ascorbate peroxidase (APX) activities were only detected when the three species were cultivated under E1000. The antioxidant activity of carotenoids could compensate for the low antioxidant enzyme activity measured in D. salina. Salinity and irradiation levels interact with the physiology of three species that have mechanisms of more or less effective stress resistance, hence different resistance to environmental stresses according to the species. Under these stress-controlled conditions, P. versicolor and C. closterium strains could provide promising sources of extremolyte for several purposes.
Collapse
Affiliation(s)
- Wassim Guermazi
- Laboratory of Marine Biodiversity and Environment (LR18ES/30), University of Sfax, Sfax CP 3000, Tunisia
| | - Salma Masmoudi
- Laboratory of Marine Biodiversity and Environment (LR18ES/30), University of Sfax, Sfax CP 3000, Tunisia
- LUNAM, Laboratoire Mer, Molécules, Santé (EA 2160), Université du Maine, Avenue Olivier Messiaen, CEDEX 9, 72085 Le Mans, France
| | - Neila Annabi Trabelsi
- Laboratory of Marine Biodiversity and Environment (LR18ES/30), University of Sfax, Sfax CP 3000, Tunisia
| | - Sana Gammoudi
- Laboratory of Marine Biodiversity and Environment (LR18ES/30), University of Sfax, Sfax CP 3000, Tunisia
| | - Habib Ayadi
- Laboratory of Marine Biodiversity and Environment (LR18ES/30), University of Sfax, Sfax CP 3000, Tunisia
| | - Annick Morant-Manceau
- LUNAM, Laboratoire Mer, Molécules, Santé (EA 2160), Université du Maine, Avenue Olivier Messiaen, CEDEX 9, 72085 Le Mans, France
| | - George N. Hotos
- Plankton Culture Laboratory, Department of Fisheries and Aquaculture, University of Patras, 30200 Messolonghi, Greece
- Correspondence:
| |
Collapse
|
6
|
Metabolomic analysis reveals the responses of docosahexaenoic-acid-producing Schizochytrium under hyposalinity conditions. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.102987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
7
|
Transcriptome Analysis Reveals the Mechanisms of Tolerance to High Concentrations of Calcium Chloride Stress in Parachlorella kessleri. Int J Mol Sci 2022; 24:ijms24010651. [PMID: 36614098 PMCID: PMC9821113 DOI: 10.3390/ijms24010651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
Salt stress is one of the abiotic stress factors that affect the normal growth and development of higher plants and algae. However, few research studies have focused on calcium stress, especially in algae. In this study, the mechanism of tolerance to high calcium stress of a Parachlorella kessleri strain was explored by the method of transcriptomics combined with physiological and morphological analysis. Concentrations of CaCl2 100 times (3.6 g/L) and 1000 times (36 g/L) greater than the standard culture were set up as stresses. The results revealed the algae could cope with high calcium stress mainly by strengthening photosynthesis, regulating osmotic pressure, and inducing antioxidant defense. Under the stress of 3.6 g/L CaCl2, the algae grew well with normal cell morphology. Although the chlorophyll content was significantly reduced, the photosynthetic efficiency was well maintained by up-regulating the expression of some photosynthesis-related genes. The cells reduced oxidative damage by inducing superoxide dismutase (SOD) activities and selenoprotein synthesis. A large number of free amino acids were produced to regulate the osmotic potential. When in higher CaCl2 stress of 36 g/L, the growth and chlorophyll content of algae were significantly inhibited. However, the algae still slowly grew and maintained the same photosynthetic efficiency, which resulted from significant up-regulation of massive photosynthesis genes. Antioxidant enzymes and glycerol were found to resist oxidative damage and osmotic stress, respectively. This study supplied algal research on CaCl2 stress and provided supporting data for further explaining the mechanism of plant salt tolerance.
Collapse
|
8
|
Bamary Z, Einali A. Changes in Carbon Partitioning and Pattern of Antioxidant Enzyme Activity Induced by Arginine Treatment in the Green Microalga Dunaliella salina Under Long-Term Salinity. MICROBIAL ECOLOGY 2022; 84:198-212. [PMID: 34396460 DOI: 10.1007/s00248-021-01843-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
In this work, the effects of arginine (Arg) on biochemical responses and antioxidant enzyme activity in the green microalga Dunaliella salina grown at different salt concentrations were investigated. Suspensions adapted with the concentrations of 1, 2, and 3 M NaCl were treated at the exponential growth phase with a concentration of 5 mM Arg. Salt stress was associated with a large decrease in the number of cells and non-reducing sugar levels but accumulated higher amounts of chlorophyll, β-carotene, reducing sugar, starch, total protein, free amino acid, and glycerol. Increased levels of protein carbonylation, lipid peroxidation, proteolysis, hydrogen peroxide, and antioxidant enzyme activity also occurred during salinity. Arg treatment changed the pattern of biochemical responses in the cells grown at high salinity by directing carbon flow to the biosynthesis of non-reducing sugars instead of starch, lowering levels of hydrogen peroxide, and downregulating antioxidant enzyme activity, but the levels of lipid peroxidation, glycerol, and β-carotene remained nearly unchanged. These results suggest that Arg treatment alleviates salinity-induced oxidative stress in D. salina cells by modifying carbon partitioning and inducing signaling molecules rather than antioxidant enzymes.
Collapse
Affiliation(s)
- Zahra Bamary
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | - Alireza Einali
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran.
| |
Collapse
|
9
|
Chandel N, Ahuja V, Gurav R, Kumar V, Tyagi VK, Pugazhendhi A, Kumar G, Kumar D, Yang YH, Bhatia SK. Progress in microalgal mediated bioremediation systems for the removal of antibiotics and pharmaceuticals from wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153895. [PMID: 35182616 DOI: 10.1016/j.scitotenv.2022.153895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Worldwide demand for antibiotics and pharmaceutical products is continuously increasing for the control of disease and improvement of human health. Poor management and partial metabolism of these compounds result in the pollution of aquatic systems, leading to hazardous effects on flora, fauna, and ecosystems. In the past decade, the importance of microalgae in micropollutant removal has been widely reported. Microalgal systems are advantageous as their cultivation does not require additional nutrients: they can recover resources from wastewater and degrade antibiotics and pharmaceutical pollutants simultaneously. Bioadsorption, degradation, and accumulation are the main mechanisms involved in pollutant removal by microalgae. Integration of microalgae-mediated pollutant removal with other technologies, such as biodiesel, biochemical, and bioelectricity production, can make this technology more economical and efficient. This article summarizes the current scenario of antibiotic and pharmaceutical removal from wastewater using microalgae-mediated technologies.
Collapse
Affiliation(s)
- Neha Chandel
- School of Medical and Allied Sciences, GD Goenka University, Gurugram 122103, Haryana, India
| | - Vishal Ahuja
- Department of Biotechnology, Himachal Pradesh University, Shimla 171005, Himachal Pradesh, India
| | - Ranjit Gurav
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Vinay Kumar Tyagi
- Environmental Biotechnology Group (EBiTG), Department of Civil Engineering, Indian Institute of Technology Roorkee, 247667, India
| | | | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, 03722 Seoul, Republic of Korea
| | - Deepak Kumar
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210,USA
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
10
|
Panjekobi M, Einali A. Trehalose treatment alters carbon partitioning and reduces the accumulation of individual metabolites but does not affect salt tolerance in the green microalga Dunaliella bardawil. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2333-2344. [PMID: 34744369 PMCID: PMC8526648 DOI: 10.1007/s12298-021-01078-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/27/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
The effects of trehalose (Tre), a non-reducing disaccharide, on metabolic changes, antioxidant status, and salt tolerance in Dunaliella bardawil cells were investigated. Algal suspensions containing 1, 2, and 3 M NaCl were treated with 5 mM Tre. While the content of pigments, reducing sugars, proteins, glycerol, and ascorbate pool accumulated with increasing salinity, the content of non-reducing sugars, starch, amino acids, proline, hydrogen peroxide, and lipid peroxidation level decreased significantly. Tre-treated cells showed a decrease in pigments content, reducing sugars, starch, proteins, amino acids, proline, glycerol, and the activity of non-specific peroxidase and polyphenol oxidase, but an increase in non-reducing sugars, oxidized ascorbate, and ascorbate peroxidase activity occurred unchanged in the ascorbate pool. However, the density and fresh weight of the cells remained statistically unchanged in all Tre-treated and untreated cultures. These results suggest that D. bardawil cells potentially tolerate different salt levels by accumulating metabolites, whereas Tre treatment changes carbon partitioning and significantly reduces beneficial metabolites without altering salt tolerance. Therefore, the regulation of carbon partitioning rather than the amount of assimilated carbon may play an important role in inducing salinity tolerance of D. bardawil. However, Tre is not able to enhance the salt tolerance of halotolerants and is even economically damaging due to the reduction of unique metabolites such as glycerol and β-carotene.
Collapse
Affiliation(s)
- Mahdieh Panjekobi
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | - Alireza Einali
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| |
Collapse
|
11
|
Van AT, Sommer V, Glaser K. The Ecophysiological Performance and Traits of Genera within the Stichococcus-like Clade (Trebouxiophyceae) under Matric and Osmotic Stress. Microorganisms 2021; 9:1816. [PMID: 34576715 PMCID: PMC8472729 DOI: 10.3390/microorganisms9091816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 11/30/2022] Open
Abstract
Changes in water balance are some of the most critical challenges that aeroterrestrial algae face. They have a wide variety of mechanisms to protect against osmotic stress, including, but not limited to, downregulating photosynthesis, the production of compatible solutes, spore and akinete formation, biofilms, as well as triggering structural cellular changes. In comparison, algae living in saline environments must cope with ionic stress, which has similar effects on the physiology as desiccation in addition to sodium and chloride ion toxicity. These environmental challenges define ecological niches for both specialist and generalist algae. One alga known to be aeroterrestrial and euryhaline is Stichococcus bacillaris Nägeli, possessing the ability to withstand both matric and osmotic stresses, which may contribute to wide distribution worldwide. Following taxonomic revision of Stichococcus into seven lineages, we here examined their physiological responses to osmotic and matric stress through a salt growth challenge and desiccation experiment. The results demonstrate that innate compatible solute production capacity under salt stress and desiccation tolerance are independent of one another, and that salt tolerance is more variable than desiccation tolerance in the Stichococcus-like genera. Furthermore, algae within this group likely occupy similar ecological niches, with the exception of Pseudostichococcus.
Collapse
Affiliation(s)
- Anh Tu Van
- Institute for Biological Sciences, Applied Ecology and Phycology, University of Rostock, 18059 Rostock, Germany; (V.S.); (K.G.)
| | | | | |
Collapse
|
12
|
Meier DV, Greve AJ, Chennu A, van Erk MR, Muthukrishnan T, Abed RMM, Woebken D, de Beer D. Limitation of Microbial Processes at Saturation-Level Salinities in a Microbial Mat Covering a Coastal Salt Flat. Appl Environ Microbiol 2021; 87:e0069821. [PMID: 34160273 PMCID: PMC8357274 DOI: 10.1128/aem.00698-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/16/2021] [Indexed: 12/18/2022] Open
Abstract
Hypersaline microbial mats are dense microbial ecosystems capable of performing complete element cycling and are considered analogs of early Earth and hypothetical extraterrestrial ecosystems. We studied the functionality and limits of key biogeochemical processes, such as photosynthesis, aerobic respiration, and sulfur cycling, in salt crust-covered microbial mats from a tidal flat at the coast of Oman. We measured light, oxygen, and sulfide microprofiles as well as sulfate reduction rates at salt saturation and in flood conditions and determined fine-scale stratification of pigments, biomass, and microbial taxa in the resident microbial community. The salt crust did not protect the mats against irradiation or evaporation. Although some oxygen production was measurable at salinities of ≤30% (wt/vol) in situ, at saturation-level salinity (40%), oxygenic photosynthesis was completely inhibited and only resumed 2 days after reducing the porewater salinity to 12%. Aerobic respiration and active sulfur cycling occurred at low rates under salt saturation and increased strongly upon salinity reduction. Apart from high relative abundances of Chloroflexi, photoheterotrophic Alphaproteobacteria, Bacteroidetes, and Archaea, the mat contained a distinct layer harboring filamentous Cyanobacteria, which is unusual for such high salinities. Our results show that the diverse microbial community inhabiting this salt flat mat ultimately depends on periodic salt dilution to be self-sustaining and is rather adapted to merely survive salt saturation than to thrive under the salt crust. IMPORTANCE Due to their abilities to survive intense radiation and low water availability, hypersaline microbial mats are often suggested to be analogs of potential extraterrestrial life. However, even the limitations imposed on microbial processes by saturation-level salinity found on Earth have rarely been studied in situ. While abundance and diversity of microbial life in salt-saturated environments are well documented, most of our knowledge on process limitations stems from culture-based studies, few in situ studies, and theoretical calculations. In particular, oxygenic photosynthesis has barely been explored beyond 5 M NaCl (28% wt/vol). By applying a variety of biogeochemical and molecular methods, we show that despite abundance of photoautotrophic microorganisms, oxygenic photosynthesis is inhibited in salt-crust-covered microbial mats at saturation salinities, while rates of other energy generation processes are decreased several-fold. Hence, the complete element cycling required for self-sustaining microbial communities only occurs at lower salt concentrations.
Collapse
Affiliation(s)
- Dimitri V. Meier
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | | | - Arjun Chennu
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Leibniz Centre for Tropical Marine Research, Bremen, Germany
| | | | | | - Raeid M. M. Abed
- Biology Department, College of Science, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Dagmar Woebken
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Dirk de Beer
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| |
Collapse
|
13
|
Abstract
Microalgae have become an attractive natural source of a diverse range of biomolecules, including enzymatic and non-enzymatic antioxidants; nevertheless, economically sustainable production of such compounds from microalgae biomass is still challenging. The main hurdles are: (a) increasing microalgae yield; (b) achieving optimal cultivation conditions; (c) energy-efficient and cost-effective downstream processing (extraction and purification); (d) optimal storage of post-processed antioxidant molecules. This review provides a detailed overview of enzymatic and non-enzymatic antioxidants in the cellular metabolism of the commercially important microalgae Dunaliella, industrial applications of antioxidant enzymes, strategies to enhanced antioxidant accumulation in cells, and the opportunities and limitations of current technologies for antioxidant enzymes production from microalgae biomass as an alternative to common microbial sources.
Collapse
|
14
|
Al-Enazi NM. Salinization and wastewater effects on the growth and some cell contents of Scenedesmus bijugatus. Saudi J Biol Sci 2020; 27:1773-1780. [PMID: 32565695 PMCID: PMC7296495 DOI: 10.1016/j.sjbs.2020.05.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 11/24/2022] Open
Abstract
The aim of this study is to determine the effect of salinization and wastewater stresses on the growth, some cellular contents (total soluble proteins, total soluble carbohydrates, nucleic acids, and amino acids composition) and ultrastructure using TEM of unicellular green alga Scenedesmus bijugatus. Treatment of S. bijugatus by NaCl at 10 and 50 mg L-1 significantly increased the growth of this alga and its cellular macro-molecules. While, treatment above this concentration with NaCl significantly inhibited the growth and cellular macro-molecules. On the other hand, treatment by NaCl at the pre-lethal concentration (300 mg L-1) had different effects on its detected amino acids. Whereas, Asp. Acid, Pro, Cys, Val, Iso-leu, leu, Phe.ala and Lys were slightly stimulated with salinization treatment. On contrast the levels of amino acids: Thr, Ser, Glu.acid, Gly, Ala, Mth, His and Arg were markedly inhibited. Ultrastructure examination of treated S. bijugatus by 300 mg L-1 of NaCl for 8 days showed increase of starch granules, shrinkage of cell contents and thickening of cell wall. The recorded data indicated also that treatment by wastewater with all concentrations led to stimulatory effects on their growth and cellular macro-molecules except at 100% wastewater which had inhibitory effects on Asp., Gly., Thr., Ser., Pro., Glu., Ala., Meth., and Cyst., of S. bijugatus. Also, wastewater induced a slight change in the treated S. bijugatus as elevation in starch granules and presence of thylakoid membranes although not clear as in the control.
Collapse
Affiliation(s)
- Nouf Mohammed Al-Enazi
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
15
|
The induction of salt stress tolerance by jasmonic acid treatment in roselle (Hibiscus sabdariffa L.) seedlings through enhancing antioxidant enzymes activity and metabolic changes. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00444-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Effect of Nitrate Ions on Acidithiobacillus ferrooxidans-Mediated Bio-oxidation of Ferrous Ions and Pyrite. Curr Microbiol 2020; 77:1070-1080. [PMID: 32036394 DOI: 10.1007/s00284-020-01912-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/31/2020] [Indexed: 10/25/2022]
Abstract
Exploring the effects of nitrate ions (NO3-) on the bio-oxidation of Fe2+ and pyrite will help reveal the actual mechanism of acid mine drainage (AMD) production. Long period shaking flask experiments were carried out in order to assess the effect of NO3- on the Acidithiobacillus ferrooxidans LX5 (A. ferrooxidans LX5)-mediated bio-oxidation of Fe2+ and pyrite. In Fe2+ bio-oxidation systems, A. ferrooxidans LX5 had stronger Fe2+ oxidation capabilities in a NO3--loaded solution than in a NO3--free solution after 24 days, and the Fe2+ bio-oxidation capacity of A. ferrooxidans LX5 acclimatized in solutions containing low concentrations (8.2-32.9 mmol/L) of NO3- was greater than when it was acclimatized in high NO3- concentration solutions (49.4-65.8 mmol/L). In pyrite bio-oxidation systems, in comparison with the system without NO3-, pyrite bio-oxidation efficiency was significantly increased when the NO3- concentration in the system was 8.2-16.5 mmol/L, and that the pyrite bio-oxidation efficiency in the system containing 8.2 mmol/L of NO3- was greater than that for the system with 16.5 mmol/L of NO3-. The pyrite bio-oxidation efficiency was inhibited when the NO3- concentration was above 32.9 mmol/L. The results from this study can be used to reveal the actual control behavior of NO3- on AMD production.
Collapse
|
17
|
Tang Z, Cao X, Zhang Y, Jiang J, Qiao D, Xu H, Cao Y. Two splice variants of the DsMEK1 mitogen-activated protein kinase kinase (MAPKK) are involved in salt stress regulation in Dunaliella salina in different ways. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:147. [PMID: 32843896 PMCID: PMC7439689 DOI: 10.1186/s13068-020-01786-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/24/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND Dunaliella salina can produce glycerol under salt stress, and this production can quickly adapt to changes in external salt concentration. Notably, glycerol is an ideal energy source. In recent years, it has been reported that the mitogen-activated protein kinase cascade pathway plays an important role in regulating salt stress, and in Dunaliella tertiolecta DtMAPK can regulate glycerol synthesis under salt stress. Therefore, it is highly important to study the relationship between the MAPK cascade pathway and salt stress in D. salina and modify it to increase the production of glycerol. RESULTS In our study, we identified and analysed the alternative splicing of DsMEK1 (DsMEK1-X1, DsMEK1-X2) from the unicellular green alga D. salina. DsMEK1-X1 and DsMEK1-X2 were both localized in the cytoplasm. qRT-PCR assays showed that DsMEK1-X2 was induced by salt stress. Overexpression of DsMEK1-X2 revealed a higher increase rate of glycerol production compared to the control and DsMEK1-X1-oe under salt stress. Under salt stress, the expression of DsGPDH2/3/5/6 increased in DsMEK1-X2-oe strains compared to the control. This finding indicated that DsMEK1-X2 was involved in the regulation of DsGPDH expression and glycerol overexpression under salt stress. Overexpression of DsMEK1-X1 increased the proline content and reduced the MDA content under salt stress, and DsMEK1-X1 was able to regulate oxidative stress; thus, we hypothesized that DsMEK1-X1 could reduce oxidative damage under salt stress. Yeast two-hybrid analysis showed that DsMEK1-X2 could interact with DsMAPKKK1/2/3/9/10/17 and DsMAPK1; however, DsMEK1-X1 interacted with neither upstream MAPKKK nor downstream MAPK. DsMEK1-X2-oe transgenic lines increased the expression of DsMAPKKK1/3/10/17 and DsMAPK1, and DsMEK1-X2-RNAi lines decreased the expression of DsMAPKKK2/10/17. DsMEK1-X1-oe transgenic lines did not exhibit increased gene expression, except for DsMAPKKK9. CONCLUSION Our findings demonstrate that DsMEK1-X1 and DsMEK1-X2 can respond to salt stress by two different pathways. The DsMEK1-X1 response to salt stress reduces oxidative damage; however, the DsMAPKKK1/2/3/9/10/17-DsMEK1-X2-DsMAPK1 cascade is involved in the regulation of DsGPDH expression and thus glycerol synthesis under salt stress.
Collapse
Affiliation(s)
- Ziyi Tang
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065 China
| | - Xiyue Cao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065 China
| | - Yiping Zhang
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065 China
| | - Jia Jiang
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065 China
| | - Dairong Qiao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065 China
| | - Hui Xu
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065 China
| | - Yi Cao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065 China
| |
Collapse
|
18
|
Salinity Stress Responses and Adaptation Mechanisms in Eukaryotic Green Microalgae. Cells 2019; 8:cells8121657. [PMID: 31861232 PMCID: PMC6952985 DOI: 10.3390/cells8121657] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/02/2019] [Accepted: 12/12/2019] [Indexed: 01/04/2023] Open
Abstract
High salinity is a challenging environmental stress for organisms to overcome. Unicellular photosynthetic microalgae are especially vulnerable as they have to grapple not only with ionic imbalance and osmotic stress but also with the generated reactive oxygen species (ROS) interfering with photosynthesis. This review attempts to compare and contrast mechanisms that algae, particularly the eukaryotic Chlamydomonas microalgae, exhibit in order to immediately respond to harsh conditions caused by high salinity. The review also collates adaptation mechanisms of freshwater algae strains under persistent high salt conditions. Understanding both short-term and long-term algal responses to high salinity is integral to further fundamental research in algal biology and biotechnology.
Collapse
|
19
|
Bahador E, Einali A, Azizian-Shermeh O, Sangtarash MH. Metabolic responses of the green microalga Dunaliella salina to silver nanoparticles-induced oxidative stress in the presence of salicylic acid treatment. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 217:105356. [PMID: 31733504 DOI: 10.1016/j.aquatox.2019.105356] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/02/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
In the present study, the biochemical responses and antioxidant enzymes activity of the Dunaliella salina, a green microalga, to the interaction of silver nanoparticles (AgNPs) and salicylic acid (SA) were investigated. Algal suspensions in the phase of logarithmic growth were subjected to the concentrations of 0, 5, 15, and 25 pM AgNPs with or without 1 mM SA. AgNPs level of 25 pM declined cell division but highly accumulated levels of chlorophyll, β-carotene, proteins, free amino acid, carbohydrates, and hydrogen peroxide, which was associated with enhanced the activity of proteolysis, lipid peroxidation, and antioxidant enzymes. SA-treated cells at 25 pM AgNPs improved cell growth but declined the activities of antioxidant enzymes and proteolytic along with a lower accumulation of metabolites except β-carotene relative to untreated controls. These results suggest that AgNPs treatment induce oxidative stress in D. salina cells, which tolerated by alga through the metabolic modifications and accumulating β-carotene, while SA induces AgNPs tolerance by the mechanisms that direct carbon flux to growth and β-carotene biosynthesis rather than the antioxidant enzymes or osmoprotectant metabolites.
Collapse
Affiliation(s)
- Elham Bahador
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | - Alireza Einali
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran.
| | - Omid Azizian-Shermeh
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | | |
Collapse
|
20
|
Constantinescu-Aruxandei D, Vlaicu A, Marinaș IC, Vintilă ACN, Dimitriu L, Oancea F. Effect of betaine and selenium on the growth and photosynthetic pigment production in Dunaliella salina as biostimulants. FEMS Microbiol Lett 2019; 366:5695739. [PMID: 31899507 DOI: 10.1093/femsle/fnz257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/02/2020] [Indexed: 11/15/2022] Open
Abstract
The aim of our study was to establish the effect of selenium and betaine on the growth of D. salina, accumulation of photosynthetic pigments and antioxidant activity of the hydrophobic fraction. This approach was an attempt to demonstrate 'microalgae biostimulant' effects, similar to 'plant biostimulant' effects, i.e. increased tolerance to abiotic stress and enhanced accumulation of bioactive compounds. A high-throughput assay was done in 24-well microplates, at 15% NaCl and different concentrations of sodium selenite (0, 0.5, 2 and 8 µM) or betaine (0, 5, 50 and 500 µM). Both selenium and betaine induced a slight delay in algae growth during the actively growing stage but the final density reached similar values to the control. Betaine significantly enhanced (50%-100%) carotenoids and chlorophyll a accumulation, in a concentration depending manner. Antioxidant activity increased almost 3-fold in extracts of algae treated with 50 µM betaine. Selenium had a much more discrete effect than betaine on pigments biosynthesis. The antioxidant activity of the extracts increased 2-fold in the presence of Se compared to the control. Our work proves that it is possible to enhance production and activity of bioactive compounds from microalgae by using ingredients, which already proved to act as plant biostimulants.
Collapse
Affiliation(s)
- Diana Constantinescu-Aruxandei
- Department of bioresources, National Institute for Research and Development in Chemistry and Petrochemistry - ICECHIM, Spl. Independenței nr. 202, Sector 6, Bucharest, 060021, Romania
| | - Alexandru Vlaicu
- Department of bioresources, National Institute for Research and Development in Chemistry and Petrochemistry - ICECHIM, Spl. Independenței nr. 202, Sector 6, Bucharest, 060021, Romania
| | - Ioana Cristina Marinaș
- Department of bioresources, National Institute for Research and Development in Chemistry and Petrochemistry - ICECHIM, Spl. Independenței nr. 202, Sector 6, Bucharest, 060021, Romania
| | - Alin Cristian Nicolae Vintilă
- Department of bioresources, National Institute for Research and Development in Chemistry and Petrochemistry - ICECHIM, Spl. Independenței nr. 202, Sector 6, Bucharest, 060021, Romania
| | - Luminița Dimitriu
- Department of bioresources, National Institute for Research and Development in Chemistry and Petrochemistry - ICECHIM, Spl. Independenței nr. 202, Sector 6, Bucharest, 060021, Romania
| | - Florin Oancea
- Department of bioresources, National Institute for Research and Development in Chemistry and Petrochemistry - ICECHIM, Spl. Independenței nr. 202, Sector 6, Bucharest, 060021, Romania
| |
Collapse
|
21
|
Singh P, Khadim R, Singh AK, Singh U, Maurya P, Tiwari A, Asthana RK. Biochemical and physiological characterization of a halotolerant Dunaliella salina isolated from hypersaline Sambhar Lake, India. JOURNAL OF PHYCOLOGY 2019; 55:60-73. [PMID: 30118147 DOI: 10.1111/jpy.12777] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/29/2018] [Indexed: 06/08/2023]
Abstract
The objective of the present study was to characterize intrinsic physiological and biochemical properties of the wall-less unicellular cholorophyte Dunaliella salina isolated from a hypersaline Sambhar Lake. The strain grew optimally at 0.5 M NaCl and 16:8 h L:D photoperiod along with maintaining low level of intracellular Na+ even at higher salinity, emphasizing special features of its cell membranes. It was observed that the cells experienced stress beyond 2 M NaCl as evidenced by increased intracellular reactive oxygen species and antioxidative enzymes, nevertheless proline and malondialdehyde content declined sharply accompanied by higher neutral lipid accumulation. Salinity exceeding 2 M resulted decrease in photosynthetic quantum yield (Fv/Fm) and enhanced glycerol synthesis accompanied by leakage. Super oxide dismutase seemed to play a pivotal role in antioxidative defense as eight isoforms were expressed differentially while catalase and glutathione peroxidase showing no significant change in their expression at higher salinity. The ability of D. salina to grow in range of salinities by sustaining healthy photosynthetic apparatus along with accumulation of valuable products made this alga an ideal organism that can be exploited as resource for biofuel and commercial products.
Collapse
Affiliation(s)
- Prabhakar Singh
- R. N. Singh Memorial Lab, Centre of Advanced study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Riyazat Khadim
- R. N. Singh Memorial Lab, Centre of Advanced study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Ankit K Singh
- R. N. Singh Memorial Lab, Centre of Advanced study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Urmilesh Singh
- R. N. Singh Memorial Lab, Centre of Advanced study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Priyanka Maurya
- R. N. Singh Memorial Lab, Centre of Advanced study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Anupam Tiwari
- Department of Botany, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Ravi K Asthana
- R. N. Singh Memorial Lab, Centre of Advanced study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| |
Collapse
|
22
|
Arora N, Kumari P, Kumar A, Gangwar R, Gulati K, Pruthi PA, Prasad R, Kumar D, Pruthi V, Poluri KM. Delineating the molecular responses of a halotolerant microalga using integrated omics approach to identify genetic engineering targets for enhanced TAG production. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:2. [PMID: 30622644 PMCID: PMC6318984 DOI: 10.1186/s13068-018-1343-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Harnessing the halotolerant characteristics of microalgae provides a viable alternative for sustainable biomass and triacylglyceride (TAG) production. Scenedesmus sp. IITRIND2 is a fast growing fresh water microalga that has the capability to thrive in high saline environments. To understand the microalga's adaptability, we studied its physiological and metabolic flexibility by studying differential protein, metabolite and lipid expression profiles using metabolomics, proteomics, real-time polymerase chain reaction, and lipidomics under high salinity conditions. RESULTS On exposure to salinity, the microalga rewired its cellular reserves and ultrastructure, restricted the ions channels, and modulated its surface potential along with secretion of extrapolysaccharide to maintain homeostasis and resolve the cellular damage. The algal-omics studies suggested a well-organized salinity-driven metabolic adjustment by the microalga starting from increasing the negatively charged lipids, up regulation of proline and sugars accumulation, followed by direction of carbon and energy flux towards TAG synthesis. Furthermore, the omics studies indicated both de-novo and lipid cycling pathways at work for increasing the overall TAG accumulation inside the microalgal cells. CONCLUSION The salt response observed here is unique and is different from the well-known halotolerant microalga; Dunaliella salina, implying diversity in algal response with species. Based on the integrated algal-omics studies, four potential genetic targets belonging to two different metabolic pathways (salt tolerance and lipid production) were identified, which can be further tested in non-halotolerant algal strains.
Collapse
Affiliation(s)
- Neha Arora
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
| | - Poonam Kumari
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
| | - Amit Kumar
- Centre of Biomedical Research, SGPGIMS, Lucknow, Uttar Pradesh 226014 India
| | - Rashmi Gangwar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
| | - Khushboo Gulati
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
| | - Parul A. Pruthi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
| | - Ramasare Prasad
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
| | - Dinesh Kumar
- Centre of Biomedical Research, SGPGIMS, Lucknow, Uttar Pradesh 226014 India
| | - Vikas Pruthi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
- Centre for Transportation Systems, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
- Centre for Transportation Systems, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
| |
Collapse
|
23
|
Hong L, Liu JL, Midoun SZ, Miller PC. Transcriptome sequencing and annotation of the halophytic microalga Dunaliella salina. J Zhejiang Univ Sci B 2018; 18:833-844. [PMID: 28990374 DOI: 10.1631/jzus.b1700088] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The unicellular green alga Dunaliella salina is well adapted to salt stress and contains compounds (including β-carotene and vitamins) with potential commercial value. A large transcriptome database of D. salina during the adjustment, exponential and stationary growth phases was generated using a high throughput sequencing platform. We characterized the metabolic processes in D. salina with a focus on valuable metabolites, with the aim of manipulating D. salina to achieve greater economic value in large-scale production through a bioengineering strategy. Gene expression profiles under salt stress verified using quantitative polymerase chain reaction (qPCR) implied that salt can regulate the expression of key genes. This study generated a substantial fraction of D. salina transcriptional sequences for the entire growth cycle, providing a basis for the discovery of novel genes. This first full-scale transcriptome study of D. salina establishes a foundation for further comparative genomic studies.
Collapse
Affiliation(s)
- Ling Hong
- Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jun-Li Liu
- Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Samira Z Midoun
- Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Philip C Miller
- Systems Biology Research Group, Bioengineering Department, University of California, 9500 Gilman Dr. San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
24
|
Einali A. The induction of salt stress tolerance by propyl gallate treatment in green microalga Dunaliella bardawil, through enhancing ascorbate pool and antioxidant enzymes activity. PROTOPLASMA 2018; 255:601-611. [PMID: 28990124 DOI: 10.1007/s00709-017-1173-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/02/2017] [Indexed: 05/10/2023]
Abstract
The effect of propyl gallate (PG), a synthetic antioxidant, on antioxidant responses and salinity tolerance was investigated in the cells of the green microalga, Dunaliella bardawil. Algal suspensions grown at three salinity levels of 1, 2, and 3 M NaCl were incubated with 1 mM of PG. The number of cells was significantly lower in all PG-treated cells compared to untreated controls. Despite PG-induced cell death, the fresh weight of all PG-treated cells was considerably higher than controls. PG-treated cells had enhanced antioxidant capacity because of increased levels of Chlorophyll a, β-carotene, reduced ascorbate, protein, and enzymatic activities, but accumulated lower levels of malonyldialdehyde and hydrogen peroxide compared to untreated cells. The results suggest that PG acts as a signal molecule both directly by reducing of free radical oxidants and indirectly by augmenting ascorbate pool levels, β-carotene production, and antioxidant enzymes activity to boost the capacity of antioxidant systems and radical oxygen species scavenging. Therefore, induction of salt stress tolerance by PG in D. bardawil is associated with metabolic adjustments through activation or synthesis of both enzymatic and non-enzymatic molecules involved in antioxidant systems.
Collapse
Affiliation(s)
- Alireza Einali
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran.
| |
Collapse
|
25
|
Srinivasan R, Babu S, Gothandam KM. Accumulation of phytoene, a colorless carotenoid by inhibition of phytoene desaturase (PDS) gene in Dunaliella salina V-101. BIORESOURCE TECHNOLOGY 2017; 242:311-318. [PMID: 28347620 DOI: 10.1016/j.biortech.2017.03.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 06/06/2023]
Abstract
The aim of this work was to study the accumulation of phytoene in Dunaliella salina V-101 by down-regulating its phytoene desaturase (PDS) gene expression using RNA interference and Antisense technology. RNAi and antisense constructs were introduced into the Dunaliella cells by Agrobacterium-mediated transformation. Among thirty-two transformants, six showed positive down-regulation of PDS expression with RNAi construct and five positive transformants were obtained using antisense construct. Characterization of PDS suppression was carried out using semi-quantitative RT-PCR and quantitative determination of phytoene as well as other carotenoids by HPLC. Both the RNAi and antisense lines showed a significant decrease in the expression levels of phytoene desaturase and carotenoid content compared to wild type cells. The RNAi line #5 showed maximum Phytoene content (108.34±22.34µg/100mg DCW) compared to other transgenic lines. These phytoene-accumulating phenotypes exhibited slower growth rates and were found to be sensitive to high light conditions.
Collapse
Affiliation(s)
| | - S Babu
- School of Bio-Sciences and Technology, VIT University, Vellore 632 014, Tamil Nadu, India
| | - K M Gothandam
- School of Bio-Sciences and Technology, VIT University, Vellore 632 014, Tamil Nadu, India.
| |
Collapse
|
26
|
Xiong JQ, Kurade MB, Patil DV, Jang M, Paeng KJ, Jeon BH. Biodegradation and metabolic fate of levofloxacin via a freshwater green alga, Scenedesmus obliquus in synthetic saline wastewater. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.04.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Arora N, Patel A, Sharma M, Mehtani J, Pruthi PA, Pruthi V, Poluri KM. Insights into the Enhanced Lipid Production Characteristics of a Fresh Water Microalga under High Salinity Conditions. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b00841] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Neha Arora
- Department
of Biotechnology, and ‡Center for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Alok Patel
- Department
of Biotechnology, and ‡Center for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Meenakshi Sharma
- Department
of Biotechnology, and ‡Center for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Juhi Mehtani
- Department
of Biotechnology, and ‡Center for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Parul A. Pruthi
- Department
of Biotechnology, and ‡Center for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Vikas Pruthi
- Department
of Biotechnology, and ‡Center for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department
of Biotechnology, and ‡Center for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
28
|
Liang MH, Jiang JG. Analysis of carotenogenic genes promoters and WRKY transcription factors in response to salt stress in Dunaliella bardawil. Sci Rep 2017; 7:37025. [PMID: 28128303 PMCID: PMC5269594 DOI: 10.1038/srep37025] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 10/24/2016] [Indexed: 12/29/2022] Open
Abstract
The unicellular alga Dunaliella bardawil is a highly salt-tolerant organism, capable of accumulating glycerol, glycine betaine and β-carotene under salt stress, and has been considered as an excellent model organism to investigate the molecular mechanisms of salt stress responses. In this study, several carotenogenic genes (DbCRTISO, DbZISO, DbLycE and DbChyB), DbBADH genes involved in glycine betaine synthesis and genes encoding probable WRKY transcription factors from D. bardawil were isolated, and promoters of DbCRTISO and DbChyB were cloned. The promoters of DbPSY, DbLycB, DbGGPS, DbCRTISO and DbChyB contained the salt-regulated element (SRE), GT1GMSCAM4, while the DbGGPS promoter has another SRE, DRECRTCOREAT. All promoters of the carotenogenic genes had light-regulated elements and W-box cis-acting elements. Most WRKY transcription factors can bind to the W-box, and play roles in abiotic stress. qRT-PCR analysis showed that salt stress up-regulated both carotenogenic genes and WRKY transcription factors. In contrast, the transcription levels of DbBADH showed minor changes. In D. bardawil, it appears that carotenoid over-accumulation allows for the long-term adaptation to salt stress, while the rapid modulation of glycine betaine biosynthesis provides an initial response.
Collapse
Affiliation(s)
- Ming-Hua Liang
- College of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Jian-Guo Jiang
- College of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
29
|
Luo J, Tang S, Mei F, Peng X, Li J, Li X, Yan X, Zeng X, Liu F, Wu Y, Wu G. BnSIP1-1, a Trihelix Family Gene, Mediates Abiotic Stress Tolerance and ABA Signaling in Brassica napus. FRONTIERS IN PLANT SCIENCE 2017; 8:44. [PMID: 28184229 PMCID: PMC5266734 DOI: 10.3389/fpls.2017.00044] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/09/2017] [Indexed: 05/26/2023]
Abstract
The trihelix family genes have important functions in light-relevant and other developmental processes, but their roles in response to adverse environment are largely unclear. In this study, we identified a new gene, BnSIP1-1, which fell in the SIP1 (6b INTERACTING PROTEIN1) clade of the trihelix family with two trihelix DNA binding domains and a fourth amphipathic α-helix. BnSIP1-1 protein specifically targeted to the nucleus, and its expression can be induced by abscisic acid (ABA) and different stresses. Overexpression of BnSIP1-1 improved seed germination under osmotic pressure, salt, and ABA treatments. Moreover, BnSIP1-1 decreased the susceptibility of transgenic seedlings to osmotic pressure and ABA treatments, whereas there was no difference under salt stress between the transgenic and wild-type seedlings. ABA level in the transgenic seedlings leaves was higher than those in the control plants under normal condition. Under exogenous ABA treatment and mannitol stress, the accumulation of ABA in the transgenic plants was higher than that in the control plants; while under salt stress, the difference of ABA content before treatment was gradually smaller with the prolongation of salt treatment time, then after 24 h of treatment the ABA level was similar in transgenic and wild-type plants. The transcription levels of several general stress marker genes (BnRD29A, BnERD15, and BnLEA1) were higher in the transgenic plants than the wild-type plants, whereas salt-responsive genes (BnSOS1, BnNHX1, and BnHKT) were not significantly different or even reduced compared with the wild-type plants, which indicated that BnSIP1-1 specifically exerted different regulatory mechanisms on the osmotic- and salt-response pathways in seedling period. Overall, these findings suggested that BnSIP1-1 played roles in ABA synthesis and signaling, salt and osmotic stress response. To date, information about the involvement of the Brassica napus trihelix gene in abiotic response is scarce. Here, we firstly reported abiotic stress response and possible function mechanisms of a new trihelix gene in B. napus.
Collapse
Affiliation(s)
- Junling Luo
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of AgricultureWuhan, China
| | - Shaohua Tang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of AgricultureWuhan, China
| | - Fengling Mei
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of AgricultureWuhan, China
| | - Xiaojue Peng
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of Life Science, Nanchang UniversityNanchang, China
| | - Jun Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of AgricultureWuhan, China
| | - Xiaofei Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of AgricultureWuhan, China
| | - Xiaohong Yan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of AgricultureWuhan, China
| | - Xinhua Zeng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of AgricultureWuhan, China
| | - Fang Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of AgricultureWuhan, China
| | - Yuhua Wu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of AgricultureWuhan, China
| | - Gang Wu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of AgricultureWuhan, China
| |
Collapse
|
30
|
Jia YL, Chen H, Zhang C, Gao LJ, Wang XC, Qiu LL, Wu JF. Proteomic analysis of halotolerant proteins under high and low salt stress in Dunaliella salina using two-dimensional differential in-gel electrophoresis. Genet Mol Biol 2016; 39:239-47. [PMID: 27192131 PMCID: PMC4910558 DOI: 10.1590/1678-4685-gmb-2015-0108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/06/2015] [Indexed: 11/22/2022] Open
Abstract
Dunaliella salina, a single-celled marine alga with extreme salt tolerance, is an important model organism for studying fundamental extremophile survival mechanisms and their potential practical applications. In this study, two-dimensional differential in-gel electrophoresis (2D-DIGE) was used to investigate the expression of halotolerant proteins under high (3 M NaCl) and low (0.75 M NaCl) salt concentrations. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) and bioinformatics were used to identify and characterize the differences among proteins. 2D-DIGE analysis revealed 141 protein spots that were significantly differentially expressed between the two salinities. Twenty-four differentially expressed protein spots were successfully identified by MALDI-TOF/TOF MS, including proteins in the following important categories: molecular chaperones, proteins involved in photosynthesis, proteins involved in respiration and proteins involved in amino acid synthesis. Expression levels of these proteins changed in response to the stress conditions, which suggests that they may be involved in the maintenance of intracellular osmotic pressure, cellular stress responses, physiological changes in metabolism, continuation of photosynthetic activity and other aspects of salt stress. The findings of this study enhance our understanding of the function and mechanisms of various proteins in salt stress.
Collapse
Affiliation(s)
- Yan-Long Jia
- Pharmacy College, Xinxiang Medical University, Xinxiang 453003, Henan, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Hui Chen
- Pharmacy College, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Chong Zhang
- Pharmacy College, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Li-Jie Gao
- School of Basic Medicine, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Xi-Cheng Wang
- Pharmacy College, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Le-Le Qiu
- School of Basic Medicine, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Jun-Fang Wu
- School of Basic Medicine, Xinxiang Medical University, Xinxiang 453003, Henan, China
| |
Collapse
|
31
|
Minhas AK, Hodgson P, Barrow CJ, Adholeya A. A Review on the Assessment of Stress Conditions for Simultaneous Production of Microalgal Lipids and Carotenoids. Front Microbiol 2016; 7:546. [PMID: 27199903 PMCID: PMC4853371 DOI: 10.3389/fmicb.2016.00546] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 04/04/2016] [Indexed: 11/22/2022] Open
Abstract
Microalgal species are potential resource of both biofuels and high-value metabolites, and their production is growth dependent. Growth parameters can be screened for the selection of novel microalgal species that produce molecules of interest. In this context our review confirms that, autotrophic and heterotrophic organisms have demonstrated a dual potential, namely the ability to produce lipids as well as value-added products (particularly carotenoids) under influence of various physico-chemical stresses on microalgae. Some species of microalgae can synthesize, besides some pigments, very-long-chain polyunsaturated fatty acids (VL-PUFA,>20C) such as docosahexaenoic acid and eicosapentaenoic acid, those have significant applications in food and health. Producing value-added by-products in addition to biofuels, fatty acid methyl esters (FAME), and lipids has the potential to improve microalgae-based biorefineries by employing either the autotrophic or the heterotrophic mode, which could be an offshoot of biotechnology. The review considers the potential of microalgae to produce a range of products and indicates future directions for developing suitable criteria for choosing novel isolates through bioprospecting large gene pool of microalga obtained from various habitats and climatic conditions.
Collapse
Affiliation(s)
- Amritpreet K. Minhas
- Biotechnology and Bioresources Division, TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, India Habitat CentreNew Delhi, India
| | - Peter Hodgson
- Institute for Frontier Materials, Deakin UniversityVictoria, VIC, Australia
| | - Colin J. Barrow
- School of Life and Environmental Sciences, Deakin UniversityVictoria, VIC, Australia
| | - Alok Adholeya
- Biotechnology and Bioresources Division, TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, India Habitat CentreNew Delhi, India
| |
Collapse
|
32
|
Jin B, Wang S, Xing L, Li B, Peng Y. The effect of salinity on waste activated sludge alkaline fermentation and kinetic analysis. J Environ Sci (China) 2016; 43:80-90. [PMID: 27155412 DOI: 10.1016/j.jes.2015.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/20/2015] [Accepted: 10/08/2015] [Indexed: 06/05/2023]
Abstract
The effect of salinity on sludge alkaline fermentation at low temperature (20°C) was investigated, and a kinetic analysis was performed. Different doses of sodium chloride (NaCl, 0-25g/L) were added into the fermentation system. The batch-mode results showed that the soluble chemical oxygen demand (SCOD) increased with salinity. The hydrolysate (soluble protein, polysaccharide) and the acidification products (short chain fatty acids (SCFAs), NH4(+)-N, and PO4(3-)-P) increased with salinity initially, but slightly declined respectively at higher level salinity (20g/L or 20-25g/L). However, the hydrolytic acidification performance increased in the presence of salt compared to that without salt. Furthermore, the results of Haldane inhibition kinetics analysis showed that the salt enhanced the hydrolysis rate of particulate organic matter from sludge particulate and the specific utilization of hydrolysate, and decreased the specific utilization of SCFAs. Pearson correlation coefficient analysis indicated that the importance of polysaccharide on the accumulation of SCFAs was reduced with salt addition, but the importance of protein and NH4(+)-N on SCFA accumulation was increased.
Collapse
Affiliation(s)
- Baodan Jin
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| | - Shuying Wang
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| | - Liqun Xing
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Baikun Li
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China; Department of Civil and Environmental Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Yongzhen Peng
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
33
|
Biochemical Biomarkers in the Halophilic Nanophytoplankton: Dunaliella salina Isolated from the Saline of Sfax (Tunisia). ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2015. [DOI: 10.1007/s13369-015-1808-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
34
|
Wang Z, Gao M, She Z, Wang S, Jin C, Zhao Y, Yang S, Guo L. Effects of salinity on performance, extracellular polymeric substances and microbial community of an aerobic granular sequencing batch reactor. Sep Purif Technol 2015. [DOI: 10.1016/j.seppur.2015.02.042] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Tavallaie S, Emtyazjoo M, Rostami K, Kosari H, Assadi MM. Comparative Studies of β-carotene and Protein Production FromDunaliella salinaIsolated From Lake Hoze-soltan, Iran. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2015. [DOI: 10.1080/10498850.2012.759634] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
36
|
The potential of transgenic green microalgae; a robust photobioreactor to produce recombinant therapeutic proteins. World J Microbiol Biotechnol 2014; 30:2783-96. [PMID: 25115849 DOI: 10.1007/s11274-014-1714-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 07/30/2014] [Indexed: 02/01/2023]
Abstract
Microalgae have been used in food, cosmetic, and biofuel industries as a natural source of lipids, vitamins, pigments and antioxidants for a long time. Green microalgae, as potent photobioreactors, can be considered as an economical expression system to produce recombinant therapeutical proteins at large-scale due to low cost of production and scaling-up capitalization owning to the inexpensive medium requirement, fast growth rate, and the ease of manipulation. These microalgae possess all benefit eukaryotic expression systems including the ability of post-translational modifications required for proper folding and stability of active proteins. Among the many items regarded as recombinant protein production, this review compares the different expression systems with green microalgae like Dunaliella by viewing the nuclear/chloroplast transformation challenges/benefits, related selection markers/reporter genes, and crucial factors/strategies affecting the increase of foreign protein expression in microalgae transformants. Some important factors were discussed regarding the increase of protein yielding in microalgae transformants including: transformation-associated genotypic modifications, endogenous regulatory factors, promoters, codon optimization, enhancer elements, and milking of recombinant protein.
Collapse
|
37
|
Lao YM, Xiao L, Luo LX, Jiang JG. Hypoosmotic expression of Dunaliella bardawil ζ-carotene desaturase is attributed to a hypoosmolarity-responsive element different from other key carotenogenic genes. PLANT PHYSIOLOGY 2014; 165:359-72. [PMID: 24632600 PMCID: PMC4012594 DOI: 10.1104/pp.114.235390] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 02/20/2014] [Indexed: 05/08/2023]
Abstract
Some key carotenogenic genes (crts) in Dunaliella bardawil are regulated in response to salt stress partly due to salt-inducible cis-acting elements in their promoters. Thus, we isolated and compared the ζ-carotene desaturase (Dbzds) promoter with other crts promoters including phytoene synthase (Dbpsy), phytoene desaturase (Dbpds), and lycopene β-cyclase1 (DblycB1) to identify salt-inducible element(s) in the Dbzds promoter. In silico analysis of the Dbzds promoter found several potential cis-acting elements, such as abscisic acid response element-like sequence, myelocytomatosis oncogene1 recognition motif, AGC box, anaerobic motif2, and activation sequence factor1 binding site. Remarkably, instead of salt-inducible elements, we found a unique regulatory sequence architecture in the Dbzds promoter: a hypoosmolarity-responsive element (HRE) candidate followed by a potential hypoosmolarity-inducible factor GBF5 binding site. Deletion experiments demonstrated that only HRE, but not the GBF5 binding site, is responsible for hypoosmotic expression of the fusion of Zeocin resistance gene (ble) to the enhanced green fluorescent protein (egfp) chimeric gene under salt stress. Dbzds transcripts were in accordance with those of ble-egfp driven by the wild-type Dbzds promoter. Consequently, Dbzds is hypoosmotically regulated by its promoter, and HRE is responsible for this hypoosmotic response. Finally, the hypoosmolarity mechanism of Dbzds was studied by comparing transcript profiles and regulatory elements of Dbzds with those of Dbpsy, Dbpds, DblycB1, and DblycB2, revealing that different induction characteristics of crts may correlate with regulatory sequence architecture.
Collapse
Affiliation(s)
- Yong-Min Lao
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China (Y.-M.L., J.-G.J.); and
- School of Biological Science and Engineering, South China University of Technology, Guangzhou 510006, China (Y.-M.L., L.X., L.-X.L.)
| | - Lan Xiao
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China (Y.-M.L., J.-G.J.); and
- School of Biological Science and Engineering, South China University of Technology, Guangzhou 510006, China (Y.-M.L., L.X., L.-X.L.)
| | - Li-Xin Luo
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China (Y.-M.L., J.-G.J.); and
- School of Biological Science and Engineering, South China University of Technology, Guangzhou 510006, China (Y.-M.L., L.X., L.-X.L.)
| | | |
Collapse
|
38
|
Markou G, Nerantzis E. Microalgae for high-value compounds and biofuels production: A review with focus on cultivation under stress conditions. Biotechnol Adv 2013; 31:1532-42. [DOI: 10.1016/j.biotechadv.2013.07.011] [Citation(s) in RCA: 384] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 07/29/2013] [Accepted: 07/30/2013] [Indexed: 10/26/2022]
|
39
|
Wang Z, Gao M, Wang Z, She Z, Chang Q, Sun C, Zhang J, Ren Y, Yang N. Effect of salinity on extracellular polymeric substances of activated sludge from an anoxic-aerobic sequencing batch reactor. CHEMOSPHERE 2013; 93:2789-2795. [PMID: 24134890 DOI: 10.1016/j.chemosphere.2013.09.038] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 09/16/2013] [Accepted: 09/17/2013] [Indexed: 06/02/2023]
Abstract
The effect of salinity on extracellular polymeric substances (EPS) of activated sludge was investigated in an anoxic-aerobic sequencing batch reactor (SBR). The contents of loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) were positively correlated with the salinity. The polysaccharide (PS) and protein (PN) contents in both LB-EPS and TB-EPS increased with the increase of salinity. With the increase of salinity from 0.5% to 6%, the PN/PS ratios in LB-EPS and TB-EPS decreased from 4.8 to 0.9 and from 2.9 to 1.4, respectively. The four fluorescence peaks in both LB-EPS and TB-EPS identified by three-dimensional excitation-emission matrix fluorescence spectroscopy are attributed to PN-like substances and humic acid-like substances. The Fourier transform infrared spectra of the LB-EPS and TB-EPS appeared to be very similar, but the differences across the spectra were apparent in terms of the relative intensity of some bands with the increase of salinity. The sludge volume index showed a linear correlation with LB-EPS (R(2)=0.9479) and TB-EPS (R(2)=0.9355) at different salinities, respectively.
Collapse
Affiliation(s)
- Zichao Wang
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Besson A, Guiraud P. High-pH-induced flocculation-flotation of the hypersaline microalga Dunaliella salina. BIORESOURCE TECHNOLOGY 2013; 147:464-470. [PMID: 24012843 DOI: 10.1016/j.biortech.2013.08.053] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/06/2013] [Accepted: 08/08/2013] [Indexed: 06/02/2023]
Abstract
Natural autoflocculation was not observed in a Dunaliella salina hypersaline culture and the microalgae did not float without destabilization of the algal suspension. High-pH-induced flocculation by sodium hydroxide addition was chosen to induce flotation. Recovery efficiencies greater than 90% and concentration factors of around 20 were reached. An autoflocculation mechanism, with precipitation of magnesium hydroxide, is proposed to explain a sweeping flotation of D. salina cells. The influence of the flow rate of sodium hydroxide addition was also studied to anticipate the constraints related to the industrialization of this process. The flow rate of sodium hydroxide addition had no effect on the recovery efficiency and reduced the concentration factor only for abrupt injections. Natural increase of culture pH by photosynthetic activity could reduce the amount of base consumed. Non-harvested cells remained viable during pH increase and could be used as inoculum for a new culture.
Collapse
Affiliation(s)
- Alexandre Besson
- Université de Toulouse; INSA, UPS, INP; LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France; INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France; CNRS, UMR 5504, F-31400 Toulouse, France.
| | - Pascal Guiraud
- Université de Toulouse; INSA, UPS, INP; LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France; INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France; CNRS, UMR 5504, F-31400 Toulouse, France.
| |
Collapse
|
41
|
Gu N, Lin Q, Li G, Tan Y, Huang L, Lin J. Effect of salinity on growth, biochemical composition, and lipid productivity ofNannochloropsis oculataCS 179. Eng Life Sci 2012. [DOI: 10.1002/elsc.201100204] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
| | - Qiang Lin
- Key Laboratory of Marine Bio-resource Sustainable Utilization; South China Sea Institute of Oceanology; Chinese Academy of Sciences; Guangzhou; China
| | - Gang Li
- Key Laboratory of Marine Bio-resource Sustainable Utilization; South China Sea Institute of Oceanology; Chinese Academy of Sciences; Guangzhou; China
| | - Yehui Tan
- Key Laboratory of Marine Bio-resource Sustainable Utilization; South China Sea Institute of Oceanology; Chinese Academy of Sciences; Guangzhou; China
| | - Liangmin Huang
- Key Laboratory of Marine Bio-resource Sustainable Utilization; South China Sea Institute of Oceanology; Chinese Academy of Sciences; Guangzhou; China
| | - Junda Lin
- Vero Beach Marine Laboratory; Florida Institute of Technology; Vero Beach; FL; USA
| |
Collapse
|
42
|
Isolation and Characterization of Dunaliella Species from Sambhar Lake (India) and its Phylogenetic Position in the Genus Dunaliella Using 18S rDNA. NATIONAL ACADEMY SCIENCE LETTERS-INDIA 2012. [DOI: 10.1007/s40009-012-0038-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
43
|
Farhat N, Rabhi M, Falleh H, Jouini J, Abdelly C, Smaoui A. OPTIMIZATION OF SALT CONCENTRATIONS FOR A HIGHER CAROTENOID PRODUCTION IN DUNALIELLA SALINA (CHLOROPHYCEAE)(1). JOURNAL OF PHYCOLOGY 2011; 47:1072-1077. [PMID: 27020189 DOI: 10.1111/j.1529-8817.2011.01036.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Dunaliella salina (Dunal) Teodor, when treated over 25 d with a wide range of NaCl salinities (0.6-4.5 M), showed its maximal growth potentialities at 1.5-3.0 M NaCl and was able to survive even at 4.5 M NaCl. Sodium concentrations increased significantly at the supraoptimal salinities, reaching up to 5 mmol · g(-1) dry weight (dwt) at 4.5 M NaCl. Interestingly, ability of D. salina to take up essential mineral nutrients was not impaired by increased salinity. As for growth, chl concentrations were maximal in the 1.5-3.0 M NaCl range. Interestingly, carotenoid concentrations increased with the increasing salinity. The highest values of total antioxidant activity (5.2-6.9 mg gallic acid equivalents [GAE] · g(-1) dwt), antiradical activity, and reducing power were measured at 1.5-3.0 M NaCl. As a whole, these results showed that at 1.5-3.0 M NaCl, D. salina produce appreciable antioxidant level. But, once it reaches its growth maximum, a salt addition up to 4.5 M could enhance its carotenoid yield.
Collapse
Affiliation(s)
- Nèjia Farhat
- Laboratory of Extremophile Plants (LPE), Biotechnology Center of Borj-Cedria, P.O. Box 901, Hammam-Lif 2050, Tunisia
| | - Mokded Rabhi
- Laboratory of Extremophile Plants (LPE), Biotechnology Center of Borj-Cedria, P.O. Box 901, Hammam-Lif 2050, Tunisia
| | - Hanen Falleh
- Laboratory of Extremophile Plants (LPE), Biotechnology Center of Borj-Cedria, P.O. Box 901, Hammam-Lif 2050, Tunisia
| | - Jihène Jouini
- Laboratory of Extremophile Plants (LPE), Biotechnology Center of Borj-Cedria, P.O. Box 901, Hammam-Lif 2050, Tunisia
| | - Chedly Abdelly
- Laboratory of Extremophile Plants (LPE), Biotechnology Center of Borj-Cedria, P.O. Box 901, Hammam-Lif 2050, Tunisia
| | - Abderrazak Smaoui
- Laboratory of Extremophile Plants (LPE), Biotechnology Center of Borj-Cedria, P.O. Box 901, Hammam-Lif 2050, Tunisia
| |
Collapse
|
44
|
Tanaka S, Ikeda K, Miyasaka H, Shioi Y, Suzuki Y, Tamoi M, Takeda T, Shigeoka S, Harada K, Hirata K. Comparison of three Chlamydomonas strains which show distinctive oxidative stress tolerance. J Biosci Bioeng 2011; 112:462-8. [PMID: 21839677 DOI: 10.1016/j.jbiosc.2011.07.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 07/15/2011] [Accepted: 07/20/2011] [Indexed: 11/17/2022]
Abstract
Methyl viologen (MV) causes severe oxidative stress by generating superoxide in the photosystem. The marine Chlamydomonas strain W80 is highly tolerant to MV (inhibitory concentration 50% [IC₅₀]=110 μM), and another marine Chlamydomonas strain HS5 shows also relatively a high tolerance (IC₅₀=12 μM). These two marine strains and a freshwater Chlamydomonas reinhardtii, which is highly sensitive to MV (IC₅₀=0.03 μM), were compared with respect to their reactive oxygen species (ROS) eliminating enzymes (superoxide dismutase, catalase, glutathione peroxidase, and ascorbate peroxidase), intracellular free amino acids, and antioxidant activities of the cell extracts. The marked difference between the marine Chlamydomonas strains and C. reinhardtii is the much higher (more than 5 fold) ascorbate peroxidase (APX) activity in the marine strains. The marine strains also kept the high APX activities (more than 100% of non-stressed condition) under the MV stressed condition, while the APX activity in C. reinhardtii was significantly decreased (36% of non-stressed condition) under the stressed condition, indicating that APX activity potentially contributes to the oxidative stress tolerance in Chlamydomonas. In addition, the levels of intracellular free proline, which is supposed to ameliorate oxidative stress, were several tens of times higher in the marine Chlamydomonas strains than in C. reinhardtii.
Collapse
Affiliation(s)
- Satoshi Tanaka
- The Kansai Electric Power Co., Environmental Research Center, Keihanna-Plaza, Hikaridai 1-7, Seikacho, Sourakugun, Kyoto 619-0237, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Jayappriyan KR, Rajkumar R, Rengasamy R. Unusual occurrence of non carotenogenic strains of Dunaliella bardawil and Dunaliella parva in India. J Basic Microbiol 2011; 51:473-83. [DOI: 10.1002/jobm.201000384] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 02/04/2011] [Indexed: 11/11/2022]
|
46
|
Mishra A, Kavita K, Jha B. Characterization of extracellular polymeric substances produced by micro-algae Dunaliella salina. Carbohydr Polym 2011. [DOI: 10.1016/j.carbpol.2010.08.067] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
47
|
Alkayal F, Albion RL, Tillett RL, Hathwaik LT, Lemos MS, Cushman JC. Expressed sequence tag (EST) profiling in hyper saline shocked Dunaliella salina reveals high expression of protein synthetic apparatus components. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2010; 179:437-49. [PMID: 21802602 DOI: 10.1016/j.plantsci.2010.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 06/28/2010] [Accepted: 07/01/2010] [Indexed: 05/10/2023]
Abstract
The unicellular, halotolerant, green alga, Dunaliella salina (Chlorophyceae) has the unique ability to adapt and grow in a wide range of salt conditions from about 0.05 to 5.5M. To better understand the molecular basis of its salinity tolerance, a complementary DNA (cDNA) library was constructed from D. salina cells adapted to 2.5M NaCl, salt-shocked at 3.4M NaCl for 5h, and used to generate an expressed sequence tag (EST) database. ESTs were obtained for 2831 clones representing 1401 unique transcripts. Putative functions were assigned to 1901 (67.2%) ESTs after comparison with protein databases. An additional 154 (5.4%) ESTs had significant similarity to known sequences whose functions are unclear and 776 (27.4%) had no similarity to known sequences. For those D. salina ESTs for which functional assignments could be made, the largest functional categories included protein synthesis (35.7%), energy (photosynthesis) (21.4%), primary metabolism (13.8%) and protein fate (6.8%). Within the protein synthesis category, the vast majority of ESTs (80.3%) encoded ribosomal proteins representing about 95% of the approximately 82 subunits of the cytosolic ribosome indicating that D. salina invests substantial resources in the production and maintenance of protein synthesis. The increased mRNA expression upon salinity shock was verified for a small set of selected genes by real-time, quantitative reverse-transcription-polymerase chain reaction (qRT-PCR). This EST collection also provided important new insights into the genetic underpinnings for the biosynthesis and utilization of glycerol and other osmoprotectants, the carotenoid biosynthetic pathway, reactive oxygen-scavenging enzymes, and molecular chaperones (heat shock proteins) not described previously for D. salina. EST discovery also revealed the existence of RNA interference and signaling pathways associated with osmotic stress adaptation. The unknown ESTs described here provide a rich resource for the identification of novel genes associated with the mechanistic basis of salinity stress tolerance and other stress-adaptive traits.
Collapse
Affiliation(s)
- Fadi Alkayal
- Dasman Center for Research and Treatment of Diabetes, P.O Box 1180, Dasman, Kuwait
| | | | | | | | | | | |
Collapse
|
48
|
Zhang ZJ, Chen SH, Wang SM, Luo HY. Characterization of extracellular polymeric substances from biofilm in the process of starting-up a partial nitrification process under salt stress. Appl Microbiol Biotechnol 2010; 89:1563-71. [DOI: 10.1007/s00253-010-2947-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 10/09/2010] [Accepted: 10/10/2010] [Indexed: 11/24/2022]
|
49
|
Chengala AA, Hondzo M, Troolin D, Lefebvre PA. Kinetic responses of Dunaliella in moving fluids. Biotechnol Bioeng 2010; 107:65-75. [DOI: 10.1002/bit.22774] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
50
|
Dunaliella as an attractive candidate for molecular farming. Mol Biol Rep 2009; 37:3427-30. [PMID: 19943116 DOI: 10.1007/s11033-009-9933-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 11/16/2009] [Indexed: 10/20/2022]
Abstract
Pharmaceutical recombinant proteins are widely used in human healthcare. At present, several protein expression systems are available to generate therapeutic proteins. These conventional systems have distinct advantages and disadvantages in protein yielding; in terms of ease of manipulation, the time required from gene transformation to protein purification, cost of production and scaling-up capitalization, proper folding and stability of active proteins. Depending on the research goal and priorities, a special system may be selected for protein expression. However, considering the limited variety of organisms currently used and their usage restrictions, there are still much more pharmaceutical proteins waiting to be economically and efficiently produced. Distinguished biological and technical features of microalgae Dunaliella such as inexpensive medium requirement, fast growth rate, the ease of manipulation, easy scaling up procedure, facility of milking in bioreactors and the ability of post-translational modifications make this microorganism an attractive candidate for molecular farming.
Collapse
|