1
|
Das PK, Sahoo A, Veeranki VD. Recombinant monoclonal antibody production in yeasts: Challenges and considerations. Int J Biol Macromol 2024; 266:131379. [PMID: 38580014 DOI: 10.1016/j.ijbiomac.2024.131379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Monoclonal antibodies (mAbs) are laboratory-based engineered protein molecules with a monovalent affinity or multivalent avidity towards a specific target or antigen, which can mimic natural antibodies that are produced in the human immune systems to fight against detrimental pathogens. The recombinant mAb is one of the most effective classes of biopharmaceuticals produced in vitro by cloning and expressing synthetic antibody genes in a suitable host. Yeast is one of the potential hosts among others for the successful production of recombinant mAbs. However, there are very few yeast-derived mAbs that got the approval of the regulatory agencies for direct use for treatment purposes. Certain challenges encountered by yeasts for recombinant antibody productions need to be overcome and a few considerations related to antibody structure, host engineering, and culturing strategies should be followed for the improved production of mAbs in yeasts. In this review, the drawbacks related to the metabolic burden of the host, culturing conditions including induction mechanism and secretion efficiency, solubility and stability, downstream processing, and the pharmacokinetic behavior of the antibody are discussed, which will help in developing the yeast hosts for the efficient production of recombinant mAbs.
Collapse
Affiliation(s)
- Prabir Kumar Das
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Ansuman Sahoo
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Venkata Dasu Veeranki
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
2
|
Sun M, Gao AX, Liu X, Yang Y, Ledesma-Amaro R, Bai Z. High-throughput process development from gene cloning to protein production. Microb Cell Fact 2023; 22:182. [PMID: 37715258 PMCID: PMC10503041 DOI: 10.1186/s12934-023-02184-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/19/2023] [Indexed: 09/17/2023] Open
Abstract
In the post-genomic era, the demand for faster and more efficient protein production has increased, both in public laboratories and industry. In addition, with the expansion of protein sequences in databases, the range of possible enzymes of interest for a given application is also increasing. Faced with peer competition, budgetary, and time constraints, companies and laboratories must find ways to develop a robust manufacturing process for recombinant protein production. In this review, we explore high-throughput technologies for recombinant protein expression and present a holistic high-throughput process development strategy that spans from genes to proteins. We discuss the challenges that come with this task, the limitations of previous studies, and future research directions.
Collapse
Affiliation(s)
- Manman Sun
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
| | - Alex Xiong Gao
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Xiuxia Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Yankun Yang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK.
| | - Zhonghu Bai
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China.
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
3
|
Gätjen D, Wieczorek M, Listek M, Tomszak F, Nölle V, Hanack K, Droste M. A switchable secrete-and-capture system enables efficient selection of Pichia pastoris clones producing high yields of Fab fragments. J Immunol Methods 2022; 511:113383. [PMID: 36356896 DOI: 10.1016/j.jim.2022.113383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
Pichia pastoris (syn. Komagataella phaffii) represents a commonly used expression system in the biotech industry. High clonal variation of transformants, however, typically results in a broad range of specific productivities for secreted proteins. To isolate rare clones with exceedingly high product titers, an extensive number of clones need to be screened. In contrast to high-throughput screenings of P. pastoris clones in microtiter plates, secrete-and-capture methodologies have the potential to efficiently isolate high-producer clones among millions of cells through fluorescence-activated cell sorting (FACS). Here, we describe a novel approach for the non-covalent binding of fragment antigen-binding (Fab) proteins to the cell surface for the isolation of high-producing clones. Eight different single-chain variable fragment (scFv)-based capture matrices specific for the constant part of the Fabs were fused to the Saccharomyces cerevisiae alpha-agglutinin (SAG1) anchor protein for surface display in P. pastoris. By encoding the capture matrix on an episomal plasmid harboring inherently unstable autonomously replicating sequences (ARS), this secrete-and-capture system offers a switchable scFv display. Efficient plasmid clearance upon removal of selective pressure enabled the direct use of isolated clones for subsequent Fab production. Flow-sorted clones (n = 276) displaying high amounts of Fabs showed a significant increase in median Fab titers detected in the cell-free supernatant (CFS) compared to unsorted clones (n = 276) when cells were cultivated in microtiter plates (factor in the range of ∼21-49). Fab titers of clones exhibiting the highest product titer observed for each of the two approaches were increased by up to 8-fold for the sorted clone. Improved Fab yields of sorted cells vs. unsorted cells were confirmed in an upscaled shake flask cultivation of selected candidates (factor in the range of ∼2-3). Hence, the developed display-based selection method proved to be a valuable tool for efficient clone screening in the early stages of our bioprocess development.
Collapse
Affiliation(s)
- Dominic Gätjen
- Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429 Bergisch Gladbach, Germany; Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
| | - Marek Wieczorek
- Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429 Bergisch Gladbach, Germany
| | - Martin Listek
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
| | - Florian Tomszak
- Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429 Bergisch Gladbach, Germany
| | - Volker Nölle
- Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429 Bergisch Gladbach, Germany
| | - Katja Hanack
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
| | - Miriam Droste
- Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429 Bergisch Gladbach, Germany.
| |
Collapse
|
4
|
Bustos C, Quezada J, Veas R, Altamirano C, Braun-Galleani S, Fickers P, Berrios J. Advances in Cell Engineering of the Komagataella phaffii Platform for Recombinant Protein Production. Metabolites 2022; 12:346. [PMID: 35448535 PMCID: PMC9027633 DOI: 10.3390/metabo12040346] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 12/11/2022] Open
Abstract
Komagataella phaffii (formerly known as Pichia pastoris) has become an increasingly important microorganism for recombinant protein production. This yeast species has gained high interest in an industrial setting for the production of a wide range of proteins, including enzymes and biopharmaceuticals. During the last decades, relevant bioprocess progress has been achieved in order to increase recombinant protein productivity and to reduce production costs. More recently, the improvement of cell features and performance has also been considered for this aim, and promising strategies with a direct and substantial impact on protein productivity have been reported. In this review, cell engineering approaches including metabolic engineering and energy supply, transcription factor modulation, and manipulation of routes involved in folding and secretion of recombinant protein are discussed. A lack of studies performed at the higher-scale bioreactor involving optimisation of cultivation parameters is also evidenced, which highlights new research aims to be considered.
Collapse
Affiliation(s)
- Cristina Bustos
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile; (C.B.); (J.Q.); (R.V.); (C.A.); (S.B.-G.)
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Av. de la Faculté 2B, 5030 Gembloux, Belgium;
| | - Johan Quezada
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile; (C.B.); (J.Q.); (R.V.); (C.A.); (S.B.-G.)
| | - Rhonda Veas
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile; (C.B.); (J.Q.); (R.V.); (C.A.); (S.B.-G.)
| | - Claudia Altamirano
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile; (C.B.); (J.Q.); (R.V.); (C.A.); (S.B.-G.)
| | - Stephanie Braun-Galleani
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile; (C.B.); (J.Q.); (R.V.); (C.A.); (S.B.-G.)
| | - Patrick Fickers
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Av. de la Faculté 2B, 5030 Gembloux, Belgium;
| | - Julio Berrios
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile; (C.B.); (J.Q.); (R.V.); (C.A.); (S.B.-G.)
| |
Collapse
|
5
|
Huynh HH, Morita N, Sakamoto T, Katayama T, Miyakawa T, Tanokura M, Chiba Y, Shinkura R, Maruyama JI. Functional production of human antibody by the filamentous fungus Aspergillus oryzae. Fungal Biol Biotechnol 2020; 7:7. [PMID: 32514366 PMCID: PMC7257131 DOI: 10.1186/s40694-020-00098-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/20/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Monoclonal antibodies (mAbs) as biopharmaceuticals take a pivotal role in the current therapeutic applications. Generally mammalian cell lines, such as those derived from Chinese hamster ovaries (CHO), are used to produce the recombinant antibody. However, there are still concerns about the high cost and the risk of pathogenic contamination when using mammalian cells. Aspergillus oryzae, a filamentous fungus recognized as a GRAS (Generally Regarded As Safe) organism, has an ability to secrete a large amount of proteins into the culture supernatant, and thus the fungus has been used as one of the cost-effective microbial hosts for heterologous protein production. Pursuing this strategy the human anti-TNFα antibody adalimumab, one of the world's best-selling antibodies for the treatment of immune-mediated inflammatory diseases including rheumatoid arthritis, was chosen to produce the full length of mAbs by A. oryzae. Generally, N-glycosylation of the antibody affects immune effector functions such as antibody-dependent cell-mediated cytotoxicity (ADCC) via binding to the Fc receptor (FcγR) on immune cells. The CRISPR/Cas9 system was used to first delete the Aooch1 gene encoding a key enzyme for the hyper-mannosylation process in fungi to investigate the binding ability of antibody with FcγRIIIa. RESULTS Adalimumab was expressed in A. oryzae by the fusion protein system with α-amylase AmyB. The full-length adalimumab consisting of two heavy and two light chains was successfully produced in the culture supernatants. Among the producing strains, the highest amount of antibody was obtained from the ten-protease deletion strain (39.7 mg/L). Two-step purifications by Protein A and size-exclusion chromatography were applied to obtain the high purity sample for further analysis. The antigen-binding and TNFα neutralizing activities of the adalimumab produced by A. oryzae were comparable with those of a commercial product Humira®. No apparent binding with the FcγRIIIa was detected with the recombinant adalimumab even by altering the N-glycan structure using the Aooch1 deletion strain, which suggests only a little additional activity of immune effector functions. CONCLUSION These results demonstrated an alternative low-cost platform for human antibody production by using A. oryzae, possibly offering a reasonable expenditure for patient's welfare.
Collapse
Affiliation(s)
- Hung Hiep Huynh
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
| | - Naoki Morita
- Laboratory of Immunology and Infection Control, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Toshihiro Sakamoto
- Laboratory of Immunology and Infection Control, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Takuya Katayama
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Takuya Miyakawa
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| | - Yasunori Chiba
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki Japan
| | - Reiko Shinkura
- Laboratory of Immunology and Infection Control, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
- Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Jun-ichi Maruyama
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Pedersen M, Østergaard J, Jensen H. In-Solution IgG Titer Determination in Fermentation Broth Using Affibodies and Flow-Induced Dispersion Analysis. ACS OMEGA 2020; 5:10519-10524. [PMID: 32426609 PMCID: PMC7227040 DOI: 10.1021/acsomega.0c00791] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/16/2020] [Indexed: 05/03/2023]
Abstract
Biopharmaceuticals such as protein and peptide-based drugs are often produced by fermentation processes where it is necessary to monitor the amount and quality of the product expressed during fermentation and for release testing of the final drug product. Standard procedures involve surface-based ligand binding technologies such as enzyme-linked immunosorbent assay and biolayer interferometry, or extensive purification using, e.g., preparative chromatography followed by spectrophotometric protein quantification. The multistep nature of these methodologies leads to lengthy protocols and renders real-time process control impractical. Recently, flow-induced dispersion analysis (FIDA) was introduced as a novel in-solution ligand binding technology, requiring only nano/microliter sample volumes. FIDA is based on Taylor dispersion analysis in narrow fused silica capillaries and provides the hydrodynamic radius of the binding ligand and complex in addition to the detailed binding characterization. Here, we demonstrate the use of FIDA for quantification of monoclonal IgG antibodies (rituximab) directly in mammalian cell fermentation broth with only 4 min of analysis time. The FIDA assay utilizes a small anti-IgG affibody, conjugated to a fluorophore, as a selective rituximab binder. The apparent change in the hydrodynamic radius of the affibody, as it interacts with known concentrations of rituximab, is used for generating a binding curve in a blank fermentation medium, and hence determining the dissociation constant and complex size. Finally, the binding curve is utilized for quantifying the rituximab titer concentration in clarified fermentation broth samples.
Collapse
Affiliation(s)
- Morten
E. Pedersen
- FIDA
Biosystems ApS, Fruebjesrgvej
3, 2100 Copenhagen, Denmark
- Department
of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Jesper Østergaard
- Department
of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Henrik Jensen
- FIDA
Biosystems ApS, Fruebjesrgvej
3, 2100 Copenhagen, Denmark
- Department
of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
7
|
Kaushik N, Lamminmäki U, Khanna N, Batra G. Enhanced cell density cultivation and rapid expression-screening of recombinant Pichia pastoris clones in microscale. Sci Rep 2020; 10:7458. [PMID: 32366873 PMCID: PMC7198582 DOI: 10.1038/s41598-020-63995-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 04/08/2020] [Indexed: 01/06/2023] Open
Abstract
Cultivation of yeast Pichia pastoris in the microtiter plate, for optimisation of culture conditions, and expression screening of transformants has gained significance in recent years. However, in the microtiter plate, it has been challenging to attain cell densities similar to well-aerated shake-flask culture, due to the poor mixing resulting in oxygen limitation. To solve this problem, we investigated the influence of multiple cultivation parameters on P. pastoris cell growth, including the architecture of 96-deepwell plate (96-DWP), shaking throw diameter, shaking frequency, culture volume/well, and media composition. In the optimised conditions, a cell density of OD600 ~50 (dry cell weight ~13 g/L) with >99% cell viability was achieved in the casamino acids supplemented buffered-minimal-media in 300 to 1000 μl culture volume/well. We have devised a simplified method for coating of the culture supernatant on the polystyrene surface for immunoassay. Clones for secretory expression of envelope domain III of dengue virus serotype-1 under the control of inducible and constitutive promoter were screened using the developed method. Described microscale cultivation strategy can be used for rapid high-throughput screening of P. pastoris clones, media optimization, and high-throughput recombinant protein production. The knowledge gained through this work may also be applied, to other suspension cultures, with some modifications.
Collapse
Affiliation(s)
- Neha Kaushik
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India.,School of Life Sciences, Manipal University, Manipal, 576104, Karnataka, India
| | - Urpo Lamminmäki
- Department of Biochemistry/Biotechnology, University of Turku, Turku, Finland
| | - Navin Khanna
- Recombinant Gene Products Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Gaurav Batra
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India.
| |
Collapse
|
8
|
Li H, Xia Y. High-yield production of spider short-chain insecticidal neurotoxin Tx4(6-1) in Pichia pastoris and bioactivity assays in vivo. Protein Expr Purif 2018; 154:66-73. [PMID: 30292807 DOI: 10.1016/j.pep.2018.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/17/2018] [Accepted: 10/03/2018] [Indexed: 11/17/2022]
Abstract
Short-chain insecticidal neurotoxin Tx4(6-1) from the spider Phoneutria nigriventer can be prepared by reversed-phase high-performance liquid-chromatography (HPLC) fractionation of PhTx4, but this is difficult and represents an obstacle preventing analyses of its insecticidal activity against agricultural insect pests. Herein, we performed secretory expression of recombinant Tx4(6-1) using Pichia pastoris strain X33 as the host, and screened transformants using enzyme-linked immunosorbent assay (ELISA). In flasks, ∼5 mg/l rTx4(6-1) was expressed as a secreted protein following induction with methanol, and this was increased to 45 mg/l rTx4(6-1) in a fed-batch reactor. Approximately 4 mg of high-purity rTx4(6-1) was purified from a 400 ml fed-batch culture supernatant by Ni+-nitriloacetic acid affinity chromatography, followed by carboxymethyl (CM) sepharose ion-exchange chromatography. Purified rTx4(6-1) was determined by mass spectrometry (MS) analysis, revealing a molecular weight (MW) of 7660.5 Da, larger than the expected size due to O-linked glycosylation. Insect bioactivity tests of rTx4(6-1)-treated fifth-instar silkworm larvae (Bombyx mori Linnaeus) showed neurotoxin symptoms such as contraction paralysis, abdominal contraction, and mouth movement syndrome, with a half lethal dose at 12 h post-injection of ∼4.5-8.5 μg/g body weight. Dietary toxicity was not observed in silkworm larvae.
Collapse
Affiliation(s)
- Hongbo Li
- College of Biological and Food Engineering, Huaihua University, Huaihua, 418008, China; Postdoctoral Mobile Station of Biology, Genetic Engineering Research Center, College of Life Sciences, Chongqing University, Chongqing, 400030, China.
| | - Yuxian Xia
- College of Biological and Food Engineering, Huaihua University, Huaihua, 418008, China.
| |
Collapse
|
9
|
Li H, Xia Y. Improving the secretory expression of active recombinant AaIT in Pichia pastoris by changing the expression strain and plasmid. World J Microbiol Biotechnol 2018; 34:104. [PMID: 29951705 DOI: 10.1007/s11274-018-2484-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/16/2018] [Indexed: 11/28/2022]
Abstract
Scorpion long-chain insect selective neurotoxin AaIT has the potential to be used against agricultural insect pests. However, there is still a lack of a heterologous gene expression system that can express AaIT efficiently. Here, using X33 as the host strain and pPICZαA as the expression vector, one transformant had the highest expression of recombinant AaIT (rAaIT) was obtained, and secreted as high as 240 mg/l rAaIT in fed-batch fermentation. Secretory rAaIT was purified by Ni2+-nitriloacetic affinity and CM chromatography, and 8 mg of high purity rAaIT were purified from 200 ml fed-batch fermentation cultures. Injecting silkworm (Bombyx mori Linnaeus) and Galleria mellonella larvae with rAaIT resulted in obvious neurotoxin symptoms and led to death. These results demonstrate that a large amount of anti-insect active rAaIT could be prepared efficiently.
Collapse
Affiliation(s)
- Hongbo Li
- Postdoctoral Mobile Station of Biology, Genetic Engineering Research Center, College of Life Sciences, Chongqing University, Chongqing, 400030, China. .,The Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua, 418008, China.
| | - Yuxian Xia
- Postdoctoral Mobile Station of Biology, Genetic Engineering Research Center, College of Life Sciences, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
10
|
Improved microscale cultivation of Pichia pastoris for clonal screening. Fungal Biol Biotechnol 2018; 5:8. [PMID: 29750118 PMCID: PMC5932850 DOI: 10.1186/s40694-018-0053-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/28/2018] [Indexed: 11/10/2022] Open
Abstract
Background Expanding the application of technical enzymes, e.g., in industry and agriculture, commands the acceleration and cost-reduction of bioprocess development. Microplates and shake flasks are massively employed during screenings and early phases of bioprocess development, although major drawbacks such as low oxygen transfer rates are well documented. In recent years, miniaturization and parallelization of stirred and shaken bioreactor concepts have led to the development of novel microbioreactor concepts. They combine high cultivation throughput with reproducibility and scalability, and represent promising tools for bioprocess development. Results Parallelized microplate cultivation of the eukaryotic protein production host Pichia pastoris was applied effectively to support miniaturized phenotyping of clonal libraries in batch as well as fed-batch mode. By tailoring a chemically defined growth medium, we show that growth conditions are scalable from microliter to 0.8 L lab-scale bioreactor batch cultivation with different carbon sources. Thus, the set-up allows for a rapid physiological comparison and preselection of promising clones based on online data and simple offline analytics. This is exemplified by screening a clonal library of P. pastoris constitutively expressing AppA phytase from Escherichia coli. The protocol was further modified to establish carbon-limited conditions by employing enzymatic substrate-release to achieve screening conditions relevant for later protein production processes in fed-batch mode. Conclusion The comparison of clonal rankings under batch and fed-batch-like conditions emphasizes the necessity to perform screenings under process-relevant conditions. Increased biomass and product concentrations achieved after fed-batch microscale cultivation facilitates the selection of top producers. By reducing the demand to conduct laborious and cost-intensive lab-scale bioreactor cultivations during process development, this study will contribute to an accelerated development of protein production processes. Electronic supplementary material The online version of this article (10.1186/s40694-018-0053-6) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Wang J, Wang J, Zhang Z, Zhang X, Ru S, Dong Y. Development of an immunosensor for quantifying zebrafish vitellogenin based on the Octet system. Anal Biochem 2017; 533:60-65. [PMID: 28690180 DOI: 10.1016/j.ab.2017.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 11/15/2022]
Abstract
Vitellogenin (Vtg) is a sensitive biomarker for environmental estrogens. In this study, an immunosensor for quantifying zebrafish Vtg was developed using the Octet system. First, Protein A sensors were immobilized with purified anti-lipovitellin (Lv) antibody that demonstrated specificity to Vtg. Then, antibody-coated biosensors were immersed into zebrafish Lv standards and diluted samples. The Octet system measured and recorded kinetic parameters between antigens and captured antibody within 5 min. Sample Vtg concentrations were automatically calculated by interpolating relative binding rates observed with each sample and the immobilized anti-Lv antibody into the developed standard curve. The sensor arrays exhibited a wide linear range from 78 to 5000 ng/mL, and the inter-assay coefficient of variation was 0.66-1.97%. Furthermore, the performance of the immunosensor in detecting Vtg was evaluated by quantifying Vtg induction in juvenile zebrafish exposed to 17β-estradiol (E2). Compared with conventional immunoassay techniques, the Vtg immunosensor developed based on the Octet system was much simpler and less time-consuming, allowing rapid Vtg quantification within 15 min. Moreover, Protein A sensors could be reused many times to ensure that the assays have high reproducibility. Therefore, we suggest that immunosensors based on the Octet system are an easily operated detection method for ecotoxicological research.
Collapse
Affiliation(s)
- Jun Wang
- Marine Life Science College, Ocean University of China, Qingdao 266003, China
| | - Jun Wang
- Shandong Entry-Exit Inspection and Quarantine Bureau, Qingdao 266001, China
| | - Zhenzhong Zhang
- Marine Life Science College, Ocean University of China, Qingdao 266003, China
| | - Xiaona Zhang
- Marine Life Science College, Ocean University of China, Qingdao 266003, China
| | - Shaoguo Ru
- Marine Life Science College, Ocean University of China, Qingdao 266003, China.
| | - YiFei Dong
- Marine Life Science College, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
12
|
Kamat V, Rafique A. Designing binding kinetic assay on the bio-layer interferometry (BLI) biosensor to characterize antibody-antigen interactions. Anal Biochem 2017; 536:16-31. [PMID: 28802648 DOI: 10.1016/j.ab.2017.08.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 08/03/2017] [Accepted: 08/07/2017] [Indexed: 01/24/2023]
Abstract
The Octet biosensors provide a high-throughput alternative to the well-established surface plasmon resonance (SPR) and SPR imaging (SPRi) biosensors to characterize antibody-antigen interactions. However, the utility of the Octet biosensors for accurate and reproducible measurement of binding rate constants of monoclonal antibodies (mAbs) is limited due to challenges such as analyte rebinding, and mass transport limitation (MTL). This study focuses on addressing these challenges and provides experimental conditions to reliably measure kinetics of mAb-antigen interactions. The mAb capture density of less than 0.6 nm was found to be optimal to measure a wide range of binding affinities on Octet HTX biosensor. The titration kinetic and single cycle kinetic assays performed on Octet HTX generated reproducible binding kinetic parameters and correlated with the values measured on Biacore 4000 and MASS-1. Kinetic assays performed on 0.1 nm density mAb surfaces significantly reduced MTL and enabled characterization of picomolar affinity mAbs. Finally, kinetic analysis performed on 150 antibodies to 10 antigens with molecular weights ranging from 21kD to 105kD showed concordance between Octet HTX, Biacore 4000 and MASS-1 (R2 > 0.90). The data presented in this study suggest that under optimal experimental conditions, Octet biosensor is capable of generating kinetic values comparable to SPR/SPRi biosensors.
Collapse
Affiliation(s)
- Vishal Kamat
- Biomolecular HTS Center, Therapeutic Proteins, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA.
| | - Ashique Rafique
- Biomolecular HTS Center, Therapeutic Proteins, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| |
Collapse
|
13
|
Yagudin TA, Klyatchko EV, Zatsepin SS, Morozkina EV, Benevolensky SV, Shemchukova OB, Pozdnyakova LP, Solopova ON, Sveshnikov PG. Production of humanized F(ab’)2 fragment of rabies blocking antibodies in Pichia pastoris yeast. APPL BIOCHEM MICRO+ 2016. [DOI: 10.1134/s0003683816040165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Simplified high-throughput screening of AOX1-expressed laccase enzyme in Pichia pastoris. Anal Biochem 2015; 489:59-61. [PMID: 26299646 DOI: 10.1016/j.ab.2015.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/13/2015] [Indexed: 12/28/2022]
Abstract
The heterologous protein expression in Pichia pastoris under the control of alcohol oxidase (AOX1)promoter comprises two steps, the growth and induction phases, which are time-consuming and technically demanding. Here, we describe an alternate method where expression is carried out directly in the methanol-containing medium. Using this method, we were successful in screening high-activity laccase clones from a library of laccase mutants generated by random mutagenesis. This simplified method not only saves time but also is highly efficient and can be used for screening a large number of clones.
Collapse
|
15
|
Challenges to production of antibodies in bacteria and yeast. J Biosci Bioeng 2015; 120:483-90. [DOI: 10.1016/j.jbiosc.2015.03.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/12/2015] [Accepted: 03/12/2015] [Indexed: 12/21/2022]
|
16
|
Looser V, Bruhlmann B, Bumbak F, Stenger C, Costa M, Camattari A, Fotiadis D, Kovar K. Cultivation strategies to enhance productivity of Pichia pastoris: A review. Biotechnol Adv 2015; 33:1177-93. [DOI: 10.1016/j.biotechadv.2015.05.008] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 05/11/2015] [Accepted: 05/25/2015] [Indexed: 12/14/2022]
|
17
|
Chen W, Zhao X, Zhang M, Yuan Y, Ge L, Tang B, Xu X, Cao L, Guo H. High-efficiency secretory expression of human neutrophil gelatinase-associated lipocalin from mammalian cell lines with human serum albumin signal peptide. Protein Expr Purif 2015; 118:105-12. [PMID: 26518367 DOI: 10.1016/j.pep.2015.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/19/2015] [Accepted: 10/21/2015] [Indexed: 12/18/2022]
Abstract
Human neutrophil gelatinase associated lipocalin (NGAL) is a secretory glycoprotein initially isolated from neutrophils. It is thought to be involved in the incidence and development of immunological diseases and cancers. Urinary and serum levels of NGAL have been investigated as a new biomarker of acute kidney injury (AKI), for an earlier and more accurate detection method than with creatinine level. However, expressing high-quality recombinant NGAL is difficult both in Escherichia coli and mammalian cells for the low yield. Here, we cloned and fused NGAL to the C-terminus of signal peptides of human NGAL, human interleukin-2 (IL2), gaussia luciferase (Gluc), human serum albumin preproprotein (HSA) or an hidden Markov model-generated signal sequence (HMM38) respectively for transient expression in Expi293F suspension cells to screen for their ability to improve the secretory expression of recombinant NGAL. The best results were obtained with signal peptide derived from HSA. The secretory recombinant protein could react specifically with NGAL antibody. For scaled production, we used HSA signal peptide to establish stable Chinese hamster ovary cell lines. Then we developed a convenient colony-selection system to select high-expression, stable cell lines. Moreover, we purified the NGAL with Ni-Sepharose column. The recombinant human NGAL displayed full biological activity. We provide a method to enhance the secretory expression of recombinant human NGAL by using the HSA signal peptide and produce the glycoprotein in mammalian cells.
Collapse
Affiliation(s)
- Wei Chen
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing 210008, Jiangsu, PR China
| | - Xiaozhi Zhao
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing 210008, Jiangsu, PR China
| | - Mingxin Zhang
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing 210008, Jiangsu, PR China
| | - Yimin Yuan
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing 210008, Jiangsu, PR China
| | - Liyuan Ge
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing 210008, Jiangsu, PR China
| | - Bo Tang
- Vazyme Biotech Co., Ltd, Nanjing 210000, Jiangsu, PR China
| | - Xiaoyu Xu
- Vazyme Biotech Co., Ltd, Nanjing 210000, Jiangsu, PR China
| | - Lin Cao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China; Vazyme Biotech Co., Ltd, Nanjing 210000, Jiangsu, PR China.
| | - Hongqian Guo
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing 210008, Jiangsu, PR China.
| |
Collapse
|
18
|
The present state of the art in expression, production and characterization of monoclonal antibodies. Mol Divers 2015; 20:255-70. [DOI: 10.1007/s11030-015-9625-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 07/21/2015] [Indexed: 02/01/2023]
|
19
|
Shah KA, Clark JJ, Goods BA, Politano TJ, Mozdzierz NJ, Zimnisky RM, Leeson RL, Love JC, Love KR. Automated pipeline for rapid production and screening of HIV-specific monoclonal antibodies using pichia pastoris. Biotechnol Bioeng 2015; 112:2624-9. [PMID: 26032261 DOI: 10.1002/bit.25663] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/08/2015] [Accepted: 05/26/2015] [Indexed: 12/30/2022]
Abstract
Monoclonal antibodies (mAbs) that bind and neutralize human pathogens have great therapeutic potential. Advances in automated screening and liquid handling have resulted in the ability to discover antigen-specific antibodies either directly from human blood or from various combinatorial libraries (phage, bacteria, or yeast). There remain, however, bottlenecks in the cloning, expression and evaluation of such lead antibodies identified in primary screens that hinder high-throughput screening. As such, "hit-to-lead identification" remains both expensive and time-consuming. By combining the advantages of overlap extension PCR (OE-PCR) and a genetically stable yet easily manipulatable microbial expression host Pichia pastoris, we have developed an automated pipeline for the rapid production and screening of full-length antigen-specific mAbs. Here, we demonstrate the speed, feasibility and cost-effectiveness of our approach by generating several broadly neutralizing antibodies against human immunodeficiency virus (HIV).
Collapse
Affiliation(s)
- Kartik A Shah
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, 02139, Massachusetts
| | - John J Clark
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, 02139, Massachusetts
| | - Brittany A Goods
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, 02139, Massachusetts
| | - Timothy J Politano
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, 02139, Massachusetts
| | - Nicholas J Mozdzierz
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, 02139, Massachusetts
| | - Ross M Zimnisky
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, 02139, Massachusetts
| | - Rachel L Leeson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, 02139, Massachusetts
| | - J Christopher Love
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, 02139, Massachusetts. .,MIT Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, 02139, Massachusetts.
| | - Kerry R Love
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, 02139, Massachusetts. .,MIT Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, 02139, Massachusetts.
| |
Collapse
|
20
|
Unzueta U, Vázquez F, Accardi G, Mendoza R, Toledo-Rubio V, Giuliani M, Sannino F, Parrilli E, Abasolo I, Schwartz S, Tutino ML, Villaverde A, Corchero JL, Ferrer-Miralles N. Strategies for the production of difficult-to-express full-length eukaryotic proteins using microbial cell factories: production of human alpha-galactosidase A. Appl Microbiol Biotechnol 2015; 99:5863-74. [DOI: 10.1007/s00253-014-6328-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 12/12/2014] [Accepted: 12/14/2014] [Indexed: 12/28/2022]
|
21
|
Sibirny A, Madzak C, Fickers P. Genetic engineering of nonconventional yeasts for the production of valuable compounds. Microb Biotechnol 2014. [DOI: 10.1201/b17587-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
22
|
Inactivation of a GAL4-like transcription factor improves cell fitness and product yield in glycoengineered Pichia pastoris strains. Appl Environ Microbiol 2014; 81:260-71. [PMID: 25344235 DOI: 10.1128/aem.02619-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
With a completely reengineered and humanized glycosylation pathway, glycoengineered Pichia pastoris has emerged as a promising production host for the manufacture of therapeutic glycoproteins. However, the extensive genetic modifications have also negatively affected the overall fitness levels of the glycoengineered host cells. To make glycoengineered Pichia strains more compatible with a scalable industrial fermentation process, we sought to identify genetic solutions to broadly improve cell robustness during fermentation. In this study, we report that mutations within the Pichia pastoris ATT1 (PpATT1) gene (a homolog of the Saccharomyces cerevisiae GAL4 [ScGAL4] transcriptional activator) dramatically increased the cellular fitness levels of glycoengineered Pichia strains. We demonstrate that deletion of the PpATT1 gene enabled glycoengineered Pichia strains to improve their thermal tolerance levels, reduce their cell lysis defects, and greatly improve fermentation robustness. The extension of the duration of fermentation enabled the PpATT1-modified glycoengineered Pichia strains to increase their product yields significantly without any sacrifice in product quality. Because the ATT1 gene could be deleted from any Pichia strains, including empty hosts and protein-expressing production strains alike, we suggest that the findings described in this study are broadly applicable to any Pichia strains used for the production of therapeutic proteins, including monoclonal antibodies, Fc fusions, peptides, hormones, and growth factors.
Collapse
|
23
|
Meehl MA, Stadheim TA. Biopharmaceutical discovery and production in yeast. Curr Opin Biotechnol 2014; 30:120-7. [PMID: 25014890 DOI: 10.1016/j.copbio.2014.06.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/15/2014] [Accepted: 06/08/2014] [Indexed: 01/02/2023]
Abstract
The selection of an expression platform for recombinant biopharmaceuticals is often centered upon suitable product titers and critical quality attributes, including post-translational modifications. Although notable differences between microbial, yeast, plant, and mammalian host systems exist, recent advances have greatly mitigated any inherent liabilities of yeasts. Yeast expression platforms are important to both the supply of marketed biopharmaceuticals and the pipelines of novel therapeutics. In this review, recent advances in yeast-based expression of biopharmaceuticals will be discussed. The advantages of using glycoengineered yeast as a production host and in the discovery space will be illustrated. These advancements, in turn, are transforming yeast platforms from simple production systems to key technological assets in the discovery and selection of biopharmaceutical lead candidates.
Collapse
Affiliation(s)
- Michael A Meehl
- GlycoFi, Biologics Research, Merck & Co., Inc., 16 Cavendish Court, Lebanon, NH 03766, USA
| | - Terrance A Stadheim
- GlycoFi, Biologics Research, Merck & Co., Inc., 16 Cavendish Court, Lebanon, NH 03766, USA.
| |
Collapse
|
24
|
Long Q, Liu X, Yang Y, Li L, Harvey L, McNeil B, Bai Z. The development and application of high throughput cultivation technology in bioprocess development. J Biotechnol 2014; 192 Pt B:323-38. [PMID: 24698846 DOI: 10.1016/j.jbiotec.2014.03.028] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 03/18/2014] [Accepted: 03/24/2014] [Indexed: 01/06/2023]
Abstract
This review focuses on recent progress in the technology of high throughput (HTP) cultivation and its increasing application in quality by design (QbD) -driven bioprocess development. Several practical HTP strategies aimed at shortening process development (PD) timelines from DNA to large scale processes involving commercially available HTP technology platforms, including microtiter plate (MTP) culture, micro-scale bioreactors, and in parallel fermentation systems, etc., are critically reviewed in detail. This discussion focuses upon the relative strengths and weaknesses or limitations of each of these platforms in this context. Emerging prototypes of micro-bioreactors reported recently, such as milliliter (mL) scale stirred tank bioreactors, and microfludics integrated micro-scale bioreactors, and their potential for practical application in QbD-driven HTP process development are also critically appraised. The overall aim of such technology is to rapidly gain process insights, and since the analytical technology deployed in HTP systems is critically important to the achievement of this aim, this rapidly developing area is discussed. Finally, general future trends are critically reviewed.
Collapse
Affiliation(s)
- Quan Long
- Jiangnan University, Jiangsu, Wuxi, 214122, PR China
| | - Xiuxia Liu
- Jiangnan University, Jiangsu, Wuxi, 214122, PR China
| | - Yankun Yang
- Jiangnan University, Jiangsu, Wuxi, 214122, PR China
| | - Lu Li
- Jiangnan University, Jiangsu, Wuxi, 214122, PR China
| | | | | | - Zhonghu Bai
- Jiangnan University, Jiangsu, Wuxi, 214122, PR China.
| |
Collapse
|
25
|
Yang S, Kuang Y, Li H, Liu Y, Hui X, Li P, Jiang Z, Zhou Y, Wang Y, Xu A, Li S, Liu P, Wu D. Enhanced production of recombinant secretory proteins in Pichia pastoris by optimizing Kex2 P1' site. PLoS One 2013; 8:e75347. [PMID: 24069404 PMCID: PMC3777899 DOI: 10.1371/journal.pone.0075347] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 08/12/2013] [Indexed: 12/12/2022] Open
Abstract
Pichiapastoris is one of the most widely used expression systems for the production of recombinant secretory proteins. Its universal application is, however, somewhat hampered by its unpredictable yields for different heterologous proteins, which is now believed to be caused in part by their varied efficiencies to traffic through the host secretion machinery. The yeast endoprotease Kex2 removes the signal peptides from pre-proteins and releases the mature form of secreted proteins, thus, plays a pivotal role in the yeast secretory pathways. In this study, we found that the yields of many recombinant proteins were greatly influenced by Kex2 P1' site residues and the optimized P1's amino acid residue could largely determine the final amount of secretory proteins synthesized and secreted. A further improvement of secretory yield was achieved by genomic integration of additional Kex2 copies, which again highlighted the importance of Kex2 cleavage to the production of recombinant secretory proteins in Pichia yeast.
Collapse
Affiliation(s)
- Song Yang
- The Key Laboratory of Regenerative Biology and The Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ye Kuang
- The Key Laboratory of Regenerative Biology and The Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Department of Biomedical Engineering, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Hongbo Li
- The Key Laboratory of Regenerative Biology and The Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- The Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Department of Life Sciences, Huaihua College, Huaihua, China
| | - Yuehong Liu
- The Key Laboratory of Regenerative Biology and The Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Department of Biomedical Engineering, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Xiaoyan Hui
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Peng Li
- The Key Laboratory of Regenerative Biology and The Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhiwu Jiang
- The Key Laboratory of Regenerative Biology and The Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yulai Zhou
- Department of Biomedical Engineering, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Yu Wang
- The Key Laboratory of Regenerative Biology and The Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- The Key Laboratory of Regenerative Biology and The Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Shiwu Li
- Department of Pathology, University of Florida, Gainesville, Florida, United States of America
| | - Pentao Liu
- The Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Donghai Wu
- The Key Laboratory of Regenerative Biology and The Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- * E-mail:
| |
Collapse
|
26
|
Frenzel A, Hust M, Schirrmann T. Expression of recombinant antibodies. Front Immunol 2013; 4:217. [PMID: 23908655 PMCID: PMC3725456 DOI: 10.3389/fimmu.2013.00217] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 07/15/2013] [Indexed: 12/15/2022] Open
Abstract
Recombinant antibodies are highly specific detection probes in research, diagnostics, and have emerged over the last two decades as the fastest growing class of therapeutic proteins. Antibody generation has been dramatically accelerated by in vitro selection systems, particularly phage display. An increasing variety of recombinant production systems have been developed, ranging from Gram-negative and positive bacteria, yeasts and filamentous fungi, insect cell lines, mammalian cells to transgenic plants and animals. Currently, almost all therapeutic antibodies are still produced in mammalian cell lines in order to reduce the risk of immunogenicity due to altered, non-human glycosylation patterns. However, recent developments of glycosylation-engineered yeast, insect cell lines, and transgenic plants are promising to obtain antibodies with "human-like" post-translational modifications. Furthermore, smaller antibody fragments including bispecific antibodies without any glycosylation are successfully produced in bacteria and have advanced to clinical testing. The first therapeutic antibody products from a non-mammalian source can be expected in coming next years. In this review, we focus on current antibody production systems including their usability for different applications.
Collapse
Affiliation(s)
- André Frenzel
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Michael Hust
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Thomas Schirrmann
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
27
|
Nett JH, Cook WJ, Chen MT, Davidson RC, Bobrowicz P, Kett W, Brevnova E, Potgieter TI, Mellon MT, Prinz B, Choi BK, Zha D, Burnina I, Bukowski JT, Du M, Wildt S, Hamilton SR. Characterization of the Pichia pastoris protein-O-mannosyltransferase gene family. PLoS One 2013; 8:e68325. [PMID: 23840891 PMCID: PMC3698189 DOI: 10.1371/journal.pone.0068325] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 05/28/2013] [Indexed: 01/26/2023] Open
Abstract
The methylotrophic yeast, Pichiapastoris, is an important organism used for the production of therapeutic proteins. However, the presence of fungal-like glycans, either N-linked or O-linked, can elicit an immune response or enable the expressed protein to bind to mannose receptors, thus reducing their efficacy. Previously we have reported the elimination of β-linked glycans in this organism. In the current report we have focused on reducing the O-linked mannose content of proteins produced in P. pastoris, thereby reducing the potential to bind to mannose receptors. The initial step in the synthesis of O-linked glycans in P. pastoris is the transfer of mannose from dolichol-phosphomannose to a target protein in the yeast secretory pathway by members of the protein-O-mannosyltransferase (PMT) family. In this report we identify and characterize the members of the P. pastoris PMT family. Like Candida albicans, P. pastoris has five PMT genes. Based on sequence homology, these PMTs can be grouped into three sub-families, with both PMT1 and PMT2 sub-families possessing two members each (PMT1 and PMT5, and PMT2 and PMT6, respectively). The remaining sub-family, PMT4, has only one member (PMT4). Through gene knockouts we show that PMT1 and PMT2 each play a significant role in O-glycosylation. Both, by gene knockouts and the use of Pmt inhibitors we were able to significantly reduce not only the degree of O-mannosylation, but also the chain-length of these glycans. Taken together, this reduction of O-glycosylation represents an important step forward in developing the P. pastoris platform as a suitable system for the production of therapeutic glycoproteins.
Collapse
Affiliation(s)
- Juergen H Nett
- Biologics Discovery-GlycoFi Inc., Merck Research Laboratories, Lebanon, New Hampshire, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Argyros R, Nelson S, Kull A, Chen MT, Stadheim TA, Jiang B. A phenylalanine to serine substitution within an O-protein mannosyltransferase led to strong resistance to PMT-inhibitors in Pichia pastoris. PLoS One 2013; 8:e62229. [PMID: 23667461 PMCID: PMC3648545 DOI: 10.1371/journal.pone.0062229] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/18/2013] [Indexed: 11/18/2022] Open
Abstract
Protein O-mannosyltransferases (PMTs) catalyze the initial reaction of protein O-mannosylation by transferring the first mannose unit onto serine and threonine residues of a nascent polypeptide being synthesized in the endoplasmic reticulum (ER). The PMTs are well conserved in eukaryotic organisms, and in vivo defects of these enzymes result in cell death in yeast and congenital diseases in humans. A group of rhodanine-3-acetic acid derivatives (PMTi) specifically inhibits PMT activity both in vitro and in vivo. As such, these chemical compounds have been effectively used to minimize the extent of O-mannosylation on heterologously produced proteins from different yeast expression hosts. However, very little is known about how these PMT-inhibitors interact with the PMT enzyme, or what structural features of the PMTs are required for inhibitor-protein interactions. To better understand the inhibitor-enzyme interactions, and to gain potential insights for developing more effective PMT-inhibitors, we isolated PMTi-resistant mutants in Pichia pastoris. In this study, we report the identification and characterization of a point mutation within the PpPMT2 gene. We demonstrate that this F664S point mutation resulted in a near complete loss of PMTi sensitivity, both in terms of growth-inhibition and reduction in O-mannosylglycan site occupancy. Our results provide genetic evidence demonstrating that the F664 residue plays a critical role in mediating the inhibitory effects of these PMTi compounds. Our data also indicate that the main target of these PMT-inhibitors in P. pastoris is Pmt2p, and that the F664 residue most likely interacts directly with the PMTi-compounds.
Collapse
Affiliation(s)
- Rebecca Argyros
- GlycoFi Inc., a wholly-owned subsidiary of Merck & Co. Inc., Lebanon, New Hampshire, United States of America
| | - Stephanie Nelson
- GlycoFi Inc., a wholly-owned subsidiary of Merck & Co. Inc., Lebanon, New Hampshire, United States of America
| | - Angela Kull
- GlycoFi Inc., a wholly-owned subsidiary of Merck & Co. Inc., Lebanon, New Hampshire, United States of America
| | - Ming-Tang Chen
- GlycoFi Inc., a wholly-owned subsidiary of Merck & Co. Inc., Lebanon, New Hampshire, United States of America
| | - Terrance A. Stadheim
- GlycoFi Inc., a wholly-owned subsidiary of Merck & Co. Inc., Lebanon, New Hampshire, United States of America
| | - Bo Jiang
- GlycoFi Inc., a wholly-owned subsidiary of Merck & Co. Inc., Lebanon, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
29
|
Gasser B, Prielhofer R, Marx H, Maurer M, Nocon J, Steiger M, Puxbaum V, Sauer M, Mattanovich D. Pichia pastoris: protein production host and model organism for biomedical research. Future Microbiol 2013; 8:191-208. [DOI: 10.2217/fmb.12.133] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pichia pastoris is the most frequently used yeast system for heterologous protein production today. The last few years have seen several products based on this platform reach approval as biopharmaceutical drugs. Successful glycoengineering to humanize N-glycans is further fuelling this development. However, detailed understanding of the yeast’s physiology, genetics and regulation has only developed rapidly in the last few years since published genome sequences have become available. An expanding toolbox of genetic elements and strains for the improvement of protein production is being generated, including promoters, gene copy-number enhancement, gene knockout and high-throughput methods. Protein folding and secretion have been identified as significant bottlenecks in yeast expression systems, pinpointing a major target for strain optimization. At the same time, it has become obvious that P. pastoris, as an evolutionarily more ‘ancient’ yeast, may in some cases be a better model for human cell biology and disease than Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Brigitte Gasser
- University of Natural Resources & Life Sciences (BOKU), Department of Biotechnology, 1190 Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), 1190 Vienna, Austria
| | - Roland Prielhofer
- University of Natural Resources & Life Sciences (BOKU), Department of Biotechnology, 1190 Vienna, Austria
| | - Hans Marx
- University of Natural Resources & Life Sciences (BOKU), Department of Biotechnology, 1190 Vienna, Austria
| | - Michael Maurer
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), 1190 Vienna, Austria
- University of Applied Sciences FH-Campus Vienna, School of Bioengineering, 1190 Vienna, Austria
| | - Justyna Nocon
- University of Natural Resources & Life Sciences (BOKU), Department of Biotechnology, 1190 Vienna, Austria
| | - Matthias Steiger
- University of Natural Resources & Life Sciences (BOKU), Department of Biotechnology, 1190 Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), 1190 Vienna, Austria
| | - Verena Puxbaum
- University of Natural Resources & Life Sciences (BOKU), Department of Biotechnology, 1190 Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), 1190 Vienna, Austria
| | - Michael Sauer
- University of Natural Resources & Life Sciences (BOKU), Department of Biotechnology, 1190 Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), 1190 Vienna, Austria
| | - Diethard Mattanovich
- University of Natural Resources & Life Sciences (BOKU), Department of Biotechnology, 1190 Vienna, Austria
| |
Collapse
|
30
|
Abstract
Currently, mammalian cells are the most commonly used hosts for the production of therapeutic monoclonal antibodies (mAbs). These hosts not only secrete mAbs with properly assembled two heavy and two light chains but also deliver mAbs with a glycosylation profile that is compatible with administration into humans. GlycoFi, a wholly owned subsidiary of Merck & Co., Inc., humanized the Pichia glycosylation pathway which allows it to express glycoproteins with a human-like glycan profile. This offers an alternative mAb production platform similar to mammalian hosts and in some cases it even provides more homogenous product and better efficacy, such as enhanced effector function. This chapter describes a protocol for using glycoengineered Pichia to produce full-length mAbs. It covers a broad spectrum of mAb expression technologies in yeast including expression vector construction, yeast transformation, high-throughput strain selection to fermentation, and antibody purification.
Collapse
|
31
|
Corchero JL, Gasser B, Resina D, Smith W, Parrilli E, Vázquez F, Abasolo I, Giuliani M, Jäntti J, Ferrer P, Saloheimo M, Mattanovich D, Schwartz S, Tutino ML, Villaverde A. Unconventional microbial systems for the cost-efficient production of high-quality protein therapeutics. Biotechnol Adv 2012; 31:140-53. [PMID: 22985698 DOI: 10.1016/j.biotechadv.2012.09.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 09/04/2012] [Accepted: 09/07/2012] [Indexed: 12/18/2022]
Abstract
Both conventional and innovative biomedical approaches require cost-effective protein drugs with high therapeutic potency, improved bioavailability, biocompatibility, stability and pharmacokinetics. The growing longevity of the human population, the increasing incidence and prevalence of age-related diseases and the better comprehension of genetic-linked disorders prompt to develop natural and engineered drugs addressed to fulfill emerging therapeutic demands. Conventional microbial systems have been for long time exploited to produce biotherapeutics, competing with animal cells due to easier operation and lower process costs. However, both biological platforms exhibit important drawbacks (mainly associated to intracellular retention of the product, lack of post-translational modifications and conformational stresses), that cannot be overcome through further strain optimization merely due to physiological constraints. The metabolic diversity among microorganisms offers a spectrum of unconventional hosts, that, being able to bypass some of these weaknesses, are under progressive incorporation into production pipelines. In this review we describe the main biological traits and potentials of emerging bacterial, yeast, fungal and microalgae systems, by comparing selected leading species with well established conventional organisms with a long run in protein drug production.
Collapse
|
32
|
Chen MT, Lin S, Shandil I, Andrews D, Stadheim TA, Choi BK. Generation of diploid Pichia pastoris strains by mating and their application for recombinant protein production. Microb Cell Fact 2012; 11:91. [PMID: 22748191 PMCID: PMC3503796 DOI: 10.1186/1475-2859-11-91] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 06/16/2012] [Indexed: 11/20/2022] Open
Abstract
Background Yeast mating provides an efficient means for strain and library construction. However, biotechnological applications of mating in the methylotrophic yeast Pichia pastoris have been hampered because of concerns about strain stability of P. pastoris diploids. The aim of the study reported here is to investigate heterologous protein expression in diploid P. pastoris strains and to evaluate diploid strain stability using high cell density fermentation processes. Results By using a monoclonal antibody as a target protein, we demonstrate that recombinant protein production in both wild-type and glycoengineered P. pastoris diploids is stable and efficient during a nutrient rich shake flask cultivation. When diploid strains were cultivated under bioreactor conditions, sporulation was observed. Nevertheless, both wild-type and glycoengineered P. pastoris diploids showed robust productivity and secreted recombinant antibody of high quality. Specifically, the yeast culture maintained a diploid state for 240 h post-induction phase while protein titer and N-linked glycosylation profiles were comparable to that of a haploid strain expressing the same antibody. As an application of mating, we also constructed an antibody display library and used mating to generate novel full-length antibody sequences. Conclusions To the best of our knowledge, this study reports for the first time a comprehensive characterization of recombinant protein expression and fermentation using diploid P. pastoris strains. Data presented here support the use of mating for various applications including strain consolidation, variable-region glycosylation antibody display library, and process optimization.
Collapse
Affiliation(s)
- Ming-Tang Chen
- GlycoFi, Biologics Discovery, Merck Research Laboratories, Merck & Co,, Inc, 21 Lafayette Street, Suite 200, Lebanon, NH 03766, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Love KR, Politano TJ, Panagiotou V, Jiang B, Stadheim TA, Love JC. Systematic single-cell analysis of Pichia pastoris reveals secretory capacity limits productivity. PLoS One 2012; 7:e37915. [PMID: 22685548 PMCID: PMC3369916 DOI: 10.1371/journal.pone.0037915] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 04/30/2012] [Indexed: 12/16/2022] Open
Abstract
Biopharmaceuticals represent the fastest growing sector of the global pharmaceutical industry. Cost-efficient production of these biologic drugs requires a robust host organism for generating high titers of protein during fermentation. Understanding key cellular processes that limit protein production and secretion is, therefore, essential for rational strain engineering. Here, with single-cell resolution, we systematically analysed the productivity of a series of Pichia pastoris strains that produce different proteins both constitutively and inducibly. We characterized each strain by qPCR, RT-qPCR, microengraving, and imaging cytometry. We then developed a simple mathematical model describing the flux of folded protein through the ER. This combination of single-cell measurements and computational modelling shows that protein trafficking through the secretory machinery is often the rate-limiting step in single-cell production, and strategies to enhance the overall capacity of protein secretion within hosts for the production of heterologous proteins may improve productivity.
Collapse
Affiliation(s)
- Kerry Routenberg Love
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Timothy J. Politano
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Vasiliki Panagiotou
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Bo Jiang
- GlycoFi, a wholly-owned subsidiary of Merck and Co., Lebanon, New Hampshire, United States of America
| | - Terrance A. Stadheim
- GlycoFi, a wholly-owned subsidiary of Merck and Co., Lebanon, New Hampshire, United States of America
| | - J. Christopher Love
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
34
|
Improvement of N-glycan site occupancy of therapeutic glycoproteins produced in Pichia pastoris. Appl Microbiol Biotechnol 2012; 95:671-82. [PMID: 22569635 DOI: 10.1007/s00253-012-4067-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 03/23/2012] [Accepted: 03/27/2012] [Indexed: 10/28/2022]
Abstract
Yeast is capable of performing posttranslational modifications, such as N- or O-glycosylation. It has been demonstrated that N-glycans play critical biological roles in therapeutic glycoproteins by modulating pharmacokinetics and pharmacodynamics. However, N-glycan sites on recombinant glycoproteins produced in yeast can be underglycosylated, and hence, not completely occupied. Genomic homology analysis indicates that the Pichia pastoris oligosaccharyltransferase (OST) complex consists of multiple subunits, including OST1, OST2, OST3, OST4, OST5, OST6, STT3, SWP1, and WBP1. Monoclonal antibodies produced in P. pastoris show that N-glycan site occupancy ranges from 75-85 % and is affected mainly by the OST function, and in part, by process conditions. In this study, we demonstrate that N-glycan site occupancy of antibodies can be improved to greater than 99 %, comparable to that of antibodies produced in mammalian cells (CHO), by overexpressing Leishmania major STT3D (LmSTT3D) under the control of an inducible alcohol oxidase 1 (AOX1) promoter. N-glycan site occupancy of non-antibody glycoproteins such as recombinant human granulocyte macrophage colony-stimulating factor (rhGM-CSF) was also significantly improved, suggesting that LmSTT3D has broad substrate specificity. These results suggest that the glycosylation status of recombinant proteins can be improved by heterologous STT3 expression, which will allow for the customization of therapeutic protein profiles.
Collapse
|
35
|
Carbohydrate synthesis and biosynthesis technologies for cracking of the glycan code: recent advances. Biotechnol Adv 2012; 31:17-37. [PMID: 22484115 DOI: 10.1016/j.biotechadv.2012.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Revised: 03/06/2012] [Accepted: 03/20/2012] [Indexed: 12/22/2022]
Abstract
The glycan code of glycoproteins can be conceptually defined at molecular level by the sequence of well characterized glycans attached to evolutionarily predetermined amino acids along the polypeptide chain. Functional consequences of protein glycosylation are numerous, and include a hierarchy of properties from general physicochemical characteristics such as solubility, stability and protection of the polypeptide from the environment up to specific glycan interactions. Definition of the glycan code for glycoproteins has been so far hampered by the lack of chemically defined glycoprotein glycoforms that proved to be extremely difficult to purify from natural sources, and the total chemical synthesis of which has been hitherto possible only for very small molecular species. This review summarizes the recent progress in chemical and chemoenzymatic synthesis of complex glycans and their protein conjugates. Progress in our understanding of the ways in which a particular glycoprotein glycoform gives rise to a unique set of functional properties is now having far reaching implications for the biotechnology of important glycodrugs such as therapeutical monoclonal antibodies, glycoprotein hormones, carbohydrate conjugates used for vaccination and other practically important protein-carbohydrate conjugates.
Collapse
|
36
|
Ye J, Ly J, Watts K, Hsu A, Walker A, McLaughlin K, Berdichevsky M, Prinz B, Sean Kersey D, d'Anjou M, Pollard D, Potgieter T. Optimization of a glycoengineered Pichia pastoris cultivation process for commercial antibody production. Biotechnol Prog 2011; 27:1744-50. [PMID: 22002933 DOI: 10.1002/btpr.695] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 05/11/2011] [Indexed: 12/28/2022]
Abstract
Glycoengineering enabled the production of proteins with human N-linked glycans by Pichia pastoris. This study used a glycoengineered P. pastoris strain which is capable of producing humanized glycoprotein with terminal galactose for monoclonal antibody production. A design of experiments approach was used to optimize the process parameters. Followed by further optimization of the specific methanol feed rate, induction duration, and the initial induction biomass, the resulting process yielded up to 1.6 g/L of monoclonal antibody. This process was also scaled-up to 1,200-L scale, and the process profiles, productivity, and product quality were comparable with 30-L scale. The successful scale-up demonstrated that this glycoengineered P. pastoris fermentation process is a robust and commercially viable process.
Collapse
Affiliation(s)
- Jianxin Ye
- Merck & Co., Inc., Bioprocess Research & Development, Rahway, NJ 07065, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Lin S, Houston-Cummings NR, Prinz B, Moore R, Bobrowicz B, Davidson RC, Wildt S, Stadheim TA, Zha D. A novel fragment of antigen binding (Fab) surface display platform using glycoengineered Pichia pastoris. J Immunol Methods 2011; 375:159-65. [PMID: 22019510 DOI: 10.1016/j.jim.2011.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 07/26/2011] [Accepted: 10/06/2011] [Indexed: 11/16/2022]
Abstract
A fragment of antigen binding (Fab) surface display system was developed using a glycoengineered Pichia pastoris host strain genetically modified to secrete glycoproteins with mammalian mannose-type Man(5)GlcNAc(2) N-linked glycans. The surface display method described here takes advantage of a pair of coiled-coil peptides as the linker while using the Saccharomyces cerevisiae Sed1p GPI-anchored cell surface protein as an anchoring domain. Several Fabs were successfully displayed on the cell surface using this system and the expression level of the displayed Fabs was correlated to that of secreted Fabs from the same glycoengineered host in the absence of the cell wall anchor. Strains displaying different model Fabs were mixed and, through cell sorting, the strain displaying more expressed Fab molecule or the strain displaying the Fab with higher affinity for an antigen was effectively enriched by FACS. This novel yeast surface display system provides a general platform for the display of Fab libraries for affinity and/or expression maturation using glycoengineered Pichia.
Collapse
Affiliation(s)
- Song Lin
- GlycoFi Inc., A wholly-owned subsidiary of Merck & Co Inc., Lebanon, NH 03766, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ha S, Wang Y, Rustandi RR. Biochemical and biophysical characterization of humanized IgG1 produced in Pichia pastoris. MAbs 2011; 3:453-60. [PMID: 22048694 DOI: 10.4161/mabs.3.5.16891] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The first full length IgG produced in Pichia pastoris was reported in late 1980. However, use of a wild-type Pichia expression system to produce IgGs with human-like N-linked glycans was not possible until recently. Advances in glycoengineering have enabled organisms such as Pichia to mimic human N-glycan biosynthesis and produce IgGs with human glycans on an industrial scale. Since there are only a few reports of the analytical characterization of Pichia-produced IgG, we summarize the results known in this field, and provide additional characterization data generated in our laboratories. The data suggest that Pichia-produced IgG has the same stability as that produced in Chinese hamster ovary (CHO) cells. It has similar aggregation profiles, charge variant distribution and oxidation levels as those for a CHO IgG. It contains human N-linked glycans and O-linked single mannose. Because of the comparable biophysical and biochemical characteristics, glycoengineered Pichia pastoris is an attractive expression system for therapeutic IgG productions.
Collapse
Affiliation(s)
- Sha Ha
- Department of Bioprocess Analytical and Formulation Sciences, Merck Research Laboratories, West Point, PA, USA
| | | | | |
Collapse
|
39
|
Zhang N, Liu L, Dumitru CD, Cummings NRH, Cukan M, Jiang Y, Li Y, Li F, Mitchell T, Mallem MR, Ou Y, Patel RN, Vo K, Wang H, Burnina I, Choi BK, Huber H, Stadheim TA, Zha D. Glycoengineered Pichia produced anti-HER2 is comparable to trastuzumab in preclinical study. MAbs 2011; 3:289-98. [PMID: 21487242 PMCID: PMC3149709 DOI: 10.4161/mabs.3.3.15532] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 03/19/2011] [Indexed: 01/12/2023] Open
Abstract
Mammalian cell culture systems are used predominantly for the production of therapeutic monoclonal antibody (mAb) products. A number of alternative platforms, such as Pichia engineered with a humanized N-linked glycosylation pathway, have recently been developed for the production of mAbs. The glycosylation profiles of mAbs produced in glycoengineered Pichia are similar to those of mAbs produced in mammalian systems. This report presents for the first time the comprehensive characterization of an anti-human epidermal growth factor receptor 2 (HER2) mAb produced in a glycoengineered Pichia, and a study comparing the anti-HER2 from Pichia, which had an amino acid sequence identical to trastuzumab, with trastuzumab. The comparative study covered a full spectrum of preclinical evaluation, including bioanalytical characterization, in vitro biological functions, in vivo anti-tumor efficacy and pharmacokinetics in both mice and non-human primates. Cell signaling and proliferation assays showed that anti-HER2 from Pichia had antagonist activities comparable to trastuzumab. However, Pichia-produced material showed a 5-fold increase in binding affinity to FcγIIIA and significantly enhanced antibody dependant cell-mediated cytotoxicity (ADCC) activity, presumably due to the lack of fucose on N-glycans. In a breast cancer xenograft mouse model, anti-HER2 was comparable to trastuzumab in tumor growth inhibition. Furthermore, comparable pharmacokinetic profiles were observed for anti-HER2 and trastuzumab in both mice and cynomolgus monkeys. We conclude that glycoengineered Pichia provides an alternative production platform for therapeutic mAbs and may be of particular interest for production of antibodies for which ADCC is part of the clinical mechanism of action.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal, Humanized/immunology
- Antibody Affinity/immunology
- Antibody-Dependent Cell Cytotoxicity/drug effects
- Antibody-Dependent Cell Cytotoxicity/immunology
- Antineoplastic Agents/pharmacokinetics
- Antineoplastic Agents/pharmacology
- Area Under Curve
- Binding, Competitive/immunology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cells, Cultured
- Drug Evaluation, Preclinical
- Fucose/metabolism
- Genetic Engineering
- Humans
- Macaca fascicularis
- Mice
- Mice, Inbred C57BL
- Pichia/genetics
- Pichia/metabolism
- Polysaccharides/metabolism
- Protein Binding/immunology
- Receptor, ErbB-2/immunology
- Receptors, IgG/immunology
- Receptors, IgG/metabolism
- Recombinant Proteins/immunology
- Recombinant Proteins/pharmacokinetics
- Recombinant Proteins/pharmacology
- Trastuzumab
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Ningyan Zhang
- Department of Biologics Research; Merck Research Laboratories; West Point, PA USA
| | - Liming Liu
- Drug Metabolism; Merck Research Laboratories; West Point, PA USA
| | - Calin Dan Dumitru
- Department of Biologics Research; Merck Research Laboratories; West Point, PA USA
| | | | | | | | - Yuan Li
- Department of Biologics Research; Merck Research Laboratories; West Point, PA USA
| | - Fang Li
- GlycoFi Inc.; Lebanon, NH USA
| | | | | | - Yangsi Ou
- Department of Biologics Research; Merck Research Laboratories; West Point, PA USA
| | | | - Kim Vo
- Department of Biologics Research; Merck Research Laboratories; West Point, PA USA
| | - Hui Wang
- Department of Biologics Research; Merck Research Laboratories; West Point, PA USA
| | | | | | - Hans Huber
- Department of Biologics Research; Merck Research Laboratories; West Point, PA USA
| | | | - Dongxing Zha
- Drug Metabolism; Merck Research Laboratories; West Point, PA USA
| |
Collapse
|
40
|
Qin X, Qian J, Xiao C, Zhuang Y, Zhang S, Chu J. Reliable high-throughput approach for screening of engineered constitutive promoters in the yeast Pichia pastoris. Lett Appl Microbiol 2011; 52:634-41. [PMID: 21449926 DOI: 10.1111/j.1472-765x.2011.03051.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS To develop a reliable and sensitive high-throughput approach for the screening of engineered constitutive promoters in the yeast Pichia pastoris. METHODS AND RESULTS The yeast-enhanced green fluorescent protein (yEGFP) was used as the reporter to monitor the promoter strength. After eliminating the interfering components (yeast extract and tryptone) with fluorescence signal from the medium, a high-throughput screening approach was established and optimized to obtain a low standard deviation of cell density (6.9%) and fluorescence (7.4%) in 48-deep-well microplates. Then, 300 clones containing GAP promoter (P(GAP)) variants were screened, exhibiting a wide range in fluorescent intensity from about 8% to 218% of that obtained with P(GAP). Six representative clones with unique promoter sequence were picked for further characterization. A good correlation between yEGFP fluorescence in microplates and shake flasks was observed. Furthermore, the high correlation between fluorescence and transcript levels confirmed that expression was transcriptionally controlled. CONCLUSIONS We developed a reliable high-throughput screening approach that can be used to select engineered constitutive promoters of varying strengths. SIGNIFICANCE AND IMPACT OF THE STUDY This approach is expected to accelerate the selection of constitutive promoters in P. pastoris and can also be applied for the screening of other constitutive expression clones.
Collapse
Affiliation(s)
- X Qin
- State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Shanghai, China
| | | | | | | | | | | |
Collapse
|