1
|
Tuli A, Suresh G, Halder N, Velpandian T. Analysis and remediation of phthalates in aquatic matrices: current perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23408-23434. [PMID: 38456985 DOI: 10.1007/s11356-024-32670-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
Phthalic acid esters (PAEs) are high production volume chemicals used extensively as plasticizers, to increase the flexibility of the main polymer. They are reported to leach into their surroundings from plastic products and are now a ubiquitous environmental contaminant. Phthalate levels have been determined in several environmental matrices, especially in water. These levels serve as an indicator of plasticizer abuse and plastic pollution, and also serve as a route of exposure to different species including humans. Reports published on effects of different PAEs on experimental models demonstrate their carcinogenic, teratogenic, reproductive, and endocrine disruptive effects. Therefore, regular monitoring and remediation of environmental water samples is essential to ascertain their hazard quotient and daily exposure levels. This review summarises the extraction and detection techniques available for phthalate analysis in water samples such as chromatography, biosensors, immunoassays, and spectroscopy. Current remediation strategies for phthalate removal such as adsorption, advanced oxidation, and microbial degradation have also been highlighted.
Collapse
Affiliation(s)
- Anannya Tuli
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Gayatri Suresh
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Nabanita Halder
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Thirumurthy Velpandian
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
2
|
Moral A, Borrull F, Furton KG, Kabir A, Fontanals N, Marcé RM. Selective determination of 2-aminobenzothiazole in environmental water and organic extracts from fish and dust samples. Anal Bioanal Chem 2024; 416:439-448. [PMID: 37946037 PMCID: PMC10761388 DOI: 10.1007/s00216-023-05035-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
In the present study, a homemade mixed-mode ion-exchange sorbent based on silica with embedded graphene microparticles is applied for the selective extraction of 2-aminobenzothiazole (NH2BT) followed by determination through liquid chromatography coupled to high-resolution mass spectrometry. The sorbent was evaluated for the solid-phase extraction of NH2BT from environmental water samples (river, effluent wastewater, and influent wastewater), and NH2BT was strongly retained through the selective cation-exchange interactions. Therefore, the inclusion of a clean-up step of 7 mL of methanol provided good selectivity for the extraction of NH2BT. The apparent recoveries obtained for environmental water samples ranged from 62 to 69% and the matrix effect from -1 to -14%. The sorbent was also evaluated in the clean-up step of the organic extract for the extraction of NH2BT from organic extracts of indoor dust samples (10 mL of ethyl acetate from pressurized liquid extraction) and fish (10 mL of acetonitrile from QuEChERS extraction). The organic extracts were acidified (adding a 0.1% of formic acid) to promote the cation-exchange interactions between the sorbent and the analyte. The apparent recoveries for fish samples ranged from 22 to 36% depending on the species. In the case of indoor dust samples, the recovery was 41%. It should be highlighted the low matrix effect encountered in such complex samples, with values ranging from -7 to 5% for fish and dust samples. Finally, various samples were analyzed. The concentration in river samples ranged from 31 to 136 ng/L; in effluent wastewater samples, from 55 to 191 ng/L; in influent wastewater samples, from 131 to 549 ng/L; in fish samples, from 14 to 57 ng/g dried weight; and in indoor dust samples, from
Collapse
Affiliation(s)
- Alberto Moral
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Sescelades Campus, Marcel·lí Domingo 1, 43007, Tarragona, Spain
| | - Francesc Borrull
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Sescelades Campus, Marcel·lí Domingo 1, 43007, Tarragona, Spain
| | - Kenneth G Furton
- Department of Chemistry and Biochemistry, Florida International University, International Forensic Research Institute, Miami, FL, 33199, USA
| | - Abuzar Kabir
- Department of Chemistry and Biochemistry, Florida International University, International Forensic Research Institute, Miami, FL, 33199, USA
| | - Núria Fontanals
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Sescelades Campus, Marcel·lí Domingo 1, 43007, Tarragona, Spain.
| | - Rosa Maria Marcé
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Sescelades Campus, Marcel·lí Domingo 1, 43007, Tarragona, Spain
| |
Collapse
|
3
|
Hu X, Li H, Yang J, Wen X, Wang S, Pan M. Nanoscale Materials Applying for the Detection of Mycotoxins in Foods. Foods 2023; 12:3448. [PMID: 37761156 PMCID: PMC10528894 DOI: 10.3390/foods12183448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Trace amounts of mycotoxins in food matrices have caused a very serious problem of food safety and have attracted widespread attention. Developing accurate, sensitive, rapid mycotoxin detection and control strategies adapted to the complex matrices of food is crucial for in safeguarding public health. With the continuous development of nanotechnology and materials science, various nanoscale materials have been developed for the purification of complex food matrices or for providing response signals to achieve the accurate and rapid detection of various mycotoxins in food products. This article reviews and summarizes recent research (from 2018 to 2023) on new strategies and methods for the accurate or rapid detection of mold toxins in food samples using nanoscale materials. It places particular emphasis on outlining the characteristics of various nanoscale or nanostructural materials and their roles in the process of detecting mycotoxins. The aim of this paper is to promote the in-depth research and application of various nanoscale or structured materials and to provide guidance and reference for the development of strategies for the detection and control of mycotoxin contamination in complex matrices of food.
Collapse
Affiliation(s)
- Xiaochun Hu
- Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, China; (X.H.); (H.L.); (J.Y.); (X.W.); (S.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Huilin Li
- Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, China; (X.H.); (H.L.); (J.Y.); (X.W.); (S.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingying Yang
- Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, China; (X.H.); (H.L.); (J.Y.); (X.W.); (S.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xintao Wen
- Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, China; (X.H.); (H.L.); (J.Y.); (X.W.); (S.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, China; (X.H.); (H.L.); (J.Y.); (X.W.); (S.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mingfei Pan
- Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, China; (X.H.); (H.L.); (J.Y.); (X.W.); (S.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
4
|
Pasinszki T, Prasad SS, Krebsz M. Quantitative determination of heavy metal contaminants in edible soft tissue of clams, mussels, and oysters. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1066. [PMID: 37598134 DOI: 10.1007/s10661-023-11686-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/07/2023] [Indexed: 08/21/2023]
Abstract
Aquatic environments are important sources of healthy and nutritious foods; however, clams, mussels, and oysters (the bivalves most consumed by humans) can pose considerable health risks to consumers if contaminated by heavy metals in polluted areas. These organisms can accumulate dangerously high concentrations of heavy metals (e.g., Cd, Hg, Pb) in their soft tissues that can then be transferred to humans following ingestion. Monitoring contaminants in clams, mussels and oysters and their environments is critically important for global human health and food security, which requires reliable measurement of heavy-metal concentrations in the soft tissues. The aim of our present paper is to provide a review of how heavy metals are quantified in clams, mussels, and oysters. We do this by evaluating sample-preparation methods (i.e., tissue digestion / extraction and analyte preconcentration) and instrumental techniques (i.e., atomic, fluorescence and mass spectrometric methods, chromatography, neutron activation analysis and electrochemical sensors) that have been applied for this purpose to date. Application of these methods, their advantages, limitations, challenges and expected future directions are discussed.
Collapse
Affiliation(s)
- Tibor Pasinszki
- College of Engineering, Science and Technology, Fiji National University, P.O. Box 3722, Samabula, Suva, Fiji.
| | - Shilvee S Prasad
- College of Engineering, Science and Technology, Fiji National University, P.O. Box 3722, Samabula, Suva, Fiji
| | - Melinda Krebsz
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
5
|
Ingrassia EB, Fiorentini EF, Escudero LB. Hybrid biomaterials to preconcentrate and determine toxic metals and metalloids: a review. Anal Bioanal Chem 2023:10.1007/s00216-023-04683-x. [PMID: 37085739 DOI: 10.1007/s00216-023-04683-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/20/2023] [Accepted: 03/31/2023] [Indexed: 04/23/2023]
Abstract
Toxic elements represent a serious threat to the environment and cause harmful effects on different environmental components, even at trace levels. These toxic elements are often difficult to detect through the typical instrumentation of an analytical laboratory because they are found at very low concentrations in matrices such as food and water. Therefore, preconcentration plays a fundamental role since it allows the effects of the matrix to be minimized, thus reaching lower detection limits and greater sensitivity of detection techniques. In recent years, solid-phase extraction has been successfully used for the preconcentration of metals as an environmentally friendly technique due to the fact that it eliminates or minimizes the use of reagents and solvents and offers reduced analysis times and low generation of waste in the laboratory. Hybrid biomaterials are low-cost, eco-friendly, and useful as efficient solid phases for the preconcentration of elements. In this review, recent investigations based on the use of hybrid biomaterials for the preconcentration and determination of toxic metals are presented and discussed, given special attention to bionanomaterials. A brief description of hybrid biomaterials often used for analytical purposes, as well as analytical techniques mostly used to characterize the hybrid biomaterials, is explained. Finally, the future prospects that encourage the search for new hybrid biomaterials are commented upon.
Collapse
Affiliation(s)
- Estefanía B Ingrassia
- Laboratory of Environmental Biotechnology (BioTA), Faculty of Exact and Natural Sciences, National University of Cuyo/Interdisciplinary Institute of Basic Sciences (ICB), CONICET UNCUYO, Padre J. Contreras 1300, 5500, Mendoza, Argentina
| | - Emiliano F Fiorentini
- Laboratory of Environmental Biotechnology (BioTA), Faculty of Exact and Natural Sciences, National University of Cuyo/Interdisciplinary Institute of Basic Sciences (ICB), CONICET UNCUYO, Padre J. Contreras 1300, 5500, Mendoza, Argentina
| | - Leticia B Escudero
- Laboratory of Environmental Biotechnology (BioTA), Faculty of Exact and Natural Sciences, National University of Cuyo/Interdisciplinary Institute of Basic Sciences (ICB), CONICET UNCUYO, Padre J. Contreras 1300, 5500, Mendoza, Argentina.
| |
Collapse
|
6
|
Stratulat A, Sousa ÉM, Calisto V, Lima DL. Solid phase extraction using biomass-based sorbents for the quantification of pharmaceuticals in aquatic environments. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
7
|
Lu M, Lan H, Cai Z, Wu Z, Sun Y, Tu M, Pan D. Rapid solid phase microextraction of DNA using mesoporous metal–organic framework coating for PCR-based identification of meat adulteration. Mikrochim Acta 2022; 189:433. [DOI: 10.1007/s00604-022-05531-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/07/2022] [Indexed: 11/29/2022]
|
8
|
Design of molecularly imprinted polymer materials relying on hydrophobic interactions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Yu M, Li H, Xie J, Xu Y, Lu X. A descriptive and comparative analysis on the adsorption of PPCPs by molecularly imprinted polymers. Talanta 2022; 236:122875. [PMID: 34635255 DOI: 10.1016/j.talanta.2021.122875] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/24/2021] [Accepted: 09/09/2021] [Indexed: 12/27/2022]
Abstract
Molecularly imprinted polymers (MIPs) have aroused great attention as a new material for the removal or detection of pharmaceuticals and personal care products (PPCPs). However, it is not clear about the superiority and deficiency of MIPs in the process of removing or detecting PPCPs. Herein, we evaluated the performance of MIPs in the aspects of adsorption capacity, binding affinity, adsorption rate, and compatibility to other techniques, and proposed ways to improve its performance. Without regard to the selectivity of MIPs, for the PPCPs adsorption, MIPs surprisingly did not always perform better than the conventional adsorbents (non-imprinted polymers, biochar, activated carbon and resin), indicating that MIPs should be used where selectivity is crucial, for example recovery of specific PPCPs in an environmental sample extraction process. Compared to the traditional solid-phase extraction for PPCPs detection pretreatment, the usage of MIPs as substitute extraction agents could obtain high selectivity of specific substance, due to the uniformity and effectiveness of the specific sites. A promising development in the future would be to combine other simple and rapid quantitative technologies, such as electro/photochemical sensor and catalytic degradation, to realize rapid and sensitive detection of trace PPCPs.
Collapse
Affiliation(s)
- Miaomiao Yu
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution and Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Haixiao Li
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution and Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jingyi Xie
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution and Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yan Xu
- Department of Soils and Agri-Food Engineering, Paul Comtois Bldg., Laval University, Quebec City, QC, G1K 7P4, Canada
| | - Xueqiang Lu
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution and Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
10
|
Nadal JC, Dargo S, Borrull F, Cormack PAG, Fontanals N, Marcé RM. Hypercrosslinked polymer microspheres decorated with anion- and cation-exchange groups for the simultaneous solid-phase extraction of acidic and basic analytes from environmental waters. J Chromatogr A 2021; 1661:462715. [PMID: 34871939 DOI: 10.1016/j.chroma.2021.462715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 11/26/2022]
Abstract
Mixed-mode ion-exchange sorbents were introduced to improve the selectivity and retention of solid-phase extraction (SPE) sorbents. Mixed-mode ion-exchange sorbents integrate reversed-phase chemistry with ion-exchange groups to promote favourable interactions with ionic species. Nevertheless, a need to extract analytes with acidic and basic properties simultaneously within the same SPE cartridge led to the introduction of novel amphoteric/zwitterionic sorbents, which incorporate cation- and anion-exchange moieties within the same functional group attached to the polymeric network. In the present study, the development, preparation and SPE evaluation of two novel hypercrosslinked zwitterionic polymeric sorbents, functionalised with either strong anion-exchange (SAX) and weak cation-exchange (WCX) or weak anion-exchange (WAX) and strong cation-exchange (SCX) groups (namely HXLPP-SAX/WCX and the HXLPP-WAX/SCX), is presented for the simultaneous retention of acidic and basic compounds. The sorbents were prepared by a precipitation polymerisation route which yielded poly(divinylbenzene-co-vinylbenzylchloride) as a precursor polymer; subsequently, the precursor polymer was hypercrosslinked, to increase the specific surface areas and capacities of the sorbents, and then functionalised to impart the zwitterionic character. The HXLPP-SAX/WCX sorbent was decorated with quaternised sarcosine groups and the HXLPP-WAX/SCX sorbent was decorated with taurine moieties. The SPE parameters were optimised to exploit the ionic interactions between compounds and the functional groups. The optimal conditions involve a washing step to remove the compounds retained by hydrophobic interactions, thus increasing the selectivity. The optimised SPE protocol used the quaternised sarcosine-based sorbent followed by liquid chromatography and tandem mass spectrometry, and was applied to determine compounds with acidic and basic properties from environmental samples, such as river water and effluent wastewater samples, with excellent selectivity and matrix effect values below -30% and apparent recovery results ranging from 52% to 105% for most of the compounds. The analytical method was validated for environmental water samples and used in the analysis of samples in which some of the target compounds were found at ng L-1 concentration levels.
Collapse
Affiliation(s)
- Joan Carles Nadal
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Sescelades Campus, Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Stuart Dargo
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, G1 1XL, Scotland, United Kingdom
| | - Francesc Borrull
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Sescelades Campus, Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Peter A G Cormack
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, G1 1XL, Scotland, United Kingdom.
| | - Núria Fontanals
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Sescelades Campus, Marcel·lí Domingo s/n, 43007 Tarragona, Spain.
| | - Rosa Maria Marcé
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Sescelades Campus, Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| |
Collapse
|
11
|
Perin M, Dallegrave A, Suchecki Barnet L, Zanchetti Meneghini L, de Araújo Gomes A, Pizzolato TM. Pharmaceuticals, pesticides and metals/metalloids in Lake Guaíba in Southern Brazil: Spatial and temporal evaluation and a chemometrics approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148561. [PMID: 34175608 DOI: 10.1016/j.scitotenv.2021.148561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 05/06/2023]
Abstract
Compiling and reporting data related to the presence of pharmaceuticals and pesticides are crucial means of assessing the risk those chemicals pose to human health and environment. Data sets from different sources were combined using a data fusion approach to produce a spatial and temporal variation of contaminants presents in water from Lake Guaíba (29°55'-30°24' S; 51°01'-51°20' W). Lake Guaíba is a 496 km2 water body situated in the geological depression of Rio Grande do Sul State, Brazil; that is fed by several rivers from the metropolitan area, the 5th largest metro area in Brazil, with approximately 5 million inhabitants. Analytical methodology to quantify pharmaceuticals and pesticides by LC-QTOF-MS and GC-MS/MS was validated for 41 pharmaceutical and 62 pesticides. Furthermore, 27 chemical elements were analyzed by ICP-MS, and physical chemical parameters were determined using established methodologies. All validation parameters were in accordance with the National Institute of Metrology, Standardization, and Industrial Quality. Thirty-five water samples were analyzed from January to August 2019, and 15 pharmaceuticals and 25 pesticides were present in concentrations ranging from 6.00 ng L-1 to 580.00 ng L-1. Twenty-seven elements were analyzed during the same period, and 18 were present in concentrations ranging from 0.2 μg L-1 to 7060 μg L-1. Samples were tagged according to the points and months of collection to identify temporal and spatial patterns. The main findings show that the compounds are distributed throughout the studied area without an apparent regular pattern, suggesting that events in a specific point affect the entire ecosystem. Conversely, temporal variations were well defined, as samples were grouped according to the climatic conditions of the months of collection. Considering the calculated quotient risks, atrazine, cyproconazole, diuron, and simazine showed the highest risk levels for algae; acetaminophen, diclofenac, and ibuprofen showed the highest risk levels for aquatics invertebrates.
Collapse
Affiliation(s)
- Maurício Perin
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Alexsandro Dallegrave
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Lucas Suchecki Barnet
- Laboratório Federal de Defesa Agropecuária - LFDA, Ministério da Agricultura, Pecuária e Abastecimento do Brasil, Estrada da Ponta Grossa 3036, 91780-580 Porto Alegre, RS, Brazil
| | - Leonardo Zanchetti Meneghini
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Adriano de Araújo Gomes
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Tânia Mara Pizzolato
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil.
| |
Collapse
|
12
|
Automatic and renewable micro-solid-phase extraction based on bead injection lab-on-valve system for determination of tranexamic acid in urine by UHPLC coupled with tandem mass spectrometry. Anal Bioanal Chem 2021; 414:649-659. [PMID: 34410441 DOI: 10.1007/s00216-021-03606-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/23/2021] [Accepted: 08/05/2021] [Indexed: 10/20/2022]
Abstract
An automatic micro-solid-phase extraction (μSPE) method using on-line renewable sorbent beads followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was established for the determination of tranexamic acid (TXA) in urine. The μSPE method was based on the bead injection (BI) concept combined with the mesofluidic lab-on-valve (LOV) platform. All steps of the μSPE-BI-LOV were implemented by computer programming, rendering enhanced precision on time and flow events. Several parameters, including the type of sorbent, volume and composition of the conditioning solution, washing solution, and eluent composition, were evaluated to improve the extraction efficiency. The best results were obtained with a hydrophilic-lipophilic balanced mixed-mode sorbent, decorated with sulfonic acid groups (Oasis MCX), and 99% acetonitrile-water (50:50, v/v)-1% ammonium hydroxide as eluent. Chromatographic separation was performed using a BEH amide column coupled to MS/MS detection in positive ionization mode. Good linearity was achieved (R2 > 0.998) for TXA concentrations in urine ranging from 300 to 3000 ng mL-1, with LOD and LOQ of 30 and 65 ng mL-1, respectively. Dilution integrity was observed for dilution factors up to 20,000 times, providing the extension of the upper limit of quantification to 12 mg mL-1. The method was validated according to international guidelines and successfully applied to urine samples collected during scoliosis surgery of pediatric patients treated with TXA.
Collapse
|
13
|
Birer AM, Gözmen B, Sönmez Ö, Kalderis D. Evaluation of sewage sludge biochar and modified derivatives as novel SPE adsorbents for monitoring of bisphenol A. CHEMOSPHERE 2021; 268:128866. [PMID: 33172672 DOI: 10.1016/j.chemosphere.2020.128866] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/24/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
Sewage sludge is abundant biomass, the sustainable management of which remains a big issue worldwide. It was demonstrated that pyrolysis of sewage sludge using simple and cost-effective apparatus can produce biochars, suitable for solid-phase extraction applications of hydrophobic analytes. Detailed characterization showed that modification lead to three more hydrophobic and one more hydrophilic sample, compared to the original biochar. All samples were evaluated in the solid-phase extraction of the emerging contaminant Bisphenol A from aqueous solutions. KOH-SSB and KOH/MeOH-SSB exhibited the most promising behavior, with the latter achieving recoveries of 88.1%, at a quantity of 0.1 g at the natural pH of the BPA solution (6.5). The effect of solution pH was insignificant in the range of 4-7, whereas the initial BPA concentration had no effect in the recovery within the range of 1-100 μg L-1. The mechanism of interaction between the optimum sample and BPA was based on hydrogen bonding and π-π interactions, establishing earlier observations that the type (and not concentration) of individual surface groups and the total surface area play a significant role in the process.
Collapse
Affiliation(s)
- Ayşe Mulla Birer
- Department of Chemistry, Arts and Science Faculty, Mersin University, 33343, Mersin, Turkey
| | - Belgin Gözmen
- Department of Chemistry, Arts and Science Faculty, Mersin University, 33343, Mersin, Turkey
| | - Özgür Sönmez
- Department of Chemistry, Arts and Science Faculty, Mersin University, 33343, Mersin, Turkey
| | - Dimitrios Kalderis
- Department of Electronics Engineering, School of Engineering, Hellenic Mediterranean University, Chania, Crete, 73100, Greece.
| |
Collapse
|
14
|
Ye F, Wan H, Zhang H. Determination of 5-HT 3 Receptor Antagonists in Human Urine by Porous Graphitic Carbon (PGC) Solid Phase Extraction (SPE) Coupled with High Performance Liquid Chromatography-Tandem Mass Spectrometry (HPLC-MS/MS). ANAL LETT 2021. [DOI: 10.1080/00032719.2020.1767641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Fanfan Ye
- School of Chemical Engineering, Analytical Center, Dalian University of Technology, Dalian, China
| | - Huihui Wan
- School of Chemical Engineering, Analytical Center, Dalian University of Technology, Dalian, China
| | - Hua Zhang
- School of Chemical Engineering, Analytical Center, Dalian University of Technology, Dalian, China
| |
Collapse
|
15
|
Khulu S, Ncube S, Kgame T, Mavhunga E, Chimuka L. Synthesis, characterization and application of a molecularly imprinted polymer as an adsorbent for solid-phase extraction of selected pharmaceuticals from water samples. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03553-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Li W, Zhang X, Li T, Ji Y, Li R. Molecularly imprinted polymer-enhanced biomimetic paper-based analytical devices: A review. Anal Chim Acta 2021; 1148:238196. [PMID: 33516379 DOI: 10.1016/j.aca.2020.12.071] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023]
Abstract
The popularization of paper-based analytical devices (PADs) in analytical science has fostered research on enhancing their analytical performance for accurate and sensitive assays. With their superb recognition capability and structural stability, molecularly imprinted polymers (MIPs) have been extensively employed as biomimetic receptors for capturing target analytes in various complex matrices. The integration of MIPs as recognition elements with PADs (MIP-PADs) has opened new opportunities for advanced analytical devices with elevated selectivity and sensitivity, as well as a shorter assay time and a lower cost. This review covers recent advances in MIP-PAD fabrication and engineering based on multifarious signal transduction systems such as colorimetry, fluorescence, electrochemistry, photoelectrochemistry, and chemiluminescence. The application of MIP-PADs in the fields of biomedical diagnostics, environmental analysis, and food safety monitoring is also reviewed. Further, the advantages, challenges, and perspectives of MIP-PADs are discussed.
Collapse
Affiliation(s)
- Wang Li
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, China
| | - Xiaoyue Zhang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, China
| | - Tingting Li
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, China
| | - Yibing Ji
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, China.
| | - Ruijun Li
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, China.
| |
Collapse
|
17
|
Zhang H, Zheng D, Zhou Y, Xia H, Peng X. Multifunctionalized magnetic mesoporous silica as an efficient mixed-mode sorbent for extraction of phenoxy carboxylic acid herbicides from water samples followed by liquid chromatography-mass spectrometry in tandem. J Chromatogr A 2020; 1634:461645. [DOI: 10.1016/j.chroma.2020.461645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/06/2020] [Accepted: 10/11/2020] [Indexed: 01/07/2023]
|
18
|
Abstract
This review describes the recent advances from the past five years concerning the development and applications of molecularly imprinted membranes (MIMs) in the field of sample treatment and separation processes. After a short introduction, where the importance of these materials is highlighted, a description of key aspects of membrane separation followed by the strategies of preparation of these materials is described. The review continues with several analytical applications of these MIMs for sample preparation as well as for separation purposes covering pharmaceutical, food, and environmental areas. Finally, a discussion focused on possible future directions of these materials in extraction and separation field is also given.
Collapse
|
19
|
Nadal JC, Anderson KL, Dargo S, Joas I, Salas D, Borrull F, Cormack PA, Marcé RM, Fontanals N. Microporous polymer microspheres with amphoteric character for the solid-phase extraction of acidic and basic analytes. J Chromatogr A 2020; 1626:461348. [DOI: 10.1016/j.chroma.2020.461348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/11/2020] [Accepted: 06/14/2020] [Indexed: 12/18/2022]
|
20
|
|