1
|
Yánez Galarza JK, Riascos-Flores L, Naranjo-Briceño L, Carrera-Gonzalez A, Ortega-Andrade HM. Molecular detection of Batrachochytrium dendrobatidis (Chytridiomycota) and culturable skin bacteria associated with three critically endangered species of Atelopus (Anura: Bufonidae) in Ecuador. PeerJ 2024; 12:e18317. [PMID: 39465153 PMCID: PMC11512805 DOI: 10.7717/peerj.18317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 09/24/2024] [Indexed: 10/29/2024] Open
Abstract
Chytridiomycosis is a fungal disease responsible for massive amphibian die-offs worldwide, caused by the fungus Batrachochytrium dendrobatidis (Bd). Potential symbiotic relationships between frogs and the bacteria residing on their skin-referred to as skin-bacteria-may inhibit Bd growth, aiding in resistance to this lethal disease. This research had three main objectives: (1) to detect the presence of Bd in native populations of Atelopus balios, A. bomolochos, and A. nanay in the central Andes and coastal southern regions of Ecuador; (2) to identify the culturable skin-bacteria; and (3) to analyze differences among the bacterial communities in the three Atelopus species studied. Skin swabs were collected from two populations of A. balios (107-203 m a.s.l.) and one population each of A. bomolochos and A. nanay (3,064-3,800 m a.s.l.). These swabs served two purposes: first, to detect Bd using conventional PCR; and second, to isolate culturable bacteria, which were characterized through DNA sequencing, molecular phylogeny, and community composition similarity analysis (Jaccard index). Results showed that Bd was present in all species, with positive Bd PCR amplification found in 11 of the 12 sampled amphibians. The culturable skin-bacteria were classified into 10 genera: Pseudomonas (31.4%), Stenotrophomonas (14.3%), Acinetobacter (11.4%), Serratia (11.4%), Aeromonas (5.7%), Brucella (5.7%), Klebsiella (5.7%), Microbacterium (5.7%), Rhodococcus (5.7%), and Lelliottia (2.9%). The Jaccard index revealed that bacterial genera were least similar in A. bomolochos and A. balios (J = 0.10), while the highest similarity at the genus level was between A. bomolochos and A. nanay (J = 0.33). At the clade-species level, only A. bomolochos and A. nanay show common bacteria (J = 0.13). Culturable bacterial communities of specimens diagnosed as Bd positive (n = 10) or Bd negative (n = 1) share a J value of 0.1 at genus and 0.04 at species-clade level. The prevalence of Bd and the composition of cutaneous bacteria could be influenced by Bd reservoirs, Atelopus biology, and intrinsic environmental conditions. This research contributes to understanding the relationship between endangered Andean species and Bd, and explores the potential use of native skin-bacteria as biocontrol agents against Bd.
Collapse
Affiliation(s)
- Jomira K. Yánez Galarza
- Ingeniería en Biotecnología, Facultad de Ciencias de la Vida, Universidad Regional Amazónica Ikiam, Tena, Napo, Ecuador
- Grupo de Investigación en Biogeografía y Ecología Espacial (BioGeoE2), Universidad Regional Amazónica Ikiam, Tena, Napo, Ecuador
| | - Lenin Riascos-Flores
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Gent University, Gent, Belgium
- Research Institute for Nature and Forest, Brussels, Belgium
| | - Leopoldo Naranjo-Briceño
- Ingeniería en Biotecnología, Facultad de Ciencias de la Vida, Universidad Regional Amazónica Ikiam, Tena, Napo, Ecuador
- Biotech Lab, Spora Biotech, Santiago, Región Metropolitana, Chile
| | - Andrea Carrera-Gonzalez
- Ingeniería en Biotecnología, Facultad de Ciencias de la Vida, Universidad Regional Amazónica Ikiam, Tena, Napo, Ecuador
- Grupo de Investigación en Biogeografía y Ecología Espacial (BioGeoE2), Universidad Regional Amazónica Ikiam, Tena, Napo, Ecuador
| | - H. Mauricio Ortega-Andrade
- Grupo de Investigación en Biogeografía y Ecología Espacial (BioGeoE2), Universidad Regional Amazónica Ikiam, Tena, Napo, Ecuador
- Herpetology Division, Instituto Nacional de Biodiversidad (INABIO), Quito, Pichincha, Ecuador
| |
Collapse
|
2
|
Wan B, Chen G, Poon ESK, Fung HS, Lau A, Sin SYW. Environmental factors and host sex influence the skin microbiota structure of Hong Kong newt (Paramesotriton hongkongensis) in a coldspot of chytridiomycosis in subtropical East Asia. Integr Zool 2024. [PMID: 38872359 DOI: 10.1111/1749-4877.12855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Chytridiomycosis, an infectious skin disease caused by the chytrid fungi, Batrachochytrium dendrobatidis and B. salamandrivorans, poses a significant threat to amphibian biodiversity worldwide. Antifungal bacteria found on the skin of chytrid-resistant amphibians could potentially provide defense against chytridiomycosis and lower mortality rates among resistant individuals. The Hong Kong newt (Paramesotriton hongkongensis) is native to East Asia, a region suspected to be the origin of chytrids, and has exhibited asymptomatic infection, suggesting a long-term coexistence with the chytrids. Therefore, the skin microbiota of this resistant species warrant investigation, along with other factors that can affect the microbiota. Among the 149 newts sampled in their natural habitats in Hong Kong, China, putative antifungal bacteria were found in all individuals. There were 314 amplicon sequence variants distributed over 25 genera of putative antifungal bacteria; abundant ones included Acinetobacter, Flavobacterium, and Novosphingobium spp. The skin microbiota compositions were strongly influenced by the inter-site geographical distances. Despite inter-site differences, we identified some core skin microbes across sites that could be vital to P. hongkongensis. The dominant cores included the family Comamonadaceae, family Chitinophagaceae, and class Betaproteobacteria. Moreover, habitat elevation and host sex also exhibited significant effects on skin microbiota compositions. The antifungal bacteria found on these newts offer an important resource for conservation against chytridiomycosis, such as developing probiotic treatments for susceptible species.
Collapse
Affiliation(s)
- Bowen Wan
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Guoling Chen
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Emily Shui Kei Poon
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Hon Shing Fung
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Anthony Lau
- Science Unit, Lingnan University, Hong Kong, China
| | - Simon Yung Wa Sin
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
Härer A, Rennison DJ. Gut Microbiota Uniqueness Is Associated with Lake Size, a Proxy for Diet Diversity, in Stickleback Fish. Am Nat 2024; 203:284-291. [PMID: 38306277 DOI: 10.1086/727703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
AbstractOrganismal divergence can be driven by differential resource use and adaptation to different trophic niches. Variation in diet is a major factor shaping the gut microbiota, which is crucial for many aspects of their hosts' biology. However, it remains largely unknown how host diet diversity affects the gut microbiota, and it could be hypothesized that trophic niche width is positively associated with gut microbiota diversity. To test this idea, we sequenced the 16S ribosomal RNA gene from intestinal tissue of 14 threespine stickleback populations from lakes of varying size on Vancouver Island, Canada, that have been shown to differ in trophic niche width. Using lake size as a proxy for trophic ecology, we found evidence for higher gut microbiota uniqueness among individuals from populations with broader trophic niches. While these results suggest that diet diversity might promote gut microbiota diversity, additional work investigating diet and gut microbiota variation of the same host organisms will be necessary. Yet our results motivate the question of how host population diversity (e.g., ecological, morphological, genetic) might interact with the gut microbiota during the adaptation to ecological niches.
Collapse
|
4
|
Martínez-Ugalde E, Ávila-Akerberg V, González Martínez TM, Rebollar EA. Gene functions of the Ambystoma altamirani skin microbiome vary across space and time but potential antifungal genes are widespread and prevalent. Microb Genom 2024; 10:001181. [PMID: 38240649 PMCID: PMC10868611 DOI: 10.1099/mgen.0.001181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Amphibian skin microbiomes can play a critical role in host survival against emerging diseases by protecting their host against pathogens. While a plethora of biotic and abiotic factors have been shown to influence the taxonomic diversity of amphibian skin microbiomes it remains unclear whether functional genomic diversity varies in response to temporal and environmental factors. Here we applied a metagenomic approach to evaluate whether seasonality, distinct elevations/sites, and pathogen presence influenced the functional genomic diversity of the A. altamirani skin microbiome. We obtained a gene catalogue of 92 107 nonredundant annotated genes and a set of 50 unique metagenome assembled genomes (MAGs). Our analysis showed that genes linked to general and potential antifungal traits significantly differed across seasons and sampling locations at different elevations. Moreover, we found that the functional genomic diversity of A. altamirani skin microbiome differed between B. dendrobatidis infected and not infected axolotls only during winter, suggesting an interaction between seasonality and pathogen infection. In addition, we identified the presence of genes and biosynthetic gene clusters (BGCs) linked to potential antifungal functions such as biofilm formation, quorum sensing, secretion systems, secondary metabolite biosynthesis, and chitin degradation. Interestingly genes linked to these potential antifungal traits were mainly identified in Burkholderiales and Chitinophagales MAGs. Overall, our results identified functional traits linked to potential antifungal functions in the A. altamirani skin microbiome regardless of variation in the functional diversity across seasons, elevations/sites, and pathogen presence. Our findings suggest that potential antifungal traits found in Burkholderiales and Chitinophagales taxa could be related to the capacity of A. altamirani to survive in the presence of Bd, although further experimental analyses are required to test this hypothesis.
Collapse
Affiliation(s)
| | - Víctor Ávila-Akerberg
- Instituto de Ciencias Agropecuarias y Rurales, Universidad Autónoma del Estado de México, Toluca, Mexico
| | | | - Eria A. Rebollar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
5
|
Sun D, Herath J, Zhou S, Ellepola G, Meegaskumbura M. Associations of Batrachochytrium dendrobatidis with skin bacteria and fungi on Asian amphibian hosts. ISME COMMUNICATIONS 2023; 3:123. [PMID: 37993728 PMCID: PMC10665332 DOI: 10.1038/s43705-023-00332-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023]
Abstract
Amphibian skin harbors microorganisms that are associated with the fungal pathogen Batrachochytrium dendrobatidis (Bd), which causes chytridiomycosis, one of the most significant wildlife diseases known. This pathogen originated in Asia, where diverse Bd lineages exist; hence, native amphibian hosts have co-existed with Bd over long time periods. Determining the nuances of this co-existence is crucial for understanding the prevalence and spread of Bd from a microbial context. However, associations of Bd with the natural skin microbiome remain poorly understood for Asian hosts, especially in relation to skin-associated fungi. We used 16 S rRNA and fungal internal transcribed spacer (ITS) gene sequencing to characterize the skin microbiome of four native Asian amphibian species and examined the relationships between Bd infection and their skin bacterial and fungal communities; we also analyzed the correlates of the putative anti-Bd bacteria. We show that both skin bacterial and fungal community structure and composition had significant associations with infection status (Bd presence/absence) and infection intensity (frequency of Bd sequence reads). We also found that the putative anti-Bd bacterial richness was correlated with Bd infection status and infection intensity, and observed that the relative abundance of anti-Bd bacteria roughly correspond with changes in both Bd prevalence and mean infection intensity in populations. Additionally, the microbial co-occurrence network of infected frogs was significantly different from that of uninfected frogs that were characterized by more keystone nodes (connectors) and larger proportions in correlations between bacteria, suggesting stronger inter-module bacterial interactions. These results indicate that the mutual effects between Bd and skin-associated microbiome, including the interplay between bacteria and fungi, might vary with Bd infection in susceptible amphibian species. This knowledge will help in understanding the dynamics of Bd from a microbial perspective, potentially contributing to mitigate chytridiomycosis in other regions of the world.
Collapse
Affiliation(s)
- Dan Sun
- Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, 530000, People's Republic of China
| | - Jayampathi Herath
- Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, 530000, People's Republic of China
- School of Biomedical Sciences, International Institute of Health Sciences (IIHS), No 704 Negombo Rd, Welisara, 71722, Sri Lanka
| | - Shipeng Zhou
- Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, 530000, People's Republic of China
| | - Gajaba Ellepola
- Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, 530000, People's Republic of China
- Department of Zoology, Faculty of Science, University of Peradeniya, Peradeniya, KY20400, Sri Lanka
| | - Madhava Meegaskumbura
- Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, 530000, People's Republic of China.
| |
Collapse
|
6
|
Robak MJ, Saenz V, de Cortie E, Richards-Zawacki CL. Effects of temperature on the interaction between amphibian skin bacteria and Batrachochytrium dendrobatidis. Front Microbiol 2023; 14:1253482. [PMID: 37942072 PMCID: PMC10628663 DOI: 10.3389/fmicb.2023.1253482] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023] Open
Abstract
Symbiotic relationships between animals and microbes are important for a range of functions, from digestion to protection from pathogens. However, the impact of temperature variation on these animal-microbe interactions remains poorly understood. Amphibians have experienced population declines and even extinctions on a global scale due to chytridiomycosis, a disease caused by chytrid fungi in the genus Batrachochytrium. Variation in susceptibility to this disease exists within and among host species. While the mechanisms generating differences in host susceptibility remain elusive, differences in immune system components, as well as variation in host and environmental temperatures, have been associated with this variation. The symbiotic cutaneous bacteria of amphibians are another potential cause for variation in susceptibility to chytridiomycosis, with some bacterial species producing antifungal metabolites that prevent the growth of Bd. The growth of both Bd and bacteria are affected by temperature, and thus we hypothesized that amphibian skin bacteria may be more effective at preventing Bd growth at certain temperatures. To test this, we collected bacteria from the skins of frogs, harvested the metabolites they produced when grown at three different temperatures, and then grew Bd in the presence of those metabolites under those same three temperatures in a three-by-three fully crossed design. We found that both the temperature at which cutaneous bacteria were grown (and metabolites produced) as well as the temperature at which Bd is grown can impact the ability of cutaneous bacteria to inhibit the growth of Bd. While some bacterial isolates showed the ability to inhibit Bd growth across multiple temperature treatments, no isolate was found to be inhibitive across all combinations of bacterial incubation or Bd challenge temperatures, suggesting that temperature affects both the metabolites produced and the effectiveness of those metabolites against the Bd pathogen. These findings move us closer to a mechanistic understanding of why chytridiomycosis outbreaks and related amphibian declines are often limited to certain climates and seasons.
Collapse
Affiliation(s)
- Matthew J. Robak
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, United States
| | - Veronica Saenz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Biology, The Pennsylvania State University, State College, PA, United States
| | - Esmee de Cortie
- Falk School of Sustainability and Environment, Chatham University, Pittsburgh, PA, United States
| | | |
Collapse
|
7
|
Kouete MT, Bletz MC, LaBumbard BC, Woodhams DC, Blackburn DC. Parental care contributes to vertical transmission of microbes in a skin-feeding and direct-developing caecilian. Anim Microbiome 2023; 5:28. [PMID: 37189209 PMCID: PMC10184399 DOI: 10.1186/s42523-023-00243-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 03/20/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Our current understanding of vertebrate skin and gut microbiomes, and their vertical transmission, remains incomplete as major lineages and varied forms of parental care remain unexplored. The diverse and elaborate forms of parental care exhibited by amphibians constitute an ideal system to study microbe transmission, yet investigations of vertical transmission among frogs and salamanders have been inconclusive. In this study, we assess bacteria transmission in Herpele squalostoma, an oviparous direct-developing caecilian in which females obligately attend juveniles that feed on their mother's skin (dermatophagy). RESULTS We used 16S rRNA amplicon-sequencing of the skin and gut of wild caught H. squalostoma individuals (males, females, including those attending juveniles) as well as environmental samples. Sourcetracker analyses revealed that juveniles obtain an important portion of their skin and gut bacteria communities from their mother. The contribution of a mother's skin to the skin and gut of her respective juveniles was much larger than that of any other bacteria source. In contrast to males and females not attending juveniles, only the skins of juveniles and their mothers were colonized by bacteria taxa Verrucomicrobiaceae, Nocardioidaceae, and Erysipelotrichaceae. In addition to providing indirect evidence for microbiome transmission linked to parental care among amphibians, our study also points to noticeable differences between the skin and gut communities of H. squalostoma and that of many frogs and salamanders, which warrants further investigation. CONCLUSION Our study is the first to find strong support for vertical bacteria transmission attributed to parental care in a direct-developing amphibian species. This suggests that obligate parental care may promote microbiome transmission in caecilians.
Collapse
Affiliation(s)
- Marcel T Kouete
- School of Natural Resources and Environment, University of Florida, Gainesville, FL, 32611, USA.
- Department of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA.
| | - Molly C Bletz
- Department of Biology, University of Massachusetts, Boston, MA, 02125, USA
| | | | - Douglas C Woodhams
- Department of Biology, University of Massachusetts, Boston, MA, 02125, USA
| | - David C Blackburn
- Department of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
8
|
Martínez-Ugalde E, Ávila-Akerberg V, González Martínez TM, Vázquez Trejo M, Zavala Hernández D, Anaya-Morales SL, Rebollar EA. The skin microbiota of the axolotl Ambystoma altamirani is highly influenced by metamorphosis and seasonality but not by pathogen infection. Anim Microbiome 2022; 4:63. [PMID: 36503640 PMCID: PMC9743558 DOI: 10.1186/s42523-022-00215-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/16/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Microbiomes have been increasingly recognized as major contributors to host health and survival. In amphibians, bacterial members of the skin microbiota protect their hosts by inhibiting the growth of the fungal pathogen Batrachochytrium dendrobatidis (Bd). Even though several studies describe the influence of biotic and abiotic factors over the skin microbiota, it remains unclear how these symbiotic bacterial communities vary across time and development. This is particularly relevant for species that undergo metamorphosis as it has been shown that host physiology and ecology drastically influence diversity of the skin microbiome. RESULTS We found that the skin bacterial communities of the axolotl A. altamirani are largely influenced by the metamorphic status of the host and by seasonal variation of abiotic factors such as temperature, pH, dissolved oxygen and conductivity. Despite high Bd prevalence in these samples, the bacterial diversity of the skin microbiota did not differ between infected and non-infected axolotls, although relative abundance of particular bacteria were correlated with Bd infection intensity. CONCLUSIONS Our work shows that metamorphosis is a crucial process that shapes skin bacterial communities and that axolotls under different developmental stages respond differently to environmental seasonal variations. Moreover, this study greatly contributes to a better understanding of the factors that shape amphibian skin microbiota, especially in a largely underexplored group like axolotls (Mexican Ambystoma species).
Collapse
Affiliation(s)
| | - Víctor Ávila-Akerberg
- Instituto de Ciencias Agropecuarias y Rurales, Universidad Autónoma del Estado de México, Toluca, Mexico
| | | | | | | | - Sara Lucia Anaya-Morales
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
- Department of Biology, University of Mississippi, Oxford, MS, USA
| | - Eria A Rebollar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico.
| |
Collapse
|
9
|
Ienes-Lima J, Prichula J, Abadie M, Borges-Martins M, Frazzon APG. First Report of Culturable Skin Bacteria in Melanophryniscus admirabilis (Admirable Redbelly Toad). MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02069-7. [PMID: 35859070 DOI: 10.1007/s00248-022-02069-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Melanophryniscus admirabilis is a small toad, critically endangered with a microendemic distribution in the Atlantic Forest in southern Brazil. The amphibian skin microbiome is considered one of the first lines of defense against pathogenic infections, such as Batrachochytrium dendrobatidis (Bd). The knowledge of skin amphibian microbiomes is important to numerous fields, including species conservation, detection, and quantification of environmental changes and stressors. In the present study, we investigated, for the first time, cultivable bacteria in the skin of wild M. admirabilis, and detected Bd fungus by nested polymerase chain reaction (PCR) technique. Skin swab samples were collected from 15 wild M. admirabilis, and the isolation of bacteria was performed by means of different culture strategies. A total of 62 bacterial isolates being Bacillus (n = 22; 34.48%), Citrobacter (n = 10; 16.13%), and Serratia (n = 12; 19.35%) were more frequently isolated genera. Interestingly, all skin samples tested were Bd negative. Some bacterial genera identified in our study might be acting in a synergic relationship and protecting them against the Bd fungus. In addition, these bacteria may play an essential role in maintaining this species in an environment modulated by anthropic actions. This first report of skin cultivable bacteria from M. admirabilis natural population improves our knowledge of skin amphibian microbiomes, contributing to a better understanding of their ecology and how this species has survived in an environment modulated by anthropic action.
Collapse
Affiliation(s)
- Julia Ienes-Lima
- Post-Graduation Program in Agricultural and Environmental Microbiology, Department of Microbiology, Immunology, and Parasitology, Federal University of Rio Grande Do Sul, Porto Alegre, Brazil
| | - Janira Prichula
- Gram-Positive Cocci Laboratory, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Michelle Abadie
- Post-Graduation Program in Animal Biology, Department of Zoology, Biosciences Institute, Federal University of Rio Grande Do Sul, Porto Alegre, Brazil
| | - Márcio Borges-Martins
- Post-Graduation Program in Animal Biology, Department of Zoology, Biosciences Institute, Federal University of Rio Grande Do Sul, Porto Alegre, Brazil
| | - Ana Paula Guedes Frazzon
- Post-Graduation Program in Agricultural and Environmental Microbiology, Department of Microbiology, Immunology, and Parasitology, Federal University of Rio Grande Do Sul, Porto Alegre, Brazil.
| |
Collapse
|
10
|
Martins RA, Greenspan SE, Medina D, Buttimer S, Marshall VM, Neely WJ, Siomko S, Lyra ML, Haddad CFB, São-Pedro V, Becker CG. Signatures of functional bacteriome structure in a tropical direct-developing amphibian species. Anim Microbiome 2022; 4:40. [PMID: 35672870 PMCID: PMC9172097 DOI: 10.1186/s42523-022-00188-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/17/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Host microbiomes may differ under the same environmental conditions and these differences may influence susceptibility to infection. Amphibians are ideal for comparing microbiomes in the context of disease defense because hundreds of species face infection with the skin-invading microbe Batrachochytrium dendrobatidis (Bd), and species richness of host communities, including their skin bacteria (bacteriome), may be exceptionally high. We conducted a landscape-scale Bd survey of six co-occurring amphibian species in Brazil’s Atlantic Forest. To test the bacteriome as a driver of differential Bd prevalence, we compared bacteriome composition and co-occurrence network structure among the six focal host species.
Results
Intensive sampling yielded divergent Bd prevalence in two ecologically similar terrestrial-breeding species, a group with historically low Bd resistance. Specifically, we detected the highest Bd prevalence in Ischnocnema henselii but no Bd detections in Haddadus binotatus. Haddadus binotatus carried the highest bacteriome alpha and common core diversity, and a modular network partitioned by negative co-occurrences, characteristics associated with community stability and competitive interactions that could inhibit Bd colonization.
Conclusions
Our findings suggest that community structure of the bacteriome might drive Bd resistance in H. binotatus, which could guide microbiome manipulation as a conservation strategy to protect diverse radiations of direct-developing species from Bd-induced population collapses.
Collapse
|
11
|
Hughey MC, Rebollar EA, Harris RN, Ibáñez R, Loftus SC, House LL, Minbiole KPC, Bletz MC, Medina D, Shoemaker WR, Swartwout MC, Belden LK. An experimental test of disease resistance function in the skin-associated bacterial communities of three tropical amphibian species. FEMS Microbiol Ecol 2022; 98:6536914. [PMID: 35212765 DOI: 10.1093/femsec/fiac023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 02/10/2022] [Accepted: 02/23/2022] [Indexed: 11/14/2022] Open
Abstract
Variation in the structure of host-associated microbial communities has been correlated with the occurrence and severity of disease in diverse host taxa, suggesting a key role of the microbiome in pathogen defense. However, whether these correlations are typically a cause or consequence of pathogen exposure remains an open question, and requires experimental approaches to disentangle. In amphibians, infection by the fungal pathogen Batrachochytrium dendrobatidis (Bd) alters the skin microbial community in some host species, whereas in other species, the skin microbial community appears to mediate infection dynamics. In this study, we completed experimental Bd exposures in three species of tropical frogs (Agalychnis callidryas, Dendropsophus ebraccatus, Craugastor fitzingeri) that were sympatric with Bd at the time of the study. For all three species, we identified key taxa within the skin bacterial communities that were linked to Bd infection dynamics. We also measured higher Bd infection intensities in D. ebraccatus and C. fitzingeri that were associated with higher mortality in C. fitzingeri. Our findings indicate that microbially-mediated pathogen resistance is a complex trait that can vary within and across host species, and suggest that symbiont communities that have experienced prior selection for defensive microbes may be less likely to be disturbed by pathogen exposure.
Collapse
Affiliation(s)
- Myra C Hughey
- Biology Department; Vassar College; 124 Raymond Avenue; Poughkeepsie, NY 12604; USA
| | - Eria A Rebollar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, México
| | - Reid N Harris
- Department of Biology, James Madison University, Harrisonburg, VA, USA
| | - Roberto Ibáñez
- Smithsonian Tropical Research Institute, Panamá, Republic of Panama. Sistema Nacional de Investigación, SENACYT, Panamá, Republic of Panama
| | | | | | | | - Molly C Bletz
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | | | - William R Shoemaker
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | | | - Lisa K Belden
- Department of Biological Sciences, VA Tech, Blacksburg, VA, USA
| |
Collapse
|
12
|
Basanta MD, Rebollar EA, García-Castillo MG, Rosenblum EB, Byrne AQ, Piovia-Scott J, Parra-Olea G. Genetic variation of Batrachochytrium dendrobatidis is linked to skin bacterial diversity in the Pacific treefrog Hyliola regilla (hypochondriaca). Environ Microbiol 2021; 24:494-506. [PMID: 34959256 DOI: 10.1111/1462-2920.15861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 11/29/2022]
Abstract
Symbiotic bacterial communities are crucial to combating infections and contribute to host health. The amphibian skin microbiome plays an important role in protecting their hosts against pathogens such as Batrachochytrium dendrobatidis (Bd), one of the causative agents of chytridiomycosis, which is responsible for dramatic amphibian population declines worldwide. Although symbiotic skin bacteria are known to inhibit Bd growth, an understanding of the relationship between Bd genetic variability, environmental conditions, and skin bacterial communities is limited. Therefore, we examined the associations between Bd infection load, Bd genetic diversity and skin bacterial communities in five populations of Hyliola regilla (hypochondriaca) from environmentally contrasting sites in Baja California, Mexico. We observed differences in Bd genetics and infection load among sites and environments. Genetic analysis of Bd isolates revealed patterns of spatial structure corresponding to the five sites sampled. Amphibian skin bacterial diversity and community structure differed among environments and sites. Bacterial community composition was correlated with Bd genetic differences and infection load, with specific bacterial taxa enriched on infected and un-infected frogs. Our results indicate that skin-associated bacteria and Bd strains likely interact on the host skin, with consequences for microbial community structure and Bd infection intensity.
Collapse
Affiliation(s)
- María Delia Basanta
- Instituto de Biología, Universidad Nacional Autónoma de México, Mexico.,Posgrado en Ciencias Biológicas, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, AP 70-153, C.P. 04510, Mexico.,Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Eria A Rebollar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Mirna G García-Castillo
- Universidad Politécnica de Huatusco, Huatusco, Veracruz, Mexico.,Universidad Veracruzana, Facultad de Ciencias Biológicas y Agropecuarias Región: Orizaba-Córdoba, Amatlán de los Reyes, Veracruz, Mexico
| | - Erica Bree Rosenblum
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA.,Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | - Allison Q Byrne
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA.,Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | - Jonah Piovia-Scott
- School of Biological Sciences, Washington State University, Vancouver, WA, USA
| | | |
Collapse
|
13
|
Urgiles VL, Ramírez ER, Villalta CI, Siddons DC, Savage AE. Three Pathogens Impact Terrestrial Frogs from a High-Elevation Tropical Hotspot. ECOHEALTH 2021; 18:451-464. [PMID: 34894333 DOI: 10.1007/s10393-021-01570-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
Three infectious pathogens Batrachochytrium dendrobatidis (Bd), Ranavirus (Rv) and Perkinsea (Pr) are associated with widespread and ongoing amphibian population declines. Although their geographic and host ranges vary widely, recent studies have suggested that the occurrence of these pathogens could be more common than previously thought, even in direct-developing terrestrial species traditionally considered less likely to harbor these largely aquatic pathogens. Here, we characterize Bd, Rv, and Pr infections in direct-developing terrestrial amphibians of the Pristimantis genus from the highland Ecuadorean Andes. We confirm the first detection of Pr in terrestrial-breeding amphibians and in the Andean region, present the first report of Rv in Ecuador, and we add to the handful of studies finding Bd infecting Pristimantis. Infection prevalence did not differ significantly among pathogens, but infection intensity was significantly higher for Bd compared to Pr. Neither prevalence nor intensity differed significantly across locality and elevation for Bd and Rv, although low prevalence in our dataset and lack of seasonal sampling could have prevented important epidemiological patterns from emerging. Our study highlights the importance of incorporating pathogen surveillance in biodiversity monitoring in the Andean region and serves as starting point to understand pathogen dynamics, transmission, and impacts in terrestrial-breeding frogs.
Collapse
Affiliation(s)
- Veronica L Urgiles
- Department of Biology, University of Central Florida, 4110 Libra Dr, Orlando, FL, 32816, USA.
- Instituto Nacional de Biodiversidad del Ecuador, Pasaje Rumipamba 341 y Avenida de los Shirys, Quito, Ecuador.
| | - Ervin R Ramírez
- Escuela de Biología, Ecología y Gestión, Universidad del Azuay, Ave 24 de Mayo 7-77, Cuenca, Ecuador
| | - Cristian I Villalta
- Escuela de Biología, Ecología y Gestión, Universidad del Azuay, Ave 24 de Mayo 7-77, Cuenca, Ecuador
| | - David C Siddons
- Escuela de Biología, Ecología y Gestión, Universidad del Azuay, Ave 24 de Mayo 7-77, Cuenca, Ecuador
| | - Anna E Savage
- Department of Biology, University of Central Florida, 4110 Libra Dr, Orlando, FL, 32816, USA
| |
Collapse
|
14
|
INFECTION DYNAMICS OF BATRACHOCHYTRIUM DENDROBATIDIS IN TWO FROG SPECIES INHABITING QUITO'S METROPOLITAN GUANGÜILTAGUA PARK, ECUADOR. J Wildl Dis 2021; 57:749-760. [PMID: 34525187 DOI: 10.7589/jwd-d-20-00110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 04/15/2021] [Indexed: 11/20/2022]
Abstract
Batrachochytrium dendrobatidis (Bd) infection is one of the principal causes of amphibian declines worldwide. The presence of Bd has been determined in Gastrotheca riobambae tadpoles that inhabit ponds in Quito's Metropolitan Guangüiltagua Park, Ecuador. This study sought to determine whether these tadpoles are infected and to determine the presence of chytridiomycosis in another frog species, Pristimantis unistrigatus, which also inhabits the park and has different reproductive biology and distinct behavioral habits. We used end-point and real-time PCR techniques to detect and quantify Bd infection. At 1 yr, samples were taken from the skin of P. unistrigatus using swabs and were also taken from the mouthparts of G. riobambae tadpoles. It was found that the two species were infected with a Bd prevalence of 39% (53/135) in G. riobambae tadpoles and 15% (57/382) in P. unistrigatus frogs. The two types of samples (tissue and swabs) from mouthparts showed differences in the zoospores per microliter loads (x̄=1,376.7±3,450.2 vs. x̄=285.0±652.3). Moreover, a correlation (r2=0.621) was discovered between the monthly mean maximum temperature of the pond with disease prevalence in G. riobambae tadpoles. Infection levels in the P. unistrigatus population varied significantly over time, and distance to the pond was a determinant factor for infection intensity.
Collapse
|
15
|
Díaz M, Jarrín-V P, Simarro R, Castillejo P, Tenea GN, Molina CA. The Ecuadorian Microbiome Project: a plea to strengthen microbial genomic research. NEOTROPICAL BIODIVERSITY 2021. [DOI: 10.1080/23766808.2021.1938900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Magdalena Díaz
- Institute of Research on Zoonoses (CIZ), Central University of Ecuador, Quito, Ecuador
- Chemistry Engineering Faculty, Central University of Ecuador, Quito, Ecuador
| | - Pablo Jarrín-V
- Health and Environment Research Group, Universidad Regional Amazónica Ikiam, Tena, Ecuador
| | - Raquel Simarro
- Department of Biology, Geology, Physics and Inorganic Chemistry,ESCET, Universidad Rey Juan Carlos, Móstoles, Madrid, Spain
| | - Pablo Castillejo
- Faculty of Environmental Sciences, SEK International University, Quito, Ecuador
- Applied Sciences and Engineering Faculty, Universidad De Las Américas, Quito, Ecuador
| | - Gabriela N. Tenea
- Biofood and Nutraceutics Research and Development Group, Faculty of Engineering in Agricultural and Environmental Sciences, Technical University of the North, Ibarra, Ecuador
| | - C. Alfonso Molina
- Institute of Research on Zoonoses (CIZ), Central University of Ecuador, Quito, Ecuador
- Faculty of Veterinary Medicine and Zootechnics, Central University of Ecuador, Quito, Ecuador
| |
Collapse
|
16
|
Seasonal Variation in Gut Microbiota Related to Diet in Fejervarya limnocharis. ANIMALS : AN OPEN ACCESS JOURNAL FROM MDPI 2021; 11:ani11051393. [PMID: 34068415 PMCID: PMC8153623 DOI: 10.3390/ani11051393] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/16/2022]
Abstract
Organisms adapt to environmental fluctuations by varying their morphology and structural, physiological, and biochemical characteristics. Gut microbiome, varying rapidly in response to environmental shifts, has been proposed as a strategy for adapting to the fluctuating environment (e.g., new dietary niches). Here, we explored the adaptive mechanism of frog intestinal microbes in response to environmental changes. We collected 170 Fejervarya limnocharis during different seasons (spring, summer, autumn, and pre-hibernation) to study the compositional and functional divergence of gut microbiota and analysed the effects of seasonal feeding habits and body condition on intestinal microorganisms using 16S rRNA high-throughput sequencing, Tax4Fun function prediction analysis, and bioinformatics analysis. The results showed no significant dietary difference in various seasons and between males and females. However, a significantly positive correlation was detected between dietary diversity and food niche width. Host condition (body size, body mass, and body condition) also revealed seasonal changes. The frogs were colonised by 71 bacterial phyla and dominated by Proteobacteria, Firmicutes, and Bacteroidetes. Stenotrophomonas was the most abundant genus in the Proteobacteria. The composition, diversity, and function of intestinal microorganisms in different seasons were significantly different. Significant differences were observed in composition and function but not in the microbial diversity between sexes. Furthermore, seasonal foods and body mass were significantly correlated with gut microbial composition. Our results suggest that gut microbiomes of F. limnocharis vary seasonally in response to diet under fluctuating environments.
Collapse
|
17
|
Walke JB, Becker MH, Krinos A, Chang EAB, Santiago C, Umile TP, Minbiole KPC, Belden LK. Seasonal changes and the unexpected impact of environmental disturbance on skin bacteria of individual amphibians in a natural habitat. FEMS Microbiol Ecol 2021; 97:6024676. [PMID: 33278302 DOI: 10.1093/femsec/fiaa248] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/02/2020] [Indexed: 01/16/2023] Open
Abstract
Amphibians host diverse skin bacteria that have a role in pathogen defense, but these skin communities could change over time and impact this function. Here, we monitored individual Eastern red-spotted newts (Notophthalmus viridescens; N = 17) for 2 years in a field pond enclosure and assessed the effects of season and disturbance on skin bacterial community dynamics. We created disturbances by adding additional pond substrate to the enclosure at two timepoints. We planned to sample the skin bacterial community and metabolite profiles of each newt every 6 weeks; we ultimately sampled eight individuals at least six times. We used 16S rRNA gene amplicon sequencing to characterize the bacterial communities and HPLC-MS for metabolite profiling. We found that disturbance had a dramatic effect on skin bacterial communities and metabolite profiles, while season had an effect only using select metrics. There were seven core bacterial taxa (97% OTUs) that were found on all newts in all seasons, pre- and post-disturbance. Lastly, there was a correlation between bacterial and metabolite profiles post-disturbance, which was not observed pre-disturbance. This longitudinal study suggests that environmental disturbances can have lasting effects on skin bacterial communities that overwhelm seasonal changes, although the core bacteria remain relatively consistent over time.
Collapse
Affiliation(s)
- Jenifer B Walke
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Matthew H Becker
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Arianna Krinos
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | | | - Celina Santiago
- Department of Chemistry, Villanova University, Villanova, PA 19085, USA
| | - Thomas P Umile
- Department of Chemistry, Villanova University, Villanova, PA 19085, USA
| | | | - Lisa K Belden
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
18
|
Proença DN, Fasola E, Lopes I, Morais PV. Characterization of the Skin Cultivable Microbiota Composition of the Frog Pelophylax perezi Inhabiting Different Environments. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18052585. [PMID: 33807539 PMCID: PMC7967507 DOI: 10.3390/ijerph18052585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 12/20/2022]
Abstract
Microorganisms that live in association with amphibian skin can play important roles in protecting their host. Within the scenarios of global change, it is important to understand how environmental disturbances, namely, metal pollution, can affect this microbiota. The aim of this study is to recognize core bacteria in the skin cultivable microbiota of the Perez frog (Pelophylax perezi) that are preserved regardless of the environmental conditions in which the frogs live. The characterization of these isolates revealed characteristics that can support their contributions to the ability of frogs to use metal impacted environments. Frog’s skin swabs were collected from P. perezi populations that inhabit a metal-polluted site and three reference (non-metal polluted) sites. Bacterial strains were isolated, identified, and subjected to an acid mine drainage tolerance (AMD) test, collected upstream from a site heavily contaminated with metals, and tested to produce extracellular polymeric substances (exopolysaccharide, EPS). All frog populations had Acinetobacter in their cutaneous cultivable microbiota. Significant growth inhibition was observed in all bacterial isolates exposed to 75% of AMD. EPS production was considered a characteristic of several isolates. The data obtained is a preliminary step but crucial to sustain that the cultivable microbiota is a mechanism for protecting frogs against environmental contamination.
Collapse
Affiliation(s)
- Diogo Neves Proença
- Department of Life Sciences and Centre for Mechanical Engineering, Materials and Processes, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal;
| | - Emanuele Fasola
- CESAM and Department of Biology, University of Aveiro, 3810-005 Aveiro, Portugal; (E.F.); (I.L.)
| | - Isabel Lopes
- CESAM and Department of Biology, University of Aveiro, 3810-005 Aveiro, Portugal; (E.F.); (I.L.)
| | - Paula V. Morais
- Department of Life Sciences and Centre for Mechanical Engineering, Materials and Processes, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal;
- Correspondence: ; Tel.: +35-1239240700
| |
Collapse
|
19
|
Romero-Zambrano GL, Bermúdez-Puga SA, Sánchez-Yumbo AF, Yánez-Galarza JK, Ortega-Andrade HM, Naranjo-Briceño L. Amphibian chytridiomycosis, a lethal pandemic disease caused by the killer fungus Batrachochytrium dendrobatidis: New approaches to host defense mechanisms and techniques for detection and monitoring. BIONATURA 2021. [DOI: 10.21931/rb/2021.06.01.28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Chytridiomycosis is a catastrophic disease currently decimating worldwide amphibian populations, caused by the panzootic chytrid fungus Batrachochytrium dendrobatidis. Massive species decline to extinction catalyzes radical changes in ecosystems globally, including the largest continuous rainforest ecosystem on Earth, the Amazon rainforest. Innovative research that aims to propose feasible mechanisms of mitigation and the origins of the disease is vital, including studies addressing climatic effects on the expansion of chytridiomycosis. Thus, this publication aims to provide a comprehensive review of: i) the current technologies used for B. dendrobatidis detection and monitoring, and ii) the known Neotropical amphibian's skin microbiota with anti-fungal properties against B. dendrobatidis. Several immunologic and DNA-based methods are discussed to understand the emerging fungal pathogens and their effects on the biosphere, which can help to mitigate the devastating ecological impacts of mass amphibian morbidity. The establishment of rapid and highly accurate B. dendrobatidis detection techniques and methods for monitoring amphibian's cutaneous microbiome is crucial in the fight against chytridiomycosis.
Collapse
Affiliation(s)
- Génesis L. Romero-Zambrano
- Biotechnology Engineering Career. Faculty of Life Sciences. Universidad Regional Amazónica Ikiam, Tena, Ecuador 150150
| | - Stalin A. Bermúdez-Puga
- Biotechnology Engineering Career. Faculty of Life Sciences. Universidad Regional Amazónica Ikiam, Tena, Ecuador 150150
| | - Alex F. Sánchez-Yumbo
- Biotechnology Engineering Career. Faculty of Life Sciences. Universidad Regional Amazónica Ikiam, Tena, Ecuador 150150
| | - Jomira K. Yánez-Galarza
- Biotechnology Engineering Career. Faculty of Life Sciences. Universidad Regional Amazónica Ikiam, Tena, Ecuador 150150
| | - H. Mauricio Ortega-Andrade
- 2Biogeography and Spatial Ecology Research Group, Universidad Regional Amazónica Ikiam, Tena, Ecuador 150150 3Herpetology Division, Instituto Nacional de Biodiversidad (INABIO), calle Rumipamba 341 y Av. de los Shyris, Quito, Ecuador
| | - Leopoldo Naranjo-Briceño
- Biotechnology Engineering Career. Faculty of Life Sciences. Universidad Regional Amazónica Ikiam, Tena, Ecuador 150150
| |
Collapse
|
20
|
Jervis P, Pintanel P, Hopkins K, Wierzbicki C, Shelton JMG, Skelly E, Rosa GM, Almeida-Reinoso D, Eugenia-Ordoñez M, Ron S, Harrison X, Merino-Viteri A, Fisher MC. Post-epizootic microbiome associations across communities of neotropical amphibians. Mol Ecol 2021; 30:1322-1335. [PMID: 33411382 DOI: 10.1111/mec.15789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/31/2022]
Abstract
Microbiome-pathogen interactions are increasingly recognized as an important element of host immunity. While these host-level interactions will have consequences for community disease dynamics, the factors which influence host microbiomes at larger scales are poorly understood. We here describe landscape-scale pathogen-microbiome associations within the context of post-epizootic amphibian chytridiomycosis, a disease caused by the panzootic chytrid fungus Batrachochytrium dendrobatidis. We undertook a survey of Neotropical amphibians across altitudinal gradients in Ecuador ~30 years following the observed amphibian declines and collected skin swab-samples which were metabarcoded using both fungal (ITS-2) and bacterial (r16S) amplicons. The data revealed marked variation in patterns of both B. dendrobatidis infection and microbiome structure that are associated with host life history. Stream breeding amphibians were most likely to be infected with B. dendrobatidis. This increased probability of infection was further associated with increased abundance and diversity of non-Batrachochytrium chytrid fungi in the skin and environmental microbiome. We also show that increased alpha diversity and the relative abundance of fungi are lower in the skin microbiome of adult stream amphibians compared to adult pond-breeding amphibians, an association not seen for bacteria. Finally, stream tadpoles exhibit lower proportions of predicted protective microbial taxa than pond tadpoles, suggesting reduced biotic resistance. Our analyses show that host breeding ecology strongly shapes pathogen-microbiome associations at a landscape scale, a trait that may influence resilience in the face of emerging infectious diseases.
Collapse
Affiliation(s)
- Phillip Jervis
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College, London, UK.,Institute of Zoology, Zoological Society of London, London, UK.,Department of Chemistry, UCL, London, UK.,Laboratorio de Ecofisiología and Museo de Zoología (QCAZ), Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Pol Pintanel
- Laboratorio de Ecofisiología and Museo de Zoología (QCAZ), Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador.,Department of Evolutionary Ecology, Estación Biológica de Doñana, CSIC, Sevilla, Spain
| | - Kevin Hopkins
- Institute of Zoology, Zoological Society of London, London, UK
| | - Claudia Wierzbicki
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College, London, UK.,Institute of Zoology, Zoological Society of London, London, UK
| | - Jennifer M G Shelton
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College, London, UK
| | - Emily Skelly
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College, London, UK.,Institute of Zoology, Zoological Society of London, London, UK
| | - Gonçalo M Rosa
- Institute of Zoology, Zoological Society of London, London, UK.,Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Diego Almeida-Reinoso
- Museo de Zoologίa (QCAZ), Escuela de Ciencias Biológicas, Pontificia Universidad Catόlica del Ecuador, Quito, Ecuador.,SARgrillo: Ex situ Management Program of Endangered Amphibians and Insect Breeding program, Quito, Ecuador
| | - Maria Eugenia-Ordoñez
- Fungario QCAM, Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Santiago Ron
- Museo de Zoologίa (QCAZ), Escuela de Ciencias Biológicas, Pontificia Universidad Catόlica del Ecuador, Quito, Ecuador
| | - Xavier Harrison
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Andrés Merino-Viteri
- Laboratorio de Ecofisiología and Museo de Zoología (QCAZ), Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Matthew C Fisher
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College, London, UK
| |
Collapse
|
21
|
Kruger A. Frog Skin Microbiota Vary With Host Species and Environment but Not Chytrid Infection. Front Microbiol 2020; 11:1330. [PMID: 32670233 PMCID: PMC7328345 DOI: 10.3389/fmicb.2020.01330] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/25/2020] [Indexed: 01/15/2023] Open
Abstract
Describing the structure and function of the amphibian cutaneous microbiome has gained importance with the spread of Batrachochytrium dendrobatidis (Bd), the fungal pathogen that can cause the skin disease chytridiomycosis. Sampling amphibian skin microbiota is needed to characterize current infection status and to help predict future susceptibility to Bd based on microbial composition since some skin microbes have antifungal capabilities that may confer disease resistance. Here, I use 16S rRNA sequencing to describe the composition and structure of the cutaneous microbiota of six species of amphibians. Frog skin samples were also tested for Bd, and I found 11.8% Bd prevalence among all individuals sampled (n = 76). Frog skin microbiota varied by host species and sampling site, but did not differ among Bd-positive and Bd-negative individuals. These results suggest that bacterial composition reflects host species and the environment, but does not reflect Bd infection among the species sampled here. Of the bacterial OTUs identified using an indicator species analysis as strongly associated with amphibians, significantly more indicator OTUs were putative anti-Bd taxa than would be expected based on the proportion of anti-Bd OTUs among all frog OTUs, suggesting strong associations between host species and anti-Bd OTUs. This relationship may partially explain why some of these frogs are asymptomatic carriers of Bd, but more work is needed to determine the other factors that contribute to interspecific variation in Bd susceptibility. This work provides important insights on inter- and intra-specific variation in microbial community composition, putative function, and disease dynamics in populations of amphibians that appear to be coexisting with Bd.
Collapse
Affiliation(s)
- Ariel Kruger
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, United States
| |
Collapse
|
22
|
Oleas-Paz A, Santamaría-Naranjo AC, Rojas-Carrillo M, Merino-Viteri A, Genoy-Puerto A. Microbiological and cytological characterization of coelomic fluid from three captive endangered amphibian Gastrotheca species with edema syndrome: preliminary analysis. BMC Res Notes 2019; 12:807. [PMID: 31842990 PMCID: PMC6916216 DOI: 10.1186/s13104-019-4846-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/06/2019] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Edema syndrome is highly prevalent but under researched in captive frogs around the world. The objective of the present study was to characterize at a basic microbiological and cytological level of the bacteria of the edema fluid of 20 individuals of the genus Gastrotheca to determine the presence of possible anaerobic and aerobic bacteria. RESULTS Fourteen types of bacteria were identified in the edema fluid, 12 of them at the species level (Pasteurella haemolytica, Hafnia alvei, Enterobacter agglomerans, Aeromonas hydrophila, Pseudomonas fluorescens, Burkholderia pseudomallei, Salmonella arizonae, Enterobacter gergoviae, Enterobacter sakazakii, Yersinia enterocolitica, Klebsiella oxytoca, and Klebsiella ozaenae) and two at the genus level (Enterococcus spp. and Streptococcus spp.). The most frequently identified cells were lymphocytes (37.7% in females and 46.4% in males), erythrocytes (23.5% in females and 17.5% in males) and neutrophils (4.2% in females and 2.8% in males). Finally, no relationship was found between the data obtained and the sex of the individuals studied.
Collapse
Affiliation(s)
- Anahí Oleas-Paz
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Salud, Universidad de Las Américas, Vía Nayón S/N, 170503, Quito, Pichincha, Ecuador
| | - Ana Cecilia Santamaría-Naranjo
- Laboratorios Multidisciplinarios de Ciencias Biológicas y Químicas, Universidad de Las Américas, De Los Colimes y Avenida de los Granados, 170125, Quito, Pichincha, Ecuador
| | - Maira Rojas-Carrillo
- Laboratorios Multidisciplinarios de Ciencias Biológicas y Químicas, Universidad de Las Américas, De Los Colimes y Avenida de los Granados, 170125, Quito, Pichincha, Ecuador
| | - Andrés Merino-Viteri
- Museo de Zoología (QCAZ), Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076 y Roca, 170523, Quito, Pichincha, Ecuador
| | - Alexander Genoy-Puerto
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Salud, Universidad de Las Américas, Vía Nayón S/N, 170503, Quito, Pichincha, Ecuador.
| |
Collapse
|
23
|
Reinke BA, Miller DA, Janzen FJ. What Have Long-Term Field Studies Taught Us About Population Dynamics? ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2019. [DOI: 10.1146/annurev-ecolsys-110218-024717] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Long-term studies have been crucial to the advancement of population biology, especially our understanding of population dynamics. We argue that this progress arises from three key characteristics of long-term research. First, long-term data are necessary to observe the heterogeneity that drives most population processes. Second, long-term studies often inherently lead to novel insights. Finally, long-term field studies can serve as model systems for population biology, allowing for theory and methods to be tested under well-characterized conditions. We illustrate these ideas in three long-term field systems that have made outsized contributions to our understanding of population ecology, evolution, and conservation biology. We then highlight three emerging areas to which long-term field studies are well positioned to contribute in the future: ecological forecasting, genomics, and macrosystems ecology. Overcoming the obstacles associated with maintaining long-term studies requires continued emphasis on recognizing the benefits of such studies to ensure that long-term research continues to have a substantial impact on elucidating population biology.
Collapse
Affiliation(s)
- Beth A. Reinke
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - David A.W. Miller
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Fredric J. Janzen
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
24
|
Christian K, Weitzman C, Rose A, Kaestli M, Gibb K. Ecological patterns in the skin microbiota of frogs from tropical Australia. Ecol Evol 2018; 8:10510-10519. [PMID: 30464823 PMCID: PMC6238143 DOI: 10.1002/ece3.4518] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 12/20/2022] Open
Abstract
The microbiota of frog skin can play an important role in protecting against diseases and parasites. The frog skin microbial community represents a complex mix of microbes that are promoted by the chemical environment of the frog skin and influenced by the animal's immediate past environment. The microbial communities of six species of frogs sampled from the campus of Charles Darwin University (CDU) were more similar within species than between species. The microbiota of the introduced cane toad (Rhinella marina) was most dissimilar among the species. Pairwise comparisons showed that the microbial communities of each species were different, except for the terrestrial Litoria nasuta and the arboreal L. rothii. The microbial communities of the six species were not related to ecological habit (arboreal or terrestrial), and neither was the alpha diversity of the microbes. The core microbes (defined as being on ≥90% of individuals of a species or group) were significantly different among all species, although 89 microbial operational taxonomic units (OTUs) were core microbes for all six species at CDU. Two species, Rhinella marina and Litoria rothii, were sampled at additional sites approximately 10 and 30 km from CDU. The microbial communities and the core OTU composition were different among the sites, but there were nevertheless 194 (R. marina) and 181 (L. rothii) core OTUs present at all three sites. Thus, the core microbiota varied with respect to geographic range and sample size.
Collapse
Affiliation(s)
- Keith Christian
- Research Institute for the Environment and LivelihoodsCharles Darwin UniversityDarwinNorthern TerritoryAustralia
| | | | - Alea Rose
- Research Institute for the Environment and LivelihoodsCharles Darwin UniversityDarwinNorthern TerritoryAustralia
| | - Mirjam Kaestli
- Research Institute for the Environment and LivelihoodsCharles Darwin UniversityDarwinNorthern TerritoryAustralia
| | - Karen Gibb
- Research Institute for the Environment and LivelihoodsCharles Darwin UniversityDarwinNorthern TerritoryAustralia
| |
Collapse
|
25
|
Griffiths SM, Harrison XA, Weldon C, Wood MD, Pretorius A, Hopkins K, Fox G, Preziosi RF, Antwis RE. Genetic variability and ontogeny predict microbiome structure in a disease-challenged montane amphibian. THE ISME JOURNAL 2018; 12:2506-2517. [PMID: 29942072 PMCID: PMC6155040 DOI: 10.1038/s41396-018-0167-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 02/09/2018] [Accepted: 03/10/2018] [Indexed: 12/21/2022]
Abstract
Amphibian populations worldwide are at risk of extinction from infectious diseases, including chytridiomycosis caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd). Amphibian cutaneous microbiomes interact with Bd and can confer protective benefits to the host. The composition of the microbiome itself is influenced by many environment- and host-related factors. However, little is known about the interacting effects of host population structure, genetic variation and developmental stage on microbiome composition and Bd prevalence across multiple sites. Here we explore these questions in Amietia hymenopus, a disease-affected frog in southern Africa. We use microsatellite genotyping and 16S amplicon sequencing to show that the microbiome associated with tadpole mouthparts is structured spatially, and is influenced by host genotype and developmental stage. We observed strong genetic structure in host populations based on rivers and geographic distances, but this did not correspond to spatial patterns in microbiome composition. These results indicate that demographic and host genetic factors affect microbiome composition within sites, but different factors are responsible for host population structure and microbiome structure at the between-site level. Our results help to elucidate complex within- and among- population drivers of microbiome structure in amphibian populations. That there is a genetic basis to microbiome composition in amphibians could help to inform amphibian conservation efforts against infectious diseases.
Collapse
Affiliation(s)
- Sarah M Griffiths
- School of Science and the Environment, Manchester Metropolitan University, Manchester, UK.
| | | | - Ché Weldon
- Unit for Environmental Research and Management, Faculty of Natural Science, North-West University, Potchefstroom, South Africa
| | - Michael D Wood
- School of Environment and Life Sciences, University of Salford, Salford, UK
| | - Abigail Pretorius
- Unit for Environmental Research and Management, Faculty of Natural Science, North-West University, Potchefstroom, South Africa
| | - Kevin Hopkins
- Institute of Zoology, Zoological Society of London, London, UK
| | - Graeme Fox
- School of Science and the Environment, Manchester Metropolitan University, Manchester, UK
| | - Richard F Preziosi
- School of Science and the Environment, Manchester Metropolitan University, Manchester, UK
| | - Rachael E Antwis
- Unit for Environmental Research and Management, Faculty of Natural Science, North-West University, Potchefstroom, South Africa.
- School of Environment and Life Sciences, University of Salford, Salford, UK.
| |
Collapse
|
26
|
Woodhams DC, LaBumbard BC, Barnhart KL, Becker MH, Bletz MC, Escobar LA, Flechas SV, Forman ME, Iannetta AA, Joyce MD, Rabemananjara F, Gratwicke B, Vences M, Minbiole KPC. Prodigiosin, Violacein, and Volatile Organic Compounds Produced by Widespread Cutaneous Bacteria of Amphibians Can Inhibit Two Batrachochytrium Fungal Pathogens. MICROBIAL ECOLOGY 2018; 75:1049-1062. [PMID: 29119317 DOI: 10.1007/s00248-017-1095-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 10/19/2017] [Indexed: 06/07/2023]
Abstract
Symbiotic bacteria can produce secondary metabolites and volatile compounds that contribute to amphibian skin defense. Some of these symbionts have been used as probiotics to treat or prevent the emerging disease chytridiomycosis. We examined 20 amphibian cutaneous bacteria for the production of prodigiosin or violacein, brightly colored defense compounds that pigment the bacteria and have characteristic spectroscopic properties making them readily detectable, and evaluated the antifungal activity of these compounds. We detected violacein from all six isolates of Janthinobacterium lividum on frogs from the USA, Switzerland, and on captive frogs originally from Panama. We detected prodigiosin from five isolates of Serratia plymuthica or S. marcescens, but not from four isolates of S. fonticola or S. liquefaciens. All J. lividum isolates produced violacein when visibly purple, while prodigiosin was only detected on visibly red Serratia isolates. When applied to cultures of chytrid fungi Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal), prodigiosin caused significant growth inhibition, with minimal inhibitory concentrations (MIC) of 10 and 50 μM, respectively. Violacein showed a MIC of 15 μM against both fungi and was slightly more active against Bsal than Bd at lower concentrations. Although neither violacein nor prodigiosin showed aerosol activity and is not considered a volatile organic compound (VOC), J. lividum and several Serratia isolates did produce antifungal VOCs. White Serratia isolates with undetectable prodigiosin levels could still inhibit Bd growth indicating additional antifungal compounds in their chemical arsenals. Similarly, J. lividum can produce antifungal compounds such as indole-3-carboxaldehyde in addition to violacein, and isolates are not always purple, or turn purple under certain growth conditions. When Serratia isolates were grown in the presence of cell-free supernatant (CFS) from the fungi, CFS from Bd inhibited growth of the prodigiosin-producing isolates, perhaps indicative of an evolutionary arms race; Bsal CFS did not inhibit bacterial growth. In contrast, growth of one J. lividum isolate was facilitated by CFS from both fungi. Isolates that grow and continue to produce antifungal compounds in the presence of pathogens may represent promising probiotics for amphibians infected or at risk of chytridiomycosis. In a global analysis, 89% of tested Serratia isolates and 82% of J. lividum isolates were capable of inhibiting Bd and these have been reported from anurans and caudates from five continents, indicating their widespread distribution and potential for host benefit.
Collapse
Affiliation(s)
- Douglas C Woodhams
- Biology Department, University of Massachusetts Boston, Boston, MA, 02125, USA.
| | - Brandon C LaBumbard
- Biology Department, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Kelly L Barnhart
- Biology Department, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Matthew H Becker
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
- Department of Biology and Chemistry, Liberty University, Lynchburg, VA, USA
| | - Molly C Bletz
- Biology Department, University of Massachusetts Boston, Boston, MA, 02125, USA
- Zoological Institute, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Laura A Escobar
- School of Sciences, Pontificia Universidad Javeriana, Bogotá, AA 56710, Colombia
| | - Sandra V Flechas
- Department of Biological Sciences, Universidad de los Andes, Bogotá, AA 4976, Colombia
| | - Megan E Forman
- Department of Chemistry, Villanova University, Villanova, PA, 19085, USA
| | - Anthony A Iannetta
- Department of Chemistry, Villanova University, Villanova, PA, 19085, USA
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Maureen D Joyce
- Department of Chemistry, Villanova University, Villanova, PA, 19085, USA
| | | | - Brian Gratwicke
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
| | - Miguel Vences
- Zoological Institute, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Kevin P C Minbiole
- Department of Chemistry, Villanova University, Villanova, PA, 19085, USA.
| |
Collapse
|
27
|
Prest TL, Kimball AK, Kueneman JG, McKenzie VJ. Host-associated bacterial community succession during amphibian development. Mol Ecol 2018; 27:1992-2006. [DOI: 10.1111/mec.14507] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/22/2017] [Accepted: 01/02/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Tiffany L. Prest
- Department of Ecology and Evolutionary Biology; University of Colorado at Boulder; Boulder CO USA
- Department of Biology; Duke University; Durham NC USA
| | - Abigail K. Kimball
- Department of Ecology and Evolutionary Biology; University of Colorado at Boulder; Boulder CO USA
- Department of Microbiology and Immunology; Anschutz Medical Campus; Aurora CO USA
| | - Jordan G. Kueneman
- Department of Ecology and Evolutionary Biology; University of Colorado at Boulder; Boulder CO USA
- Smithsonian Tropical Research Institute; Panama City Panama
| | - Valerie J. McKenzie
- Department of Ecology and Evolutionary Biology; University of Colorado at Boulder; Boulder CO USA
| |
Collapse
|
28
|
Catenazzi A, Flechas SV, Burkart D, Hooven ND, Townsend J, Vredenburg VT. Widespread Elevational Occurrence of Antifungal Bacteria in Andean Amphibians Decimated by Disease: A Complex Role for Skin Symbionts in Defense Against Chytridiomycosis. Front Microbiol 2018; 9:465. [PMID: 29593698 PMCID: PMC5861192 DOI: 10.3389/fmicb.2018.00465] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/28/2018] [Indexed: 12/23/2022] Open
Abstract
Emerging infectious disease is a growing threat to global health, and recent discoveries reveal that the microbiota dwelling on and within hosts can play an important role in health and disease. To understand the capacity of skin bacteria to protect amphibian hosts from the fungal disease chytridiomycosis caused by Batrachochytrium dendrobatidis (Bd), we isolated 192 bacterial morphotypes from the skin of 28 host species of frogs (families Bufonidae, Centrolenidae, Hemiphractidae, Hylidae, Leptodactylidae, Strabomantidae, and Telmatobiidae) collected from the eastern slopes of the Peruvian Andes (540-3,865 m a.s.l.) in the Kosñipata Valley near Manu National Park, a site where we previously documented the collapse of montane frog communities following chytridiomycosis epizootics. We obtained isolates through agar culture from skin swabs of wild frogs, and identified bacterial isolates by comparing 16S rRNA sequences against the GenBank database using BLAST. We identified 178 bacterial strains of 38 genera, including 59 bacterial species not previously reported from any amphibian host. The most common bacterial isolates were species of Pseudomonas, Paenibacillus, Chryseobacterium, Comamonas, Sphingobacterium, and Stenotrophomonas. We assayed the anti-fungal abilities of 133 bacterial isolates from 26 frog species. To test whether cutaneous bacteria might inhibit growth of the fungal pathogen, we used a local Bd strain isolated from the mouthparts of stream-dwelling tadpoles (Hypsiboas gladiator, Hylidae). We quantified Bd-inhibition in vitro with co-culture assays. We found 20 bacterial isolates that inhibited Bd growth, including three isolates not previously known for such inhibitory abilities. Anti-Bd isolates occurred on aquatic and terrestrial breeding frogs across a wide range of elevations (560-3,695 m a.s.l.). The inhibitory ability of anti-Bd isolates varied considerably. The proportion of anti-Bd isolates was lowest at mid-elevations (6%), where amphibian declines have been steepest, and among hosts that are highly susceptible to chytridiomycosis (0-14%). Among non-susceptible species, two had the highest proportion of anti-Bd isolates (40 and 45%), but one common and non-susceptible species had a low proportion (13%). In conclusion, we show that anti-Bd bacteria are widely distributed elevationally and phylogenetically across frog species that have persisted in a region where chytridiomycosis emerged, caused a devastating epizootic and continues to infect amphibians.
Collapse
Affiliation(s)
- Alessandro Catenazzi
- Department of Biological Sciences, Florida International University, Miami, FL, United States.,Department of Zoology, Southern Illinois University, Carbondale, IL, United States
| | - Sandra V Flechas
- Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| | - David Burkart
- Department of Zoology, Southern Illinois University, Carbondale, IL, United States
| | - Nathan D Hooven
- Department of Zoology, Southern Illinois University, Carbondale, IL, United States
| | - Joseph Townsend
- Department of Zoology, Southern Illinois University, Carbondale, IL, United States
| | - Vance T Vredenburg
- Department of Biology, San Francisco State University, San Francisco, CA, United States
| |
Collapse
|
29
|
Prado-Irwin SR, Bird AK, Zink AG, Vredenburg VT. Intraspecific Variation in the Skin-Associated Microbiome of a Terrestrial Salamander. MICROBIAL ECOLOGY 2017; 74:745-756. [PMID: 28466089 PMCID: PMC5909955 DOI: 10.1007/s00248-017-0986-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 04/18/2017] [Indexed: 05/28/2023]
Abstract
Resident microbial communities living on amphibian skin can have significant effects on host health, yet the basic ecology of the host-microbiome relationship of many amphibian taxa is poorly understood. We characterized intraspecific variation in the skin microbiome of the salamander Ensatina eschscholtzii xanthoptica, a subspecies composed of four genetically distinct populations distributed throughout the San Francisco Bay Area and the Sierra Nevada mountains in California, USA. We found that salamanders from four geographically and genetically isolated populations harbor similar skin microbial communities, which are dominated by a common core set of bacterial taxa. Additionally, within a population, the skin microbiome does not appear to differ significantly between salamanders of different ages or sexes. In all cases, the salamander skin microbiomes were significantly different from those of the surrounding terrestrial environment. These results suggest that the relationship between E. e. xanthoptica salamanders and their resident skin microbiomes is conserved, possibly indicating a stable mutualism between the host and microbiome.
Collapse
Affiliation(s)
- Sofia R Prado-Irwin
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA.
| | - Alicia K Bird
- Department of Evolution and Ecology, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Andrew G Zink
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA, 94132, USA
| | - Vance T Vredenburg
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA, 94132, USA
| |
Collapse
|
30
|
Hughey MC, Pena JA, Reyes R, Medina D, Belden LK, Burrowes PA. Skin bacterial microbiome of a generalist Puerto Rican frog varies along elevation and land use gradients. PeerJ 2017; 5:e3688. [PMID: 28875068 PMCID: PMC5580383 DOI: 10.7717/peerj.3688] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 07/24/2017] [Indexed: 02/01/2023] Open
Abstract
Host-associated microbial communities are ubiquitous among animals, and serve important functions. For example, the bacterial skin microbiome of amphibians can play a role in preventing or reducing infection by the amphibian chytrid fungus, Batrachochytrium dendrobatidis. Evidence suggests that environmental bacteria likely serve as a source pool for at least some of the members of the amphibian skin bacterial community, underscoring the potential for local environmental changes to disrupt microbial community source pools that could be critical to the health of host organisms. However, few studies have assessed variation in the amphibian skin microbiome along clear environmental gradients, and so we know relatively little about how local environmental conditions influence microbiome diversity. We sampled the skin bacterial communities of Coqui frogs, Eleutherodactylus coqui (N = 77), along an elevational gradient in eastern Puerto Rico (0-875 m), with transects in two land use types: intact forest (N = 4 sites) and disturbed (N = 3 sites) forest. We found that alpha diversity (as assessed by Shannon, Simpson, and Phylogenetic Diversity indices) varied across sites, but this variation was not correlated with elevation or land use. Beta diversity (community structure), on the other hand, varied with site, elevation and land use, primarily due to changes in the relative abundance of certain bacterial OTUs (∼species) within these communities. Importantly, although microbiome diversity varied, E. coqui maintained a common core microbiota across all sites. Thus, our findings suggest that environmental conditions can influence the composition of the skin microbiome of terrestrial amphibians, but that some aspects of the microbiome remain consistent despite environmental variation.
Collapse
Affiliation(s)
- Myra C Hughey
- Department of Biological Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
| | - Janelle A Pena
- Department of Biology, Universidad de Puerto Rico, San Juan, Puerto Rico
| | - Roberto Reyes
- Department of Biology, Universidad de Puerto Rico, San Juan, Puerto Rico
| | - Daniel Medina
- Department of Biological Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
| | - Lisa K Belden
- Department of Biological Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
| | | |
Collapse
|
31
|
Muletz-Wolz CR, Almario JG, Barnett SE, DiRenzo GV, Martel A, Pasmans F, Zamudio KR, Toledo LF, Lips KR. Inhibition of Fungal Pathogens across Genotypes and Temperatures by Amphibian Skin Bacteria. Front Microbiol 2017; 8:1551. [PMID: 28871241 PMCID: PMC5566582 DOI: 10.3389/fmicb.2017.01551] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 07/31/2017] [Indexed: 01/20/2023] Open
Abstract
Symbiotic bacteria may dampen the impacts of infectious diseases on hosts by inhibiting pathogen growth. However, our understanding of the generality of pathogen inhibition by different bacterial taxa across pathogen genotypes and environmental conditions is limited. Bacterial inhibitory properties are of particular interest for the amphibian-killing fungal pathogens (Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans), for which probiotic applications as conservation strategies have been proposed. We quantified the inhibition strength of five putatively B. dendrobatidis-inhibitory bacteria isolated from woodland salamander skin against six Batrachochytrium genotypes at two temperatures (12 and 18°C). We selected six genotypes from across the Batrachochytrium phylogeny: B. salamandrivorans, B. dendrobatidis-Brazil and four genotypes of the B. dendrobatidis Global Panzootic Lineage (GPL1: JEL647, JEL404; GPL2: SRS810, JEL423). We performed 96-well plate challenge assays in a full factorial design. We detected a Batrachochytrium genotype by temperature interaction on bacterial inhibition score for all bacteria, indicating that bacteria vary in ability to inhibit Batrachochytrium depending on pathogen genotype and temperature. Acinetobacter rhizosphaerae moderately inhibited B. salamandrivorans at both temperatures (μ = 46–53%), but not any B. dendrobatidis genotypes. Chryseobacterium sp. inhibited three Batrachochytrium genotypes at both temperatures (μ = 5–71%). Pseudomonas sp. strain 1 inhibited all Batrachochytrium genotypes at 12°C and four Batrachochytrium genotypes at 18°C (μ = 5–100%). Pseudomonas sp. strain 2 and Stenotrophomonas sp. moderately to strongly inhibited all six Batrachochytrium genotypes at both temperatures (μ = 57–100%). All bacteria consistently inhibited B. salamandrivorans. Using cluster analysis of inhibition scores, we found that more closely related Batrachochytrium genotypes grouped together, suggesting that bacterial inhibition strength may be predictable based on Batrachochytrium relatedness. We conclude that bacterial inhibition capabilities change among bacterial strains, Batrachochytrium genotypes and temperatures. A comprehensive understanding of bacterial inhibitory function, across pathogen genotypes and temperatures, is needed to better predict the role of bacterial symbionts in amphibian disease ecology. For targeted conservation applications, we recommend using bacterial strains identified as strongly inhibitory as they are most likely to produce broad-spectrum antimicrobial agents at a range of temperatures.
Collapse
Affiliation(s)
- Carly R Muletz-Wolz
- Department of Biology, University of Maryland, College ParkMD, United States.,Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, WashingtonDC, United States
| | - Jose G Almario
- Department of Biology, University of Maryland, College ParkMD, United States
| | - Samuel E Barnett
- Department of Biology, University of Maryland, College ParkMD, United States.,Department of Microbiology, Cornell University, IthacaNY, United States
| | - Graziella V DiRenzo
- Department of Biology, University of Maryland, College ParkMD, United States.,Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa BarbaraCA, United States
| | - An Martel
- Department of Pathology, Bacteriology and Poultry Diseases, Ghent UniversityGhent, Belgium
| | - Frank Pasmans
- Department of Pathology, Bacteriology and Poultry Diseases, Ghent UniversityGhent, Belgium
| | - Kelly R Zamudio
- Department of Ecology and Evolutionary Biology, Cornell University, IthacaNY, United States
| | - Luís Felipe Toledo
- Department of Animal Biology, State University of CampinasCampinas, Brazil
| | - Karen R Lips
- Department of Biology, University of Maryland, College ParkMD, United States
| |
Collapse
|
32
|
Muletz Wolz CR, Yarwood SA, Campbell Grant EH, Fleischer RC, Lips KR. Effects of host species and environment on the skin microbiome of Plethodontid salamanders. J Anim Ecol 2017; 87:341-353. [DOI: 10.1111/1365-2656.12726] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 05/08/2017] [Indexed: 02/05/2023]
Affiliation(s)
- Carly R. Muletz Wolz
- Department of Biology; University of Maryland; College Park MD USA
- Center for Conservation Genomics; Smithsonian Conservation Biology Institute; National Zoological Park; Washington DC USA
| | - Stephanie A. Yarwood
- Department of Environmental Science & Technology; University of Maryland; College Park MD USA
| | - Evan H. Campbell Grant
- S.O. Conte Anadromous Fish Research Laboratory; United States Geological Survey Patuxent Wildlife Research Center; Turners Falls MA USA
| | - Robert C. Fleischer
- Center for Conservation Genomics; Smithsonian Conservation Biology Institute; National Zoological Park; Washington DC USA
| | - Karen R. Lips
- Department of Biology; University of Maryland; College Park MD USA
| |
Collapse
|
33
|
Walke JB, Becker MH, Hughey MC, Swartwout MC, Jensen RV, Belden LK. Dominance‐function relationships in the amphibian skin microbiome. Environ Microbiol 2017; 19:3387-3397. [DOI: 10.1111/1462-2920.13850] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Myra C. Hughey
- Department of Biological SciencesVirginia TechBlacksburg VA USA
| | | | | | - Lisa K. Belden
- Department of Biological SciencesVirginia TechBlacksburg VA USA
| |
Collapse
|
34
|
Medina D, Hughey MC, Becker MH, Walke JB, Umile TP, Burzynski EA, Iannetta A, Minbiole KPC, Belden LK. Variation in Metabolite Profiles of Amphibian Skin Bacterial Communities Across Elevations in the Neotropics. MICROBIAL ECOLOGY 2017; 74:227-238. [PMID: 28105509 DOI: 10.1007/s00248-017-0933-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/04/2017] [Indexed: 06/06/2023]
Abstract
Both the structure and function of host-associated microbial communities are potentially impacted by environmental conditions, just as the outcomes of many free-living species interactions are context-dependent. Many amphibian populations have declined around the globe due to the fungal skin pathogen, Batrachochytrium dendrobatidis (Bd), but enivronmental conditions may influence disease dynamics. For instance, in Panamá, the most severe Bd outbreaks have occurred at high elevation sites. Some amphibian species harbor bacterial skin communities that can inhibit the growth of Bd, and therefore, there is interest in understanding whether environmental context could also alter these host-associated microbial communities in a way that might ultimately impact Bd dynamics. In a field survey in Panamá, we assessed skin bacterial communities (16S rRNA amplicon sequencing) and metabolite profiles (HPLC-UV/Vis) of Silverstoneia flotator from three high- and three low-elevation populations representing a range of environmental conditions. Across elevations, frogs had similar skin bacterial communities, although one lowland site appeared to differ. Interestingly, we found that bacterial richness decreased from west to east, coinciding with the direction of Bd spread through Panamá. Moreover, metabolite profiles suggested potential functional variation among frog populations and between elevations. While the frogs have similar bacterial community structure, the local environment might shape the metabolite profiles. Ultimately, host-associated community structure and function could be dependent on environmental conditions, which could ultimately influence host disease susceptibility across sites.
Collapse
Affiliation(s)
- Daniel Medina
- Department of Biological Sciences, Virginia Tech, 2119 Derring Hall (0406), Blacksburg, VA, 24061, USA.
| | - Myra C Hughey
- Department of Biological Sciences, Virginia Tech, 2119 Derring Hall (0406), Blacksburg, VA, 24061, USA
| | - Matthew H Becker
- Department of Biological Sciences, Virginia Tech, 2119 Derring Hall (0406), Blacksburg, VA, 24061, USA
| | - Jenifer B Walke
- Department of Biological Sciences, Virginia Tech, 2119 Derring Hall (0406), Blacksburg, VA, 24061, USA
| | - Thomas P Umile
- Department of Chemistry, Villanova University, Villanova, PA, USA
| | | | - Anthony Iannetta
- Department of Chemistry, Villanova University, Villanova, PA, USA
| | | | - Lisa K Belden
- Department of Biological Sciences, Virginia Tech, 2119 Derring Hall (0406), Blacksburg, VA, 24061, USA
| |
Collapse
|
35
|
Sabino‐Pinto J, Galán P, Rodríguez S, Bletz MC, Bhuju S, Geffers R, Jarek M, Vences M. Temporal changes in cutaneous bacterial communities of terrestrial‐ and aquatic‐phase newts (Amphibia). Environ Microbiol 2017; 19:3025-3038. [DOI: 10.1111/1462-2920.13762] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 04/05/2017] [Accepted: 04/08/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Joana Sabino‐Pinto
- Zoological InstituteBraunschweig University of TechnologyBraunschweig38106 Germany
| | - Pedro Galán
- Departamento de Bioloxía, Facultade de CienciasUniversidade da Coruña, Grupo de Investigación en Biología Evolutiva (GIBE)A Coruña15071 Spain
| | - Silvia Rodríguez
- Departamento de Bioloxía, Facultade de CienciasUniversidade da Coruña, Grupo de Investigación en Biología Evolutiva (GIBE)A Coruña15071 Spain
| | - Molly C. Bletz
- Zoological InstituteBraunschweig University of TechnologyBraunschweig38106 Germany
| | - Sabin Bhuju
- Department of Genome AnalyticsHelmholtz Centre for Infection ResearchBraunschweig38124 Germany
| | - Robert Geffers
- Department of Genome AnalyticsHelmholtz Centre for Infection ResearchBraunschweig38124 Germany
| | - Michael Jarek
- Department of Genome AnalyticsHelmholtz Centre for Infection ResearchBraunschweig38124 Germany
| | - Miguel Vences
- Zoological InstituteBraunschweig University of TechnologyBraunschweig38106 Germany
| |
Collapse
|
36
|
Antifungal Bacteria on Woodland Salamander Skin Exhibit High Taxonomic Diversity and Geographic Variability. Appl Environ Microbiol 2017; 83:AEM.00186-17. [PMID: 28213545 DOI: 10.1128/aem.00186-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 02/10/2017] [Indexed: 12/31/2022] Open
Abstract
Diverse bacteria inhabit amphibian skin; some of those bacteria inhibit growth of the fungal pathogen Batrachochytrium dendrobatidis Yet there has been no systematic survey of anti-B. dendrobatidis bacteria across localities, species, and elevations. This is important given geographic and taxonomic variations in amphibian susceptibility to B. dendrobatidis Our collection sites were at locations within the Appalachian Mountains where previous sampling had indicated low B. dendrobatidis prevalence. We determined the numbers and identities of anti-B. dendrobatidis bacteria on 61 Plethodon salamanders (37 P. cinereus, 15 P. glutinosus, 9 P. cylindraceus) via culturing methods and 16S rRNA gene sequencing. We sampled co-occurring species at three localities and sampled P. cinereus along an elevational gradient (700 to 1,000 meters above sea level [masl]) at one locality. We identified 50 anti-B. dendrobatidis bacterial operational taxonomic units (OTUs) and found that the degree of B. dendrobatidis inhibition was not correlated with relatedness. Five anti-B. dendrobatidis bacterial strains occurred on multiple amphibian species at multiple localities, but none were shared among all species and localities. The prevalence of anti-B. dendrobatidis bacteria was higher at Shenandoah National Park (NP), VA, with 96% (25/26) of salamanders hosting at least one anti-B. dendrobatidis bacterial species compared to 50% (7/14) at Catoctin Mountain Park (MP), MD, and 38% (8/21) at Mt. Rogers National Recreation Area (NRA), VA. At the individual level, salamanders at Shenandoah NP had more anti-B. dendrobatidis bacteria per individual (μ = 3.3) than those at Catoctin MP (μ = 0.8) and at Mt. Rogers NRA (μ = 0.4). All salamanders tested negative for B. dendrobatidis Anti-B. dendrobatidis bacterial species are diverse in central Appalachian Plethodon salamanders, and their distribution varied geographically. The antifungal bacterial species that we identified may play a protective role for these salamanders.IMPORTANCE Amphibians harbor skin bacteria that can kill an amphibian fungal pathogen, Batrachochytrium dendrobatidis Some amphibians die from B. dendrobatidis infection, whereas others do not. The bacteria that can kill B. dendrobatidis, called anti-B. dendrobatidis bacteria, are thought to influence the B. dendrobatidis infection outcome for the amphibian. Yet how anti-B. dendrobatidis bacterial species vary among amphibian species and populations is unknown. We determined the distribution of anti-B. dendrobatidis bacterial species among three salamander species (n = 61) sampled at three localities. We identified 50 unique anti-B. dendrobatidis bacterial species and found that all of the tested salamanders were negative for B. dendrobatidis Five anti-B. dendrobatidis bacterial species were commonly detected, suggesting a stable, functional association with these salamanders. The number of anti-B. dendrobatidis bacteria per individual varied among localities but not among co-occurring salamander species, demonstrating that environment is more influential than host factors in structuring the anti-B. dendrobatidis bacterial community. These anti-B. dendrobatidis bacteria may serve a protective function for their salamander hosts.
Collapse
|
37
|
Chang CW, Huang BH, Lin SM, Huang CL, Liao PC. Changes of diet and dominant intestinal microbes in farmland frogs. BMC Microbiol 2016; 16:33. [PMID: 26966006 PMCID: PMC4785643 DOI: 10.1186/s12866-016-0660-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 03/02/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Agricultural activities inevitably result in anthropogenic interference with natural habitats. The diet and the gut microbiota of farmland wildlife can be altered due to the changes in food webs within agricultural ecosystems. In this work, we compared the diet and intestinal microbiota of the frog Fejervarya limnocharis in natural and farmland habitats in order to understand how custom farming affects the health of in vivo microbial ecosystems. RESULTS The occurrence, abundance, and the numbers of prey categories of stomach content were significantly different between the frogs inhabiting natural and farmland habitats. In addition, differences in the abundance, species richness, and alpha-diversity of intestinal microbial communities were also statistically significant. The microbial composition, and particularly the composition of dominant microbes living in intestines, indicated that the land use practices might be one of factors affecting the gut microbial community composition. Although the first three dominant microbial phyla Bacteroidetes, Firmicutes, and Proteobacteria found in the intestines of frogs were classified as generalists among habitats, the most dominant gut bacterial phylum Bacteroidetes in natural environments was replaced by the microbial phylum Firmicutes in farmland frogs. Increased intestinal microbial richness of the farmland frogs, which is mostly contributed by numerous microbial species of Proteobacteria, Actinobacteria, Acidobacteria, and Planctomycetes, not only reflects the possible shifts in microbial community composition through the alteration of external ecosystem, but also indicates the higher risk of invasion by disease-related microbes. CONCLUSIONS This study indicates that anthropogenic activities, such as the custom farming, have not only affected the food resources of frogs, but also influenced the health and in vivo microbial ecosystem of wildlife.
Collapse
Affiliation(s)
- Chun-Wen Chang
- />Department of Life Science, National Taiwan Normal University, Taipei, 11677 Taiwan
- />Taiwan Forestry Research Institute, Technical Service Division, Taipei, 10066 Taiwan
| | - Bing-Hong Huang
- />Department of Life Science, National Taiwan Normal University, Taipei, 11677 Taiwan
| | - Si-Min Lin
- />Department of Life Science, National Taiwan Normal University, Taipei, 11677 Taiwan
| | - Chia-Lung Huang
- />Department of Life Science, National Taiwan Normal University, Taipei, 11677 Taiwan
| | - Pei-Chun Liao
- />Department of Life Science, National Taiwan Normal University, Taipei, 11677 Taiwan
| |
Collapse
|