1
|
Zhou J, Gao B, Zhang H, Yang R, Huang J, Li X, Zhong Y, Wang Y, Zhu X, Luo Y, Yan F. Ginsenoside modified lipid-coated perfluorocarbon nanodroplets: A novel approach to reduce complement protein adsorption and prolong in vivo circulation. Acta Pharm Sin B 2024; 14:1845-1863. [PMID: 38572112 PMCID: PMC10985128 DOI: 10.1016/j.apsb.2023.11.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 04/05/2024] Open
Abstract
Lipid-coated perfluorocarbon nanodroplets (lp-NDs) hold great promise in bio-medicine as vehicles for drug delivery, molecular imaging and vaccine agents. However, their clinical utility is restricted by limited targeted accumulation, attributed to the innate immune system (IIS), which acts as the initial defense mechanism in humans. This study aimed to optimize lp-ND formulations to minimize non-specific clearance by the IIS. Ginsenosides (Gs), the principal components of Panax ginseng, possessing complement inhibition ability, structural similarity to cholesterol, and comparable fat solubility to phospholipids, were used as promising candidate IIS inhibitors. Two different types of ginsenoside-based lp-NDs (Gs lp-NDs) were created, and their efficacy in reducing IIS recognition was examined. The Gs lp-NDs were observed to inhibit the adsorption of C3 in the protein corona (PC) and the generation of SC5b-9. Adding Gs to lp-NDs reduced complement adsorption and phagocytosis, resulting in a longer blood circulation time in vivo compared to lp-NDs that did not contain Gs. These results suggest that Gs can act as anti-complement and anti-phagocytosis adjuvants, potentially reducing non-specific clearance by the IIS and improving lifespan.
Collapse
Affiliation(s)
- Jie Zhou
- Ultrasound Department of West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Ultrasound Imaging of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Binyang Gao
- Ultrasound Department of West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Ultrasound Imaging of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Huan Zhang
- Ultrasound Department of West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Ultrasound Imaging of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rui Yang
- Ultrasound Department of West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Ultrasound Imaging of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jianbo Huang
- Ultrasound Department of West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Ultrasound Imaging of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xin Li
- West China Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Zhong
- West China Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yan Wang
- Research Core Facilities of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoxia Zhu
- Ultrasound Department of West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Ultrasound Imaging of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yan Luo
- Ultrasound Department of West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Ultrasound Imaging of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Feng Yan
- Ultrasound Department of West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Ultrasound Imaging of West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
2
|
Liu S, Ding R, Yuan J, Zhang X, Deng X, Xie Y, Wang Z. Melanin-Inspired Composite Materials: From Nanoarchitectonics to Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3001-3018. [PMID: 38195388 DOI: 10.1021/acsami.3c14604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Synthetic melanin is a mimic of natural melanin analogue with intriguing properties such as metal-ion chelation, redox activity, adhesion, and broadband absorption. Melanin-inspired composite materials are formulated by assembly of melanin with other types of inorganic and organic components to target, combine, and build up the functionality, far beyond their natural capabilities. Developing efficient and universal methodologies to prepare melanin-based composite materials with unique functionality is vital for their further applications. In this review, we summarize three types of synthetic approaches, predoping, surface engineering, and physical blending, to access various melanin-inspired composite materials with distinctive structure and properties. The applications of melanin-inspired composite materials in free radical scavenging, bioimaging, antifouling, and catalytic applications are also reviewed. This review also concludes current challenges that must be addressed and research opportunities in future studies.
Collapse
Affiliation(s)
- Shang Liu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ran Ding
- Key Laboratory of Polymeric Material Design and Synthesis for Biomedical Function, Soochow University, Suzhou 215123, China
| | - Jiaxin Yuan
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xicheng Zhang
- The Department of Vascular Surgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaoyong Deng
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yijun Xie
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
- Key Laboratory of Polymeric Material Design and Synthesis for Biomedical Function, Soochow University, Suzhou 215123, China
| | - Zhao Wang
- Key Laboratory of Polymeric Material Design and Synthesis for Biomedical Function, Soochow University, Suzhou 215123, China
| |
Collapse
|
3
|
Cooke DJ, Maier EY, King TL, Lin H, Hendrichs S, Lee S, Mafy NN, Scott KM, Lu Y, Que EL. Dual Nanoparticle Conjugates for Highly Sensitive and Versatile Sensing Using 19 F Magnetic Resonance Imaging. Angew Chem Int Ed Engl 2024; 63:e202312322. [PMID: 38016929 DOI: 10.1002/anie.202312322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/11/2023] [Accepted: 11/28/2023] [Indexed: 11/30/2023]
Abstract
Fluorine magnetic resonance imaging (19 F MRI) has emerged as an attractive alternative to conventional 1 H MRI due to enhanced specificity deriving from negligible background signal in this modality. We report a dual nanoparticle conjugate (DNC) platform as an aptamer-based sensor for use in 19 F MRI. DNC consists of core-shell nanoparticles with a liquid perfluorocarbon core and a mesoporous silica shell (19 F-MSNs), which give a robust 19 F MR signal, and superparamagnetic iron oxide nanoparticles (SPIONs) as magnetic quenchers. Due to the strong magnetic quenching effects of SPIONs, this platform is uniquely sensitive and functions with a low concentration of SPIONs (4 equivalents) relative to 19 F-MSNs. The probe functions as a "turn-on" sensor using target-induced dissociation of DNA aptamers. The thrombin binding aptamer was incorporated as a proof-of-concept (DNCThr ), and we demonstrate a significant increase in 19 F MR signal intensity when DNCThr is incubated with human α-thrombin. This proof-of-concept probe is highly versatile and can be adapted to sense ATP and kanamycin as well. Importantly, DNCThr generates a robust 19 F MRI "hot-spot" signal in response to thrombin in live mice, establishing this platform as a practical, versatile, and biologically relevant molecular imaging probe.
Collapse
Affiliation(s)
- Daniel J Cooke
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Esther Y Maier
- College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA
| | - Tyler L King
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Haoding Lin
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Santiago Hendrichs
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Slade Lee
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Noushaba N Mafy
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Kathleen M Scott
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
- Departments of chemical engineering, biomedical engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Emily L Que
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
4
|
Silva DF, Melo ALP, Uchôa AFC, Pereira GMA, Alves AEF, Vasconcellos MC, Xavier-Júnior FH, Passos MF. Biomedical Approach of Nanotechnology and Biological Risks: A Mini-Review. Int J Mol Sci 2023; 24:16719. [PMID: 38069043 PMCID: PMC10706257 DOI: 10.3390/ijms242316719] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/10/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Nanotechnology has played a prominent role in biomedical engineering, offering innovative approaches to numerous treatments. Notable advances have been observed in the development of medical devices, contributing to the advancement of modern medicine. This article briefly discusses key applications of nanotechnology in tissue engineering, controlled drug release systems, biosensors and monitoring, and imaging and diagnosis. The particular emphasis on this theme will result in a better understanding, selection, and technical approach to nanomaterials for biomedical purposes, including biological risks, security, and biocompatibility criteria.
Collapse
Affiliation(s)
- Debora F. Silva
- Technological Development Group in Biopolymers and Biomaterials from the Amazon, Graduate Program in Materials Science and Engineering, Federal University of Para, Ananindeua 67130-660, Brazil;
| | - Ailime L. P. Melo
- Technological Development Group in Biopolymers and Biomaterials from the Amazon, Graduate Program in Biotechnology, Federal University of Para, Belem 66075-110, Brazil
| | - Ana F. C. Uchôa
- Pharmaceutical Biotechnology Laboratory (BioTecFarm), Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (A.F.C.U.); (F.H.X.-J.)
| | - Graziela M. A. Pereira
- Pharmaceutical Biotechnology Laboratory (BioTecFarm), Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (A.F.C.U.); (F.H.X.-J.)
| | - Alisson E. F. Alves
- Post-Graduate Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
| | | | - Francisco H. Xavier-Júnior
- Pharmaceutical Biotechnology Laboratory (BioTecFarm), Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (A.F.C.U.); (F.H.X.-J.)
- Post-Graduate Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
| | - Marcele F. Passos
- Technological Development Group in Biopolymers and Biomaterials from the Amazon, Graduate Program in Materials Science and Engineering, Federal University of Para, Ananindeua 67130-660, Brazil;
- Technological Development Group in Biopolymers and Biomaterials from the Amazon, Graduate Program in Biotechnology, Federal University of Para, Belem 66075-110, Brazil
| |
Collapse
|
5
|
Li J, Kirberger SE, Wang Y, Cui H, Wagner CR, Pomerantz WCK. Design of Highly Fluorinated Peptides for Cell-based 19F NMR. Bioconjug Chem 2023; 34:1477-1485. [PMID: 37523271 PMCID: PMC10699466 DOI: 10.1021/acs.bioconjchem.3c00245] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
The design of imaging agents with high fluorine content is essential for overcoming the challenges associated with signal detection limits in 19F MRI-based molecular imaging. In addition to perfluorocarbon and fluorinated polymers, fluorinated peptides offer an additional strategy for creating sequence-defined 19F magnetic resonance imaging (MRI) imaging agents with a high fluorine signal. Our previously reported unstructured trifluoroacetyllysine-based peptides possessed good physiochemical properties and could be imaged at high magnetic field strength. However, the low detection limit motivated further improvements in the fluorine content of the peptides as well as removal of nonspecific cellular interactions. This research characterizes several new highly fluorinated synthetic peptides composed of highly fluorinated amino acids. 19F NMR analysis of peptides TB-1 and TB-9 led to highly overlapping, intense fluorine resonances and acceptable aqueous solubility. Flow cytometry analysis and fluorescence microscopy further showed nonspecific binding could be removed in the case of TB-9. As a preliminary experiment toward developing molecular imaging agents, a fluorinated EGFR-targeting peptide (KKKFFKK-βA-YHWYGYTPENVI) and an EGFR-targeting protein complex E1-DD bioconjugated to TB-9 were prepared. Both bioconjugates maintained good 19F NMR performance in aqueous solution. While the E1-DD-based imaging agent will require further engineering, the success of cell-based 19F NMR of the EGFR-targeting peptide in A431 cells supports the potential use of fluorinated peptides for molecular imaging.
Collapse
Affiliation(s)
- Jiaqian Li
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Steven E Kirberger
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yiao Wang
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Huarui Cui
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Carston R Wagner
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - William C K Pomerantz
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
6
|
Vargas I, Grabau RP, Chen J, Weinheimer C, Kovacs A, Dominguez-Viqueira W, Mitchell A, Wickline SA, Pan H. Simultaneous Inhibition of Thrombosis and Inflammation Is Beneficial in Treating Acute Myocardial Infarction. Int J Mol Sci 2023; 24:7333. [PMID: 37108494 PMCID: PMC10138953 DOI: 10.3390/ijms24087333] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/28/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Myocardial ischemia reperfusion injury (IRI) in acute coronary syndromes is a condition in which ischemic/hypoxic injury to cells subtended by the occluded vessel continues despite successful resolution of the thrombotic obstruction. For decades, most efforts to attenuate IRI have focused on interdicting singular molecular targets or pathways, but none have successfully transitioned to clinical use. In this work, we investigate a nanoparticle-based therapeutic strategy for profound but local thrombin inhibition that may simultaneously mitigate both thrombosis and inflammatory signaling pathways to limit myocardial IRI. Perfluorocarbon nanoparticles (PFC NP) were covalently coupled with an irreversible thrombin inhibitor, PPACK (Phe[D]-Pro-Arg-Chloromethylketone), and delivered intravenously to animals in a single dose prior to ischemia reperfusion injury. Fluorescent microscopy of tissue sections and 19F magnetic resonance images of whole hearts ex vivo demonstrated abundant delivery of PFC NP to the area at risk. Echocardiography at 24 h after reperfusion demonstrated preserved ventricular structure and improved function. Treatment reduced thrombin deposition, suppressed endothelial activation, inhibited inflammasome signaling pathways, and limited microvascular injury and vascular pruning in infarct border zones. Accordingly, thrombin inhibition with an extraordinarily potent but locally acting agent suggested a critical role for thrombin and a promising therapeutic strategy in cardiac IRI.
Collapse
Affiliation(s)
- Ian Vargas
- University of South Florida Heart Institute, University of South Florida, Tampa, FL 33602, USA
| | - Ryan P. Grabau
- University of South Florida Heart Institute, University of South Florida, Tampa, FL 33602, USA
| | - Junjie Chen
- Consortium for Translational Research in Advanced Imaging and Nanomedicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carla Weinheimer
- Cardiovascular Division, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Attila Kovacs
- Cardiovascular Division, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Adam Mitchell
- Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Samuel A. Wickline
- University of South Florida Heart Institute, University of South Florida, Tampa, FL 33602, USA
| | - Hua Pan
- Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63105, USA
| |
Collapse
|
7
|
Zhou Q, Quirk JD, Hu Y, Yan H, Gaut JP, Pham CTN, Wickline SA, Pan H. Rapamycin Perfluorocarbon Nanoparticle Mitigates Cisplatin-Induced Acute Kidney Injury. Int J Mol Sci 2023; 24:6086. [PMID: 37047059 PMCID: PMC10093942 DOI: 10.3390/ijms24076086] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
For nearly five decades, cisplatin has played an important role as a standard chemotherapeutic agent and been prescribed to 10-20% of all cancer patients. Although nephrotoxicity associated with platinum-based agents is well recognized, treatment of cisplatin-induced acute kidney injury is mainly supportive and no specific mechanism-based prophylactic approach is available to date. Here, we postulated that systemically delivered rapamycin perfluorocarbon nanoparticles (PFC NP) could reach the injured kidneys at sufficient and sustained concentrations to mitigate cisplatin-induced acute kidney injury and preserve renal function. Using fluorescence microscopic imaging and fluorine magnetic resonance imaging/spectroscopy, we illustrated that rapamycin-loaded PFC NP permeated and were retained in injured kidneys. Histologic evaluation and blood urea nitrogen (BUN) confirmed that renal structure and function were preserved 48 h after cisplatin injury. Similarly, weight loss was slowed down. Using western blotting and immunofluorescence staining, mechanistic studies revealed that rapamycin PFC NP significantly enhanced autophagy in the kidney, reduced the expression of intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1), as well as decreased the expression of the apoptotic protein Bax, all of which contributed to the suppression of apoptosis that was confirmed with TUNEL staining. In summary, the delivery of an approved agent such as rapamycin in a PFC NP format enhances local delivery and offers a novel mechanism-based prophylactic therapy for cisplatin-induced acute kidney injury.
Collapse
Affiliation(s)
- Qingyu Zhou
- Taneja College of Pharmacy, University of South Florida, Tampa, FL 33620, USA
| | - James D. Quirk
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ying Hu
- Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Huimin Yan
- Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joseph P. Gaut
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christine T. N. Pham
- Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Samuel A. Wickline
- Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Hua Pan
- Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
8
|
Qin Y, Geng X, Sun Y, Zhao Y, Chai W, Wang X, Wang P. Ultrasound nanotheranostics: Toward precision medicine. J Control Release 2023; 353:105-124. [PMID: 36400289 DOI: 10.1016/j.jconrel.2022.11.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/24/2022]
Abstract
Ultrasound (US) is a mechanical wave that can penetrate biological tissues and trigger complex bioeffects. The mechanisms of US in different diagnosis and treatment are different, and the functional application of commercial US is also expanding. In particular, recent developments in nanotechnology have led to a wider use of US in precision medicine. In this review, we focus on US in combination with versatile micro and nanoparticles (NPs)/nanovesicles for tumor theranostics. We first introduce US-assisted drug delivery as a stimulus-responsive approach that spatiotemporally regulates the deposit of nanomedicines in target tissues. Multiple functionalized NPs and their US-regulated drug-release curves are analyzed in detail. Moreover, as a typical representative of US therapy, sonodynamic antitumor strategy is attracting researchers' attention. The collaborative efficiency and mechanisms of US and various nano-sensitizers such as nano-porphyrins and organic/inorganic nanosized sensitizers are outlined in this paper. A series of physicochemical processes during ultrasonic cavitation and NPs activation are also discussed. Finally, the new applications of US and diagnostic NPs in tumor-monitoring and image-guided combined therapy are summarized. Diagnostic NPs contain substances with imaging properties that enhance US contrast and photoacoustic imaging. The development of such high-resolution, low-background US-based imaging methods has contributed to modern precision medicine. It is expected that the integration of non-invasive US and nanotechnology will lead to significant breakthroughs in future clinical applications.
Collapse
Affiliation(s)
- Yang Qin
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xiaorui Geng
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yue Sun
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yitong Zhao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Wenyu Chai
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xiaobing Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| | - Pan Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
9
|
Tajahmadi S, Molavi H, Ahmadijokani F, Shamloo A, Shojaei A, Sharifzadeh M, Rezakazemi M, Fatehizadeh A, Aminabhavi TM, Arjmand M. Metal-organic frameworks: A promising option for the diagnosis and treatment of Alzheimer's disease. J Control Release 2023; 353:1-29. [PMID: 36343762 DOI: 10.1016/j.jconrel.2022.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/22/2022]
Abstract
Beta-amyloid (Aβ) peptide is one of the main characteristic biomarkers of Alzheimer's disease (AD). Previous clinical investigations have proposed that unusual concentrations of this biomarker in cerebrospinal fluid, blood, and brain tissue are closely associated with the AD progression. Therefore, the critical point of early diagnosis, prevention, and treatment of AD is to monitor the levels of Aβ. In view of the potential of metal-organic frameworks (MOFs) for diagnosing and treating the AD, much attention has been focused in recent years. This review discusses the latest advances in the applications of MOFs for the early diagnosis of AD via fluorescence and electrochemiluminescence (ECL) detection of AD biomarkers, fluorescence detection of the main metal ions in the brain (Zn2+, Cu2+, Mn2+, Fe3+, and Al3+) in addition to magnetic resonance imaging (MRI) of the Aβ plaques. The current challenges and future strategies for translating the in vitro applications of MOFs into in vivo diagnosis of the AD are discussed.
Collapse
Affiliation(s)
- Shima Tajahmadi
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran, Iran
| | - Hossein Molavi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran; Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan 45137-66731, Iran
| | - Farhad Ahmadijokani
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Amir Shamloo
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran, Iran; Department of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran.
| | - Akbar Shojaei
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran, Iran; Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Ali Fatehizadeh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka 580 031, India; School of Engineering, UPES, Bidholi, Dehradun, Uttarakhand 248 007, India.
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada.
| |
Collapse
|
10
|
Sun Y, Yang J, Li Y, Luo J, Sun J, Li D, Wang Y, Wang K, Yang L, Wu L, Sun X. Single low-dose INC280-loaded theranostic nanoparticles achieve multirooted delivery for MET-targeted primary and liver metastatic NSCLC. Mol Cancer 2022; 21:212. [PMID: 36457016 PMCID: PMC9717478 DOI: 10.1186/s12943-022-01681-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/11/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) patients with primary tumors and liver metastases have substantially reduced survival. Since mesenchymal-epithelial transition factor (MET) plays a significant role in the molecular mechanisms of advanced NSCLC, small molecule MET inhibitor capmatinib (INC280) hold promise for clinically NSCLC treatment. However, the major obstacles of MET-targeted therapy are poor drug solubility and off-tumor effects, even oral high-dosing regimens cannot significantly increase the therapeutic drug concentration in primary and metastatic NSCLC. METHODS We developed a multirooted delivery system INC280-PFCE nanoparticles (NPs) by loading INC280 into perfluoro-15-crown-5-ether for improving MET-targeted therapy. Biodistribution and anti-MET/antimetastatic effects of NPs were validated in orthotopic NSCLC and NSCLC liver metastasis models in a single low-dose. The efficacy of INC280-PFCE NPs was also explored in human NSCLC specimens. RESULTS INC280-PFCE NPs exhibited excellent antitumor ability in vitro. In orthotopic NSCLC models, sustained release and prolonged retention behaviors of INC280-PFCE NPs within tumors could be visualized in real-time by 19F magnetic resonance imaging (19F-MRI), and single pulmonary administration of NPs showed more significant tumor growth inhibition than oral administration of free INC280 at a tenfold higher dose. Furthermore, a single low-dose INC280-PFCE NPs administered intravenously suppressed widespread dissemination of liver metastasis without systemic toxicity. Finally, we verified the clinical translation potential of INC280-PFCE NPs in human NSCLC specimens. CONCLUSIONS These results demonstrated high anti-MET/antimetastatic efficacies, real-time MRI visualization and high biocompatibility of NPs after a single low-dose.
Collapse
Affiliation(s)
- Yige Sun
- grid.410736.70000 0001 2204 9268 Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, 150028 Heilongjiang China ,grid.410736.70000 0001 2204 9268NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, 150028 Heilongjiang China
| | - Jie Yang
- grid.410736.70000 0001 2204 9268 Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, 150028 Heilongjiang China ,grid.410736.70000 0001 2204 9268NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, 150028 Heilongjiang China
| | - Yingbo Li
- grid.410736.70000 0001 2204 9268 Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, 150028 Heilongjiang China ,grid.410736.70000 0001 2204 9268NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, 150028 Heilongjiang China
| | - Jing Luo
- grid.410736.70000 0001 2204 9268 Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, 150028 Heilongjiang China ,grid.410736.70000 0001 2204 9268NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, 150028 Heilongjiang China
| | - Jiemei Sun
- grid.410736.70000 0001 2204 9268 Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, 150028 Heilongjiang China ,grid.410736.70000 0001 2204 9268NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, 150028 Heilongjiang China
| | - Daoshuang Li
- grid.410736.70000 0001 2204 9268 Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, 150028 Heilongjiang China ,grid.410736.70000 0001 2204 9268NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, 150028 Heilongjiang China
| | - Yuchen Wang
- grid.410736.70000 0001 2204 9268 Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, 150028 Heilongjiang China ,grid.410736.70000 0001 2204 9268NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, 150028 Heilongjiang China
| | - Kai Wang
- grid.410736.70000 0001 2204 9268 Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, 150028 Heilongjiang China ,grid.410736.70000 0001 2204 9268NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, 150028 Heilongjiang China
| | - Lili Yang
- grid.410736.70000 0001 2204 9268 Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, 150028 Heilongjiang China ,grid.410736.70000 0001 2204 9268NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, 150028 Heilongjiang China
| | - Lina Wu
- grid.410736.70000 0001 2204 9268 Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, 150028 Heilongjiang China ,grid.410736.70000 0001 2204 9268NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, 150028 Heilongjiang China
| | - Xilin Sun
- grid.410736.70000 0001 2204 9268 Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, 150028 Heilongjiang China ,grid.410736.70000 0001 2204 9268NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, 150028 Heilongjiang China
| |
Collapse
|
11
|
Gaines LGT. Historical and current usage of per- and polyfluoroalkyl substances (PFAS): A literature review. Am J Ind Med 2022; 66:353-378. [PMID: 35614869 DOI: 10.1002/ajim.23362] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) have uniquely useful chemical and physical properties, leading to their extensive industrial, commercial, and consumer applications since at least the 1950s. Some industries have publicly reported at least some degree of information regarding their PFAS use, while other industries have reported little, if any, such information publicly. METHODS Publicly available sources were extensively researched for information. Literature searches were performed on key words via a variety of search mechanisms, including existing PFAS use and synthesis literature, patent databases, manufacturers' websites, public government databases, and library catalogs. Additional searches were conducted specifically for suspected or known uses. RESULTS PFAS have been used in a wide variety of applications, which are summarized into several industries and applications. The expanded literature search yielded additional references as well as greater details, such as concentrations and specific PFAS used, on several previously reported uses. CONCLUSIONS This knowledge will help inform which industries and occupations may lead to potential exposure to workers and to the environment.
Collapse
Affiliation(s)
- Linda G. T. Gaines
- U.S. Environmental Protection Agency Washington District of Columbia USA
| |
Collapse
|
12
|
Chapelin F, Gedaly R, Sweeney Z, Gossett LJ. Prognostic Value of Fluorine-19 MRI Oximetry Monitoring in cancer. Mol Imaging Biol 2022; 24:208-219. [PMID: 34708396 DOI: 10.1007/s11307-021-01648-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/24/2022]
Abstract
Hypoxia is a key prognostic indicator in most solid tumors, as it is correlated to tumor angiogenesis, metastasis, recurrence, and response to therapy. Accurate measurement and mapping of tumor oxygenation profile and changes upon intervention could facilitate disease progression assessment and assist in treatment planning. Currently, no gold standard exists for non-invasive spatiotemporal measurement of hypoxia. Magnetic resonance imaging (MRI) represents an attractive option as it is a clinically available and non-ionizing imaging modality. Specifically, perfluorocarbon (PFC) beacons can be externally introduced into the tumor tissue and the linear dependence of their spin-lattice relaxation rate (R1) on the local partial pressure of oxygen (pO2) exploited for real-time tissue oxygenation monitoring in vivo. In this review, we will focus on early studies and recent developments of fluorine-19 MRI and spectroscopy (MRS) for evaluation of tumor oximetry and response to therapy.
Collapse
Affiliation(s)
- Fanny Chapelin
- F. Joseph Halcomb III, M.D. Department of Biomedical Engineering, University of Kentucky, 514F RMB, 143 Graham Avenue, Lexington, KY, USA.
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY, USA.
| | - Roberto Gedaly
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Department of Surgery, Transplant Division, University of Kentucky, Lexington, KY, USA
| | - Zachary Sweeney
- College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Liza J Gossett
- F. Joseph Halcomb III, M.D. Department of Biomedical Engineering, University of Kentucky, 514F RMB, 143 Graham Avenue, Lexington, KY, USA
| |
Collapse
|
13
|
Zhang W, Shi Y, Abd Shukor S, Vijayakumaran A, Vlatakis S, Wright M, Thanou M. Phase-shift nanodroplets as an emerging sonoresponsive nanomaterial for imaging and drug delivery applications. NANOSCALE 2022; 14:2943-2965. [PMID: 35166273 DOI: 10.1039/d1nr07882h] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanodroplets - emerging phase-changing sonoresponsive materials - have attracted substantial attention in biomedical applications for both tumour imaging and therapeutic purposes due to their unique response to ultrasound. As ultrasound is applied at different frequencies and powers, nanodroplets have been shown to cavitate by the process of acoustic droplet vapourisation (ADV), causing the development of mechanical forces which promote sonoporation through cellular membranes. This allows drugs to be delivered efficiently into deeper tissues where tumours are located. Recent reviews on nanodroplets are mostly focused on the mechanism of cavitation and their applications in biomedical fields. However, the chemistry of the nanodroplet components has not been discussed or reviewed yet. In this review, the commonly used materials and preparation methods of nanodroplets are summarised. More importantly, this review provides examples of variable chemistry components in nanodroplets which link them to their efficiency as ultrasound-multimodal imaging agents to image and monitor drug delivery. Finally, the drawbacks of current research, future development, and future direction of nanodroplets are discussed.
Collapse
Affiliation(s)
- Weiqi Zhang
- School of Cancer & Pharmaceutical Sciences, King's College London, UK.
| | - Yuhong Shi
- School of Cancer & Pharmaceutical Sciences, King's College London, UK.
| | | | | | - Stavros Vlatakis
- School of Cancer & Pharmaceutical Sciences, King's College London, UK.
| | - Michael Wright
- School of Cancer & Pharmaceutical Sciences, King's College London, UK.
| | - Maya Thanou
- School of Cancer & Pharmaceutical Sciences, King's College London, UK.
| |
Collapse
|
14
|
Joseph JM, Gigliobianco MR, Firouzabadi BM, Censi R, Di Martino P. Nanotechnology as a Versatile Tool for 19F-MRI Agent's Formulation: A Glimpse into the Use of Perfluorinated and Fluorinated Compounds in Nanoparticles. Pharmaceutics 2022; 14:382. [PMID: 35214114 PMCID: PMC8874484 DOI: 10.3390/pharmaceutics14020382] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
Simultaneously being a non-radiative and non-invasive technique makes magnetic resonance imaging (MRI) one of the highly sought imaging techniques for the early diagnosis and treatment of diseases. Despite more than four decades of research on finding a suitable imaging agent from fluorine for clinical applications, it still lingers as a challenge to get the regulatory approval compared to its hydrogen counterpart. The pertinent hurdle is the simultaneous intrinsic hydrophobicity and lipophobicity of fluorine and its derivatives that make them insoluble in any liquids, strongly limiting their application in areas such as targeted delivery. A blossoming technique to circumvent the unfavorable physicochemical characteristics of perfluorocarbon compounds (PFCs) and guarantee a high local concentration of fluorine in the desired body part is to encapsulate them in nanosystems. In this review, we will be emphasizing different types of nanocarrier systems studied to encapsulate various PFCs and fluorinated compounds, headway to be applied as a contrast agent (CA) in fluorine-19 MRI (19F MRI). We would also scrutinize, especially from studies over the last decade, the different types of PFCs and their specific applications and limitations concerning the nanoparticle (NP) system used to encapsulate them. A critical evaluation for future opportunities would be speculated.
Collapse
Affiliation(s)
- Joice Maria Joseph
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (J.M.J.); (B.M.F.); (P.D.M.)
| | | | | | - Roberta Censi
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (J.M.J.); (B.M.F.); (P.D.M.)
| | - Piera Di Martino
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (J.M.J.); (B.M.F.); (P.D.M.)
- Dipartimento di Farmacia, Università “G. D’Annunzio” Chieti e Pescara, 66100 Chieti, Italy
| |
Collapse
|
15
|
Wan Y, Fu LH, Li C, Lin J, Huang P. Conquering the Hypoxia Limitation for Photodynamic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103978. [PMID: 34580926 DOI: 10.1002/adma.202103978] [Citation(s) in RCA: 252] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/11/2021] [Indexed: 06/13/2023]
Abstract
Photodynamic therapy (PDT) has aroused great research interest in recent years owing to its high spatiotemporal selectivity, minimal invasiveness, and low systemic toxicity. However, due to the hypoxic nature characteristic of many solid tumors, PDT is frequently limited in therapeutic effect. Moreover, the consumption of O2 during PDT may further aggravate the tumor hypoxic condition, which promotes tumor proliferation, metastasis, and invasion resulting in poor prognosis of treatment. Therefore, numerous efforts have been made to increase the O2 content in tumor with the goal of enhancing PDT efficacy. Herein, these strategies developed in past decade are comprehensively reviewed to alleviate tumor hypoxia, including 1) delivering exogenous O2 to tumor directly, 2) generating O2 in situ, 3) reducing tumor cellular O2 consumption by inhibiting respiration, 4) regulating the TME, (e.g., normalizing tumor vasculature or disrupting tumor extracellular matrix), and 5) inhibiting the hypoxia-inducible factor 1 (HIF-1) signaling pathway to relieve tumor hypoxia. Additionally, the O2 -independent Type-I PDT is also discussed as an alternative strategy. By reviewing recent progress, it is hoped that this review will provide innovative perspectives in new nanomaterials designed to combat hypoxia and avoid the associated limitation of PDT.
Collapse
Affiliation(s)
- Yilin Wan
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Lian-Hua Fu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Chunying Li
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
16
|
Mali A, Kaijzel EL, Lamb HJ, Cruz LJ. 19F-nanoparticles: Platform for in vivo delivery of fluorinated biomaterials for 19F-MRI. J Control Release 2021; 338:870-889. [PMID: 34492234 DOI: 10.1016/j.jconrel.2021.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/19/2022]
Abstract
Fluorine-19 (19F) magnetic resonance imaging (MRI) features one of the most investigated and innovative techniques for quantitative and unambiguous cell tracking, providing information for both localization and number of cells. Because of the relative insensitivity of the MRI technique, a high number of magnetically equivalent fluorine atoms are required to gain detectable signals. However, an increased amount of 19F nuclei induces low solubility in aqueous solutions, making fluorine-based probes not suitable for in vivo imaging applications. In this context, nanoparticle-based platforms play a crucial role, since nanoparticles may carry a high payload of 19F-based contrast agents into the relevant cells or tissues, increase the imaging agents biocompatibility, and provide a highly versatile platform. In this review, we present an overview of the 19F-based nanoprobes for sensitive 19F-MRI, focusing on the main nanotechnologies employed to date, such as fluorine and theranostic nanovectors, including their design and applications.
Collapse
Affiliation(s)
- Alvja Mali
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Eric L Kaijzel
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Hildo J Lamb
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Luis J Cruz
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands.
| |
Collapse
|
17
|
Asialoglycoprotein Receptor-Targeted Superparamagnetic Perfluorooctylbromide Nanoparticles. CONTRAST MEDIA & MOLECULAR IMAGING 2021; 2021:5510071. [PMID: 34131415 PMCID: PMC8181107 DOI: 10.1155/2021/5510071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/24/2021] [Indexed: 11/18/2022]
Abstract
Background The decrease in asialoglycoprotein receptor (ASGPR) levels is observed in patients with chronic liver disease and liver tumor. The aim of our study was to develop ASGPR-targeted superparamagnetic perfluorooctylbromide nanoparticles (M-PFONP) and wonder whether this composite agent could target buffalo rat liver (BRL) cells in vitro and could improve R2∗ value of the rat liver parenchyma after its injection in vivo. Methods GalPLL, a ligand of ASGPR, was synthesized by reductive amination. ASGPR-targeted M-PFOBNP was prepared by a film hydration method coupled with sonication. Several analytical methods were used to investigate the characterization and safety of the contrast agent in vitro. The in vivo MR T2∗ mapping was performed to evaluate the enhancement effect in rat liver. Results The optimum concentration of Fe3O4 nanoparticles inclusion in GalPLL/M-PFOBNP was about 52.79 µg/mL, and the mean size was 285.6 ± 4.6 nm. The specificity of GalPLL/M-PFOBNP for ASGPR was confirmed by incubation experiment with fluorescence microscopy. The methyl thiazolyl tetrazolium (MTT) test showed that there was no significant difference in the optical density (OD) of cells incubated with all GalPLL/M-PFOBNP concentrations. Compared with M-PFOBNP, the increase in R2∗ value of the rat liver parenchyma after GalPLL/M-PFOBNP injection was higher. Conclusions GalPLL/M-PFOBNP may potentially serve as a liver-targeted contrast agent for MR receptor imaging.
Collapse
|
18
|
Hong L, Wang JL, Geng JX, Zhao YH, Zhou GX, Zhang J, Liu LW, Qu JL. Rational design of an oxygen-enriching nanoemulsion for enhanced near-infrared laser activatable photodynamic therapy against hypoxic tumors. Colloids Surf B Biointerfaces 2021; 198:111500. [DOI: 10.1016/j.colsurfb.2020.111500] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 01/10/2023]
|
19
|
Hu L, Pan H, Wickline SA. Fluorine ( 19F) MRI to Measure Renal Oxygen Tension and Blood Volume: Experimental Protocol. Methods Mol Biol 2021; 2216:509-518. [PMID: 33476021 PMCID: PMC9703288 DOI: 10.1007/978-1-0716-0978-1_31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Fluorinated compounds feature favorable toxicity profile and can be used as a contrast agent for magnetic resonance imaging and spectroscopy. Fluorine nucleus from fluorinated compounds exhibit well-known advantages of being a high signal nucleus with a natural abundance of its stable isotope, a convenient gyromagnetic ratio close to that of protons, and a unique spectral signature with no detectable background at clinical field strengths. Perfluorocarbon core nanoparticles (PFC NP) are a class of clinically approved emulsion agents recently applied in vivo for ligand-targeted molecular imaging. The objective of this chapter is to outline a multinuclear 1H/19F MRI protocol for functional kidney imaging in rodents for mapping of renal blood volume and oxygenation (pO2) in renal disease models.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This experimental protocol chapter is complemented by a separate chapter describing the basic concept of functional imaging using fluorine (19F) MR methods.
Collapse
Affiliation(s)
- Lingzhi Hu
- United Imaging Healthcare, Houston, TX, USA
| | - Hua Pan
- Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Samuel A Wickline
- Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
20
|
Ming L, Cheng K, Chen Y, Yang R, Chen D. Enhancement of tumor lethality of ROS in photodynamic therapy. Cancer Med 2021; 10:257-268. [PMID: 33141513 PMCID: PMC7826450 DOI: 10.1002/cam4.3592] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022] Open
Abstract
In the process of photodynamic therapy (PDT) treatment of tumors, reactive oxygen species (ROS) plays a key role in destroying tumor tissues. However, traditional PDT often has limited ROS killing capacity due to hypoxia in the tumor microenvironment (TME) or obstruction by the ROS defense system, resulting in poor efficacy. Therefore, enhancing the killing effect of ROS on tumors is the core of enhancing the anti-tumor effect of PDT. In recent years, many studies have developed a series of strategies to enhance the ability of ROS to kill tumors in view of the limitations of the TME on PDT. This article summarizes the commonly used or innovative strategies in recent years, including not only frequently used methods for hypoxia in the TME but also innovative strategies to inhibit the ROS defense system.
Collapse
Affiliation(s)
- Lan Ming
- Research Institute for Reproductive Health and Genetic DiseasesThe Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical UniversityWuxiChina
| | - Kai Cheng
- Research Institute for Reproductive Health and Genetic DiseasesThe Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical UniversityWuxiChina
| | - Yu Chen
- Research Institute for Reproductive Health and Genetic DiseasesThe Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical UniversityWuxiChina
| | - Rui Yang
- Research Institute for Reproductive Health and Genetic DiseasesThe Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical UniversityWuxiChina
| | - Daozhen Chen
- Research Institute for Reproductive Health and Genetic DiseasesThe Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical UniversityWuxiChina
| |
Collapse
|
21
|
Hong L, Pliss AM, Zhan Y, Zheng W, Xia J, Liu L, Qu J, Prasad PN. Perfluoropolyether Nanoemulsion Encapsulating Chlorin e6 for Sonodynamic and Photodynamic Therapy of Hypoxic Tumor. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2058. [PMID: 33086490 PMCID: PMC7603101 DOI: 10.3390/nano10102058] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 01/10/2023]
Abstract
Sonodynamic therapy (SDT) has emerged as an important modality for cancer treatment. SDT utilizes ultrasound excitation, which overcomes the limitations of light penetration in deep tumors, as encountered by photodynamic therapy (PDT) which uses optical excitations. A comparative study of these modalities using the same sensitizer drug can provide an assessment of their effects. However, the efficiency of SDT and PDT is low in a hypoxic tumor environment, which limits their applications. In this study, we report a hierarchical nanoformulation which contains a Food and Drug Administration (FDA) approved sensitizer chlorin, e6, and a uniquely stable high loading capacity oxygen carrier, perfluoropolyether. This oxygen carrier possesses no measurable cytotoxicity. It delivers oxygen to overcome hypoxia, and at the same time, boosts the efficiency of both SDT and PDT. Moreover, we comparatively analyzed the efficiency of SDT and PDT for tumor treatment throughout the depth of the tissue. Our study demonstrates that the strengths of PDT and SDT could be combined into a single multifunctional nanoplatform, which works well in the hypoxia environment and overcomes the limitations of each modality. The combination of deep tissue penetration by ultrasound and high spatial activation by light for selective treatment of single cells will significantly enhance the scope for therapeutic applications.
Collapse
Affiliation(s)
- Liang Hong
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China;
| | - Artem M. Pliss
- Institute for Lasers, Photonics and Biophotonics, University at Buffalo, State University of New York, Buffalo, New York, NY 14260, USA;
| | - Ye Zhan
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, NY 14260, USA; (Y.Z.); (W.Z.); (J.X.)
| | - Wenhan Zheng
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, NY 14260, USA; (Y.Z.); (W.Z.); (J.X.)
| | - Jun Xia
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, NY 14260, USA; (Y.Z.); (W.Z.); (J.X.)
| | - Liwei Liu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China;
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China;
| | - Paras N. Prasad
- Institute for Lasers, Photonics and Biophotonics, University at Buffalo, State University of New York, Buffalo, New York, NY 14260, USA;
| |
Collapse
|
22
|
Wu L, Liu F, Liu S, Xu X, Liu Z, Sun X. Perfluorocarbons-Based 19F Magnetic Resonance Imaging in Biomedicine. Int J Nanomedicine 2020; 15:7377-7395. [PMID: 33061385 PMCID: PMC7537992 DOI: 10.2147/ijn.s255084] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022] Open
Abstract
Fluorine-19 (19F) magnetic resonance (MR) molecular imaging is a promising noninvasive and quantitative molecular imaging approach with intensive research due to the high sensitivity and low endogenous background signal of the 19F atom in vivo. Perfluorocarbons (PFCs) have been used as blood substitutes since 1970s. More recently, a variety of PFC nanoparticles have been designed for the detection and imaging of physiological and pathological changes. These molecular imaging probes have been developed to label cells, target specific epitopes in tumors, monitor the prognosis and therapy efficacy and quantitate characterization of tumors and changes in tumor microenvironment noninvasively, therefore, significantly improving the prognosis and therapy efficacy. Herein, we discuss the recent development and applications of 19F MR techniques with PFC nanoparticles in biomedicine, with particular emphasis on ligand-targeted and quantitative 19F MR imaging approaches for tumor detection, oxygenation measurement, smart stimulus response and therapy efficacy monitoring, et al.
Collapse
Affiliation(s)
- Lina Wu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China.,TOF-PET/CT/MR Center, Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China
| | - Fang Liu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China.,Department of Medical Imaging, Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China
| | - Shuang Liu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China.,TOF-PET/CT/MR Center, Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China
| | - Xiuan Xu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China.,Department of Medical Imaging, Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China
| | - Zhaoxi Liu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China.,TOF-PET/CT/MR Center, Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China
| | - Xilin Sun
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China.,TOF-PET/CT/MR Center, Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China
| |
Collapse
|
23
|
Lim I, Vian A, van de Wouw HL, Day RA, Gomez C, Liu Y, Rheingold AL, Campàs O, Sletten EM. Fluorous Soluble Cyanine Dyes for Visualizing Perfluorocarbons in Living Systems. J Am Chem Soc 2020; 142:16072-16081. [PMID: 32808518 PMCID: PMC8366720 DOI: 10.1021/jacs.0c07761] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The bioorthogonal nature of perfluorocarbons provides a unique platform for introducing dynamic nano- and microdroplets into cells and organisms. To monitor the localization and deformation of the droplets, fluorous soluble fluorophores that are compatible with standard fluorescent protein markers and applicable to cells, tissues, and small organisms are necessary. Here, we introduce fluorous cyanine dyes that represent the most red-shifted fluorous soluble fluorophores to date. We study the effect of covalently appended fluorous tags on the cyanine scaffold and evaluate the changes in photophysical properties imparted by the fluorous phase. Ultimately, we showcase the utility of the fluorous soluble pentamethine cyanine dye for tracking the localization of perfluorocarbon nanoemulsions in macrophage cells and for measurements of mechanical forces in multicellular spheroids and zebrafish embryonic tissues. These studies demonstrate that the red-shifted cyanine dyes offer spectral flexibility in multiplexed imaging experiments and enhanced precision in force measurements.
Collapse
Affiliation(s)
- Irene Lim
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Antoine Vian
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106-5200, United States
| | - Heidi L. van de Wouw
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Rachael A. Day
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Carlos Gomez
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106-5200, United States
| | - Yucen Liu
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106-5200, United States
| | - Arnold L. Rheingold
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093-0505, United States
| | - Otger Campàs
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106-5200, United States
| | - Ellen M. Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| |
Collapse
|
24
|
Liu J, Li S, Liu L, Zhu Z. A fluorous biphase drug delivery system triggered by low frequency ultrasound: controlled release from perfluorous discoidal porous silicon particles. NANOSCALE ADVANCES 2020; 2:3561-3569. [PMID: 36134262 PMCID: PMC9419597 DOI: 10.1039/d0na00324g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/25/2020] [Indexed: 06/01/2023]
Abstract
Conventional drug delivery systems face unsatisfactory loading efficiency, poor biological bypass, and uncontrollable release, which are great barriers for improving the treatment of many diseases. Herein, a proof-of-concept of a fluorous biphase drug delivery system (FB-DDS) trigged by low frequency ultrasound (LFUS) is proposed for the first time, where promoted incorporation and stabilization of therapeutic agents in nanocarriers was achieved through fluorine-fluorine interactions, and the encapsulated drugs were controllably released by external sources, resulting in minimized nonspecific toxicity and enhanced therapeutic efficacy. The FB-DDS was constructed from monodisperse, discoidal porous silicon particles (PSP) and was functionalized with 1H,1H,2H,2H-perfluorodecyltrimethoxysilane (FAS17) for loading perfluoropentane (PFP) and fluorinated drugs through fluorine-fluorine interactions. This delivery system was demonstrated by utilizing model compounds including a fluorous-tagged fluorescein and a fluorine containing antibiotic ciprofloxacin. Loading of the model molecules into fluorocarbon-coated carriers was facilitated by fluorous interactions, whereas ejection of the model molecules was promoted by applying LFUS to rapidly evaporate PFP. In the in vitro test, these carriers loaded with fluorine containing ciprofloxacin exhibited excellent antimicrobial activity against Pseudomonas aeruginosa biofilm formation. Overall, this innovative stimulus-responsive fluorous biphase drug delivery system will be a promising candidate for practical applications as well as encouraging further investigation of drug delivery and controlled release strategies.
Collapse
Affiliation(s)
- Jing Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology Qingdao Shandong China 266042
| | - Shuo Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology Qingdao Shandong China 266042
| | - Lina Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology Qingdao Shandong China 266042
| | - Zhiling Zhu
- College of Materials Science and Engineering, Qingdao University of Science and Technology Qingdao Shandong China 266042
| |
Collapse
|
25
|
Sun Y, Zhao D, Wang G, Wang Y, Cao L, Sun J, Jiang Q, He Z. Recent progress of hypoxia-modulated multifunctional nanomedicines to enhance photodynamic therapy: opportunities, challenges, and future development. Acta Pharm Sin B 2020; 10:1382-1396. [PMID: 32963938 PMCID: PMC7488364 DOI: 10.1016/j.apsb.2020.01.004] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/12/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022] Open
Abstract
Hypoxia, a salient feature of most solid tumors, confers invasiveness and resistance to the tumor cells. Oxygen-consumption photodynamic therapy (PDT) suffers from the undesirable impediment of local hypoxia in tumors. Moreover, PDT could further worsen hypoxia. Therefore, developing effective strategies for manipulating hypoxia and improving the effectiveness of PDT has been a focus on antitumor treatment. In this review, the mechanism and relationship of tumor hypoxia and PDT are discussed. Moreover, we highlight recent trends in the field of nanomedicines to modulate hypoxia for enhancing PDT, such as oxygen supply systems, down-regulation of oxygen consumption and hypoxia utilization. Finally, the opportunities and challenges are put forward to facilitate the development and clinical transformation of PDT.
Collapse
Key Words
- 3O2, molecular oxygen
- APCs, antigen-presenting cells
- AQ4N, banoxantrone
- CaO2, calcium dioxide
- Cancer
- Ce6, chlorin e6
- CeO2, cerium oxide
- DC, dendritic cells
- DDS, drug delivery system
- DOX, doxorubicin
- EPR, enhanced permeability and retention
- FDA, U.S. Food and Drug Administration
- H2O, water
- H2O2, hydrogen peroxide
- HIF, hypoxia-inducible factor
- HIF-1α, hypoxia-inducible factor-1α
- HSA, human serum albumin
- Hb, hemoglobin
- Hypoxia
- MB, methylene blue
- MDR1, multidrug resistance 1
- MDSC, myeloid derived suppressive cells
- Mn-CDs, magnetofluorescent manganese-carbon dots
- MnO2, manganese dioxide
- NMR, nuclear magnetic resonance
- Nanomedicine delivery systems
- O2.−, superoxide anion
- OH., hydroxyl radical
- Oxygen
- PDT, photodynamic therapy
- PFC, perfluorocarbon
- PFH, perfluoroethane
- PS, photosensitizers
- Photodynamic therapy
- RBCs, red blood cells
- ROS, reactive oxygen species
- TAM, tumor-associated macrophages
- TPZ, tirapazamine
Collapse
Affiliation(s)
- Yixin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dongyang Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Gang Wang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yang Wang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Linlin Cao
- Department of Pharmaceutics, the Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qikun Jiang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
26
|
Phung CD, Tran TH, Pham LM, Nguyen HT, Jeong JH, Yong CS, Kim JO. Current developments in nanotechnology for improved cancer treatment, focusing on tumor hypoxia. J Control Release 2020; 324:413-429. [PMID: 32461115 DOI: 10.1016/j.jconrel.2020.05.029] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022]
Abstract
Hypoxia is a common feature of the tumor microenvironment, which is characterized by tissue oxygen deficiency due to an aggressive proliferation of cancer cells. Hypoxia activates hypoxia-inducible factor-dependent signaling, which in turn regulates metabolic reprogramming, immune suppression, resistance to apoptosis, angiogenesis, metastasis, and invasion to secondary sites. In this review, we provide an overview of the use of nanotechnology to harmonize intra-tumoral oxygen or suppress hypoxia-related signaling for an improved efficacy of cancer treatment. The biological background was followed by conducting a literature review on the (1) nanoparticles responsible for enhancing oxygen levels within the tumor, (2) nanoparticles sensitizing hypoxia, (3) nanoparticles suppressing hypoxia-inducing factor, (4) nanoparticles that relieve tumor hypoxia for enhancement of chemotherapy, photodynamic therapy, and immunotherapy, either individually or in combination. Lastly, the heterogeneity of cancer and limitations of nanotechnology are discussed to facilitate translational therapeutic treatment.
Collapse
Affiliation(s)
- Cao Dai Phung
- College of Pharmacy, Yeungnam University, 280 Deahak-ro, Gyeongsan 38541, Republic of Korea
| | - Tuan Hiep Tran
- Faculty of Pharmacy, PHENIKAA University, Yen Nghia, Ha Dong, Hanoi 12116, Viet Nam; PHENIKAA Research and Technology Institute (PRATI), A&A Green Phoenix Group JSC, No.167 Hoang Ngan, Trung Hoa, Cau Giay, Hanoi 11313, Viet Nam
| | - Le Minh Pham
- College of Pharmacy, Yeungnam University, 280 Deahak-ro, Gyeongsan 38541, Republic of Korea
| | - Hanh Thuy Nguyen
- Department of Industrial & Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, United States
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, 280 Deahak-ro, Gyeongsan 38541, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, 280 Deahak-ro, Gyeongsan 38541, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 280 Deahak-ro, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
27
|
Zhu X, Tang X, Lin H, Shi S, Xiong H, Zhou Q, Li A, Wang Q, Chen X, Gao J. A Fluorinated Ionic Liquid-Based Activatable 19F MRI Platform Detects Biological Targets. Chem 2020; 6:1134-1148. [PMID: 34084948 DOI: 10.1016/j.chempr.2020.01.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
19F magnetic resonance imaging (19F MRI) is a promising technique for in vivo molecular imaging and clinical diagnosis, benefiting from its negligible background and unlimited tissue penetration depth. However, the development of 19F probes with good water solubility and versatile functions for bioresponsive and practical applications remains a challenge. Here, we report fluorinated ion liquids (ILs) as a new type of fluorine agents and build a fluorinated ionic liquid-based activatable 19F MRI platform (FILAMP), which relies on the phase transition of ILs. Upon exposure to environmental stimulation, coating polymer dissolves or degrades to release the fluorinated ILs payload, which rapidly enhances 19F signal. This "turn-on" response is verified by the successful detection of biological targets (for example, dysregulated pH and MMP overexpression) at the cellular level and in mice, demonstrating the potential of FILAMP as a robust activatable 19F probe for diagnosis and monitoring of biological and pathological processes.
Collapse
Affiliation(s)
- Xianglong Zhu
- Department of Chemical Biology, State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.,College of Chemistry and Chemical Engineering, Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang 464000, China
| | - Xiaoxue Tang
- Department of Chemical Biology, State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hongyu Lin
- Department of Chemical Biology, State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Saige Shi
- College of Chemistry and Chemical Engineering, Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang 464000, China
| | - Hehe Xiong
- College of Chemistry and Chemical Engineering, Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang 464000, China
| | - Qiuju Zhou
- College of Chemistry and Chemical Engineering, Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang 464000, China
| | - Ao Li
- Department of Chemical Biology, State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qiaoyang Wang
- College of Chemistry and Chemical Engineering, Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang 464000, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jinhao Gao
- Department of Chemical Biology, State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.,Lead Contact
| |
Collapse
|
28
|
Wüst RCI, Calcagno C, Daal MRR, Nederveen AJ, Coolen BF, Strijkers GJ. Emerging Magnetic Resonance Imaging Techniques for Atherosclerosis Imaging. Arterioscler Thromb Vasc Biol 2020; 39:841-849. [PMID: 30917678 DOI: 10.1161/atvbaha.118.311756] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Atherosclerosis is a prevalent disease affecting a large portion of the population at one point in their lives. There is an unmet need for noninvasive diagnostics to identify and characterize at-risk plaque phenotypes noninvasively and in vivo, to improve the stratification of patients with cardiovascular disease, and for treatment evaluation. Magnetic resonance imaging is uniquely positioned to address these diagnostic needs. However, currently available magnetic resonance imaging methods for vessel wall imaging lack sufficient discriminative and predictive power to guide the individual patient needs. To address this challenge, physicists are pushing the boundaries of magnetic resonance atherosclerosis imaging to increase image resolution, provide improved quantitative evaluation of plaque constituents, and obtain readouts of disease activity such as inflammation. Here, we review some of these important developments, with specific focus on emerging applications using high-field magnetic resonance imaging, the use of quantitative relaxation parameter mapping for improved plaque characterization, and novel 19F magnetic resonance imaging technology to image plaque inflammation.
Collapse
Affiliation(s)
- Rob C I Wüst
- From the Biomedical Engineering and Physics (R.C.I.W., M.R.R.D., B.F.C., G.J.S.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Claudia Calcagno
- Department of Radiology, Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York (C.C., G.J.S.)
| | - Mariah R R Daal
- From the Biomedical Engineering and Physics (R.C.I.W., M.R.R.D., B.F.C., G.J.S.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Aart J Nederveen
- Radiology and Nuclear Medicine (A.J.N.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Bram F Coolen
- From the Biomedical Engineering and Physics (R.C.I.W., M.R.R.D., B.F.C., G.J.S.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Gustav J Strijkers
- From the Biomedical Engineering and Physics (R.C.I.W., M.R.R.D., B.F.C., G.J.S.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, the Netherlands.,Department of Radiology, Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York (C.C., G.J.S.)
| |
Collapse
|
29
|
Wilson AJ, Zhou Q, Vargas I, Palekar R, Grabau R, Pan H, Wickline SA. Formulation and Characterization of Antithrombin Perfluorocarbon Nanoparticles. Methods Mol Biol 2020; 2118:111-120. [PMID: 32152974 DOI: 10.1007/978-1-0716-0319-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Thrombin, a major protein involved in the clotting cascade by the conversion of inactive fibrinogen to fibrin, plays a crucial role in the development of thrombosis. Antithrombin nanoparticles enable site-specific anticoagulation without increasing bleeding risk. Here we outline the process of making and the characterization of bivalirudin and D-phenylalanyl-L-prolyl-L-arginyl-chloromethyl ketone (PPACK) nanoparticles. Additionally, the characterization of these nanoparticles, including particle size, zeta potential, and quantification of PPACK/bivalirudin loading, is also described.
Collapse
Affiliation(s)
- Alexander J Wilson
- The USF Health Heart Institute, University of South Florida, Tampa, FL, USA
| | - Qingyu Zhou
- College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Ian Vargas
- The USF Health Heart Institute, University of South Florida, Tampa, FL, USA
| | - Rohun Palekar
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Ryan Grabau
- The USF Health Heart Institute, University of South Florida, Tampa, FL, USA
| | - Hua Pan
- The USF Health Heart Institute, University of South Florida, Tampa, FL, USA
| | - Samuel A Wickline
- The USF Health Heart Institute, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
30
|
Wu H, Liu L, Song L, Ma M, Gu N, Zhang Y. Enhanced Tumor Synergistic Therapy by Injectable Magnetic Hydrogel Mediated Generation of Hyperthermia and Highly Toxic Reactive Oxygen Species. ACS NANO 2019; 13:14013-14023. [PMID: 31639298 DOI: 10.1021/acsnano.9b06134] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanoparticle-mediated tumor magnetic induction hyperthermia has received tremendous attention. However, it has been a challenge to improve the efficacy at 42 °C therapeutic temperatures without resistance to induced thermal stress. Therefore, we designed a magnetic hydrogel nanozyme (MHZ) utilizing inclusion complexation between PEGylated nanoparticles and α-cyclodextrin, which can enhance tumor oxidative stress levels by generating reactive oxygen species through nanozyme-catalyzed reactions based on tumor magnetic hyperthermia. MHZ can be injected and diffused into the tumor tissue due to shear thinning as well as magnetocaloric phase transition properties, and magnetic heat generated by the Fe3O4 first gives 42 °C of hyperthermia to the tumor. Fe3O4 nanozyme exerts peroxidase-like properties in the acidic environment of tumor to generate hydroxyl radicals (•OH) by the Fenton reaction. The hyperthermia promotes the enzymatic activity of Fe3O4 nanozyme to produce more •OH. Simultaneously, •OH further damages the protective heat shock protein 70, which is highly expressed in hyperthermia to enhance the therapeutic effect of hyperthermia. This single magnetic nanoparticle exerts dual functions of hyperthermia and catalytic therapy to synergistically treat tumors, overcoming the resistance of tumor cells to induced thermal stress without causing severe side effects to normal tissues at 42 °C hyperthermia.
Collapse
Affiliation(s)
- Haoan Wu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology , Southeast University , Nanjing 210096 , People's Republic of China
| | - Lei Liu
- Department of Pathology , Zhongshan Hospital, Fudan University , Shanghai 200032 , People's Republic of China
| | - Lina Song
- Department of Radiology , Affiliated Hospital of Nanjing University of Chinese Medicine , Nanjing 210029 , People's Republic of China
| | - Ming Ma
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology , Southeast University , Nanjing 210096 , People's Republic of China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology , Southeast University , Nanjing 210096 , People's Republic of China
| | - Yu Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology , Southeast University , Nanjing 210096 , People's Republic of China
| |
Collapse
|
31
|
Sahu A, Kwon I, Tae G. Improving cancer therapy through the nanomaterials-assisted alleviation of hypoxia. Biomaterials 2019; 228:119578. [PMID: 31678843 DOI: 10.1016/j.biomaterials.2019.119578] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 02/08/2023]
Abstract
Hypoxia, resulting from the imbalance between oxygen supply and consumption is a critical component of the tumor microenvironment. It has a paramount impact on cancer growth, metastasis and has long been known as a major obstacle for cancer therapy. However, none of the clinically approved anticancer therapeutics currently available for human use directly tackles this problem. Previous clinical trials of targeting tumor hypoxia with bioreductive prodrugs have failed to demonstrate satisfactory results. Therefore, new ideas are needed to overcome the hypoxia barrier. The method of modulating hypoxia to improve the therapeutic activity is of great interest but remains a considerable challenge. One of the emerging concepts is to supply or generate oxygen at the tumor site to increase the partial oxygen pressure and thereby reverse the hypoxia and its effects. In this review, we present an overview of the recent progress in the development of novel nanomaterials for the alleviation of hypoxic microenvironment. Two main strategies for hypoxia augmentation, i) direct delivery of O2 into the tumor, and ii) in situ O2 generations in the tumor microenvironment through different methods such as catalytic decomposition of endogenous hydrogen peroxide (H2O2) and light-triggered water splitting are discussed in detail. At present, these emerging nanomaterials are in their early phase and expected to grow rapidly in the coming years. Despite the promising start, there are several challenges needed to overcome for successful clinical translation.
Collapse
Affiliation(s)
- Abhishek Sahu
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Inchan Kwon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Giyoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
32
|
Carvalho CR, Silva-Correia J, Oliveira JM, Reis RL. Nanotechnology in peripheral nerve repair and reconstruction. Adv Drug Deliv Rev 2019; 148:308-343. [PMID: 30639255 DOI: 10.1016/j.addr.2019.01.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/20/2018] [Accepted: 01/05/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Cristiana R Carvalho
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | - Joana Silva-Correia
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joaquim M Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal.
| |
Collapse
|
33
|
Fluorinated MRI contrast agents and their versatile applications in the biomedical field. Future Med Chem 2019; 11:1157-1175. [DOI: 10.4155/fmc-2018-0463] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
MRI has been recognized as one of the most applied medical imaging techniques in clinical practice. However, the presence of background signal coming from water protons in surrounding tissues makes sometimes the visualization of local contrast agents difficult. To remedy this, fluorine has been introduced as a reliable perspective, thanks to its magnetic properties being relatively close to those of protons. In this review, we aim to give an overall description of fluorine incorporation in contrast agents for MRI. The different kinds of fluorinated probes such as perfluorocarbons, fluorinated dendrimers, polymers and paramagnetic probes will be described, as will their imaging applications such as chemical exchange saturation transfer (CEST) imaging, physico-chemical changes detection, drug delivery, cell tracking and inflammation or tumors detection.
Collapse
|
34
|
Estabrook DA, Ennis AF, Day RA, Sletten EM. Controlling nanoemulsion surface chemistry with poly(2-oxazoline) amphiphiles. Chem Sci 2019; 10:3994-4003. [PMID: 31015940 PMCID: PMC6457192 DOI: 10.1039/c8sc05735d] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/26/2019] [Indexed: 12/12/2022] Open
Abstract
Emulsions are dynamic materials that have been extensively employed within pharmaceutical, food and cosmetic industries. However, their use beyond conventional applications has been hindered by difficulties in surface functionalization, and an inability to selectively control physicochemical properties. Here, we employ custom poly(2-oxazoline) block copolymers to overcome these limitations. We demonstrate that poly(2-oxazoline) copolymers can effectively stabilize nanoscale droplets of hydrocarbon and perfluorocarbon in water. The controlled living polymerization of poly(2-oxazoline)s allows for the incorporation of chemical handles into the surfactants such that covalent modification of the emulsion surface can be performed. Through post-emulsion modification of these new surfactants, we are able to access nanoemulsions with modified surface chemistries, yet consistent sizes. By decoupling size and surface charge, we explore structure-activity relationships involving the cellular uptake of nanoemulsions in both macrophage and non-macrophage cell lines. We conclude that the cellular uptake and cytotoxicity of poly(2-oxazoline)-stabilized droplets can be systematically tuned via chemical modification of emulsion surfaces.
Collapse
Affiliation(s)
- Daniel A Estabrook
- Department of Chemistry and Biochemistry , University of California , 607 Charles E. Young, Dr. E. , Los Angeles , CA 90095 , USA .
| | - Amanda F Ennis
- Department of Chemistry and Biochemistry , University of California , 607 Charles E. Young, Dr. E. , Los Angeles , CA 90095 , USA .
| | - Rachael A Day
- Department of Chemistry and Biochemistry , University of California , 607 Charles E. Young, Dr. E. , Los Angeles , CA 90095 , USA .
| | - Ellen M Sletten
- Department of Chemistry and Biochemistry , University of California , 607 Charles E. Young, Dr. E. , Los Angeles , CA 90095 , USA .
| |
Collapse
|
35
|
Martin AL, Homenick CM, Xiang Y, Gillies E, Matsuura N. Polyelectrolyte Coatings Can Control Charged Fluorocarbon Nanodroplet Stability and Their Interaction with Macrophage Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4603-4612. [PMID: 30757902 DOI: 10.1021/acs.langmuir.8b04051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fluorocarbon nanodroplets, ∼100 to ∼400 nm in diameter, are of immense interest in a variety of medical applications including the imaging and therapy of cancer and inflammatory diseases. However, fluorocarbon molecules are both hydrophobic and lipophobic; therefore, it is challenging to synthesize fluorocarbon nanodroplets with the optimal stability and surface properties without the use of highly specialized surfactants. Here, we hypothesize that we can decouple the control of fluorocarbon nanodroplet size and stability from its surface properties. We use a simple, two-step procedure where standard, easily available anionic fluorosurfactants are used to first stabilize the fluorocarbon nanodroplets, followed by electrostatically attaching functionalized polyelectrolytes to the nanodroplet surfaces to independently control their surface properties. Herein, we demonstrate that PEGylated polyelectrolyte coatings can effectively alter the fluorocarbon nanodroplet surface properties to reduce coalescence and its uptake into phagocytic cells in comparison with non-PEGylated polyelectrolyte coatings and uncoated nanodroplets, as measured by flow cytometry and fluorescence microscopy. In this study, perfluorooctyl bromide (PFOB) was used as a representative fluorocarbon material, and PEGylated PFOB nanodroplets with diameters between 250 and 290 nm, depending on the poly(ethylene glycol) block length, were prepared. The PEGylated PFOB nanodroplets had superior size stability in comparison with uncoated and non-PEGylated polyelectrolyte nanodroplets in saline and within macrophage cells. Of significance, non-PEGylated nanodroplets were rapidly internalized by macrophage cells, whereas PEGylated nanodroplets were predominantly colocalized on the cell membrane. This suggests that the PEGylated-polyelectrolyte coating on the charged PFOB nanodroplets may afford adjustable shielding from cells of the reticuloendothelial system. This report shows that using the same fluorosurfactant as a base layer, modularly assembled PFOB nanodroplets tailored for a variety of end applications can be created by selecting different polyelectrolyte coatings depending on their unique requirements for stability and interaction with phagocytic cells.
Collapse
Affiliation(s)
- Amanda L Martin
- Physical Sciences , Sunnybrook Research Institute , Toronto , Ontario M4N 3M5 , Canada
| | - Christa M Homenick
- Department of Chemistry and Department of Chemical and Biochemical Engineering , The University of Western Ontario , London , Ontario N6A 5B7 , Canada
| | | | - Elizabeth Gillies
- Department of Chemistry and Department of Chemical and Biochemical Engineering , The University of Western Ontario , London , Ontario N6A 5B7 , Canada
| | | |
Collapse
|
36
|
Munkhbat O, Canakci M, Zheng S, Hu W, Osborne B, Bogdanov AA, Thayumanavan S. 19F MRI of Polymer Nanogels Aided by Improved Segmental Mobility of Embedded Fluorine Moieties. Biomacromolecules 2019; 20:790-800. [PMID: 30563327 PMCID: PMC6449047 DOI: 10.1021/acs.biomac.8b01383] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Using fluorinated probes for 19F MRI imaging is an emerging field with potential utility in cellular imaging and cell tracking in vivo, which complements conventional 1H MRI. An attractive feature of 19F-based imaging is that this is a bio-orthogonal nucleus and the naturally abundant isotope is NMR active. A significant hurdle however in the 19F MRI arises from the tendency of organic macromolecules, with multiple fluorocarbon substitutions, to aggregate in the aqueous phase. This aggregation results in significant loss of sensitivity, because the T2 relaxation times of these aggregated 19F species tend to be significantly lower. In this report, we have developed a strategy to covalently trap nanoscopic states with an optimal degree of 19F substitutions, followed by significant enhancement in T2 relaxation times through increased segmental mobility of the side chain substituents facilitated by the stimulus-responsive elements in the polymeric nanogel. In addition to NMR relaxation time based evaluations, the ability to obtain such signals are also evaluated in mouse models. The propensity of these nanoscale assemblies to encapsulate hydrophobic drug molecules and the availability of surfaces for convenient introduction of fluorescent labels suggest the potential of these nanoscale architectures for use in multimodal imaging and therapeutic applications.
Collapse
Affiliation(s)
- Oyuntuya Munkhbat
- Department of Chemistry , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Mine Canakci
- Molecular and Cellular Biology Program , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Shaokuan Zheng
- Department of Radiology and the Laboratory of Molecular Imaging Probes and The Chemical Biology Interface Program , University of Massachusetts Medical School , Worcester , Massachusetts 01655 , United States
| | - Weiguo Hu
- Department of Polymer Science and Engineering , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Barbara Osborne
- Molecular and Cellular Biology Program , University of Massachusetts , Amherst , Massachusetts 01003 , United States
- The Center for Bioactive Delivery, Institute for Applied Life Sciences , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Alexei A Bogdanov
- Department of Radiology and the Laboratory of Molecular Imaging Probes and The Chemical Biology Interface Program , University of Massachusetts Medical School , Worcester , Massachusetts 01655 , United States
| | - S Thayumanavan
- Department of Chemistry , University of Massachusetts , Amherst , Massachusetts 01003 , United States
- Molecular and Cellular Biology Program , University of Massachusetts , Amherst , Massachusetts 01003 , United States
- The Center for Bioactive Delivery, Institute for Applied Life Sciences , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| |
Collapse
|
37
|
Song R, Hu D, Chung HY, Sheng Z, Yao S. Lipid-Polymer Bilaminar Oxygen Nanobubbles for Enhanced Photodynamic Therapy of Cancer. ACS APPLIED MATERIALS & INTERFACES 2018; 10:36805-36813. [PMID: 30300545 DOI: 10.1021/acsami.8b15293] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hypoxia in solid tumors may be a hindrance to effective treatments of tumors in achieving their therapeutic potential, especially for photodynamic therapy (PDT) which requires oxygen as the supplement substrate. Oxygen delivery using perfluorocarbon emulsions or lipid oxygen microbubbles has been developed as the agents to supply endogenous oxygen to fuel singlet oxygen generation in PDT. However, such methods suffer from premature oxygen release and storage issues. To address these limitations, we designed lipid-polymer bilaminar oxygen nanobubbles with chlorin e6 (Ce6) conjugated to the polymer shell as a novel oxygen self-supplement agent for PDT. The resultant nanobubbles possessed excellent stability to reduce the risk of premature oxygen release and were stored as freeze-dried powders to avoid shelf storage issues. In vitro and in vivo experimental results demonstrated that the nanobubbles exhibited much higher cellular uptake rates and tumor targeting efficiency compared to free Ce6. Using the oxygen nanobubbles for PDT, a significant enhancement of therapeutic efficacy and survival rates was achieved on a C6 glioma-bearing mice model with no noticeable side effects, owing to the greatly enhanced singlet oxygen generation powered by oxygen encapsulated nanobubbles.
Collapse
Affiliation(s)
- Ruyuan Song
- Bioengineering Graduate Program, Department of Chemical and Biological Engineering , The Hong Kong University of Science and Technology , Hong Kong , China
| | - Dehong Hu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology , Chinese Academy of Sciences , Shenzhen 518055 , China
| | - Ho Yin Chung
- Department of Mechanical and Aerospace Engineering , The Hong Kong University of Science and Technology , Hong Kong 999077 , China
| | - Zonghai Sheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology , Chinese Academy of Sciences , Shenzhen 518055 , China
| | - Shuhuai Yao
- Bioengineering Graduate Program, Department of Chemical and Biological Engineering , The Hong Kong University of Science and Technology , Hong Kong , China
- Department of Mechanical and Aerospace Engineering , The Hong Kong University of Science and Technology , Hong Kong 999077 , China
| |
Collapse
|
38
|
Lee E, Sivalingam J, Lim ZR, Chia G, Shi LG, Roberts M, Loh YH, Reuveny S, Oh SKW. Review: In vitro generation of red blood cells for transfusion medicine: Progress, prospects and challenges. Biotechnol Adv 2018; 36:2118-2128. [PMID: 30273713 DOI: 10.1016/j.biotechadv.2018.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/19/2018] [Accepted: 09/27/2018] [Indexed: 02/07/2023]
Abstract
In vitro generation of red blood cells (RBCs) has the potential to circumvent the shortfalls in global demand for blood for transfusion applications. The conventional approach for RBC generation has been from differentiation of hematopoietic stem cells (HSCs) derived from cord blood, adult bone marrow or peripheral blood. More recently, RBCs have been generated from human induced pluripotent stem cells (hiPSCs) as well as from immortalized adult erythroid progenitors. In this review, we highlight the recent advances to RBC generation from these different approaches and discuss the challenges and new strategies that can potentially make large-scale in vitro generation of RBCs a feasible approach.
Collapse
Affiliation(s)
- Esmond Lee
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668, Republic of Singapore; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Palo Alto, CA 94305, USA.
| | - Jaichandran Sivalingam
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668, Republic of Singapore.
| | - Zhong Ri Lim
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668, Republic of Singapore
| | - Gloryn Chia
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668, Republic of Singapore
| | - Low Gin Shi
- Brilliant Research Pte. Ltd, Singapore 139955, Republic of Singapore
| | - Mackenna Roberts
- Oxford-University College London Centre for the Advancement of Sustainable Medical Innovation, University of Oxford, UK
| | - Yuin-Han Loh
- Institute of Molecular and Cellular Biology, Agency for Science, Technology and Research, Singapore 138668, Republic of Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Republic of Singapore
| | - Shaul Reuveny
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668, Republic of Singapore
| | - Steve Kah-Weng Oh
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668, Republic of Singapore
| |
Collapse
|
39
|
Li M, Luo H, Zhang W, He K, Chen Y, Liu J, Chen J, Wang D, Hao L, Ran H, Zheng Y, Wang Z, Li P. Phase-shift, targeted nanoparticles for ultrasound molecular imaging by low intensity focused ultrasound irradiation. Int J Nanomedicine 2018; 13:3907-3920. [PMID: 30013344 PMCID: PMC6038875 DOI: 10.2147/ijn.s166200] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose Ultrasound (US) molecular imaging provides a non-invasive way to visualize tumor tissues at molecular and cell levels and could improve diagnosis. One problem of using US molecular imaging is microbubbles challenges, including instability, short circulation time, and poor loading capacity and penetrability. It is urgent to design new acoustic contrast agents and new imaging methods to facilitate tumor-targeted imaging. In this study, phase-shift poly lactic-co-glycolic acid (PLGA) nanoparticles modified with folate as an efficient US molecular probe were designed and the long–term targeted imaging was achieved by low-intensity focused US (LIFU) irradiation. Methods A new 5-step method and purification procedure was carried out to obtain uniform folic acid polyethylene glycol PLGA (PLGA-PEG-FA), the structure of which was confirmed by 1H nuclear magnetic resonance spectroscopy and thin-layer chromatography. Perflenapent (PFP) was wrapped in PLGA-PEG-FA by a double emulsion solvent evaporation method to obtain PFP/PLGA-PEG-FA nanoparticles. The targeted ability of the resulting nanoparticles was tested in vivo and in vitro. LIFU irradiation can irritate nanoparticle phase-shift to enhance tumor imaging both in vivo and in vitro. Results PLGA-PEG-FA was a light yellow powder with a final purity of at least 98%, the structure of which was confirmed by 1H nuclear magnetic resonance spectroscopy and thin-layer chromatography. Highly dispersed PFP/PLGA-PEG-FA nanoparticles with spherical morphology have an average diameter of 280.9±33.5 nm, PFP load efficiency of 59.4%±7.1%, and shells, thickness of 28±8.63 nm. The nanoparticles can specifically bind to cells expressing high folate receptor both in vivo and in vitro. Ultrasonic imaging was significantly enhanced in vitro and in vivo by LIFU irradiation. The retention time was significantly prolonged in vivo. Conclusion Phase-shift PFP/PLGA-PEG-FA nanoparticles induced by LIFU can significantly enhance ultrasonic imaging, specifically targeting tumors expressing folate receptor. As a potential targeting acoustic molecular probe, PFP/PLGA-PEG-FA nanoparticles can be used to achieve targeted localization imaging.
Collapse
Affiliation(s)
- Maoping Li
- Department of Ultrasound, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.,Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing 400010, China, ;
| | - Hua Luo
- Chongqing Protein way Biotechnology Co., Ltd., Chongqing 400039, China
| | - Weiyang Zhang
- Department of Ultrasound, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Kunyan He
- The Fifth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 519000, China
| | - Yong Chen
- Chongqing Protein way Biotechnology Co., Ltd., Chongqing 400039, China
| | - Jianxin Liu
- Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing 400010, China, ;
| | - Junchen Chen
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, China
| | - Dong Wang
- Department of Ultrasound, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Lan Hao
- Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing 400010, China, ;
| | - Haitao Ran
- Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing 400010, China, ;
| | - Yuanyi Zheng
- Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing 400010, China, ;
| | - Zhigang Wang
- Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing 400010, China, ;
| | - Pan Li
- Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing 400010, China, ;
| |
Collapse
|
40
|
Ren W, Qiu LH, Gao Z, Li P, Zhao X, Hu CC. [Preparation of multifunctional nanoparticles targeting tongue cancer and in vitro study]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2018; 36:240-246. [PMID: 29984921 DOI: 10.7518/hxkq.2018.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVE This study aims to prepare docetaxel (DOC)-loaded multifunctional nanoparticles containing indocyanine green (ICG) and perfluorohexane (PFH) as targeted drug delivery system, which is supplemented with stromal cellderived factor-1 (SDF-1), and characterize their properties. METHODS Multifunctional nanoparticles were prepared by using the double emulsion method. SDF-1 was covalently conjugated to the surface of the nanoparticles through thioether bonding. Their particle size, distribution, and surface potential were determined with the Malvern measuring instrument. The conjugation of SDF-1 was evaluated by confocal laser scanning microscope. Encapsulation efficiency (ELC), drug loading capacity (DLC), and release regularity of the nanoparticles were determined by high-performance liquid chromatography (HPLC). In vitro photothermal property was recorded by a thermal imager. The in vitro imaging capacity was observed by a photoacoustic instrument and an ultrasonic diagnostic apparatus. Targeting capability was assessed by flow cytometry. The cell activity on SCC-15 cells was checked by CCK-8 method. RESULTS The targeted multifunctional nanoparticles showed regularly sphericity. The diameter was (502.88±17.92) nm. The zeta potential was (-11.5±3.15) mV. ELC was 54.12%±1.74%. DLC was 1.08 mg·mL-1. In vitro drug release was initially fast and subsequently slow. The photothermal characteristics were related to the concentration; the higher the concentration, the higher the temperature. Nanoparticles could detect significant photoacoustic and ultrasound signals. The in vitro targeting rate was 89.99%. No significant differences of cell viability in the SINPs groups were observed at each concentration (P>0.05). The inhibition effect of DOC-SINPs was stronger than that of SINPs whether or not in the presence of laser irradiation among the groups of 150 and 200 μg·mL-1 (P<
0.05). CONCLUSIONS Multifunctional nanoparticles for diagnosis and treatment were successfully prepared and displayed dualmode ultrasound/photoacoustic imaging and antitumor effects of chemotherapy and photothermal therapy.
Collapse
Affiliation(s)
- Wei Ren
- Dep. of Oral and Maxillofacial Surgery, Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Science, Chongqing 401147, China
| | - Li-Hua Qiu
- Dep. of Oral and Maxillofacial Surgery, Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Science, Chongqing 401147, China;Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Zhi Gao
- Dept. of Stomatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Pan Li
- Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing 400010, China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China
| | - Cheng-Chen Hu
- Dep. of Oral and Maxillofacial Surgery, Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Science, Chongqing 401147, China
| |
Collapse
|
41
|
Li X, Sui Z, Li X, Xu W, Guo Q, Sun J, Jing F. Perfluorooctylbromide nanoparticles for ultrasound imaging and drug delivery. Int J Nanomedicine 2018; 13:3053-3067. [PMID: 29872293 PMCID: PMC5975599 DOI: 10.2147/ijn.s164905] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Perfluorooctylbromide nanoparticles (PFOB NPs) are a type of multifunctional nanotechnology that has been studied for various medical applications. Commercial ultrasound contrast agents (UCAs) suffer from the following limitations: short half-lives in vivo, high background signal and restricted distribution in the vascular circulation due to their micrometer dimensions. PFOB NPs are new potential UCAs that persist for long periods in the circulatory system, possess a relatively stable echogenic response without increasing the background signal and exhibit lower acoustic attenuation than commercial UCAs. Furthermore, PFOB NPs may also serve as drug delivery vehicles in which drugs are dissolved in the outer lipid or polymer layer for subsequent delivery to target sites in site-targeted therapy. The use of PFOB NPs as carriers has the potential advantage of selectively delivering payloads to the target site while improving visualization of the site using ultrasound (US) imaging. Unfortunately, the application of PFOB NPs to the field of ultrasonography has been limited because of the low intensity of US reflection. Numerous researchers have realized the potential use of PFOB NPs as UCAs and thus have developed alternative approaches to apply PFOB NPs in ultrasonography. In this article, we review the latest approaches for using PFOB NPs to enhance US imaging in vivo. In addition, this article emphasizes the application of PFOB NPs as promising drug delivery carriers for cancer and atherosclerosis treatments, as PFOB NPs can transport different drug payloads for various applications with good efficacy. We also note the challenges and future study directions for the application of PFOB NPs as both a delivery system for therapeutic agents and a diagnostic agent for ultrasonography.
Collapse
Affiliation(s)
- Xiao Li
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Zhongguo Sui
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Xin Li
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Wen Xu
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Qie Guo
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Jialin Sun
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Fanbo Jing
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| |
Collapse
|
42
|
Xu X, Yan Y, Liu F, Wu L, Shao M, Wang K, Sun X, Li Y, Beinpuo ESW, Shen B. Folate receptor-targeted 19 F MR molecular imaging and proliferation evaluation of lung cancer. J Magn Reson Imaging 2018; 48:1617-1625. [PMID: 29756310 DOI: 10.1002/jmri.26177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/17/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Folate receptors (FRs) hold great potential as important diagnostic and prognostic biological marker for cancer. PURPOSE To assess the targeted capability of the FR-targeted perfluorocarbon (PFC) nanoparticles and to assess in vivo the relationship between FR expression and tumor proliferation with fluorine-19 (19 F) MR molecular imaging. STUDY TYPE Prospective animal cancer model. ANIMAL MODEL H460 (n = 14) and A549 (n = 14) nude mice subcutaneous tumor models. FIELD STRENGTH 9.4T, 1 H and 19 F RARE sequences. ASSESSMENT Intracellular uptake of the PFC nanoparticles was tested in H460 and A549 cell lines. 19 F MRI of H460 and A549 subcutaneous tumors was performed following intravenous injection of PFC nanoparticles. The concentration of PFC in tumors were compared. 3'-Deoxy-3'-18 F-fluorothymidine (18 F-FLT) positron emission tomography / computed tomography (PET/CT) imaging, Ki-67, and proliferating cell nuclear antigen (PCNA) staining were performed to confirm tumor proliferation. STATISTICAL TESTS One-way or two-way analysis of variance. P < 0.05 was considered a significant difference. RESULTS The diameter of the FR-targeted nanoparticles was 108.8 ± 0.56 nm, and the zeta potential was -58.4 ± 10.8 mV. H460 cells incubated with FR-targeted nanoparticles showed ∼59.87 ± 3.91% nanoparticles-labeled, which is significantly higher than the other groups (P < 0.001). The PFC concentration in H460 tumors after injection with FR-targeted nanoparticles was 4.64 ± 1.21, 8.04 ± 1.38, and 9.16 ± 2.56 mmol/L at 8 hours, 24 hours, and 48 hours, respectively (P < 0.05 compared to others). The ratio of 18 F-FLT uptake for H460 and A549 tumors was 3.32 ± 0.17 and 1.48 ± 0.09 (P < 0.05), and there was more Ki-67 and PCNA in H460 tumor than A549. DATA CONCLUSION: 19 F MRI with FR-targeted PFC nanoparticles can be used in differentiating of FR-positive and FR-negative tumors, and further, in evaluation of the two cancer models proliferation. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;48:1617-1625.
Collapse
Affiliation(s)
- Xiuan Xu
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, China.,TOF-PET/CT/MR Center, Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Department of Medical Imaging, Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yuling Yan
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, China
| | - Fang Liu
- Department of Medical Imaging, Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lina Wu
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, China.,TOF-PET/CT/MR Center, Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Mengping Shao
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, China
| | - Kai Wang
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, China.,TOF-PET/CT/MR Center, Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xilin Sun
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, China.,TOF-PET/CT/MR Center, Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yingbo Li
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, China
| | | | - Baozhong Shen
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, China.,TOF-PET/CT/MR Center, Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
43
|
Aliabouzar M, Kumar KN, Sarkar K. Acoustic vaporization threshold of lipid-coated perfluoropentane droplets. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 143:2001. [PMID: 29716255 PMCID: PMC5895468 DOI: 10.1121/1.5027817] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Phase shift droplets vaporizable by acoustic stimulation offer the advantages of producing microbubbles as contrast agents in situ as well as higher stability and the possibility of achieving smaller sizes. Here, the acoustic droplet vaporization (ADV) threshold of a suspension of droplets with a perfluoropentane (PFP) core (diameter 400-3000 nm) is acoustically measured as a function of the excitation frequency in a tubeless setup at room temperature. The changes in scattered responses-fundamental, sub-, and second harmonic-are investigated, a quantitative criterion is used to determine the ADV phenomenon, and findings are discussed. The average threshold obtained using three different scattered components increases with frequency-1.05 ± 0.28 MPa at 2.25 MHz, 1.89 ± 0.57 MPa at 5 MHz, and 2.34 ± 0.014 MPa at 10 MHz. The scattered response from vaporized droplets was also found to qualitatively match with that from an independently prepared lipid-coated microbubble suspension in magnitude as well as trends above the determined ADV threshold value.
Collapse
Affiliation(s)
- Mitra Aliabouzar
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Krishna N Kumar
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Kausik Sarkar
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
44
|
Michelena O, Padro D, Carrillo-Carrión C, Del Pino P, Blanco J, Arnaiz B, Parak WJ, Carril M. Novel fluorinated ligands for gold nanoparticle labelling with applications in 19F-MRI. Chem Commun (Camb) 2018; 53:2447-2450. [PMID: 28176984 DOI: 10.1039/c6cc08900c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Novel fluorinated ligands for gold nanoparticle labelling have been designed and synthesised. Several types of gold nanoparticles have been prepared in the presence of these fluorinated ligands alone, or in combination with non-fluorinated ligands. Their colloidal stability in water and other solvents was tested and the magnetic resonance properties of the so-obtained nanoparticles were also assessed in detail. 1H and 19F-NMR spectra were evaluated and MRI phantoms of the most promising nanoparticles were successfully measured in 19F-MRI. The MRI signal to noise ratio was related to the fluorine concentration and compared with ICP-MS data to correlate the real concentration of fluorine grafted onto the nanoparticles with the actually active fluorine in MRI.
Collapse
Affiliation(s)
- Olatz Michelena
- CIC biomaGUNE, Paseo Miramon 182, 20014 Donostia - San Sebastian, Spain.
| | - Daniel Padro
- CIC biomaGUNE, Paseo Miramon 182, 20014 Donostia - San Sebastian, Spain.
| | | | - Pablo Del Pino
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CiQUS) y Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Jorge Blanco
- CIC biomaGUNE, Paseo Miramon 182, 20014 Donostia - San Sebastian, Spain.
| | - Blanca Arnaiz
- CIC biomaGUNE, Paseo Miramon 182, 20014 Donostia - San Sebastian, Spain.
| | - Wolfgang J Parak
- CIC biomaGUNE, Paseo Miramon 182, 20014 Donostia - San Sebastian, Spain. and Department of Physics, Philipps University of Marburg, Renthof 7, 35037 Marburg, Germany
| | - Mónica Carril
- CIC biomaGUNE, Paseo Miramon 182, 20014 Donostia - San Sebastian, Spain. and Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|
45
|
Xu X, Song R, He M, Peng C, Yu M, Hou Y, Qiu H, Zou R, Yao S. Microfluidic production of nanoscale perfluorocarbon droplets as liquid contrast agents for ultrasound imaging. LAB ON A CHIP 2017; 17:3504-3513. [PMID: 28933795 DOI: 10.1039/c7lc00056a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Liquid perfluorocarbon (PFC) nanodroplets may have a better chance to extravasate through inter-endothelial gaps (400-800 nm) into tumor interstitium for extravascular imaging, which holds promise as an innovative strategy for imaging-guided drug delivery, early diagnosis of cancer and minimally invasive treatment of cancer. Currently available emulsion technologies still face challenges in reducing droplet sizes from the microscale to the nanoscale. To control size and ensure monodispersity of PFC nanodroplets, we developed a flame-shaped glass capillary and polydimethylsiloxane (PDMS) hybrid device that creates a concentric flow of the dispersed phase enclosed by the focusing continuous phase at the cross-junction. Through adjustment of the pressure applied, a stable tip-streaming mode can be obtained for PFC nanodroplet generation. Using this device, we synthesized various kinds of PFC nanodroplets as small as 200 nm in diameter with polydispersity index (PDI) <0.04. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) were carried out for the characterization of the PFC nanodroplets. Finally, ultrasound imaging was conducted to demonstrate that the liquid PFC nanodroplets can be used for enhancing the ultrasound contrast upon vaporization.
Collapse
Affiliation(s)
- Xiaonan Xu
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Bouchoucha M, van Heeswijk RB, Gossuin Y, Kleitz F, Fortin MA. Fluorinated Mesoporous Silica Nanoparticles for Binuclear Probes in 1H and 19F Magnetic Resonance Imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:10531-10542. [PMID: 28869376 DOI: 10.1021/acs.langmuir.7b01792] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The development of molecular and cellular magnetic resonance imaging (MRI) procedures has always represented a challenge because of the fact that conventional MRI contrast agents are not directly detected in vivo; in proton MRI (e.g., with the nucleus 1H), their local concentration is measured through the effect they exert on the signal of hydrogen protons present in their immediate vicinity. Because the contrast effects generated by conventional MRI probes superpose to and can often impede the anatomical information contained in 1H MRI images, new probes based on a nucleus other than 1H, are being developed. In this study, we report on the development of fluorinated mesoporous silica nanoparticles (MSNs), which could represent an interesting dual probe that allows two MRI modes: 1H for high-resolution anatomical information and 19F for the detection of MSNs used as drug delivery agents. MSNs were synthesized and covalently functionalized either with fluorosilane (FMSNs) or polyfluorosiloxane (polyFMSNs) to enable their detection in 19F MRI. Then, gadolinium chelates were grafted on the particles to enhance their detectability in 1H MRI. The physicochemical, textural, and relaxometric properties (1H and 19F relaxation times) of the nanoparticles were measured and compared. The 19F relaxation properties were found to be dependent on the concentration of fluorine; they were also highly sensitive to the presence of gadolinium. The shortest relaxation times were obtained with polyFMSNs. At clinical magnetic field strengths, high 1H relaxivities and low relaxometric ratios (r2/r1 = 1.45; 2.2 for nanoparticles entrapped in hydrogel) were found for both nanoparticle systems. Finally, the visibility of both systems was confirmed in 1H, and the detectability of polyFMSNs was confirmed in 19F MRI. This physicochemical and relaxometric study opens the door to the applications of fluorinated silica nanoparticles as theranostic materials allowing dual MRI (1H and 19F).
Collapse
Affiliation(s)
- Meryem Bouchoucha
- Department of Mining, Metallurgy and Materials Engineering, Université Laval and Centre de Recherche du Centre Hospitalier Universitaire de Québec (CR-CHUQ), Axe Médecine Régénératrice , Québec, Quebec G1L 3L5, Canada
| | - Ruud B van Heeswijk
- Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) , 1011 Lausanne, Switzerland
| | - Yves Gossuin
- Service de Physique Expérimentale et Biologique, Université de Mons , 24 Avenue du Champ-de-Mars, 7000 Mons, Belgium
| | | | - Marc-André Fortin
- Department of Mining, Metallurgy and Materials Engineering, Université Laval and Centre de Recherche du Centre Hospitalier Universitaire de Québec (CR-CHUQ), Axe Médecine Régénératrice , Québec, Quebec G1L 3L5, Canada
| |
Collapse
|
47
|
Deng L, Cai X, Sheng D, Yang Y, Strohm EM, Wang Z, Ran H, Wang D, Zheng Y, Li P, Shang T, Ling Y, Wang F, Sun Y. A Laser-Activated Biocompatible Theranostic Nanoagent for Targeted Multimodal Imaging and Photothermal Therapy. Am J Cancer Res 2017; 7:4410-4423. [PMID: 29158836 PMCID: PMC5695140 DOI: 10.7150/thno.21283] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/16/2017] [Indexed: 12/13/2022] Open
Abstract
Multifunctional nanoparticles have been reported for cancer detection and treatment currently. However, the accurate diagnosis and efficient treatment for tumors are still not satisfied. Here we report on the development of targeted phase change multimodal polymeric nanoparticles for the imaging and treatment of HER2-positive breast cancer. Methods: We evaluated the multimodal imaging capabilities of the prepared nanoparticles in vitro using agar-based phantoms. The targeting performance and cytotoxicity of the nanoparticles were examined in cell culture using SKBR3 (over-expressing HER2) and MDA-MB-231 (HER2 negative) cells. We then tested the magnetic resonance (MR)/ photoacoustic (PA)/ ultrasound (US)/ near-infrared fluorescence (NIRF) multimodal imaging properties and photothermal effect of the nanoparticles in vivo using a SKBR3 breast xenograft model in nude mice. Tissue histopathology and immunofluorescence were also conducted. Results: Both in vitro and in vivo systematical studies validated that the hybrid nanoparticles can be used as a superb MR/US/PA/NIRF contrast agent to simultaneously diagnose and guide tumor photothermal therapy (PTT). When irradiated by a near infrared laser, the liquid PFP vaporizes to a gas, rapidly expelling the contents and damaging surrounding tissues. The resulting micro-sized bubbles provide treatment validation through ultrasound imaging. Localization of DIR and SPIO in the tumor region facilitate photothermal therapy for targeted tumor destruction. The mice treated with HER2 targeted nanoparticles had a nearly complete response to treatment, while the controls showed continued tumor growth. Conclusion: This novel theranostic agent may provide better diagnostic imaging and therapeutic potential than current methods for treating HER2-positive breast cancer.
Collapse
|
48
|
Crich SG, Terreno E, Aime S. Nano-sized and other improved reporters for magnetic resonance imaging of angiogenesis. Adv Drug Deliv Rev 2017; 119:61-72. [PMID: 28802567 DOI: 10.1016/j.addr.2017.08.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/03/2017] [Accepted: 08/07/2017] [Indexed: 02/07/2023]
Abstract
Magnetic Resonance Imaging (MRI) enables to provide anatomical, functional and molecular information of pathological angiogenesis when used with properly tailored imaging probes. Functional studies have been the domain of Dynamic Contrast Enhancement (DCE) -MRI protocols from which it is possible to extract quantitative estimations on key parameters such as the volumes of vascular and extracellular compartments and the rates of the bidirectional exchange of the imaging reporters across the endothelial barrier. Whereas paramagnetic Gd-complexes able to reversibly bind to serum albumin act better than the clinically used small-sized, hydrophilic species, new findings suggest that an accurate assessment of the vascular volume is possible by analyzing images acquired upon the i.v. administration of Gd-labelled Red Blood Cells (RBCs). As far as it concerns molecular MRI, among the many available biomarkers, αvβ3 integrins are the most investigated ones. The low expression of these targets makes mandatory the use of nano-sized systems endowed with the proper signal enhancing capabilities. A number of targeted nano-particles have been investigated including micelles, liposomes, iron oxides and perfluorocarbon containing systems. Finally, a growing attention is devoted to the design and testing of "theranostic" agents based on the exploitation of MRI to monitor drug delivery processes and therapeutic outcome.
Collapse
Affiliation(s)
- Simonetta Geninatti Crich
- University of Torino, Department of Molecular Biotechnology and Health Sciences, via Nizza 52, Torino, Italy
| | - Enzo Terreno
- University of Torino, Department of Molecular Biotechnology and Health Sciences, via Nizza 52, Torino, Italy
| | - Silvio Aime
- University of Torino, Department of Molecular Biotechnology and Health Sciences, via Nizza 52, Torino, Italy.
| |
Collapse
|
49
|
Abstract
In this work, we investigate the pulsation of an electrically charged jet surrounded by an immiscible dielectric liquid in flow-focusing capillary microfluidics. We have characterized a low-frequency large-amplitude pulsation and a high-frequency small-amplitude pulsation, respectively. The former, due to the unbalanced charge and fluid transportation is responsible for generating droplets with a broad size distribution. The latter is intrinsic and produces droplets with a relatively narrow size distribution. Moreover, the average size of the final droplets can be tuned via the intrinsic pulsating frequency through changing the diameter of the emitted liquid jet. Our results provide degree of control over the emulsion droplets with submicron sizes generated in microfluidic-electrospray platform.
Collapse
|
50
|
Atukorale PU, Covarrubias G, Bauer L, Karathanasis E. Vascular targeting of nanoparticles for molecular imaging of diseased endothelium. Adv Drug Deliv Rev 2017; 113:141-156. [PMID: 27639317 DOI: 10.1016/j.addr.2016.09.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 09/02/2016] [Accepted: 09/08/2016] [Indexed: 01/08/2023]
Abstract
This review seeks to highlight the enormous potential of targeted nanoparticles for molecular imaging applications. Being the closest point-of-contact, circulating nanoparticles can gain direct access to targetable molecular markers of disease that appear on the endothelium. Further, nanoparticles are ideally suitable to vascular targeting due to geometrically enhanced multivalent attachment on the vascular target. This natural synergy between nanoparticles, vascular targeting and molecular imaging can provide new avenues for diagnosis and prognosis of disease with quantitative precision. In addition to the obvious applications of targeting molecular signatures of vascular diseases (e.g., atherosclerosis), deep-tissue diseases often manifest themselves by continuously altering and remodeling their neighboring blood vessels (e.g., cancer). Thus, the remodeled endothelium provides a wide range of targets for nanoparticles and molecular imaging. To demonstrate the potential of molecular imaging, we present a variety of nanoparticles designed for molecular imaging of cancer or atherosclerosis using different imaging modalities.
Collapse
|