1
|
Tien TY, Wu YJ, Su CH, Hsieh CL, Wang BJ, Lee YN, Su Y, Yeh HI. Pannexin 1 Modulates Angiogenic Activities of Human Endothelial Colony-Forming Cells Through IGF-1 Mechanism and Is a Marker of Senescence. Arterioscler Thromb Vasc Biol 2023; 43:1935-1951. [PMID: 37589139 DOI: 10.1161/atvbaha.123.319529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND We examined the role of Panxs (pannexins) in human endothelial progenitor cell (EPC) senescence. METHODS Young and replication-induced senescent endothelial colony-forming cells (ECFCs) derived from human circulating EPCs were used to examine cellular activities and senescence-associated indicators after transfection of short interference RNA specific to Panx1 or lentivirus-mediated Panx1 overexpression. Hind limb ischemia mice were used as in vivo angiogenesis model. Protein and phospho-kinase arrays were used to determine underlying mechanisms. RESULTS Panx1 was the predominant Panx isoform in human ECFCs and upregulated in both replication-induced senescent ECFCs and circulating EPCs from aged mice and humans. Cellular activities of the young ECFCs were enhanced by Panx1 downregulation but attenuated by its upregulation. In addition, reduction of Panx1 in the senescent ECFCs could rejuvenate cellular activities with reduced senescence-associated indicators, including senescence-associated β-galactosidase activity, p16INK4a (cyclin-dependent kinase inhibitor 2A), p21 (cyclin-dependent kinase inhibitor 1), acetyl-p53 (tumor protein P53), and phospho-histone H2A.X (histone family member X). In mouse ischemic hind limbs injected senescent ECFCs, blood perfusion ratio, salvaged limb outcome, and capillary density were all improved by Panx1 knockdown. IGF-1 (insulin-like growth factor 1) was significantly increased in the supernatant from senescent ECFCs after Panx1 knockdown. The enhanced activities and paracrine effects of Panx1 knockdown senescent ECFCs were completely inhibited by anti-IGF-1 antibodies. FAK (focal adhesion kinase), ERK (extracellular signal-regulated kinase), and STAT3 (signal transducer and activator of transcription 3) were activated in senescent ECFCs with Panx1 knockdown, in which the intracellular calcium level was reduced, and the activation was inhibited by supplemented calcium. The increased IGF-1 in Panx1-knockdown ECFCs was abrogated, respectively, by inhibitors of FAK (PF562271), ERK (U0126), and STAT3 (NSC74859) and supplemented calcium. CONCLUSIONS Panx1 expression is upregulated in human ECFCs/EPCs with replication-induced senescence and during aging. Angiogenic potential of senescent ECFCs is improved by Panx1 reduction through increased IGF-1 production via activation of the FAK-ERK axis following calcium influx reduction. Our findings provide new strategies to evaluate EPC activities and rejuvenate senescent EPCs for therapeutic angiogenesis.
Collapse
Affiliation(s)
- Ting-Yi Tien
- Institute of Biopharmaceutical Science, National Yang Ming Chiao Tung University, Taipei, Taiwan (T.-Y.T., Y.S.)
- Departments of Medical Research (T.-Y.T., C.-L.H., B.-J.W., Y.-N.L.), MacKay Memorial Hospital, Taipei, Taiwan
| | - Yih-Jer Wu
- Internal Medicine (Y.-J.W., C.-H.S., H.-I.Y.), MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan (Y.-J.W., C.-H.S., H.-I.Y.)
| | - Cheng-Huang Su
- Internal Medicine (Y.-J.W., C.-H.S., H.-I.Y.), MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan (Y.-J.W., C.-H.S., H.-I.Y.)
| | - Chin-Ling Hsieh
- Departments of Medical Research (T.-Y.T., C.-L.H., B.-J.W., Y.-N.L.), MacKay Memorial Hospital, Taipei, Taiwan
| | - Bo-Jeng Wang
- Departments of Medical Research (T.-Y.T., C.-L.H., B.-J.W., Y.-N.L.), MacKay Memorial Hospital, Taipei, Taiwan
| | - Yi-Nan Lee
- Departments of Medical Research (T.-Y.T., C.-L.H., B.-J.W., Y.-N.L.), MacKay Memorial Hospital, Taipei, Taiwan
| | - Yeu Su
- Institute of Biopharmaceutical Science, National Yang Ming Chiao Tung University, Taipei, Taiwan (T.-Y.T., Y.S.)
| | - Hung-I Yeh
- Internal Medicine (Y.-J.W., C.-H.S., H.-I.Y.), MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan (Y.-J.W., C.-H.S., H.-I.Y.)
| |
Collapse
|
2
|
Giri J, Modi D. Endometrial and placental stem cells in successful and pathological pregnancies. J Assist Reprod Genet 2023; 40:1509-1522. [PMID: 37338750 PMCID: PMC10352206 DOI: 10.1007/s10815-023-02856-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/03/2023] [Indexed: 06/21/2023] Open
Abstract
The endometrium is a dynamic tissue that undergoes extensive remodeling during the menstrual cycle and further gets modified during pregnancy. Different kinds of stem cells are reported in the endometrium. These include epithelial stem cells, endometrial mesenchymal stem cells, side population stem cells, and very small embryonic-like stem cells. Stem cells are also reported in the placenta which includes trophoblast stem cells, side population trophoblast stem cells, and placental mesenchymal stem cells. The endometrial and placental stem cells play a pivotal role in endometrial remodeling and placental vasculogenesis during pregnancy. The dysregulation of stem cell function is reported in various pregnancy complications like preeclampsia, fetal growth restriction, and preterm birth. However, the mechanisms by which it does so are yet elusive. Herein, we review the current knowledge of the different type of stem cells involved in pregnancy initiation and also highlight how their improper functionality leads to pathological pregnancy.
Collapse
Affiliation(s)
- Jayeeta Giri
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India.
| | - Deepak Modi
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India.
| |
Collapse
|
3
|
Xu C, Zhong W, Zhang H, Jiang J, Zhou H. Gap26 inhibited angiogenesis through the β-catenin-VE-cadherin-VEGFR2-Erk signaling pathway. Life Sci 2023:121836. [PMID: 37295713 DOI: 10.1016/j.lfs.2023.121836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/22/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
PURPOSE To investigate the effect of connexin 43 (Cx43) on corneal neovascularization and its regulation of VEGFR2 on vascular endothelial cells. METHODS In vivo, we used mouse corneal suture model to induce corneal neovascularization and discovered the function of gap26 in corneal neovascularization. In vitro, the effect of gap26 on HUVEC was observed by cell proliferation, tube formation and scratch experiments. WB and PCR detected the changes in angiogenic protein and mRNA expression. Knockdown of key mRNA in neovascularization using siRNA confirmed that Cx43 regulates neovascularization through the β-catenin-VE-cadherin-VEGFR2-Erk signaling pathway. RESULTS In vivo, gap26 can reduce mouse corneal neovascularization. In vitro, we show that Cx43 expression is increased in the presence of VEGFA stimulation, and when we use gap26 to inhibit Cx43 can reduce vascular endothelial cell proliferation, tube formation and migration. We found that the expression of pVEGFR2 and pErk increased in response to VEGFA, while they decreased after using gap26. And the expression of β-catenin and VE-cadherin decreased in response to VEGFA, while they increased after using gap26. Furthermore, we found that Cx43 regulates angiogenesis through the β-catenin-VE-cadherin-VEGFR2-Erk pathway. CONCLUSIONS Gap26 can downregulate VEGFR2 phosphorylation by stabilizing the expression of β-catenin and VE-cadherin on the cell membrane, thereby inhibiting VEGFA-induced HUVECs proliferation, migration and tube formation and inhibiting corneal neovascularization.
Collapse
Affiliation(s)
- Chuyang Xu
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Zhong
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Hong Zhang
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China.
| | - Hongyan Zhou
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
4
|
Zhao X, Chen C, Luo Y, Li D, Wang Q, Fang Y, Kang P. Connexin43 overexpression promotes bone regeneration by osteogenesis and angiogenesis in rat glucocorticoid-induced osteonecrosis of the femoral head. Dev Biol 2023; 496:73-86. [PMID: 36805498 DOI: 10.1016/j.ydbio.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/30/2023] [Accepted: 02/12/2023] [Indexed: 02/21/2023]
Abstract
Glucocorticoids induced osteonecrosis of the femoral head (GIONFH) is a devastating orthopedic disease. Previous studies suggested that connexin43 is involved in the process of osteogenesis and angiogenesis. However, the role of Cx43 potentiates in the osteogenesis and angiogenesis of bone marrow-derived stromal stem cells (BMSCs) in GIONFH is still not investigated. In this study, BMSCs were isolated and transfected with green fluorescent protein or the fusion gene encoding GFP and Cx43. The osteogenic differentiation of BMSCs were detected after transfected with Cx43. In addition, the migration abilities and angiogenesis of human umbilical vein endothelial cells (HUVECs) were been detected after induced by transfected BMSCs supernatants in vitro. Finally, we established GC-ONFH rat model, then, a certain amount of transfected or controlled BMSCs were injected into the tibia of the rats. Immunohistological staining and micro-CT scanning results showed that the transplanted experiment group had significantly promoted more bone regeneration and vessel volume when compared with the effects of the negative or control groups. This study demonstrated for the first time that the Cx43 overexpression in BMSCs could promote bone regeneration as seen in the osteogenesis and angiogenesis process, suggesting that Cx43 may serve as a therapeutic gene target for GIONFH treatment.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China; Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Wainan Guoxue Road, Chengdu, 610041, People's Republic of China
| | - Changjun Chen
- Department of Orthopedics, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, People's Republic of China
| | - Yue Luo
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Wainan Guoxue Road, Chengdu, 610041, People's Republic of China
| | - Donghai Li
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Wainan Guoxue Road, Chengdu, 610041, People's Republic of China
| | - Qiuru Wang
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Wainan Guoxue Road, Chengdu, 610041, People's Republic of China
| | - Yuying Fang
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, Shandong, People's Republic of China.
| | - Pengde Kang
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Wainan Guoxue Road, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
5
|
Sedovy MW, Leng X, Leaf MR, Iqbal F, Payne LB, Chappell JC, Johnstone SR. Connexin 43 across the Vasculature: Gap Junctions and Beyond. J Vasc Res 2022; 60:101-113. [PMID: 36513042 PMCID: PMC11073551 DOI: 10.1159/000527469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/26/2022] [Indexed: 12/15/2022] Open
Abstract
Connexin 43 (Cx43) is essential to the function of the vasculature. Cx43 proteins form gap junctions that allow for the exchange of ions and molecules between vascular cells to facilitate cell-to-cell signaling and coordinate vasomotor activity. Cx43 also has intracellular signaling functions that influence vascular cell proliferation and migration. Cx43 is expressed in all vascular cell types, although its expression and function vary by vessel size and location. This includes expression in vascular smooth muscle cells (vSMC), endothelial cells (EC), and pericytes. Cx43 is thought to coordinate homocellular signaling within EC and vSMC. Cx43 gap junctions also function as conduits between different cell types (heterocellular signaling), between EC and vSMC at the myoendothelial junction, and between pericyte and EC in capillaries. Alterations in Cx43 expression, localization, and post-translational modification have been identified in vascular disease states, including atherosclerosis, hypertension, and diabetes. In this review, we discuss the current understanding of Cx43 localization and function in healthy and diseased blood vessels across all vascular beds.
Collapse
Affiliation(s)
- Meghan W. Sedovy
- The Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, 4 Riverside Circle, Roanoke, VA, USA
- Translational Biology, Medicine, And Health Graduate Program, Virginia Tech, Blacksburg, VA, USA
| | - Xinyan Leng
- The Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, 4 Riverside Circle, Roanoke, VA, USA
| | - Melissa R. Leaf
- The Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, 4 Riverside Circle, Roanoke, VA, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Farwah Iqbal
- The Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, 4 Riverside Circle, Roanoke, VA, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Laura Beth Payne
- The Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, 4 Riverside Circle, Roanoke, VA, USA
| | - John C. Chappell
- The Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, 4 Riverside Circle, Roanoke, VA, USA
| | - Scott R. Johnstone
- The Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, 4 Riverside Circle, Roanoke, VA, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
6
|
Zhou Z, Chai W, Liu Y, Zhou M, Zhang X. Connexins and angiogenesis: Functional aspects, pathogenesis, and emerging therapies (Review). Int J Mol Med 2022; 50:110. [PMID: 35762312 PMCID: PMC9256078 DOI: 10.3892/ijmm.2022.5166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/08/2022] [Indexed: 11/20/2022] Open
Abstract
Connexins (Cxs) play key roles in cellular communication. By facilitating metabolite exchange or interfering with distinct signaling pathways, Cxs affect cell homeostasis, proliferation, and differentiation. Variations in the activity and expression of Cxs have been linked to numerous clinical conditions including carcinomas, cardiac disorders, and wound healing. Recent discoveries on the association between Cxs and angiogenesis have sparked interest in Cx-mediated angiogenesis due to its essential functions in tissue formation, wound repair, tumor growth, and metastasis. It is now widely recognized that understanding the association between Cxs and angiogenesis may aid in the development of new targeted therapies for angiogenic diseases. The aim of the present review was to provide a comprehensive overview of Cxs and Cx-mediated angiogenesis, with a focus on therapeutic implications.
Collapse
Affiliation(s)
- Zizi Zhou
- Department of Cardio‑Thoracic Surgery, Shenzhen University General Hospital, Shenzhen, Guangdong 518055, P.R. China
| | - Wenxiang Chai
- Department of Cardio‑Thoracic Surgery, Shenzhen University General Hospital, Shenzhen, Guangdong 518055, P.R. China
| | - Yi Liu
- Department of Cardio‑Thoracic Surgery, Shenzhen University General Hospital, Shenzhen, Guangdong 518055, P.R. China
| | - Meng Zhou
- Department of Cardio‑Thoracic Surgery, Shenzhen University General Hospital, Shenzhen, Guangdong 518055, P.R. China
| | - Xiaoming Zhang
- Department of Cardio‑Thoracic Surgery, Shenzhen University General Hospital, Shenzhen, Guangdong 518055, P.R. China
| |
Collapse
|
7
|
Zhou Z, Chai W, Liu Y, Liu Y, Pan H, Wu Q, Zhang X. Connexin 43 overexpression induces lung cancer angiogenesis in vitro following phosphorylation at Ser279 in its C‑terminus. Oncol Lett 2022; 24:293. [PMID: 35949588 PMCID: PMC9353244 DOI: 10.3892/ol.2022.13413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/27/2022] [Indexed: 12/24/2022] Open
Abstract
Blocking angiogenesis can inhibit tumor growth and metastasis. However, the mechanism underlying regulation of lung cancer angiogenesis remains unclear. The gap junction protein connexin 43 (Cx43) is implicated in angiogenesis. The aim of the present study was to determine the role of Cx43 in angiogenesis in vitro and its signaling pathways. Human pulmonary microvascular endothelial cells were transfected with Cx43-targeting siRNA or Cx43-overexpressing recombinant plasmid vector. Reverse transcription-quantitative polymerase chain reaction and western blotting were performed to determine Cx43, zonula occludens-1 (ZO-1), E-cadherin, β-catenin, von Willebrand factor (vWF), and plasminogen activator inhibitor-1 (PAI-1) mRNA and protein expression levels, respectively. Tyr265, Ser279, Ser368, and Ser373 phosphorylation levels in the C-terminus of Cx43 and intracellular and membranal Cx43 contents were determined using western blotting. Additionally, immunofluorescence, tube formation, Cell Counting Kit-8, and Transwell migration assays were performed. The results revealed that compared with that in the control samples, Cx43, ZO-1, E-cadherin, β-catenin, vWF, and PAI-1 mRNA and protein expression were significantly increased in the Cx43 overexpression group and significantly decreased in the Cx43-knockdown group. Moreover, the phosphorylation level of Ser279 as well as cell proliferation and migration rates were markedly increased in the Cx43 overexpression group, and tube formation revealed that the potential of angiogenesis was also increased. Conversely, in the Cx43-knockdown group, the phosphorylation level of Ser279 and cell proliferation and migration rates were reduced, and the potential of angiogenesis was greatly impaired. Under Cx43 overexpression, membranal Cx43 content was significantly increased, whereas under Cx43 knockdown, it was significantly reduced. Therefore, Cx43 overexpression could induce pulmonary angiogenesis in vitro by promoting cell proliferation and migration and activating ZO-1, E-cadherin, β-catenin, vWF, and PAI-1. This may be achieved by promoting phosphorylation and activation of the intracellular signal site Ser279 at the C-terminus of Cx43.
Collapse
Affiliation(s)
- Zizi Zhou
- Department of Cardio‑Thoracic Surgery, Shenzhen University General Hospital, Shenzhen, Guangdong 518055, P.R. China
| | - Wenxiang Chai
- Department of Cardio‑Thoracic Surgery, Shenzhen University General Hospital, Shenzhen, Guangdong 518055, P.R. China
| | - Yi Liu
- Department of Cardio‑Thoracic Surgery, Shenzhen University General Hospital, Shenzhen, Guangdong 518055, P.R. China
| | - Yao Liu
- Department of Cardio‑Thoracic Surgery, Shenzhen University General Hospital, Shenzhen, Guangdong 518055, P.R. China
| | - Huiyu Pan
- Department of Cardio‑Thoracic Surgery, Shenzhen University General Hospital, Shenzhen, Guangdong 518055, P.R. China
| | - Qiang Wu
- Department of Cardio‑Thoracic Surgery, Shenzhen University General Hospital, Shenzhen, Guangdong 518055, P.R. China
| | - Xiaoming Zhang
- Department of Cardio‑Thoracic Surgery, Shenzhen University General Hospital, Shenzhen, Guangdong 518055, P.R. China
| |
Collapse
|
8
|
The Role of Connexin in Ophthalmic Neovascularization and the Interaction between Connexin and Proangiogenic Factors. J Ophthalmol 2022; 2022:8105229. [PMID: 35783340 PMCID: PMC9242797 DOI: 10.1155/2022/8105229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/11/2022] [Indexed: 12/02/2022] Open
Abstract
The formation of new blood vessels is an important physiological process that occurs during development. When the body is injured, new blood vessel formation helps the body recuperate by supplying more oxygen and nutrients. However, this mechanism can have a negative effect. In ophthalmologic diseases, such as corneal new blood vessels, neonatal vascular glaucoma, and diabetes retinopathy, the formation of new blood vessels has become a critical component in patient survival. Connexin is a protein that regulates the cellular and molecular material carried by cells. It has been demonstrated that it is widely expressed in vascular endothelial cells, where it forms a slit connection between adjacent cells to promote cell-cell communication via hemichannels, as well as substance exchange into intracellular environments. Numerous studies have demonstrated that connexin in vascular endothelial cells plays an important role in angiogenesis and vascular leakage. The purpose of this study was to investigate the effect between the angiogenesis-associated factor and the connexin. It also reveals the effect of connexin on ophthalmic neovascularization.
Collapse
|
9
|
Connexin 43 Expression in Cutaneous Biopsies of Lupus Erythematosus. Am J Dermatopathol 2022; 44:664-668. [PMID: 35503887 DOI: 10.1097/dad.0000000000002217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Gap junctions are channels between adjacent cells formed by connexins (Cxs). Cxs also form hemichannels that connect the cell with its extracellular milieu. These channels allow the transport of ions, metabolites, and small molecules; therefore, Cxs, and more specifically, connexin (Cx) 43 has been demonstrated to be in control of several crucial events such as inflammation and cell death. MATERIAL AND METHODS We examined the immunostaining of Cx43 in the endothelia of the cutaneous blood vessels of biopsies from 28 patients with several variants of lupus erythematosus. RESULTS In 19 cases (67.86%), staining of more than half of the dermal vessels including both vessels of the papillary and of the reticular dermis was identified. Only in 4 cases (14.28%), less than 25% of the vessels in the biopsy showed expression of the marker. CONCLUSIONS Our results suggest a role of Cx43 in regulating the endothelial activity in lupus erythematosus, which also opens a door for targeted therapeutic options.
Collapse
|
10
|
Upregulated miR-206 Aggravates Deep Vein Thrombosis by Regulating GJA1-Mediated Autophagy of Endothelial Progenitor Cells. Cardiovasc Ther 2022; 2022:9966306. [PMID: 35360546 PMCID: PMC8956392 DOI: 10.1155/2022/9966306] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/10/2022] [Accepted: 02/24/2022] [Indexed: 11/27/2022] Open
Abstract
Background Deep vein thrombosis (DVT) is the third most prevalent vascular disease worldwide. MicroRNAs (miRNAs) play regulatory roles in functions of endothelial progenitor cells (EPCs), which is becoming a promising therapeutic choice for thrombus resolution. Nevertheless, the role of miR-206 in EPCs is unclear. Methods EPCs were isolated from the peripheral blood of patients with DVT. In DVT mouse models, DVT was induced by stenosis of the inferior vena cava (IVC). The levels of miR-206 and gap junction protein alpha 1 (GJA1) in EPCs and vascular tissues of DVT mice were detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The proliferation, migration, apoptosis, and angiogenesis were tested by cell counting kit-8 (CCK-8) assay, Transwell assay, flow cytometry analysis, and in vitro tube formation assay. The levels of autophagy-related proteins as well as the level of GJA1 in EPCs and vascular tissues were evaluated by western blotting. DVT formation in vivo was observed through hematoxylin-eosin (HE) staining. The expression of thrombus resolution markers, CD34 molecule (CD34) and matrix metallopeptidase 2 (MMP2), in the thrombi was measured by immunofluorescence staining. Results miR-206 overexpression inhibited proliferation, migration, and angiogenesis and promoted apoptosis of EPCs, while miR-206 knockdown exerted an opposite effect on EPC phenotypes. Downregulation of GJA1, the target of miR-206, abolished the influence of miR-206 on EPC phenotypes. Furthermore, silencing of miR-206 suppressed the autophagy of EPCs via upregulating GJA1. miR-206 knockdown repressed thrombus formation, enhanced the homing ability of EPCs to the thrombosis site, and facilitated thrombus resolution in DVT mouse models. Additionally, miR-206 was upregulated while GJA1 was downregulated in vascular tissues of DVT mice. miR-206 knockdown elevated GJA1 expression in vascular tissues of DVT mice. The expression of miR-206 was negatively correlated with that of GJA1 in DVT mice. Conclusion miR-206 knockdown upregulates GJA1 to inhibit autophagy of EPCs and then promote EPC proliferation, migration, and angiogenesis, thereby enhancing EPC homing to thrombi and facilitating thrombus resolution.
Collapse
|
11
|
Shi W, Meng Z, Luo J. Connexin 43 (Cx43) regulates high-glucose-induced retinal endothelial cell angiogenesis and retinal neovascularization. Front Endocrinol (Lausanne) 2022; 13:909207. [PMID: 36120455 PMCID: PMC9478119 DOI: 10.3389/fendo.2022.909207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic retinopathy (DR) is an important microvascular complication of type 1 and type 2 diabetes mellitus (DM) and a major cause of blindness. Retinal neovascularization plays a critical role in the proliferative DR. In this study, high glucose-induced connexin 43 (Cx43) expression in human retinal endothelial cells (hRECs) in a dose-dependent manner. Compared with hRECs under normal culture conditions, high-glucose (HG)-stimulated hRECs showed promoted tubule formation, increased ROS release, and elevated levels of tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), vascular endothelial growth factor A (VEGFA), and intercellular adhesion molecule 1 (ICAM-1) in the culture medium. HG-induced alterations were further magnified after Cx43 overexpression, whereas partially eliminated after Cx43 knockdown. Finally, in the DR mouse model, impaired retinal structure, increased CD31 expression, and elevated mRNA levels of TNF-α, IL-1β, VEGFA, and ICAM-1 were observed; in-vivo Cx43 knockdown partially reversed these phenomena. Conclusively, Cx43 knockdown could inhibit hREC angiogenesis, therefore improving DR in the mouse model.
Collapse
Affiliation(s)
- Wen Shi
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Ophthalmology, Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Zhishang Meng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Ophthalmology, Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Jing Luo
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Ophthalmology, Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
- *Correspondence: Jing Luo,
| |
Collapse
|
12
|
Liu W, Zhou Y, Zhang YX, Yang KL, Liu YL, Wu FH, Gao YR. Connexin 43 mediated the angiogenesis of buyang huanwu decoction via vascular endothelial growth factor and angiopoietin-1 after ischemic stroke. CHINESE J PHYSIOL 2022; 65:72-79. [DOI: 10.4103/cjp.cjp_94_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
13
|
Cx43 Promotes Endothelial Cell Migration and Angiogenesis via the Tyrosine Phosphatase SHP-2. Int J Mol Sci 2021; 23:ijms23010294. [PMID: 35008716 PMCID: PMC8745637 DOI: 10.3390/ijms23010294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/16/2022] Open
Abstract
The gap junction protein connexin 43 (Cx43) is associated with increased cell migration and to related changes of the actin cytoskeleton, which is mediated via its C-terminal cytoplasmic tail and is independent of its channel function. Cx43 has been shown to possess an angiogenic potential, however, the role of Cx43 in endothelial cell migration has not yet been investigated. Here, we found that the knock-down of Cx43 by siRNA in human microvascular endothelial cells (HMEC) reduces migration, as assessed by a wound assay in vitro and impaired aortic vessel sprouting ex vivo. Immunoprecipitation of Cx43 revealed an interaction with the tyrosine phosphatase SHP-2, which enhanced its phosphatase activity, as observed in Cx43 expressing HeLa cells compared to cells treated with an empty vector. Interestingly, the expression of a dominant negative substrate trapping mutant SHP-2 (CS) in HMEC, via lentiviral transduction, also impaired endothelial migration to a similar extent as Cx43 siRNA compared to SHP-2 WT. Moreover, the reduction in endothelial migration upon Cx43 siRNA could not be rescued by the introduction of a constitutively active SHP-2 construct (EA). Our data demonstrate that Cx43 and SHP-2 mediate endothelial cell migration, revealing a novel interaction between Cx43 and SHP-2, which is essential for this process.
Collapse
|
14
|
Yu W, Jin H, Sun W, Nan D, Deng J, Jia J, Yu Z, Huang Y. Connexin43 promotes angiogenesis through activating the HIF-1α/VEGF signaling pathway under chronic cerebral hypoperfusion. J Cereb Blood Flow Metab 2021; 41:2656-2675. [PMID: 33899559 PMCID: PMC8504949 DOI: 10.1177/0271678x211010354] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Chronic cerebral hypoperfusion, a major vascular contributor to vascular cognitive impairment and dementia, can exacerbate small vessel pathology. Connexin43, the most abundant gap junction protein in brain tissue, has been found to be critically involved in the pathological changes of vascular cognitive impairment and dementia caused by chronic cerebral hypoperfusion. However, the precise mechanisms underpinning its role are unclear. We established a mouse model via bilateral common carotid arteries stenosis on connexin43 heterozygous male mice and demonstrated that connexin43 improves brain blood flow recovery by mediating reparative angiogenesis under chronic cerebral hypoperfusion, which subsequently reduces the characteristic pathologies of vascular cognitive impairment and dementia including white matter lesions and irreversible neuronal injury. We additionally found that connexin43 mediates hypoxia inducible factor-1α expression and then activates the PKA signaling pathway to regulate vascular endothelial growth factor-induced angiogenesis. All the above findings were replicated in bEnd.3 cells treated with 375 µM CoCl2in vitro. These results suggest that connexin 43 could be instrumental in developing potential therapies for vascular cognitive impairment and dementia caused by chronic cerebral hypoperfusion.
Collapse
Affiliation(s)
- Weiwei Yu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Haiqiang Jin
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Wei Sun
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Ding Nan
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Jingjing Jia
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zemou Yu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yining Huang
- Department of Neurology, Peking University First Hospital, Beijing, China
| |
Collapse
|
15
|
Koepple C, Zhou Z, Huber L, Schulte M, Schmidt K, Gloe T, Kneser U, Schmidt VJ, de Wit C. Expression of Connexin43 Stimulates Endothelial Angiogenesis Independently of Gap Junctional Communication In Vitro. Int J Mol Sci 2021; 22:ijms22147400. [PMID: 34299018 PMCID: PMC8306600 DOI: 10.3390/ijms22147400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 12/14/2022] Open
Abstract
Connexins (Cx) form gap junctions (GJ) and allow for intercellular communication. However, these proteins also modulate gene expression, growth, and cell migration. The downregulation of Cx43 impairs endothelial cell migration and angiogenetic potential. Conversely, endothelial Cx43 expression is upregulated in an in vivo angiogenesis model relying on hemodynamic forces. We studied the effects of Cx43 expression on tube formation and proliferation in HUVECs and examined its dependency on GJ communication. Expectedly, intercellular communication assessed by dye transfer was linked to Cx43 expression levels in HUVECs and was sensitive to a GJ blockade by the Cx43 mimetic peptide Gap27. The proliferation of HUVECs was not affected by Cx43 overexpression using Cx43 cDNA transfection, siRNA-mediated knockdown of Cx43, or the inhibition of GJ compared to the controls (transfection of an empty vector, scrambled siRNA, and the solvent). In contrast, endothelial tube and sprout formation in HUVECs was minimized after Cx43 knockdown and significantly enhanced after Cx43 overexpression. This was not affected by a GJ blockade (Gap27). We conclude that Cx43 expression positively modulates the angiogenic potential of endothelial cells independent of GJ communication. Since proliferation remained unaffected, we suggest that Cx43 protein may modulate endothelial cell migration, thereby supporting angiogenesis. The modulation of Cx43 expression may represent an exploitable principle for angiogenesis induction in clinical therapy.
Collapse
Affiliation(s)
- Christoph Koepple
- Department for Hand Surgery, Plastic Surgery and Reconstructive Surgery, BG Trauma Center Ludwigshafen, Heidelberg University, 67071 Ludwigshafen, Germany; (Z.Z.); (L.H.); (M.S.); (U.K.)
- Correspondence: (C.K.); (V.J.S.); (C.d.W.)
| | - Zizi Zhou
- Department for Hand Surgery, Plastic Surgery and Reconstructive Surgery, BG Trauma Center Ludwigshafen, Heidelberg University, 67071 Ludwigshafen, Germany; (Z.Z.); (L.H.); (M.S.); (U.K.)
| | - Lena Huber
- Department for Hand Surgery, Plastic Surgery and Reconstructive Surgery, BG Trauma Center Ludwigshafen, Heidelberg University, 67071 Ludwigshafen, Germany; (Z.Z.); (L.H.); (M.S.); (U.K.)
| | - Matthias Schulte
- Department for Hand Surgery, Plastic Surgery and Reconstructive Surgery, BG Trauma Center Ludwigshafen, Heidelberg University, 67071 Ludwigshafen, Germany; (Z.Z.); (L.H.); (M.S.); (U.K.)
| | - Kjestine Schmidt
- Institut für Physiologie, Universität zu Lübeck, 23562 Lübeck, Germany;
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) e.V. (German Center for Cardiovascular Research), 23562 Lübeck, Germany
| | - Torsten Gloe
- Physiology, Institute of Theoretical Medicine, Universität Augsburg, 86159 Augsburg, Germany;
| | - Ulrich Kneser
- Department for Hand Surgery, Plastic Surgery and Reconstructive Surgery, BG Trauma Center Ludwigshafen, Heidelberg University, 67071 Ludwigshafen, Germany; (Z.Z.); (L.H.); (M.S.); (U.K.)
| | - Volker Jürgen Schmidt
- Department for Plastic Surgery and Breast Surgery, Zealand University Hospital (SUH) Roskilde, Copenhagen University, 4000 Roskilde, Denmark
- Correspondence: (C.K.); (V.J.S.); (C.d.W.)
| | - Cor de Wit
- Institut für Physiologie, Universität zu Lübeck, 23562 Lübeck, Germany;
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) e.V. (German Center for Cardiovascular Research), 23562 Lübeck, Germany
- Correspondence: (C.K.); (V.J.S.); (C.d.W.)
| |
Collapse
|
16
|
Park YL, Park K, Cha JM. 3D-Bioprinting Strategies Based on In Situ Bone-Healing Mechanism for Vascularized Bone Tissue Engineering. MICROMACHINES 2021; 12:mi12030287. [PMID: 33800485 PMCID: PMC8000586 DOI: 10.3390/mi12030287] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023]
Abstract
Over the past decades, a number of bone tissue engineering (BTE) approaches have been developed to address substantial challenges in the management of critical size bone defects. Although the majority of BTE strategies developed in the laboratory have been limited due to lack of clinical relevance in translation, primary prerequisites for the construction of vascularized functional bone grafts have gained confidence owing to the accumulated knowledge of the osteogenic, osteoinductive, and osteoconductive properties of mesenchymal stem cells and bone-relevant biomaterials that reflect bone-healing mechanisms. In this review, we summarize the current knowledge of bone-healing mechanisms focusing on the details that should be embodied in the development of vascularized BTE, and discuss promising strategies based on 3D-bioprinting technologies that efficiently coalesce the abovementioned main features in bone-healing systems, which comprehensively interact during the bone regeneration processes.
Collapse
Affiliation(s)
- Ye Lin Park
- Department of Mechatronics Engineering, College of Engineering, Incheon National University, Incheon 22012, Korea;
- 3D Stem Cell Bioengineering Laboratory, Research Institute for Engineering and Technology, Incheon National University, Incheon 22012, Korea
| | - Kiwon Park
- Department of Mechatronics Engineering, College of Engineering, Incheon National University, Incheon 22012, Korea;
- Correspondence: (K.P.); (J.M.C.); Tel.: +82-32-835-8685 (K.P.); +82-32-835-8686 (J.M.C.)
| | - Jae Min Cha
- Department of Mechatronics Engineering, College of Engineering, Incheon National University, Incheon 22012, Korea;
- 3D Stem Cell Bioengineering Laboratory, Research Institute for Engineering and Technology, Incheon National University, Incheon 22012, Korea
- Correspondence: (K.P.); (J.M.C.); Tel.: +82-32-835-8685 (K.P.); +82-32-835-8686 (J.M.C.)
| |
Collapse
|
17
|
Tien (田婷怡) TY, Wu (吳懿哲) YJ, Su (蘇正煌) CH, Wang (王學孝) HH, Hsieh (謝金玲) CL, Wang (王博正) BJ, Su (蘇瑀) Y, Yeh (葉宏一) HI. Reduction of Connexin 43 Attenuates Angiogenic Effects of Human Smooth Muscle Progenitor Cells via Inactivation of Akt and NF-κB Pathway. Arterioscler Thromb Vasc Biol 2021; 41:915-930. [PMID: 33356390 DOI: 10.1161/atvbaha.120.315650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Circulating progenitor cells possess vasculogenesis property and participate in repair of vascular injury. Cx (connexin) 43-a transmembrane protein constituting gap junctions-is involved in vascular pathology. However, the role of Cx43 in smooth muscle progenitor cells (SPCs) remained unclear. Approach and Results: Human SPCs cultured from CD34+ peripheral blood mononuclear cells expressed smooth muscle cell markers, such as smooth muscle MHC (myosin heavy chain), nonmuscle MHC, calponin, and CD140B, and Cx43 was the most abundant Cx isoform. To evaluate the role of Cx43 in SPCs, short interference RNA was used to knock down Cx43 expression. Cellular activities of SPCs were reduced by Cx43 downregulation. In addition, Cx43 downregulation attenuated angiogenic potential of SPCs in hind limb ischemia mice. Protein array and ELISA of the supernatant from SPCs showed that IL (interleukin)-6, IL-8, and HGF (hepatocyte growth factor) were reduced by Cx43 downregulation. Simultaneously, Cx43 downregulation reduced the phosphorylation of NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) and Akt (protein kinase B) pathway and reactivation of NF-κB and Akt using betulinic acid, and SC79 could restore the secretion of growth factors and cytokines. Moreover, FAK (focal adhesion kinase)-Src (proto-oncogene tyrosine-protein kinase Src) activation was increased by Cx43 downregulation, and inactivation of Akt-NF-κB could be restored by Src inhibitor (PP2), indicating that Akt-NF-κB inactivated by Cx43 downregulation arose from FAK-Src activation. Finally, the depressed cellular activities and secretion of SPCs after Cx43 downregulation were restored by FAK inhibitor PF-562271 or PP2. CONCLUSIONS SPCs possess angiogenic potential to repair ischemic tissue mainly through paracrine effects. Gap junction protein Cx43 plays an important role in regulating cellular function and paracrine effects of SPCs through FAK-Src axis.
Collapse
Affiliation(s)
- Ting-Yi Tien (田婷怡)
- Department of Medical Research (T.-Y.T., C.-L.H., B.-J.W.), MacKay Memorial Hospital, Taipei, Taiwan
- Institute of Biopharmaceutical Science/National Yang-Ming University, Taipei, Taiwan (T.-Y.T., Y.S.)
| | - Yih-Jer Wu (吳懿哲)
- Department of Internal Medicine (Y.-J.W., C.-H.S., H.-I.Y.), MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan (Y.-J.W., C.-H.S., H.-H.W.)
| | - Cheng-Huang Su (蘇正煌)
- Department of Internal Medicine (Y.-J.W., C.-H.S., H.-I.Y.), MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan (Y.-J.W., C.-H.S., H.-H.W.)
| | - Hsueh-Hsiao Wang (王學孝)
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan (Y.-J.W., C.-H.S., H.-H.W.)
| | - Chin-Ling Hsieh (謝金玲)
- Department of Medical Research (T.-Y.T., C.-L.H., B.-J.W.), MacKay Memorial Hospital, Taipei, Taiwan
| | - Bo-Jeng Wang (王博正)
- Department of Medical Research (T.-Y.T., C.-L.H., B.-J.W.), MacKay Memorial Hospital, Taipei, Taiwan
| | - Yeu Su (蘇瑀)
- Institute of Biopharmaceutical Science/National Yang-Ming University, Taipei, Taiwan (T.-Y.T., Y.S.)
| | - Hung-I. Yeh (葉宏一)
- Department of Internal Medicine (Y.-J.W., C.-H.S., H.-I.Y.), MacKay Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
18
|
Abstract
Of the 21 members of the connexin family, 4 (Cx37, Cx40, Cx43, and Cx45) are expressed in the endothelium and/or smooth muscle of intact blood vessels to a variable and dynamically regulated degree. Full-length connexins oligomerize and form channel structures connecting the cytosol of adjacent cells (gap junctions) or the cytosol with the extracellular space (hemichannels). The different connexins vary mainly with regard to length and sequence of their cytosolic COOH-terminal tails. These COOH-terminal parts, which in the case of Cx43 are also translated as independent short isoforms, are involved in various cellular signaling cascades and regulate cell functions. This review focuses on channel-dependent and -independent effects of connexins in vascular cells. Channels play an essential role in coordinating and synchronizing endothelial and smooth muscle activity and in their interplay, in the control of vasomotor actions of blood vessels including endothelial cell reactivity to agonist stimulation, nitric oxide-dependent dilation, and endothelial-derived hyperpolarizing factor-type responses. Further channel-dependent and -independent roles of connexins in blood vessel function range from basic processes of vascular remodeling and angiogenesis to vascular permeability and interactions with leukocytes with the vessel wall. Together, these connexin functions constitute an often underestimated basis for the enormous plasticity of vascular morphology and function enabling the required dynamic adaptation of the vascular system to varying tissue demands.
Collapse
Affiliation(s)
- Ulrich Pohl
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Planegg-Martinsried, Germany; Biomedical Centre, Cardiovascular Physiology, LMU Munich, Planegg-Martinsried, Germany; German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany; and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
19
|
Sajjadi MS, Ghandil P, Shahbazian N, Saberi A. Association of vascular endothelial growth factor A polymorphisms and aberrant expression of connexin 43 and VEGFA with idiopathic recurrent spontaneous miscarriage. J Obstet Gynaecol Res 2020; 46:369-375. [PMID: 32003128 DOI: 10.1111/jog.14192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/31/2019] [Indexed: 11/29/2022]
Abstract
AIM Idiopathic recurrent spontaneous miscarriage (IRSM) is one of the pregnancy outcomes that affects 1-2% of women trying to conceive. Specific genotype or aberrant expression of vascular endothelial growth factor A (VEGFA) and connexin 43 (Cx43) as two important genes for embryonic development are deemed to increase the risk of IRSM. METHODS To investigate any possible association of VEGFA polymorphisms and aberrant expression of Cx43 and VEGFA with IRSM, we carried out a case-control study including embryo chorionic villus tissues of 100 pregnant women with IRSM and 100 embryo chorionic villus tissues of healthy pregnant women without history of miscarriage. Restriction fragment length polymorphism was used for genotyping of rs699947 (-2578C/A) and rs2010963 (-634G/C) polymorphisms in VEGFA. Besides, quantitative real-time PCR was performed for VEGFA and Cx43 expression analysis. RESULTS The results showed that the frequency of -634G/C and C/C genotypes was significantly higher in aborted fetuses (P = 0.001 and P < 0.001, respectively) compared to the control group's. However, the frequency of -2578C/A genotypes was not significantly different between the cases and controls. Moreover, a significant higher expression of VEGF (P = 0.0005) and Cx43 (P = 0.0011) was observed in chorionic villus tissues of women with IRSM. CONCLUSION The finding demonstrated that IRSM frequency may depend on GC and CC genotypes of rs2010963 VEGF polymorphism and expression level of VEGF and Cx43 in IRSM patients was increased.
Collapse
Affiliation(s)
- Maryam S Sajjadi
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Pegah Ghandil
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nahid Shahbazian
- Department of Obstetrics and Gynecology, Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alihossein Saberi
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
20
|
Thirunavukkarasu M, Selvaraju V, Joshi M, Coca-Soliz V, Tapias L, Saad I, Fournier C, Husain A, Campbell J, Yee SP, Sanchez JA, Palesty JA, McFadden DW, Maulik N. Disruption of VEGF Mediated Flk-1 Signaling Leads to a Gradual Loss of Vessel Health and Cardiac Function During Myocardial Infarction: Potential Therapy With Pellino-1. J Am Heart Assoc 2019; 7:e007601. [PMID: 30371196 PMCID: PMC6222946 DOI: 10.1161/jaha.117.007601] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background The present study demonstrates that the ubiquitin E3 ligase, Pellino‐1 (Peli1), is an important angiogenic molecule under the control of vascular endothelial growth factor (VEGF) receptor 2/Flk‐1. We have previously reported increased survivability of ischemic skin flap tissue by adenovirus carrying Peli1 (Ad‐Peli1) gene therapy in Flk‐1+/− mice. Methods and Results Two separate experimental groups of mice were subjected to myocardial infarction (MI) followed by the immediate intramyocardial injection of adenovirus carrying LacZ (Ad‐LacZ) (1×109 pfu) or Ad‐Peli1 (1×109 pfu). Heart tissues were collected for analyses. Compared with wild‐type (WTMI) mice, analysis revealed decreased expressions of Peli1, phosphorylated (p‐)Flk‐1, p‐Akt, p‐eNOS, p‐MK2, p‐IκBα, and NF‐κB and decreased vessel densities in Flk‐1+/− mice subjected to MI (Flk‐1+/−MI). Mice (CD1) treated with Ad‐Peli1 after the induction of MI showed increased β‐catenin translocation to the nucleus, connexin 43 expression, and phosphorylation of Akt, eNOS, MK2, and IκBα, that was followed by increased vessel densities compared with the Ad‐LacZ–treated group. Echocardiography conducted 30 days after surgery showed decreased function in the Flk1+/−MI group compared with WTMI, which was restored by Ad‐Peli1 gene therapy. In addition, therapy with Ad‐Peli1 stimulated angiogenic and arteriogenic responses in both CD1 and Flk‐1+/− mice following MI. Ad‐Peli1 treatment attenuated cardiac fibrosis in Flk‐1+/−MI mice. Similar positive results were observed in CD1 mice subjected to MI after Ad‐Peli1 therapy. Conclusion Our results show for the first time that Peli1 plays a unique role in salvaging impaired collateral blood vessel formation, diminishes fibrosis, and improves myocardial function, thereby offering clinical potential for therapies in humans to mend a damaged heart following MI.
Collapse
Affiliation(s)
- Mahesh Thirunavukkarasu
- 1 Molecular Cardiology and Angiogenesis Laboratory University of Connecticut Health Farmington CT.,2 Department of Surgery University of Connecticut Health Farmington CT
| | - Vaithinathan Selvaraju
- 1 Molecular Cardiology and Angiogenesis Laboratory University of Connecticut Health Farmington CT.,2 Department of Surgery University of Connecticut Health Farmington CT
| | - Mandip Joshi
- 1 Molecular Cardiology and Angiogenesis Laboratory University of Connecticut Health Farmington CT.,3 Stanley J. Dudrick Department of Surgery Saint Mary's Hospital Waterbury CT
| | - Vladimir Coca-Soliz
- 1 Molecular Cardiology and Angiogenesis Laboratory University of Connecticut Health Farmington CT.,3 Stanley J. Dudrick Department of Surgery Saint Mary's Hospital Waterbury CT
| | - Leonidas Tapias
- 1 Molecular Cardiology and Angiogenesis Laboratory University of Connecticut Health Farmington CT.,3 Stanley J. Dudrick Department of Surgery Saint Mary's Hospital Waterbury CT
| | - IbnalWalid Saad
- 1 Molecular Cardiology and Angiogenesis Laboratory University of Connecticut Health Farmington CT.,3 Stanley J. Dudrick Department of Surgery Saint Mary's Hospital Waterbury CT
| | - Craig Fournier
- 1 Molecular Cardiology and Angiogenesis Laboratory University of Connecticut Health Farmington CT.,2 Department of Surgery University of Connecticut Health Farmington CT
| | - Aaftab Husain
- 1 Molecular Cardiology and Angiogenesis Laboratory University of Connecticut Health Farmington CT.,2 Department of Surgery University of Connecticut Health Farmington CT
| | - Jacob Campbell
- 1 Molecular Cardiology and Angiogenesis Laboratory University of Connecticut Health Farmington CT.,2 Department of Surgery University of Connecticut Health Farmington CT
| | - Siu-Pok Yee
- 4 Center for Mouse Genome Modification University of Connecticut Health Farmington CT
| | - Juan A Sanchez
- 3 Stanley J. Dudrick Department of Surgery Saint Mary's Hospital Waterbury CT
| | - J Alexander Palesty
- 3 Stanley J. Dudrick Department of Surgery Saint Mary's Hospital Waterbury CT
| | - David W McFadden
- 2 Department of Surgery University of Connecticut Health Farmington CT
| | - Nilanjana Maulik
- 1 Molecular Cardiology and Angiogenesis Laboratory University of Connecticut Health Farmington CT.,2 Department of Surgery University of Connecticut Health Farmington CT
| |
Collapse
|
21
|
Mitochondrial fission protein 1 up-regulation ameliorates senescence-related endothelial dysfunction of human endothelial progenitor cells. Angiogenesis 2019; 22:569-582. [DOI: 10.1007/s10456-019-09680-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/26/2019] [Indexed: 12/15/2022]
|
22
|
Lee YN, Lin CF, Chang CY, Wu YJ, Tsai CH, Tseng SW, Lee HI, Yeh HI, Su CH. Enhanced Proliferation of Endothelial Progenitor Cells Post-Ultrasonic Microbubble Transfection Is Plasmid DNA Size Dependent and Contributed by Interleukin-6 Generation. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:2434-2443. [PMID: 31248639 DOI: 10.1016/j.ultrasmedbio.2019.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 04/03/2019] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
We investigated whether ultrasonic microbubble transfection (UMT) would enhance the transfection of large-sized luciferase plasmids (5.6, 9.2 and 33 kb) and biological impacts. Porcine venous blood endothelial progenitor cells (EPCs) were cultured in a medium containing plasmid DNA (pDNA) of different sizes followed by UMT and functional assays. Real-time polymerase chain reaction was conducted to investigate the effects of transfection of pDNA on multiple molecules central to endothelial function. The results indicated enhanced luciferase expression after UMT but the enhancement declined with increase in the size of the plasmid. UMT of pDNAs sized 5.6 and 9.2 kb into EPCs led to significant enhancement of proliferation. The interleukin-6 (IL-6) secreted from UMT of EPCs also increased in the 5.6- and 9.2-kb pDNA groups. Treatment of the transfected EPCs with anti-IL-6 antibody neutralized the proliferation. In conclusion, UMT of pDNAs sized 5.6 and 9.2 kb into EPCs increased the secretion of IL-6, which in turn enhanced cell proliferation.
Collapse
Affiliation(s)
- Yi-Nan Lee
- Cardiovascular Center, Departments of Internal Medicine and Medical Research, Mackay Memorial Hospital, Taipei City, Taiwan
| | - Chao-Feng Lin
- Cardiovascular Center, Departments of Internal Medicine and Medical Research, Mackay Memorial Hospital, Taipei City, Taiwan; Mackay Medical College, New Taipei City, Taiwan
| | - Chiung-Yin Chang
- Cardiovascular Center, Departments of Internal Medicine and Medical Research, Mackay Memorial Hospital, Taipei City, Taiwan
| | - Yih-Jer Wu
- Cardiovascular Center, Departments of Internal Medicine and Medical Research, Mackay Memorial Hospital, Taipei City, Taiwan; Mackay Medical College, New Taipei City, Taiwan
| | - Chung-Hsien Tsai
- Cardiovascular Center, Departments of Internal Medicine and Medical Research, Mackay Memorial Hospital, Taipei City, Taiwan
| | | | - Hsin-I Lee
- Cardiovascular Center, Departments of Internal Medicine and Medical Research, Mackay Memorial Hospital, Taipei City, Taiwan
| | - Hung-I Yeh
- Cardiovascular Center, Departments of Internal Medicine and Medical Research, Mackay Memorial Hospital, Taipei City, Taiwan; Mackay Medical College, New Taipei City, Taiwan
| | - Cheng-Huang Su
- Cardiovascular Center, Departments of Internal Medicine and Medical Research, Mackay Memorial Hospital, Taipei City, Taiwan; Mackay Medical College, New Taipei City, Taiwan.
| |
Collapse
|
23
|
The Functional Implications of Endothelial Gap Junctions and Cellular Mechanics in Vascular Angiogenesis. Cancers (Basel) 2019; 11:cancers11020237. [PMID: 30781714 PMCID: PMC6406946 DOI: 10.3390/cancers11020237] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/08/2019] [Accepted: 02/13/2019] [Indexed: 12/27/2022] Open
Abstract
Angiogenesis—the sprouting and growth of new blood vessels from the existing vasculature—is an important contributor to tumor development, since it facilitates the supply of oxygen and nutrients to cancer cells. Endothelial cells are critically affected during the angiogenic process as their proliferation, motility, and morphology are modulated by pro-angiogenic and environmental factors associated with tumor tissues and cancer cells. Recent in vivo and in vitro studies have revealed that the gap junctions of endothelial cells also participate in the promotion of angiogenesis. Pro-angiogenic factors modulate gap junction function and connexin expression in endothelial cells, whereas endothelial connexins are involved in angiogenic tube formation and in the cell migration of endothelial cells. Several mechanisms, including gap junction function-dependent or -independent pathways, have been proposed. In particular, connexins might have the potential to regulate cell mechanics such as cell morphology, cell migration, and cellular stiffness that are dynamically changed during the angiogenic processes. Here, we review the implication for endothelial gap junctions and cellular mechanics in vascular angiogenesis.
Collapse
|
24
|
Suhaeri M, Noh MH, Moon JH, Kim IG, Oh SJ, Ha SS, Lee JH, Park K. Novel skin patch combining human fibroblast-derived matrix and ciprofloxacin for infected wound healing. Am J Cancer Res 2018; 8:5025-5038. [PMID: 30429884 PMCID: PMC6217057 DOI: 10.7150/thno.26837] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/30/2018] [Indexed: 01/01/2023] Open
Abstract
Skin injuries are frequently encountered in daily life, but deep wounds often poorly self-heal and do not recover completely. In this study, we propose a novel skin patch that combines antibiotic, cell-derived extracellular matrix (ECM) and biocompatible polyvinyl alcohol (PVA) hydrogel. Methods: Decellularized human lung fibroblast-derived matrix (hFDM) was prepared on tissue culture plate (TCP) and PVA solution was then poured onto it. After a freeze-thaw process, PVA was peeled off from TCP along with hFDM tightly anchored to PVA. Subsequently, ciprofloxacin (Cipro)-incorporated PVA/hFDM (PVA/Cipro/hFDM) was fabricated via diffusion-based drug loading. Results: In vitro analyses of PVA/Cipro/hFDM show little cytotoxicity of ciprofloxacin, stability of hFDM, rich fibronectin in hFDM, and good cell attachment, respectively. In addition, hFDM proved to be beneficial in promoting cell migration of dermal fibroblasts and human umbilical vein endothelial cells (HUVECs) using transwell inserts. The antibacterial drug Cipro was very effective in suppressing colony growth of gram-negative and -positive bacteria as identified via an inhibition zone assay. For animal study, infected wound models in BALB/c mice were prepared and four test groups (control, PVA, PVA/Cipro, PVA/Cipro/hFDM) were administered separately and their effect on wound healing was examined for up to 21 days. The results support that Cipro successfully reduced bacterial infection and thus encouraged faster wound closure. Further analysis using histology and immunofluorescence revealed that the most advanced skin regeneration was achieved with PVA/Cipro/hFDM, as assessed via re-epithelialization, collagen texture and distribution in the epidermis, and skin adnexa (i.e., glands and hair follicles) regeneration in the dermis. Conclusion: This work demonstrates that our skin patch successfully consolidates the regenerative potential of ECM and the antibacterial activity of Cipro for advanced wound healing.
Collapse
|
25
|
Arshad M, Conzelmann C, Riaz MA, Noll T, Gündüz D. Inhibition of Cx43 attenuates ERK1/2 activation, enhances the expression of Cav‑1 and suppresses cell proliferation. Int J Mol Med 2018; 42:2811-2818. [PMID: 30132504 DOI: 10.3892/ijmm.2018.3828] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 07/31/2018] [Indexed: 11/06/2022] Open
Abstract
In addition to being an important component of the gap junction, connexin 43 (Cx43) has been shown to regulate other cellular functions, including cell proliferation. This regulatory role of Cx43 may be important in therapeutic situations, including wound healing or ischemic injuries. Caveolin‑1 (Cav‑1) has been shown to regulate angiogenesis. The aim of the present study was to analyze whether Cx43 counter‑regulates Cav‑1 in controlling the proliferation and migration of endothelial cells. The inhibition of Cx43 with niflumic acid, flufenamic acid and 18‑α‑glycyrrhetinic acid in cultured human umbilical vein endothelial cells resulted in decreased phosphorylation of extracellular signal‑regulated kinase (ERK)1/2 and increased expression of Cav‑1, as shown by western blot analysis. Furthermore, the inhibition of Cx43 resulted in a 50±7% decrease in cell proliferation, determined using a crystal violet assay, a 48±5% decrease in migration, determined using a migration assay, and a 49±6% decrease in endothelial tube formation, determined using a Matrigel assay, compared with the control. Similar results were obtained following specific inhibition of Cx43 by mimetic peptides (Gap26 and Gap27). Inhibition of the mitogen‑activated protein kinase kinase/ERK pathway with PD‑98059 resulted in an increased expression of Cav‑1 and a reduction in the expression of Cx43. Furthermore, cell proliferation, migration and tube formation in endothelial cells were impaired. By contrast, downregulation of the protein expression of Cav‑1 by small interference RNA resulted in increased expression of Cx43 and phosphorylation of ERK1/2. Accordingly, the number of cells in the Cav‑1 treated‑group increased by 35±5% compared with the controls. The data of the present study showed that Cav‑1 suppressed cell proliferation by inhibiting the activity of Cx43, which is upstream of ERK1/2. The downregulation of Cav‑1 protein resulted in loss of the inhibitory activity of Cav‑1 on cell proliferation and led to increased cell proliferation. This counter‑regulatory effect of Cx43 may be of importance in therapeutic angiogenesis.
Collapse
Affiliation(s)
- Muhammad Arshad
- Department of Cardiology and Angiology, University Hospital Giessen and Marburg, D‑35392 Giessen, Germany
| | - Charlotte Conzelmann
- Department of Cardiology and Angiology, University Hospital Giessen and Marburg, D‑35392 Giessen, Germany
| | - Muhammad Assad Riaz
- Department of Radiotherapy, University Hospital Essen, D‑45147 Essen, Germany
| | - Thomas Noll
- Institute of Physiology, Carl Gustav Carus Technical University of Dresden, D‑01307 Dresden, Germany
| | - Dursun Gündüz
- Department of Cardiology and Angiology, University Hospital Giessen and Marburg, D‑35392 Giessen, Germany
| |
Collapse
|
26
|
Fan X, Teng Y, Ye Z, Zhou Y, Tan WS. The effect of gap junction-mediated transfer of miR-200b on osteogenesis and angiogenesis in a co-culture of MSCs and HUVECs. J Cell Sci 2018; 131:jcs.216135. [PMID: 29898921 DOI: 10.1242/jcs.216135] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/04/2018] [Indexed: 12/15/2022] Open
Abstract
For successful engineering of pre-vascularized bone tissue in vitro, understanding the interactions between vasculogenic cells and bone-forming cells is a prerequisite. Mounting evidence indicates that microRNAs can serve as intercellular signals that allow cell-cell communication. Here, the role of the transfer of the microRNA miR-200b between vasculogenic and osteogenic cells was explored in a co-culture system. Rat bone-marrow derived mesenchymal stem cells (BMSCs) formed functional gap junctions composed of connexin 43 (Cx43, also known as GJA1) with human umbilical vein endothelial cells (HUVECs), through which miR-200b could transfer from BMSCs to HUVECs to regulate osteogenesis and angiogenesis. As a negative regulator, the decrease in miR-200b level in BMSCs derepressed the expression of VEGF-A, leading to increased osteogenic differentiation. Once inside HUVECs, miR-200b reduced the angiogenic potential of HUVECs through downregulation of ZEB2, ETS1, KDR and GATA2 Additionally, TGF-β was found to trigger the transfer of miR-200b to HUVECs. Upon adding the TGF-β inhibitor SB431542 or TGF-β-neutralizing antibody, the formation of capillary-like structures in co-culture could be partially rescued. These findings may be fundamental to the development of a cell-based bone regeneration strategy.
Collapse
Affiliation(s)
- Xiaoting Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yi Teng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zhaoyang Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
27
|
Function of Connexins in the Interaction between Glial and Vascular Cells in the Central Nervous System and Related Neurological Diseases. Neural Plast 2018; 2018:6323901. [PMID: 29983707 PMCID: PMC6015683 DOI: 10.1155/2018/6323901] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/06/2018] [Accepted: 05/14/2018] [Indexed: 02/05/2023] Open
Abstract
Neuronal signaling together with synapse activity in the central nervous system requires a precisely regulated microenvironment. Recently, the blood-brain barrier is considered as a “neuro-glia-vascular unit,” a structural and functional compound composed of capillary endothelial cells, glial cells, pericytes, and neurons, which plays a pivotal role in maintaining the balance of the microenvironment in and out of the brain. Tight junctions and adherens junctions, which function as barriers of the blood-brain barrier, are two well-known kinds in the endothelial cell junctions. In this review, we focus on the less-concerned contribution of gap junction proteins, connexins in blood-brain barrier integrity under physio-/pathology conditions. In the neuro-glia-vascular unit, connexins are expressed in the capillary endothelial cells and prominent in astrocyte endfeet around and associated with maturation and function of the blood-brain barrier through a unique signaling pathway and an interaction with tight junction proteins. Connexin hemichannels and connexin gap junction channels contribute to the physiological or pathological progress of the blood-brain barrier; in addition, the interaction with other cell-cell-adhesive proteins is also associated with the maintenance of the blood-brain barrier. Lastly, we explore the connexins and connexin channels involved in the blood-brain barrier in neurological diseases and any programme for drug discovery or delivery to target or avoid the blood-brain barrier.
Collapse
|
28
|
Marrella A, Lee TY, Lee DH, Karuthedom S, Syla D, Chawla A, Khademhosseini A, Jang HL. Engineering vascularized and innervated bone biomaterials for improved skeletal tissue regeneration. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2018; 21:362-376. [PMID: 30100812 PMCID: PMC6082025 DOI: 10.1016/j.mattod.2017.10.005] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Blood vessels and nerve fibers are distributed throughout the entirety of skeletal tissue, and play important roles during bone development and fracture healing by supplying oxygen, nutrients, and cells. However, despite the successful development of bone mimetic materials that can replace damaged bone from a structural point of view, most of the available bone biomaterials often do not induce sufficient formation of blood vessels and nerves. In part, this is due to the difficulty of integrating and regulating multiple tissue types within artificial materials, which causes a gap between native skeletal tissue. Therefore, understanding the anatomy and underlying interaction mechanisms of blood vessels and nerve fibers in skeletal tissue is important to develop biomaterials that can recapitulate its complex microenvironment. In this perspective, we highlight the structure and osteogenic functions of the vascular and nervous system in bone, in a coupled manner. In addition, we discuss important design criteria for engineering vascularized, innervated, and neurovascularized bone implant materials, as well as recent advances in the development of such biomaterials. We expect that bone implant materials with neurovascularized networks can more accurately mimic native skeletal tissue and improve the regeneration of bone tissue.
Collapse
Affiliation(s)
- Alessandra Marrella
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139. USA
| | - Tae Yong Lee
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139. USA
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Dong Hoon Lee
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139. USA
| | - Sobha Karuthedom
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139. USA
| | - Denata Syla
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139. USA
| | - Aditya Chawla
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139. USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Ali Khademhosseini
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139. USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Department of Bioindustrial Technologies, College of Animal Bioscience & Technology, Konkuk University, Seoul 143-701, Republic of Korea
- Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| | - Hae Lin Jang
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139. USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
29
|
Wu TW, Liu CC, Hung CL, Yen CH, Wu YJ, Wang LY, Yeh HI. Genetic profiling of young and aged endothelial progenitor cells in hypoxia. PLoS One 2018; 13:e0196572. [PMID: 29708992 PMCID: PMC5927426 DOI: 10.1371/journal.pone.0196572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 04/16/2018] [Indexed: 12/11/2022] Open
Abstract
Age is a major risk factor for diseases caused by ischemic hypoxia, such as stroke and coronary artery disease. Endothelial progenitor cells (EPCs) are the major cells respond to ischemic hypoxia through angiogenesis and vascular remodeling. However, the effect of aging on EPCs and their responses to hypoxia are not well understood. CD34+ EPCs were isolated from healthy volunteers and aged by replicative senescence, which was to passage cells until their doubling time was twice as long as the original cells. Young and aged CD34+ EPCs were exposed to a hypoxic environment (1% oxygen for 48hrs) and their gene expression profiles were evaluated using gene expression array. Gene array results were confirmed using quantitative polymerase chain reaction, Western blotting, and BALB/c female athymic nude mice hindlimb ischemia model. We identified 115 differentially expressed genes in young CD34+ EPCs, 54 differentially expressed genes in aged CD34+ EPCs, and 25 common genes between normoxia and hypoxia groups. Among them, the expression of solute carrier family 2 (facilitated glucose transporter), member 1 (SLC2A1) increased the most by hypoxia in young cells. Gene set enrichment analysis indicated the pathways affected by aging and hypoxia most, including genes “response to oxygen levels” in young EPCs and genes involved “chondroitin sulfate metabolic process” in aged cells. Our study results indicate the key factors that contribute to the effects of aging on response to hypoxia in CD34+ EPCs. With the potential applications of EPCs in cardiovascular and other diseases, our study also provides insight on the impact of ex vivo expansion might have on EPCs.
Collapse
Affiliation(s)
- Tzu-Wei Wu
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
- * E-mail:
| | - Chun-Chieh Liu
- Section of Cardiology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei City, Taiwan
| | - Chung-Lieh Hung
- Section of Cardiology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei City, Taiwan
| | - Chih-Hsien Yen
- Section of Cardiology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei City, Taiwan
| | - Yih-Jer Wu
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Section of Cardiology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei City, Taiwan
| | - Li-Yu Wang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Hung-I Yeh
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Section of Cardiology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei City, Taiwan
| |
Collapse
|
30
|
Pozhilenkova EA, Lopatina OL, Komleva YK, Salmin VV, Salmina AB. Blood-brain barrier-supported neurogenesis in healthy and diseased brain. Rev Neurosci 2018; 28:397-415. [PMID: 28195555 DOI: 10.1515/revneuro-2016-0071] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/23/2016] [Indexed: 12/23/2022]
Abstract
Adult neurogenesis is one of the most important mechanisms contributing to brain development, learning, and memory. Alterations in neurogenesis underlie a wide spectrum of brain diseases. Neurogenesis takes place in highly specialized neurogenic niches. The concept of neurogenic niches is becoming widely accepted due to growing evidence of the important role of the microenvironment established in the close vicinity to stem cells in order to provide adequate control of cell proliferation, differentiation, and apoptosis. Neurogenic niches represent the platform for tight integration of neurogenesis and angiogenesis supported by specific properties of cerebral microvessel endothelial cells contributing to establishment of partially compromised blood-brain barrier (BBB) for the adjustment of local conditions to the current metabolic needs of stem and progenitor cells. Here, we review up-to-date data on microvascular dynamics in activity-dependent neurogenesis, specific properties of BBB in neurogenic niches, endothelial-driven mechanisms of clonogenic activity, and future perspectives for reconstructing the neurogenic niches in vitro.
Collapse
|
31
|
Chen WC, Chung CH, Lu YC, Wu MH, Chou PH, Yen JY, Lai YW, Wang GS, Liu SC, Cheng JK, Wu YJ, Yeh HI, Wang LY, Wang SW. BMP-2 induces angiogenesis by provoking integrin α6 expression in human endothelial progenitor cells. Biochem Pharmacol 2018; 150:256-266. [PMID: 29458046 DOI: 10.1016/j.bcp.2018.02.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/14/2018] [Indexed: 11/18/2022]
Abstract
Bone morphogenetic protein-2 (BMP-2) is a multifunctional cytokine, capable of governing several cellular functions, including proliferation, motility, differentiation, and angiogenesis. Circulating endothelial progenitor cells (EPCs) have been shown to facilitate tissue repair, postnatal neovascularization, and tumor associated angiogenesis. Nevertheless, the impact of BMP-2 on angiogenesis of human EPCs has largely remained a mystery. In this study, we found that BMP-2 promoted cell migration and tube formation of EPCs in a concentration-dependent manner, indicating BMP-2 induced in vitro angiogenesis in human EPCs. Furthermore, BMP-2 significantly increased microvessel formation in Matrigel plug assay, and BMP-2 antagonist noggin prevented BMP-2-induced in vivo angiogenesis. Mechanistic investigations showed BMP-2 profoundly induced the expression of Id-1 and integrin α6 as well as EPCs angiogenesis by activating PI3K/Akt and MEK/ERK signaling pathways. Moreover, knockdown of Id-1 and integrin α6 by siRNA transfection obviously attenuated BMP-2-indueced tube formation of EPCs. These results suggest that BMP-2 promotes angiogenesis in human EPCs through the activation of PI3K/Akt, MEK/ERK, and Id-1/integrin α6 signaling cascades. This is the first demonstration that BMP-2 exhibits the angiogenesis property on human EPCs. BMP-2 might serve as the potential therapeutic target for treatment of angiogenesis-related diseases.
Collapse
Affiliation(s)
- Wei-Cheng Chen
- Department of Orthopaedics, Mackay Memorial Hospital, Taipei, Taiwan
| | - Ching-Hu Chung
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Yung-Chang Lu
- Department of Orthopaedics, Mackay Memorial Hospital, Taipei, Taiwan; Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Min-Huan Wu
- Sports Recreation and Health Management Continuing Studies, Tunghai University, Taichung, Taiwan; Physical Education Office, Tunghai University, Taichung, Taiwan
| | - Po-Hsun Chou
- Department of Orthopaedics, Mackay Memorial Hospital, Taipei, Taiwan
| | - Juei-Yu Yen
- Department of Orthopaedics, Mackay Memorial Hospital, Taipei, Taiwan
| | - Yu-Wei Lai
- Division of Urology, Taipei City Hospital Renai Branch, Taiwan; Department of Urology, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Guo-Shou Wang
- Department of Orthopaedics, Mackay Memorial Hospital, Taipei, Taiwan
| | - Shih-Chia Liu
- Department of Orthopaedics, Mackay Memorial Hospital, Taipei, Taiwan
| | - Jen-Kun Cheng
- Department of Orthopaedics, Mackay Memorial Hospital, Taipei, Taiwan; Department of Anesthesiology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Yih-Jer Wu
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan; Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Hung-I Yeh
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan; Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Li-Yu Wang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan; Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
32
|
Haefliger JA, Allagnat F, Hamard L, Le Gal L, Meda P, Nardelli-Haefliger D, Génot E, Alonso F. Targeting Cx40 (Connexin40) Expression or Function Reduces Angiogenesis in the Developing Mouse Retina. Arterioscler Thromb Vasc Biol 2017; 37:2136-2146. [PMID: 28982669 DOI: 10.1161/atvbaha.117.310072] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/20/2017] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Cx40 (Connexin40) forms intercellular channels that coordinate the electric conduction in the heart and the vasomotor tone in large vessels. The protein was shown to regulate tumoral angiogenesis; however, whether Cx40 also contributes to physiological angiogenesis is still unknown. APPROACH AND RESULTS Here, we show that Cx40 contributes to physiological angiogenesis. Genetic deletion of Cx40 leads to a reduction in vascular growth and capillary density in the neovascularization model of the mouse neonatal retina. At the angiogenic front, vessel sprouting is reduced, and the mural cells recruited along the sprouts display an altered phenotype. These alterations can be attributed to disturbed endothelial cell functions as selective reexpression of Cx40 in these cells restores normal angiogenesis. In vitro, targeting Cx40 in microvascular endothelial cells, by silencing its expression or by blocking gap junction channels, decreases their proliferation. Moreover, loss of Cx40 in these cells also increases their release of PDGF (platelet-derived growth factor) and promotes the chemoattraction of mural cells. In vivo, an intravitreal injection of a Cx40 inhibitory peptide, phenocopies the loss of Cx40 in the retinal vasculature of wild-type mice. CONCLUSIONS Collectively, our data show that endothelial Cx40 contributes to the early stages of physiological angiogenesis in the developing retina, by regulating vessel growth and maturation. Cx40 thus represents a novel therapeutic target for treating pathological ocular angiogenesis.
Collapse
Affiliation(s)
- Jacques-Antoine Haefliger
- From the Department of Medicine (J.-A.H., F.A., L.H., L.L.G., F.A.) and Department of Urology (D.N.H.), Lausanne University Hospital, Switzerland; Department of Cell Physiology and Metabolism, University of Geneva Medical Center, Switzerland (P.M.); and Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), Université de Bordeaux, France (E.G., F.A.).
| | - Florent Allagnat
- From the Department of Medicine (J.-A.H., F.A., L.H., L.L.G., F.A.) and Department of Urology (D.N.H.), Lausanne University Hospital, Switzerland; Department of Cell Physiology and Metabolism, University of Geneva Medical Center, Switzerland (P.M.); and Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), Université de Bordeaux, France (E.G., F.A.)
| | - Lauriane Hamard
- From the Department of Medicine (J.-A.H., F.A., L.H., L.L.G., F.A.) and Department of Urology (D.N.H.), Lausanne University Hospital, Switzerland; Department of Cell Physiology and Metabolism, University of Geneva Medical Center, Switzerland (P.M.); and Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), Université de Bordeaux, France (E.G., F.A.)
| | - Loïc Le Gal
- From the Department of Medicine (J.-A.H., F.A., L.H., L.L.G., F.A.) and Department of Urology (D.N.H.), Lausanne University Hospital, Switzerland; Department of Cell Physiology and Metabolism, University of Geneva Medical Center, Switzerland (P.M.); and Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), Université de Bordeaux, France (E.G., F.A.)
| | - Paolo Meda
- From the Department of Medicine (J.-A.H., F.A., L.H., L.L.G., F.A.) and Department of Urology (D.N.H.), Lausanne University Hospital, Switzerland; Department of Cell Physiology and Metabolism, University of Geneva Medical Center, Switzerland (P.M.); and Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), Université de Bordeaux, France (E.G., F.A.)
| | - Denise Nardelli-Haefliger
- From the Department of Medicine (J.-A.H., F.A., L.H., L.L.G., F.A.) and Department of Urology (D.N.H.), Lausanne University Hospital, Switzerland; Department of Cell Physiology and Metabolism, University of Geneva Medical Center, Switzerland (P.M.); and Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), Université de Bordeaux, France (E.G., F.A.)
| | - Elisabeth Génot
- From the Department of Medicine (J.-A.H., F.A., L.H., L.L.G., F.A.) and Department of Urology (D.N.H.), Lausanne University Hospital, Switzerland; Department of Cell Physiology and Metabolism, University of Geneva Medical Center, Switzerland (P.M.); and Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), Université de Bordeaux, France (E.G., F.A.)
| | - Florian Alonso
- From the Department of Medicine (J.-A.H., F.A., L.H., L.L.G., F.A.) and Department of Urology (D.N.H.), Lausanne University Hospital, Switzerland; Department of Cell Physiology and Metabolism, University of Geneva Medical Center, Switzerland (P.M.); and Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), Université de Bordeaux, France (E.G., F.A.).
| |
Collapse
|
33
|
Li L, Liu H, Xu C, Deng M, Song M, Yu X, Xu S, Zhao X. VEGF promotes endothelial progenitor cell differentiation and vascular repair through connexin 43. Stem Cell Res Ther 2017; 8:237. [PMID: 29065929 PMCID: PMC5655878 DOI: 10.1186/s13287-017-0684-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 02/08/2023] Open
Abstract
Background Endothelial progenitor cell (EPC) differentiation is considered crucial for vascular repair. Vascular endothelial growth factor (VEGF) induces EPC differentiation, but the underlying mechanism of this phenomenon remains unclear. Connexin 43 (Cx43) is reported to be involved in the regulation of stem cell differentiation. Therefore, we sought to determine whether Cx43 is involved in VEGF-induced EPC differentiation and vascular repair. Methods Rat spleen-derived EPCs were cultured and treated with various concentrations of VEGF (0, 10, or 50 ng/mL), and the relationship between EPC differentiation and Cx43 expression was evaluated. Thereafter, fluorescence redistribution after photobleaching was performed to assess the relationship between adjacent EPC differentiation and Cx43-induced gap junction intercellular communication (GJIC). After carotid artery injury, EPCs pretreated with VEGF were injected into the tail veins, and the effects of Cx43 on vascular repair were evaluated. Results EPCs cultured with VEGF exhibited accelerated differentiation and increased expression of Cx43. However, inhibition of Cx43 expression using short interfering RNA (siRNA) attenuated EPC GJIC and consequent EPC differentiation. VEGF-pretreated EPC transplantation promoted EPC homing and reendothelialization, and inhibited neointimal formation. These effects were attenuated by siRNA inhibition of Cx43. Conclusions Our results from in vivo and in vitro experiments indicated that VEGF promotes EPC differentiation and vascular repair through Cx43. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0684-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lufeng Li
- Institute of Cardiovascular Research, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Huanyun Liu
- Institute of Cardiovascular Research, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.,Cardiovascular Department, First People's Hospital of Chong Qing Liang Jiang New Zone, Chongqing, 401120, China
| | - Chunxin Xu
- Institute of Cardiovascular Research, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Mengyang Deng
- Institute of Cardiovascular Research, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Mingbao Song
- Institute of Cardiovascular Research, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Xuejun Yu
- Institute of Cardiovascular Research, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Shangcheng Xu
- Department of Occupational Health, Third Military Medical University, Chongqing, 400038, China
| | - Xiaohui Zhao
- Institute of Cardiovascular Research, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| |
Collapse
|
34
|
Abstract
Neuronal survival, electrical signaling and synaptic activity require a well-balanced micro-environment in the central nervous system. This is achieved by the blood-brain barrier (BBB), an endothelial barrier situated in the brain capillaries, that controls near-to-all passage in and out of the brain. The endothelial barrier function is highly dependent on signaling interactions with surrounding glial, neuronal and vascular cells, together forming the neuro-glio-vascular unit. Within this functional unit, connexin (Cx) channels are of utmost importance for intercellular communication between the different cellular compartments. Connexins are best known as the building blocks of gap junction (GJ) channels that enable direct cell-cell transfer of metabolic, biochemical and electric signals. In addition, beyond their role in direct intercellular communication, Cxs also form unapposed, non-junctional hemichannels in the plasma membrane that allow the passage of several paracrine messengers, complementing direct GJ communication. Within the NGVU, Cxs are expressed in vascular endothelial cells, including those that form the BBB, and are eminent in astrocytes, especially at their endfoot processes that wrap around cerebral vessels. However, despite the density of Cx channels at this so-called gliovascular interface, it remains unclear as to how Cx-based signaling between astrocytes and BBB endothelial cells may converge control over BBB permeability in health and disease. In this review we describe available evidence that supports a role for astroglial as well as endothelial Cxs in the regulation of BBB permeability during development as well as in disease states.
Collapse
|
35
|
Siqueira M, Francis D, Gisbert D, Gomes FCA, Stipursky J. Radial Glia Cells Control Angiogenesis in the Developing Cerebral Cortex Through TGF-β1 Signaling. Mol Neurobiol 2017; 55:3660-3675. [PMID: 28523566 DOI: 10.1007/s12035-017-0557-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/12/2017] [Indexed: 10/19/2022]
Abstract
Neuroangiogenesis in the developing central nervous system is controlled by interactions between endothelial cells (ECs) and radial glia (RG) neural stem cells, although RG-derived molecules implicated in these events are not fully known. Here, we investigated the role of RG-secreted TGF-β1, in angiogenesis in the developing cerebral cortex. By isolation of murine microcapillary brain endothelial cells (MBECs), we demonstrate that conditioned medium from RG cultures (RG-CM) promoted MBEC migration and formation of vessel-like structures in vitro, in a TGF-β1-dependent manner. These events were followed by endothelial regulation of GPR124 and BAI-1 gene expression by RG-CM. Proteome profile of RG-CM identified angiogenesis-related molecules IGFBP2/3, osteopontin, endostatin, SDF1, fractalkine, TIMP1/4, Ang-1, pentraxin3, and Cyr61, some of them modulated by TGF-β1 induction. In vivo gain and loss of function assays targeting RG cells demonstrates a specific TGF-β1-dependent control of blood vessels branching in the cerebral cortex. Together, our results point to TGF-β1 signaling pathway as a potential mediator of the RG-EC interactions and shed light to the key role of RG in paving the brain vascular network.
Collapse
Affiliation(s)
- Michele Siqueira
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Daniel Francis
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Diego Gisbert
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Joice Stipursky
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil. .,Laboratório de Neurobiologia Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro - Centro de Ciências da Saúde, Bloco F, Sala F15, Ilha do Fundão, Rio de Janeiro, RJ, 21949-902, Brazil.
| |
Collapse
|
36
|
Zhang XF, Cui X. Connexin 43: Key roles in the skin. Biomed Rep 2017; 6:605-611. [PMID: 28584630 DOI: 10.3892/br.2017.903] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/17/2017] [Indexed: 12/26/2022] Open
Abstract
Gap junctions are tightly packed intercellular channels that serve a common purpose of allowing the intercellular exchange of small metabolites, second messengers and electrical signals. Connexins (Cxs) are gap junction proteins. Currently, 20 and 21 members of Cxs have been characterized in mice and humans, respectively. Connexin 43 (Cx43) is the most ubiquitously expressed type of Cx in the skin. It is produced by various different types of skin cell, such as keratinocytes, fibroblasts, endothelial and basal cells, melanocytes and dermal papilla cells. At present, more evidence indicates that Cx43 has an important role in skin repair and skin tumor development, as well as in skin cell invasion and metastasis. In this review, current knowledge regarding the regulation and function of Cx43 is summarized and the therapeutic potential of regulating Cx43 activity is discussed.
Collapse
Affiliation(s)
- Xiao-Fei Zhang
- Department of Biological Sciences and Biotechnology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, Hubei 430070, P.R. China
| | - Xiaofeng Cui
- Department of Biological Sciences and Biotechnology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, Hubei 430070, P.R. China
| |
Collapse
|
37
|
Schmidt VJ, Covi JM, Koepple C, Hilgert JG, Polykandriotis E, Bigdeli AK, Distel LV, Horch RE, Kneser U. Flow Induced Microvascular Network Formation of Therapeutic Relevant Arteriovenous (AV) Loop-Based Constructs in Response to Ionizing Radiation. Med Sci Monit 2017; 23:834-842. [PMID: 28199294 PMCID: PMC5322868 DOI: 10.12659/msm.899107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The arteriovenous (AV) loop model enables axial vascularization to gain a functional microcirculatory system in tissue engineering constructs in vivo. These constructs might replace surgical flaps for the treatment of complex wounds in the future. Today, free flaps are often exposed to high-dose radiation after defect coverage, according to guideline-oriented treatment plans. Vascular response of AV loop-based constructs has not been evaluated after radiation, although it is of particular importance. It is further unclear whether the interposed venous AV loop graft is crucial for the induction of angiogenesis. MATERIAL AND METHODS We exposed the grafted vein to a single radiation dose of 2 Gy prior to loop construction to alter intrinsic and angio-inductive properties specifically within the graft. Vessel loops were embedded in a fibrin-filled chamber for 15 days and radiation-induced effects on flow-mediated vascularization were assessed by micro-CT and two-dimensional histological analysis. RESULTS Vessel amount was significantly impaired when an irradiated vein graft was used for AV loop construction. However, vessel growth and differentiation were still present. In contrast to vessel density, which was homogeneously diminished in constructs containing irradiated veins, vessel diameter was primarily decreased in the more peripheral regions. CONCLUSIONS Vascular luminal sprouts were significantly diminished in irradiated venous grafts, suggesting that the interposing vein constitutes a vital part of the AV loop model and is essential to initiate flow-mediate angiogenesis. These results add to the current understanding of AV loop-based neovascularization and suggest clinical implications for patients requiring combined AV loop-based tissue transfer and adjuvant radiotherapy.
Collapse
Affiliation(s)
- Volker J Schmidt
- Department for Hand-, Plastic- and Reconstructive Surgery, BG Unfallklinik Ludwigshafen, Universität Heidelberg, Heidelberg, Germany
| | - Jennifer M Covi
- Department of Plastic and Hand Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Koepple
- Department for Hand-, Plastic- and Reconstructive Surgery, BG Unfallklinik Ludwigshafen, Universität Heidelberg, Heidelberg, Germany
| | - Johannes G Hilgert
- Department of Nephrology and Hypertension, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Elias Polykandriotis
- Department of Plastic and Hand Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Amir K Bigdeli
- Department for Hand-, Plastic- and Reconstructive Surgery, BG Unfallklinik Ludwigshafen, Universität Heidelberg, Heidelberg, Germany
| | - Luitpold V Distel
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Raymund E Horch
- Department of Plastic and Hand Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ulrich Kneser
- Department for Hand-, Plastic- and Reconstructive Surgery, BG Unfallklinik Ludwigshafen, Universität Heidelberg, Heidelberg, Germany
| |
Collapse
|
38
|
Chen CY, Su CM, Hsu CJ, Huang CC, Wang SW, Liu SC, Chen WC, Fuh LJ, Tang CH. CCN1 Promotes VEGF Production in Osteoblasts and Induces Endothelial Progenitor Cell Angiogenesis by Inhibiting miR-126 Expression in Rheumatoid Arthritis. J Bone Miner Res 2017; 32:34-45. [PMID: 27465842 DOI: 10.1002/jbmr.2926] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/15/2016] [Accepted: 07/25/2016] [Indexed: 12/31/2022]
Abstract
Angiogenesis is the formation of new capillaries from preexisting vasculature. The perpetuation of angiogenesis plays a critical role in the pathogenesis of various disease states including rheumatoid arthritis (RA). Cysteine-rich 61 (Cyr61 or CCN1) is an important proinflammatory cytokine in RA. Here, we investigated the role of CCN1 in angiogenesis associated with vascular endothelial growth factor (VEGF) production and osteoblasts. We found higher expression of CCN1 and VEGF in synovial fluid from RA patients compared with healthy controls. CCN1 induced VEGF expression in osteoblasts and increased endothelial progenitor cells (EPCs) angiogenesis by inhibiting miR-126 via the protein kinase C-alpha (PKC-α) signaling pathway. CCN1 knockdown inhibited angiogenesis in both in vitro and in vivo models. Inhibition of CCN1 expression with lentiviral vectors expressing short hairpin RNA (shRNA) ameliorated articular swelling, cartilage erosion, and angiogenesis in the ankle joint of mice with collagen-induced arthritis (CIA). Our study is the first to describe how CCN1 promotes VEGF expression in osteoblasts and increased EPCs angiogenesis in RA disease. CCN1 may serve as a potential target for RA treatment. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Cheng-Yu Chen
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Chen-Ming Su
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, China
| | - Chin-Jung Hsu
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chien-Chung Huang
- Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan and Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Shih-Chia Liu
- Department of Orthopaedics, Mackay Memorial Hospital, Taipei, Taiwan
| | - Wei-Cheng Chen
- Department of Orthopaedics, Mackay Memorial Hospital, Taipei, Taiwan
| | - Lih-Jyh Fuh
- Department of Prosthodontics, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
39
|
He X, Chen Q. Reduced expressions of connexin 43 and VEGF in the first-trimester tissues from women with recurrent pregnancy loss. Reprod Biol Endocrinol 2016; 14:46. [PMID: 27535546 PMCID: PMC4989327 DOI: 10.1186/s12958-016-0179-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 08/04/2016] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Approximately 45-50 % of the recurrent pregnancy loss (RPL) remain(s) unexplained that challenges its clinical management. Formation and development of placenta as well as angiogenesis are critical for successful pregnancy. Vascular endothelial growth factor (VEGF) and connexin 43 (Cx43) play important roles in angiogenesis and placenta development and aberration of these have been linked to RPL. We aimed to investigate whether the expressions of VEGF and Cx43 were altered in the first-trimester tissues (chorionic villi and decidua) collected from women with RPL compared to those from healthy early pregnant women. METHODS First-trimester chorionic villi and decidua were collected from pregnant women diagnosed RPL who ended up with surgical intervention (n = 28) in comparison to those collected from women requesting surgical termination of their unwanted normal first-trimester pregnancies (n = 28). These two groups of women were matched in age and gestational weeks. Tissues were analyzed for the protein and messenger ribonucleic acid (mRNA) expressions of Cx43 and VEGF by immunohistochemistry, western blot, and quantitative reverse transcription polymerase chain reaction (qRT-PCR). RESULTS The expressions of both Cx43 and VEGF at the level of mRNA and protein in the villi and decidua from women with RPL were significantly decreased compared with those from women with normal early pregnancy. CONCLUSIONS Reduction of Cx43 and VEGF expressed in the first-trimester tissues might indicate their important roles involved in RPL and thus holds the potential to develop pharmaceutical therapies for treatment of RPL.
Collapse
Affiliation(s)
- Xiaoping He
- Department of Family Planning, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Qinfang Chen
- Department of Family Planning, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
40
|
Soon ASC, Chua JW, Becker DL. Connexins in endothelial barrier function - novel therapeutic targets countering vascular hyperpermeability. Thromb Haemost 2016; 116:852-867. [PMID: 27488046 DOI: 10.1160/th16-03-0210] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/15/2016] [Indexed: 12/14/2022]
Abstract
Prolonged vascular hyperpermeability is a common feature of many diseases. Vascular hyperpermeability is typically associated with changes in the expression patterns of adherens and tight junction proteins. Here, we focus on the less-appreciated contribution of gap junction proteins (connexins) to basal vascular permeability and endothelial dysfunction. First, we assess the association of connexins with endothelial barrier integrity by introducing tools used in connexin biology and relating the findings to customary readouts in vascular biology. Second, we explore potential mechanistic ties between connexins and junction regulation. Third, we review the role of connexins in microvascular organisation and development, focusing on interactions of the endothelium with mural cells and tissue-specific perivascular cells. Last, we see how connexins contribute to the interactions between the endothelium and components of the immune system, by using neutrophils as an example. Mounting evidence of crosstalk between connexins and other junction proteins suggests that we rethink the way in which different junction components contribute to endothelial barrier function. Given the multiple points of connexin-mediated communication arising from the endothelium, there is great potential for synergism between connexin-targeted inhibitors and existing immune-targeted therapeutics. As more drugs targeting connexins progress through clinical trials, it is hoped that some might prove effective at countering vascular hyperpermeability.
Collapse
Affiliation(s)
| | | | - David Laurence Becker
- David L. Becker, PhD, Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, 308232 Singapore, Tel: +65 6592 3961, Fax: +65 6515 0417, E-mail:
| |
Collapse
|
41
|
Xia X, Yu Y, Zhang L, Ma Y, Wang H. Inhibitor of DNA binding 1 regulates cell cycle progression of endothelial progenitor cells through induction of Wnt2 expression. Mol Med Rep 2016; 14:2016-24. [PMID: 27432753 PMCID: PMC4991734 DOI: 10.3892/mmr.2016.5491] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 06/15/2016] [Indexed: 11/28/2022] Open
Abstract
Endothelial injury is a risk factor for atherosclerosis. Endothelial progenitor cell (EPC) proliferation contributes to vascular injury repair. Overexpression of inhibitor of DNA binding 1 (Id1) significantly promotes EPC proliferation; however, the underlying molecular mechanism remains to be fully elucidated. The present study investigated the role of Id1 in cell cycle regulation of EPCs, which is closely associated with proliferation. Overexpression of Id1 increased the proportion of EPCs in the S/G2M phase and significantly increased cyclin D1 expression levels, while knockdown of Id1 arrested the cell cycle progression of EPCs in the G1 phase and inhibited cyclin D1 expression levels. In addition, it was demonstrated that Id1 upregulated wingless-type mouse mammary tumor virus integration site family member 2 (Wnt2) expression levels and promoted β-catenin accumulation and nuclear translocation. Furthermore, Wnt2 knockdown counteracted the effects of Id1 on cell cycle progression of EPCs. In conclusion, the results of the present study indicate that Id1 promoted Wnt2 expression, which accelerated cell cycle progression from G1 to S phase. This suggests that Id1 may promote cell cycle progression of EPCs, and that Wnt2 may be important in Id1 regulation of the cell cycle of EPCs.
Collapse
Affiliation(s)
- Xi Xia
- Postgraduate Department, Third Military Medical University, Chongqing 400038, P.R. China
| | - Yang Yu
- Department of Cardiology, Institute of Cardiovascular Science of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Li Zhang
- Department of Geriatrics, Kunming General Hospital of Chengdu Military Area, Kunming, Yunnan 650032, P.R. China
| | - Yang Ma
- Department of Geriatrics, Kunming General Hospital of Chengdu Military Area, Kunming, Yunnan 650032, P.R. China
| | - Hong Wang
- Department of Geriatrics, Kunming General Hospital of Chengdu Military Area, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
42
|
Bioglass promotes wound healing by affecting gap junction connexin 43 mediated endothelial cell behavior. Biomaterials 2016; 84:64-75. [DOI: 10.1016/j.biomaterials.2016.01.033] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/12/2016] [Accepted: 01/15/2016] [Indexed: 02/08/2023]
|
43
|
Basic fibroblast growth factor induces VEGF expression in chondrosarcoma cells and subsequently promotes endothelial progenitor cell-primed angiogenesis. Clin Sci (Lond) 2015; 129:147-58. [PMID: 25735814 DOI: 10.1042/cs20140390] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chondrosarcoma, a common malignant tumour, develops in bone. Effective adjuvant therapy remains inadequate for treatment, meaning poor prognosis. It is imperative to explore novel remedies. Angiogenesis is a rate-limiting step in progression that explains neovessel formation for blood supply in the tumour microenvironment. Numerous studies indicate that EPCs (endothelial progenitor cells) promote angiogenesis and contribute to tumour growth. bFGF (basic fibroblast growth factor), a secreted cytokine, regulates biological activity, including angiogenesis, and correlates with tumorigenesis. However, the role of bFGF in angiogenesis-related tumour progression by recruiting EPCs in human chondrosarcoma is rarely discussed. In the present study, we found that bFGF induced VEGF (vascular endothelial growth factor) expression via the FGFR1 (fibroblast growth factor receptor 1)/c-Src/p38/NF-κB (nuclear factor κB) signalling pathway in chondrosarcoma cells, thereby triggering angiogenesis of endothelial progenitor cells. Our in vivo data revealed that tumour-secreted bFGF promotes angiogenesis in both mouse plug and chick CAM (chorioallantoic membrane) assays. Xenograft mouse model data, due to bFGF-regulated angiogenesis, showed the bFGF regulates angiogenesis-linked tumour growth. Finally, bFGF was highly expressed in chondrosarcoma patients compared with normal cartilage, positively correlating with VEGF expression and tumour stage. The present study reveals a novel therapeutic target for chondrosarcoma progression.
Collapse
|
44
|
Choudhary M, Naczki C, Chen W, Barlow KD, Case LD, Metheny-Barlow LJ. Tumor-induced loss of mural Connexin 43 gap junction activity promotes endothelial proliferation. BMC Cancer 2015; 15:427. [PMID: 26002762 PMCID: PMC4464240 DOI: 10.1186/s12885-015-1420-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 05/06/2015] [Indexed: 01/11/2023] Open
Abstract
Background Proper functional association between mural cells and endothelial cells (EC) causes EC of blood vessels to become quiescent. Mural cells on tumor vessels exhibit decreased attachment to EC, which allows vessels to be unstable and proliferative. The mechanisms by which tumors prevent proper association between mural cells and EC are not well understood. Since gap junctions (GJ) play an important role in cell-cell contact and communication, we investigated whether loss of GJ plays a role in tumor-induced mural cell dissociation. Methods Mural cell regulation of endothelial proliferation was assessed by direct co-culture assays of fluorescently labeled cells quantified by flow cytometry or plate reader. Gap junction function was assessed by parachute assay. Connexin 43 (Cx43) protein in mural cells exposed to conditioned media from cancer cells was assessed by Western and confocal microscopy; mRNA levels were assessed by quantitative real-time PCR. Expression vectors or siRNA were utilized to overexpress or knock down Cx43. Tumor growth and angiogenesis was assessed in mouse hosts deficient for Cx43. Results Using parachute dye transfer assay, we demonstrate that media conditioned by MDA-MB-231 breast cancer cells diminishes GJ communication between mural cells (vascular smooth muscle cells, vSMC) and EC. Both protein and mRNA of the GJ component Connexin 43 (Cx43) are downregulated in mural cells by tumor-conditioned media; media from non-tumorigenic MCF10A cells had no effect. Loss of GJ communication by Cx43 siRNA knockdown, treatment with blocking peptide, or exposure to tumor-conditioned media diminishes the ability of mural cells to inhibit EC proliferation in co-culture assays, while overexpression of Cx43 in vSMC restores GJ and endothelial inhibition. Breast tumor cells implanted into mice heterozygous for Cx43 show no changes in tumor growth, but exhibit significantly increased tumor vascularization determined by CD31 staining, along with decreased mural cell support detected by NG2 staining. Conclusions Our data indicate that i) functional Cx43 is required for mural cell-induced endothelial quiescence, and ii) downregulation of Cx43 GJ by tumors frees endothelium to respond to angiogenic cues. These data define a novel and important role for maintained Cx43 function in regulation of vessel quiescence, and suggest its loss may contribute to pathological tumor angiogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1420-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mayur Choudhary
- Department of Radiation Oncology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA. .,Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA. .,Current address: Duke Eye Center, 2351 Erwin Road, AERI Room 4000, Durham, NC, 27705, USA.
| | - Christine Naczki
- Department of Radiation Oncology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA.
| | - Wenhong Chen
- Department of Radiation Oncology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA.
| | - Keith D Barlow
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA.
| | - L Douglas Case
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA. .,Wake Forest Comprehensive Cancer Center, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA.
| | - Linda J Metheny-Barlow
- Department of Radiation Oncology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA. .,Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA. .,Wake Forest Comprehensive Cancer Center, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
45
|
Su CM, Hsu CJ, Tsai CH, Huang CY, Wang SW, Tang CH. Resistin Promotes Angiogenesis in Endothelial Progenitor Cells Through Inhibition of MicroRNA206: Potential Implications for Rheumatoid Arthritis. Stem Cells 2015; 33:2243-55. [PMID: 25828083 DOI: 10.1002/stem.2024] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 03/11/2015] [Indexed: 12/15/2022]
Abstract
Endothelial progenitor cells (EPCs) promote angiogenesis and are therefore key contributors to a wide variety of angiogenesis-related autoimmune diseases such as rheumatoid arthritis (RA). However, the signaling mechanisms through which these progenitor cells influence RA pathogenesis remain unknown. The aim of this study was to examine whether resistin plays a role in the pathogenesis of and angiogenesis associated with RA by circulating EPCs. We found that levels of resistin in synovial fluid and tissue from patients with RA and from mice with collagen-induced arthritis were overexpressed and promoted the homing of EPCs into the synovium, thereby inducing angiogenesis. EPCs isolated from healthy donors were used to investigate the signal transduction pathway underlying EPC migration and tube formation after treatment with resistin. We found that resistin directly induced a significant increase in expression of vascular endothelial growth factor (VEGF) in EPCs. We also found that the expression of microRNA-206 (miR-206) was negatively correlated with the expression of resistin during EPC-mediated angiogenesis. Notably, the increased expression of VEGF was associated with decreased binding of miR-206 to the VEGF-A 3' untranslated region through protein kinase C delta-dependent AMP-activated protein kinase signaling pathway. Moreover, blockade of resistin reduced EPC homing into synovial fluid and angiogenesis in vivo. Taken together, our study is the first to demonstrate that resistin promotes EPCs homing into the synovium during RA angiogenesis via a signal transduction pathway that involves VEGF expression in primary EPCs. These findings provide support for resistin as a therapeutic target for the patients with RA. Stem Cells 2015;33:2243-2255.
Collapse
Affiliation(s)
- Chen-Ming Su
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Chin-Jung Hsu
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan.,Department of Orthopedic Surgery, China Medical University, Taichung, Taiwan
| | - Chun-Hao Tsai
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan.,Department of Orthopedic Surgery, China Medical University, Taichung, Taiwan
| | - Chun-Yin Huang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan.,Department of Orthopedic Surgery, China Medical University Beigang Hospital, Yun-Lin County, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
46
|
Roux BM, Cheng MH, Brey EM. Engineering clinically relevant volumes of vascularized bone. J Cell Mol Med 2015; 19:903-14. [PMID: 25877690 PMCID: PMC4420594 DOI: 10.1111/jcmm.12569] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/29/2015] [Indexed: 12/15/2022] Open
Abstract
Vascularization remains one of the most important challenges that must be overcome for tissue engineering to be consistently implemented for reconstruction of large volume bone defects. An extensive vascular network is needed for transport of nutrients, waste and progenitor cells required for remodelling and repair. A variety of tissue engineering strategies have been investigated in an attempt to vascularize tissues, including those applying cells, soluble factor delivery strategies, novel design and optimization of bio-active materials, vascular assembly pre-implantation and surgical techniques. However, many of these strategies face substantial barriers that must be overcome prior to their ultimate translation into clinical application. In this review recent progress in engineering vascularized bone will be presented with an emphasis on clinical feasibility.
Collapse
Affiliation(s)
- Brianna M Roux
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA; Research Service, Edward Hines Jr. V.A. Hospital, Hines, IL, USA
| | | | | |
Collapse
|
47
|
Dyce PW, Li D, Barr KJ, Kidder GM. Connexin43 is required for the maintenance of multipotency in skin-derived stem cells. Stem Cells Dev 2014; 23:1636-46. [PMID: 24694074 DOI: 10.1089/scd.2013.0459] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Expression of the gap junction protein, connexin43 (Cx43), begins early during embryogenesis and is maintained in many different cell types. Several stem cell populations have been shown to express Cx43 and to form functional gap junctions. While it is clear that Cx43 is critical to the function of many organs, whether the same is true for stem cells has not been clearly demonstrated. Recently, stem cells isolated from newborn mouse skin were shown to form oocyte-like cells (OLCs) in vitro, hence the present study focussed on the role Cx43 plays in the proliferation and differentiation of these cells. The stem cells express Cx43 and those from knockout mice (Cx43 KO) exhibited significantly reduced cell-cell coupling. Loss of Cx43 reduced the rate of cellular migration [Cx43 KO, 1.57±0.65 radial cell units (RCU); wildtype (WT), 5.57±0.37 RCU] but increased the proliferation rate of the stem cells (Cx43 KO, 29.40%±2.02%; WT, 12.76%±1.50%). The expression of the pluripotency markers OCT4 and Nanog were found to be reduced in the Cx43 KO population, suggesting an inhibition of differentiation potential. To test the differentiation ability, the stem cells were induced to form neuronal cell types in vitro. While both the WT and KO cells were able to form GFAP-positive astrocytic cells, only WT stem cells were able to form βIII tubulin-positive neurons. Similarly, the ability of the stem cells to form OLCs was ablated by the loss of Cx43. These data reveal a role for Cx43 in maintaining multipotency within the skin-derived stem cell population.
Collapse
Affiliation(s)
- Paul W Dyce
- 1 Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario , London, Ontario, Canada
| | | | | | | |
Collapse
|
48
|
Bradykinin promotes vascular endothelial growth factor expression and increases angiogenesis in human prostate cancer cells. Biochem Pharmacol 2013; 87:243-53. [PMID: 24225154 DOI: 10.1016/j.bcp.2013.10.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/16/2013] [Accepted: 10/17/2013] [Indexed: 12/15/2022]
Abstract
Prostate cancer is the most commonly diagnosed malignancy in men and shows a tendency for metastasis to distant organs. Angiogenesis is required for metastasis. Bradykinin (BK) is an inflammatory mediator involved in tumor growth and metastasis, but its role in vascular endothelial growth factor (VEGF) expression and angiogenesis in human prostate cancer remains unknown. The aim of this study was to examine whether BK promotes prostate cancer angiogenesis via VEGF expression. We found that exogenous BK increased VEGF expression in prostate cancer cells and further promoted tube formation in endothelial progenitor cells and human umbilical vein endothelial cells. Pretreatment of prostate cancer with B2 receptor antagonist or small interfering RNA (siRNA) reduced BK-mediated VEGF production. The Akt and mammalian target of rapamycin (mTOR) pathways were activated after BK treatment, and BK-induced VEGF expression was abolished by the specific inhibitor and siRNA of the Akt and mTOR cascades. BK also promoted nuclear factor-κB (NF-κB) and activator protein 1 (AP-1) activity. Importantly, BK knockdown reduced VEGF expression and abolished prostate cancer cell conditional medium-mediated angiogenesis. Taken together, these results indicate that BK operates through the B2 receptor, Akt, and mTOR, which in turn activate NF-κB and AP-1, activating VEGF expression and contributing to angiogenesis in human prostate cancer cells.
Collapse
|