1
|
Wu P, Xu J, Fu R, Lin Q, Liu C, Wang Y. Psyllid-mite interactions promote psyllid fecundity by selecting for a different life history. PEST MANAGEMENT SCIENCE 2025; 81:1393-1399. [PMID: 39552404 DOI: 10.1002/ps.8539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/22/2024] [Accepted: 11/01/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND In interspecific competitive interactions at the same trophic level, herbivores are often hypothesized to exhibit a fast life-history strategy characterized by early reproduction and a short lifespan. Here, we analyzed the shift in life history of the psyllid Bactericera gobica when it interacts with the aphid Aphis gossypii, the thrips Frankliniella occidentalis, or the mite Aceria pallida in similar ecological niches because all of them cause damage to goji berry leaves. RESULTS We found that psyllids displayed a typical fast life history when interacting with aphids and thrips. Psyllids that interacted with mites also reproduced earlier than those without any interactions, but later than those interacting with aphids and thrips. Trophic competition typically led to a loss of fecundity in psyllids. To mitigate this loss, psyllids that interacted with mites allocated more resources to reproduction compared to those interacting with aphids and thrips, resulting in their reproduction being spread over a longer lifespan. This life history can be best described as a bet-hedging strategy. CONCLUSION Our study suggests that interspecific interactions cannot be solely explained by invoking faster life histories. Instead, the shift in life history may converge towards a finely-tuned match between interacting species. Interactions between psyllids and mites increase psyllid fecundity, potentially promoting the persistence of both species. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pengxiang Wu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jiaqi Xu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruchen Fu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiaoling Lin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chang Liu
- Department of Agricultural Science and Plant Protection, Mississippi State University, Mississippi, USA
| | - Yanan Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Aquino-Thomas J, Crees L, Miles M, Smith MC, Lake EC, Dray Jr. FA. Improving Mass-Rearing Techniques for Releases of Floracarus perrepae, a Biological Control Agent for Old World Climbing Fern ( Lygodium microphyllum). INSECTS 2025; 16:135. [PMID: 40003765 PMCID: PMC11856856 DOI: 10.3390/insects16020135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025]
Abstract
The United States Department of Agriculture-Invasive Plant Research Laboratory started limited production of a biological control mite, Floracarus perrepae, in 2008 for release against the invasive fern Lygodium microphyllum. Mass-rearing and release of the biological control agent was initiated in 2014 as part of the Comprehensive Everglades Restoration Plan to address the challenge of low establishment rates observed from 2008 to 2010. In late 2021, we critically analyzed our rearing protocols, focusing on aging galls and increasing plant vigor. These adjustments resulted in an exponential increase in colony productivity. We implemented bi-weekly monitoring of mite numbers within galls and identified the gall age class with the highest mite density. Based on this information, we developed a systematic method involving weekly plant readiness criteria and a predefined sequence of stages to select plants for release, ensuring that galls are correctly aged to maximize mite numbers. These changes have resulted in substantial improvements in gall abundance (165.3%), F. perrepae density per gall (86.0%), and estimated F. perrepae per plant (453.2%). The increase in F. perrepae released throughout the landscape improved the rates of establishment, abundance, and impact of the agent throughout the invaded range of L. microphyllum in Florida.
Collapse
Affiliation(s)
- Jessene Aquino-Thomas
- USDA-ARS Invasive Plant Research Laboratory, 3225 College Avenue, Fort Lauderdale, FL 33314, USA; (L.C.); (M.M.); (M.C.S.); (F.A.D.J.)
| | - Logan Crees
- USDA-ARS Invasive Plant Research Laboratory, 3225 College Avenue, Fort Lauderdale, FL 33314, USA; (L.C.); (M.M.); (M.C.S.); (F.A.D.J.)
| | - Michelle Miles
- USDA-ARS Invasive Plant Research Laboratory, 3225 College Avenue, Fort Lauderdale, FL 33314, USA; (L.C.); (M.M.); (M.C.S.); (F.A.D.J.)
| | - Melissa C. Smith
- USDA-ARS Invasive Plant Research Laboratory, 3225 College Avenue, Fort Lauderdale, FL 33314, USA; (L.C.); (M.M.); (M.C.S.); (F.A.D.J.)
| | - Ellen C. Lake
- Mt. Cuba Center, 3120 Barley Mill Road, Hockessin, DE 19707, USA;
| | - F. Allen Dray Jr.
- USDA-ARS Invasive Plant Research Laboratory, 3225 College Avenue, Fort Lauderdale, FL 33314, USA; (L.C.); (M.M.); (M.C.S.); (F.A.D.J.)
| |
Collapse
|
3
|
Yang M, Li J, Qiao H, Guo K, Xu R, Wei H, Wei J, Liu S, Xu C. Feeding-induced plant metabolite responses to a phoretic gall mite, its carrier psyllid and both, after detachment. EXPERIMENTAL & APPLIED ACAROLOGY 2023; 91:381-403. [PMID: 37882995 DOI: 10.1007/s10493-023-00854-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023]
Abstract
Phoresy is one of the most distinctive relationships between mites and insects, and the off-host interaction between phoretic mites and their carriers is the most critical factor sustaining the phoretic association. As phoretic associations commonly occur in temporary habitats, little is known about off-host interactions between phoronts and carriers. However, an off-host interaction has been reported, in which the plant-mediated competition between a phoretic gall mite, Aceria pallida, and its psyllid vector, Bactericera gobica, after detachment decreases leaf abscission caused by B. gobica and then directly facilitates their phoretic association. In this obligate phoresy, A. pallida seasonally attaches to B. gobica for overwinter survival and they share the same host plant, Lycium barbarum, during the growing season. It is unknown how the host plant responds to these two herbivores and what plant metabolites are involved in their interspecific interaction. Here, effects of A. pallida and B. gobica on the host plant's transcriptome and metabolome, and on enzymes involved in plant defence, at various infestation stages were studied by inoculating A. pallida and B. gobica either separately or simultaneously on leaves of L. barbarum. Our results showed that (a) A. pallida significantly promoted primary and secondary metabolite accumulation, (b) B. gobica markedly inhibited primary and secondary metabolite accumulation and had little influence on defence enzyme activity, and (c) under simultaneous A. pallida and B. gobica infestation, an intermediate response was predicted. These findings indicate that A. pallida and B. gobica have different effects on host plants, A. pallida inhibits B. gobica mainly by increasing the secondary metabolism of L. barbarum, whereas B. gobica inhibits A. pallida mainly by decreasing the primary metabolism of L. barbarum. In conjunction with our previous research, we speculate that this trade-off in host plant metabolite response between A. pallida and B. gobica after detachment promotes a stable phoretic association.
Collapse
Affiliation(s)
- Mengke Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Jianling Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, China
- Qinghai Academy of Agriculture and Forestry Sciences, 253 Ningda Road, Chengbei District, Xining, Qinghai Province, 810016, China
| | - Haili Qiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Kun Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Rong Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Hongshuang Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Jianhe Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Sai Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, China.
| | - Changqing Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
4
|
Desnitskiy AG, Chetverikov PE, Ivanova LA, Kuzmin IV, Ozman-Sullivan SK, Sukhareva SI. Molecular Aspects of Gall Formation Induced by Mites and Insects. Life (Basel) 2023; 13:1347. [PMID: 37374129 DOI: 10.3390/life13061347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Recent publications on gall formation induced on the leaves of dicotyledonous flowering plants by eriophyoid mites (Eriophyoidea) and representatives of four insect orders (Diptera, Hemiptera, Hymenoptera, Lepidoptera) are analyzed. Cellular and molecular level data on the stimuli that induce and sustain the development of both mite and insect galls, the expression of host plant genes during gallogenesis, and the effects of these galling arthropods on photosynthesis are considered. A hypothesis is proposed for the relationship between the size of galls and the volume of secretions injected by a parasite. Multistep, varying patterns of plant gene expression and accompanying histo-morphological changes in the transformed gall tissues are apparent. The main obstacle to better elucidating the nature of the induction of gallogenesis is the impossibility of collecting a sufficient amount of saliva for analysis, which is especially important in the case of microscopic eriophyoids. The use of modern omics technologies at the organismal level has revealed a spectrum of genetic mechanisms of gall formation at the molecular level but has not yet answered the questions regarding the nature of gall-inducing agents and the features of events occurring in plant cells at the very beginning of gall growth.
Collapse
Affiliation(s)
- Alexey G Desnitskiy
- Department of Embryology, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia
| | - Philipp E Chetverikov
- Zoological Institute, Russian Academy of Sciences, 199034 Saint-Petersburg, Russia
- Department of Invertebrate Zoology, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia
| | | | - Igor V Kuzmin
- X-BIO Institute, Tyumen State University, 625003 Tyumen, Russia
| | - Sebahat K Ozman-Sullivan
- Department of Plant Protection, Faculty of Agriculture, Ondokuz Mayis University, 55139 Samsun, Turkey
| | - Sogdiana I Sukhareva
- Department of Invertebrate Zoology, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia
| |
Collapse
|
5
|
Yang M, Li H, Qiao H, Guo K, Xu R, Wei H, Wei J, Liu S, Xu C. Integrated Transcriptome and Metabolome Dynamic Analysis of Galls Induced by the Gall Mite Aceria pallida on Lycium barbarum Reveals the Molecular Mechanism Underlying Gall Formation and Development. Int J Mol Sci 2023; 24:9839. [PMID: 37372986 DOI: 10.3390/ijms24129839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Galls have become the best model for exploring plant-gall inducer relationships, with most studies focusing on gall-inducing insects but few on gall mites. The gall mite Aceria pallida is a major pest of wolfberry, usually inducing galls on its leaves. For a better understanding of gall mite growth and development, the dynamics of the morphological and molecular characteristics and phytohormones of galls induced by A. pallida were studied by histological observation, transcriptomics and metabolomics. The galls developed from cell elongation of the epidermis and cell hyperplasia of mesophylls. The galls grew quickly, within 9 days, and the mite population increased rapidly within 18 days. The genes involved in chlorophyll biosynthesis, photosynthesis and phytohormone synthesis were significantly downregulated in galled tissues, but the genes associated with mitochondrial energy metabolism, transmembrane transport, carbohydrates and amino acid synthesis were distinctly upregulated. The levels of carbohydrates, amino acids and their derivatives, and indole-3-acetic acid (IAA) and cytokinins (CKs), were markedly enhanced in galled tissues. Interestingly, much higher contents of IAA and CKs were detected in gall mites than in plant tissues. These results suggest that galls act as nutrient sinks and favor increased accumulation of nutrients for mites, and that gall mites may contribute IAA and CKs during gall formation.
Collapse
Affiliation(s)
- Mengke Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Huanle Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Haili Qiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Kun Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Rong Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Hongshuang Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Jianhe Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Sai Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Changqing Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
6
|
Guedes LM, Sanhueza C, Torres S, Figueroa C, Gavilán E, Pérez CI, Aguilera N. Gall-inducing Eriophyes tiliae stimulates the metabolism of Tilia platyphyllos leaves towards oxidative protection. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:25-36. [PMID: 36586397 DOI: 10.1016/j.plaphy.2022.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Red galls have high levels of anthocyanins which perform different physiological functions, such as antioxidants and protection against UVB radiation. High levels of anthocyanins and other polyphenols have been associated with low photosynthetic pigment content. In environments with high levels of UVB radiation, it would thus be expected that red galls would have high anthocyanin and polyphenol levels and low photosynthetic pigment contents, enabling the gall with high antioxidant capacity compared to its host organ. The red galls induced by Eriophyes tiliae, and their host environment of Tilia platyphyllos leaves in the Mediterranean climate of Chile, were investigated in relation to their anatomy, histochemistry, pigment, sugar, protein, and polyphenol contents, and antioxidant capacity. The anthocyanin, sugars, and polyphenol contents and the antioxidant capacity were increased in galls. Photosynthetic pigment and protein contents were higher in non-galled leaves. The high levels of anthocyanin and total polyphenols increase the galls' antioxidant capacity in the high UV radiation environment of a Mediterranean climate. The establishment of E. tiliae induced redifferentiation of nutritive tissue, rich in sugars, proteins, and lipids, and an inner epidermis with trichomes and long emergences. E. tiliae galls' structural and metabolic features are probably enhanced towards mite nutrition and protection. The current results shed light on the role of anthocyanin in the antioxidant protection of plant galls in environments with high UV irradiance.
Collapse
Affiliation(s)
- Lubia M Guedes
- Universidad de Concepción, Facultad de Ciencias Forestales, Departamento de Silvicultura, Laboratorio de Semioquímica Aplicada, Casilla 160-C, CP 4030000, Concepción, Chile
| | - Carolina Sanhueza
- Universidad de Concepción, Facultad de Ciencias Naturales y Oceanográficas, Departamento de Botánica, Laboratorio de Fisiología Vegetal, Casilla 160- C, CP 4030000, Concepción, Chile
| | - Solange Torres
- Universidad de Concepción, Facultad de Ciencias Naturales y Oceanográficas, Departamento de Botánica, Laboratorio de Química de Productos Naturales, Casilla 160- C, CP 4030000, Concepción, Chile
| | - Camilo Figueroa
- Universidad de Concepción, Facultad de Ciencias Forestales, Departamento de Silvicultura, Laboratorio de Semioquímica Aplicada, Casilla 160-C, CP 4030000, Concepción, Chile
| | - Elvis Gavilán
- Universidad de Concepción, Facultad de Ciencias Forestales, Departamento de Silvicultura, Laboratorio de Semioquímica Aplicada, Casilla 160-C, CP 4030000, Concepción, Chile
| | - Claudia I Pérez
- Universidad de Concepción, Facultad de Ciencias Naturales y Oceanográficas, Departamento de Botánica, Laboratorio de Química de Productos Naturales, Casilla 160- C, CP 4030000, Concepción, Chile
| | - Narciso Aguilera
- Universidad de Concepción, Facultad de Ciencias Forestales, Departamento de Silvicultura, Laboratorio de Semioquímica Aplicada, Casilla 160-C, CP 4030000, Concepción, Chile.
| |
Collapse
|
7
|
Positive Interactions between Aceria pallida and Bactericera gobica on Goji Berry Plants. INSECTS 2022; 13:insects13070577. [PMID: 35886753 PMCID: PMC9316154 DOI: 10.3390/insects13070577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/18/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022]
Abstract
The gall mite Aceria pallida and the psyllid Bactericera gobica are serious Goji berry pests. The mite can be phoretic on the psyllid to overwinter, but it is unclear whether the vector can obtain benefits from the phoront during the growing season. After detachment, the mite shares the same habitat with its vector, so there are very likely to be interspecific interactions. To better understand whether the interactions are positive or negative, information on relationships between abundances of A. pallida and B. gobica on leaves is needed. Here, B. gobica abundance was represented by the egg abundance because the inactive nymphs develop on the same sites after hatching. (1) We found a positive linear relationship between the gall diameter and the mite abundance in the gall (one more millimeter on gall diameter for every 30 mites increase), which provided a way to rapidly estimate mite abundances in the field by measuring gall diameters. (2) There was a positive relationship between the abundance of mites and psyllid eggs on leaves. (3) Both species had positive effects on each other’s habitat selections. More importantly, the interactions of the two species prevented leaf abscission induced by B. gobica (leaf lifespan increased by 62.9%), increasing the continuation of the psyllid population. Our study suggests positive interactions between two pests during the growing season. The positive relationship between A. pallida and B. gobica egg abundances highlights the increasing need for novel methods for Goji berry pest management. In practice, A. pallida control can be efficient by eliminating its vector B. gobica. Both pests can be controlled together, which reduces chemical usage.
Collapse
|
8
|
Desnitskiy AG, Chetverikov PE. Induction of Leaf Galls by Four-Legged Mites (Eriophyoidea) as a Problem of Developmental Biology. Russ J Dev Biol 2022. [DOI: 10.1134/s1062360422010039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
9
|
Escobar-Garcia HA, Ferragut F. Damage and spatiotemporal dynamics of the Ngaio flat mite, Brevipalpus ferraguti (Trombidiformes: Tenuipalpidae), with observations on the development of the female insemination system. EXPERIMENTAL & APPLIED ACAROLOGY 2022; 86:73-90. [PMID: 34739616 PMCID: PMC8702418 DOI: 10.1007/s10493-021-00670-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
We studied the Ngaio flat mite, Brevipalpus ferraguti Ochoa & Beard, on Myoporum laetum (Scrophulariaceae), a common introduced plant used as hedgerows in gardens and green areas of the Mediterranean, where the mite causes considerable damage. We first describe the damage, and then the patterns of mite seasonal abundance and spatial distribution. Finally, we address the development of the female insemination system at the population level. Damage occurs on both sides of the leaves, starting with a uniform stippling and bronzing and ending in the leaves drying out and extensive defoliation that coincides with summer. Mite population peaked between June and August, maintained moderate levels in autumn and winter and reached its lowest density in early spring. Active motile immatures and eggs were present throughout the year. Females and motile immature forms were more abundant on the abaxial (lower) leaf surface, but eggs were deposited on both surfaces indistinctly, suggesting that females actively move to the adaxial (upper) surface in summer to oviposit. All the developmental stages were aggregated on the leaves throughout the year regardless of their population density. Our study suggests that a binomial or presence-absence sampling, examining only the number of females on the abaxial surface, can accurately estimate the total mite density levels. Only 23.5% of females possessed a fully developed spermatheca, whereas in 76.5% of the cases the seminal receptacle was not present or not developed. Females with a complete spermatheca were less abundant in summer. Average temperatures and host plant species affected the occurrence of this reproductive structure.
Collapse
Affiliation(s)
| | - Francisco Ferragut
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Valencia, Spain.
| |
Collapse
|
10
|
Swanson L, Li T, Rinnan R. Contrasting responses of major and minor volatile compounds to warming and gall-infestation in the Arctic willow Salix myrsinites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148516. [PMID: 34174616 DOI: 10.1016/j.scitotenv.2021.148516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Climate change is altering high-latitude ecosystems in multiple facets, including increased insect herbivory pressure and enhanced emissions of volatile organic compounds (VOC) from vegetation. Yet, joint impacts of climatic drivers and insect herbivory on VOC emissions from the Arctic remain largely unknown. We examined how one-month warming by open-top plastic tents, yielding a 3-4 °C air temperature increase, and the natural presence of gall-forming eriophyoid mites, Aculus tetanothrix, individually and in combination, affect VOC emissions from whortle leaved willow, Salix myrsinites, at two elevations in an Arctic heath tundra of Abisko, Northern Sweden. We measured VOC emissions three times in the peak growing season (July) from intact and gall-infested branches using an enclosure technique and gas chromatography-mass spectrometry, and leaf chemical composition using near-infrared reflectance spectroscopy (NIRS). Isoprene accounted for 91% of the VOCs emitted by S. myrsinites. Isoprene emission rates tended to be higher at the high than low elevation during the measurement periods (42 μg g-1 DW h-1 vs. 23 μg g-1 DW h-1) even when temperature differences were accounted for. Experimental warming increased isoprene emissions by approximately 54%, but decreased emissions of some minor compound groups, such as green leaf volatiles (GLV) and (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT). In contrast, gall-infestation did not affect isoprene emissions but stimulated emissions of DMNT, sesquiterpenes and GLVs, particularly under ambient conditions at the low elevation. The NIRS-based chemical composition of the leaves varied between the two elevations and was affected by warming and gall-infestation. Our study suggests that under elevated temperatures, S. myrsinites increases emissions of isoprene, a highly effective compound for protection against oxidative stress, while an infestation by A. tetanothrix mites induces emissions of herbivore enemy attractants like DMNT, sesquiterpenes and GLVs. Under both conditions, warming effects on isoprene remain but mite effects on DMNT, sesquiterpenes and GLVs diminish.
Collapse
Affiliation(s)
- Laura Swanson
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Tao Li
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark; Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark.
| | - Riikka Rinnan
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark; Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark
| |
Collapse
|
11
|
Li S, Khurshid M, Yao J, Zhang J, Dawuda MM, Hassan Z, Ahmad S, Xu B. Interaction of the causal agent of apricot bud gall Acalitus phloeocoptes (Nalepa) with apricot: Implications in infested tissues. PLoS One 2021; 16:e0250678. [PMID: 34473720 PMCID: PMC8412328 DOI: 10.1371/journal.pone.0250678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/11/2021] [Indexed: 11/19/2022] Open
Abstract
Apricot bud gall mite, Acalitus phloeocoptes (Nalepa), is a destructive arthropod pest that causes significant economic losses to apricot trees worldwide. The current study explores the ways to understand the mode of dispersal of A. phloeocoptes, the development and ultrastructure of apricot bud gall, and the role of phytohormones in the formation of the apricot bud galls. The results demonstrated that the starch granules in the bud axon were extended at the onset of the attack. During the later stages of the attack, the cytoplasm was found to deteriorate in infected tissues. Furthermore, we have observed that the accumulation of large amounts of cytokinin (zeatin, ZT) and auxin (indoleacetic acid, IAA) led to rapid bud proliferation during rapid growth period, while abscisic acid (ABA) controls the development of gall buds and plays a vital role in gall bud maturity. The reduction of gibberellic acid (GA3) content led to rapid lignification at the later phase of bud development. Overall, our results have revealed that the mechanism underlying the interaction of apricot bud gall with its parasite and have provided reliable information for designing valuable Apricot breeding programs. This study will be quite useful for pest management and will provide a comprehensive evaluation of ecology-based cost-effective control, life history and demographic parameters of A. phloeocoptes.
Collapse
Affiliation(s)
- Shijuan Li
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Muhammad Khurshid
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Junsheng Yao
- Gansu Agriculture Vocational and Technical College, Horticulture Technology, Lanzhou, Gansu, China
| | - Jin Zhang
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Mohammed Mujitaba Dawuda
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, China
- Department of Horticulture, FoA, University for Development Studies, Tamale, Ghana
| | - Zeshan Hassan
- College of Agriculture, Bahauddin Zakariya University, Multan, Bahadur Sub Campus Layyah, Pakistan
| | - Shahbaz Ahmad
- Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Bingliang Xu
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
12
|
Enzymatic characterization of the saliva of the eriophyid mite, Aceria pongamiae Keifer1966 (Acari: Eriophyidae) and the bacterial endobiome of the galls induced on Pongamia pinnata (L.) Pierre (Fabaceae). Naturwissenschaften 2021; 108:33. [PMID: 34302542 DOI: 10.1007/s00114-021-01743-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
Galls, like other regular plant organs, possess their own histological and physiological features. A high degree of specificity is maintained between the host and the inducer, and hence gall morphogenesis is highly conserved and would help trace gall lineages and cell fate. The present study highlights the induction and subsequent development of leaf galls on the Indian Beech tree, Pongamia pinnata (L) Pierre (Fabaceae), mediated through the active participation of a gall-inducing species of eriophyid mite, Aceria pongamiae Keifer and gall-associated bacterial endobiome. The saliva of A. pongamiae and selected strains of gall-associated bacterial endobiome were characterized in part during the study. Three strains of Staphylococcus arlettae (PGP1-3) and one strain of Bacillus flexus (PGP4) were identified from the leaf galls through 16S rDNA sequencing. The mite saliva displayed tryptophanase activity, and the bacterial strains showed differential enzyme activities (protease, amylase, cellulase, DNAse, pectinase, tryptophanase, and catalase). All four strains of bacterial endobiome exhibited unique metal tolerance as well as pH and temperature regulating activity. Evaluation of the potential role of the mite saliva and the gall associated bacterial endobiome in gallogenesis was done by monitoring the plant growth-promoting activity of the salivary extract and the isolated bacterial strains through in vitro seed (Vigna radiata) germination assay. Salivary extract of the mite showed the highest rate of plant growth-promoting activity compared with that of the isolated strains of bacterial endobiome. The present study forms the first attempt that illustrates the characteristic features of the saliva of the gall inducer and the gall associated bacterial endobiome. Based on the results of the current study, we suggest that eriophyid mite saliva and the gall-associated microbes play significant roles in the induction of cecidia.
Collapse
|
13
|
Jiang Y, Ye J, Veromann-Jürgenson LL, Niinemets Ü. Gall- and erineum-forming Eriophyes mites alter photosynthesis and volatile emissions in an infection severity-dependent manner in broad-leaved trees Alnus glutinosa and Tilia cordata. TREE PHYSIOLOGY 2021; 41:1122-1142. [PMID: 33367874 DOI: 10.1093/treephys/tpaa173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Highly host-specific eriophyoid gall- and erineum-forming mites infest a limited range of broadleaf species, with the mites from the genus Eriophyes particularly widespread on Alnus spp. and Tilia spp. Once infected, the infections can be massive, covering a large part of leaf area and spreading through the plant canopy, but the effects of Eriophyes mite gall formation on the performance of host leaves are poorly understood. We studied the influence of three frequent Eriophyes infections, E. inangulis gall-forming mites on Alnus glutinosa, and E. tiliae gall-forming and E. exilis erineum-forming mites on Tilia cordata, on foliage morphology, chemistry, photosynthetic characteristics, and constitutive and induced volatile emissions. For all types of infections, leaf dry mass per unit area, net assimilation rate per area and stomatal conductance strongly decreased with increasing severity of infection. Mite infections resulted in enhancement or elicitation of emissions of fatty acid-derived volatiles, isoprene, benzenoids and carotenoid breakdown products in an infection severity-dependent manner for all different infections. Monoterpene emissions were strongly elicited in T. cordata mite infections, but these emissions were suppressed in E. inangulis-infected A. glutinosa. Although the overall level of mite-induced emissions was surprisingly low, these results highlight the uniqueness of the volatile profiles and offer opportunities for using volatile fingerprints and overall emission rates to diagnose infections by Eriophyes gall- and erineum-forming mites on temperate trees and assess their impact on the physiology of the affected trees.
Collapse
Affiliation(s)
- Yifan Jiang
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
- College of Horticulture, Nanjing Agricultural University, No 1 Weigang, Nanjing 210095, China
| | - Jiayan Ye
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
| | - Linda-Liisa Veromann-Jürgenson
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
- Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
| |
Collapse
|
14
|
Anand PP, Ramani N. Dynamics of limited neoplastic growth on Pongamia pinnata (L.) (Fabaceae) leaf, induced by Aceria pongamiae (Acari: Eriophyidae). BMC PLANT BIOLOGY 2021; 21:1. [PMID: 33386069 PMCID: PMC7777452 DOI: 10.1186/s12870-020-02777-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 12/02/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Galls or the neoplastic growth on plants result from a complex type of interaction between the inducers (Acari, Insects, Microbes and Nematodes) and plants. The present study sheds light on the gall inducing habit of a highly host specific eriophyid mite, Aceria pongamiae, on the leaves of Pongamia pinnata leading to the production of abnormal pouch like outgrowths on the adaxial and abaxial surfaces of the foliage. Each leaf gall is a highly complex, irregular massive structure, and the formation of which often leads to complete destruction of leaves, especially during heavy mite infestation, and thereby adversely affecting the physiology and growth of the host plant. RESULTS The study was carried out by making comparative observations on FE-SEM histological sections of galls representing four different growth stages categorized on the basis of difference in age groups. Apart from variations in cell metaplasia, a dramatic change was observed in the abaxial-adaxial polarity of the laminar surfaces also throughout the developmental sequence of galls, in all the four growth stages. Significant variations could be observed in the anti-oxidative potency as well as elemental composition in the all the four age groups of galls, and also revealed ATR-FTIR pattern of gall formation. CONCLUSION Being the first attempt to unravel the mystery of gall induction by eriophyids in general and by A. pongamiae in particular, on its host plant P.pinnata, by shedding light on the structural and histological alterations taking place during leaf gall formation under the influence of the mite, the current study is to be treated as the model of plant-animal interactive system.
Collapse
Affiliation(s)
- P P Anand
- Division of Acarology, Department of Zoology, University of Calicut, Malappuram, Kerala, 673 635, India.
| | - N Ramani
- Division of Acarology, Department of Zoology, University of Calicut, Malappuram, Kerala, 673 635, India.
| |
Collapse
|
15
|
Michalska K, Tomczyk A, Łotocka B, Orzechowski S, Studnicki M. Oviposition by the vagrant eriophyoid mite Aculops allotrichus on leaves of black locust tree, Robinia pseudoacacia. EXPERIMENTAL & APPLIED ACAROLOGY 2019; 79:1-19. [PMID: 31552561 DOI: 10.1007/s10493-019-00412-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
Leaf-dwelling mites often prefer to feed on young leaves and also are more likely to inhabit the abaxial leaf side. The aim of our study was to examine whether leaf age may affect production and distribution of eggs on black locust leaves by females of Aculops allotrichus. The eriophyoids were tested for 2.5 days on 'trimmed' compound leaves (with only two opposite leaflets left), which were maintained in vials filled with water. For the experiments we used leaves of three categories: (1) the 'youngest', in which both halves of the adaxial side of leaflets still adhered to each other (and usually remained folded for the next few hours), (2) 'young' with already unfolded leaflets, and (3) 'mature' with fully expanded leaflets. The tested females laid significantly more eggs on developing leaves than on 'mature' ones, although they deposited the highest number of eggs on the 'young' leaves. The distribution of eggs on adaxial or abaxial leaf sides also depended on leaf age. On the 'youngest' leaves, eriophyoids placed similar numbers of eggs on both sides of a blade. However, the older the leaf, the more willingly females deposited eggs on the abaxial side. Our biochemical and morphometrical analyses of black locust leaves indicated significant changes in the contents of nutrients and phenols within leaf tissue, and in the density of trichomes and thickness of the outer epidermal cell walls, correlated with leaf age. Their possible effects on the production and distribution of eggs on leaves by A. allotrichus are discussed.
Collapse
Affiliation(s)
- Katarzyna Michalska
- Department of Applied Entomology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland.
| | - Anna Tomczyk
- Department of Applied Entomology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Barbara Łotocka
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Sławomir Orzechowski
- Department of Biochemistry, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Marcin Studnicki
- Department of Experimental Design and Bioinformatics, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland
| |
Collapse
|
16
|
de Lillo E, Pozzebon A, Valenzano D, Duso C. An Intimate Relationship Between Eriophyoid Mites and Their Host Plants - A Review. FRONTIERS IN PLANT SCIENCE 2018; 9:1786. [PMID: 30564261 PMCID: PMC6288765 DOI: 10.3389/fpls.2018.01786] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/16/2018] [Indexed: 05/20/2023]
Abstract
Eriophyoid mites (Acari Eriophyoidea) are phytophagous arthropods forming intimate relationships with their host plants. These mites are associated with annual and perennial plants including ferns, and are highly specialized with a dominant monophagy. They can be classified in different ecological classes, i.e., vagrant, gall-making and refuge-seeking species. Many of them are major pests and some of them are vectors of plant pathogens. This paper critically reviews the knowledge on eriophyoids of agricultural importance with emphasis on sources for host plant resistance to these mites. The role of species belonging to the family Eriophyidae as vectors of plant viruses is discussed. Eriophyoid-host plant interactions, the susceptibility within selected crops and main host plant tolerance/resistance mechanisms are discussed. Fundamental concepts, subjects, and problems emerged in this review are pointed out and studies are suggested to clarify some controversial points.
Collapse
Affiliation(s)
- Enrico de Lillo
- Department of Soil, Plant and Food Sciences, Entomological and Zoological Section, University of Bari Aldo Moro, Bari, Italy
| | - Alberto Pozzebon
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Padova, Italy
| | - Domenico Valenzano
- Department of Soil, Plant and Food Sciences, Entomological and Zoological Section, University of Bari Aldo Moro, Bari, Italy
| | - Carlo Duso
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Padova, Italy
| |
Collapse
|
17
|
Jones I, Lake EC. Interactions between Two Biological Control Agents on Lygodium microphyllum. INSECTS 2018; 9:insects9040180. [PMID: 30513830 PMCID: PMC6316599 DOI: 10.3390/insects9040180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/04/2018] [Accepted: 11/21/2018] [Indexed: 11/16/2022]
Abstract
Lygodium microphyllum (Lygodiaceae) is an invasive climbing fern in peninsular Florida. Two classical biological control agents are currently being released against L. microphyllum: a leaf galling mite, Floracarus perrepae (Acariformes: Eriophyidae), and a moth, Neomusotima conspurcatalis (Lepidoptera: Crambidae). Little is known about how the two species interact in the field; thus we conducted oviposition choice tests to determine the effects of F. perrepae presence on oviposition behavior in N. conspurcatalis. Further, we conducted feeding trials with N. conspurcatalis larvae to establish the effects of gall presence on larval survival and rate of development, and determine whether N. conspurcatalis larvae would directly consume F. perrepae galls. Neomusotima conspurcatalis laid significantly more eggs on mite galled (52.66 ± 6.211) versus ungalled (34.40 ± 5.587) L. microphyllum foliage. Feeding trials revealed higher mortality in N. conspurcatalis larvae raised on galled (60%) versus ungalled (36%) L. microphyllum material. In gall feeding trials, N. conspurcatalis larvae consumed or damaged 13.52% of galls, and the rate of direct gall feeding increased over time as leaf resources were depleted. Our results suggest that, where N. conspurcatalis and F. perrepae co-occur, competitive interactions could be more frequent than previously anticipated; however, we do not expect these antagonistic interactions to affect the establishment of either agent.
Collapse
Affiliation(s)
- Ian Jones
- Department of Forestry, University of Toronto, 33 Willcocks Street, Toronto, ON M5S 3B3, Canada.
| | - Ellen C Lake
- USDA-ARS Invasive Pant Research Laboratory, 3225 College Avenue, Fort Lauderdale, FL 33314, USA.
| |
Collapse
|
18
|
Li J, Liu S, Guo K, Zhang F, Qiao H, Chen J, Yang M, Zhu X, Xu R, Xu C, Chen J. Plant-mediated competition facilitates a phoretic association between a gall mite and a psyllid vector. EXPERIMENTAL & APPLIED ACAROLOGY 2018; 76:325-337. [PMID: 30341476 DOI: 10.1007/s10493-018-0315-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 10/11/2018] [Indexed: 06/08/2023]
Abstract
Phoretic associations between mites and insects commonly occur in patchy and ephemeral habitats. As plants provide stable habitats for herbivores, herbivorous mites are rarely dependent on other animals for phoretic dispersal. However, a phoretic gall mite, Aceria pallida, which is found on plants, seasonally attaches to a herbivorous insect, Bactericera gobica, for overwintering survival. After detachment, the gall mite shares a habitat with its vector and is likely to compete with this vector for plant resources. However, excessive competition works against the sustainability of the seasonal phoretic association. How the gall mite, as an obligate phoretic mite, balances this relationship with its vector during the growing season to achieve phoresy is unknown. Here, the plant-mediated interspecific interaction between the gall mite and the psyllid after detachment was studied in the laboratory and field. The laboratory results showed that infestation by the gall mite had detrimental effects on the survival and development of psyllid nymphs. Meanwhile, the mite population and the gall size were also adversely affected. The results from the field showed that the mean densities of the mite galls and psyllids were lower in the mixed-species infestation treatment than in the single-species infestation treatment across the investigation period. However, the interspecific interaction between the gall mite and the psyllid decreased rather than accelerated leaf abscission caused by the psyllid, which promoted the persistence of the psyllid population and then indirectly contributed to phoretic association. Our results suggest that the plant-mediated competition between the phoretic gall mite and its vector after detachment facilitates the maintenance of the phoretic association.
Collapse
Affiliation(s)
- Jianling Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Sai Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Kun Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Fan Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Haili Qiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Jianmin Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Mengke Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Xiu Zhu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Rong Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Changqing Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, China.
| | - Jun Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
19
|
Javadi Khederi S, Khanjani M, Gholami M, Panzarino O, de Lillo E. Influence of the erineum strain of Colomerus vitis (Acari: Eriophyidae) on grape (Vitis vinifera) defense mechanisms. EXPERIMENTAL & APPLIED ACAROLOGY 2018; 75:1-24. [PMID: 29611069 DOI: 10.1007/s10493-018-0252-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 03/19/2018] [Indexed: 05/08/2023]
Abstract
Grape (Vitis vinifera) is commonly affected by the erineum strain of Colomerus vitis (GEM) in Iran and the susceptibility of grape cultivars to GEM is poorly understood. In order to evaluate the impact of GEM on grape and its defense mechanisms against the mite, an exploratory study was carried out on 19 cultivars (18 Iranian and the non-native Muscat Gordo). The differential susceptibility of cultivars to GEM was compared on the basis of the area of leaf damage induced by GEM. The cultivars White Thompson seedless of Bovanat, Atabaki Zarghan, Koladari Ghoochan and Sahebi Uroomie were less susceptible to GEM, whereas Ghalati Dodaj, Rishbaba, Muscat Gordo and Neyshaboori Birjand appeared to be the most affected by the mite. In a no-choice setup, plants of selected cultivars of these two groups were infested by GEM and assayed for 10 biomarkers usually related to plant stress mechanisms against plant feeders: the activity of defense enzymes-peroxidase (POX), polyphenol oxidase (PPO), superoxide dismutase (SOD), phenylalanine ammonia-lyase (PAL), catalase (CAT), the amount of total polyphenolics, total flavonoids, total soluble carbohydrates, hydrogen peroxide (H2O2), and malondialdehyde (MDA) expressing lipid peroxidation. The biomarkers were assessed in grape leaves 7 days before releasing the mites, as well as 7, 14 and 28 days after infestation (DAI). The activity of the enzymes and the amount of the compounds usually increased in percentage after mite infestation. A significant negative correlation was found between the area of leaf damage and PPO, POX, SOD, MDA and H2O2 for all sampling dates. The area of leaf damage showed a significant positive correlation with total soluble carbohydrates at 28 DAI, and significant negative correlations with CAT (at 14 and 28 DAI), PAL and total flavonoids (at 7 DAI). No correlation was observed between area of leaf damage and total polyphenolics. The biomarkers PPO, SOD, CAT activity and H2O2 provided the best explanation for the response of grape cultivars to GEM infestation.
Collapse
Affiliation(s)
- Saeid Javadi Khederi
- Department of Plant Protection, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Mohammad Khanjani
- Department of Plant Protection, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran.
| | - Mansur Gholami
- Department of Horticulture, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Onofrio Panzarino
- Department of Soil, Plant and Food Sciences, Entomological and Zoological Section, University of Bari Aldo Moro, Bari, Italy
| | - Enrico de Lillo
- Department of Soil, Plant and Food Sciences, Entomological and Zoological Section, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
20
|
Javadi Khederi S, Khanjani M, Gholami M, Bruno GL. Study of defense-related gene expression in grapevine infested by Colomerus vitis (Acari: Eriophyidae). EXPERIMENTAL & APPLIED ACAROLOGY 2018; 75:25-40. [PMID: 29611071 DOI: 10.1007/s10493-018-0255-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 03/21/2018] [Indexed: 05/08/2023]
Abstract
Real-time quantitative polymerase chain reaction was used to study the expression of some marker genes involved in the interaction between grape (Vitis vinifera L.) and the erineum mite Colomerus vitis Pagenstecher (Acari: Eriophyidae). Potted vines of cultivars Atabaki (resistant to C. vitis), Ghalati (susceptible to C. vitis) and Muscat Gordo (moderately resistant to C. vitis) were infested at the six-leaf stage. The expression of protease inhibitor (PIN), beta-1,3-glucanase (GLU), polygalacturonase inhibitor (PGIP), Vitis vinifera proline-rich protein 1 (PRP1), stilbene synthase (STS), and lipoxygenase (LOX) genes was assessed on young leaves collected 96, 120 and 144 h after mite infestation (hami). As a control, non-infested leaves collected 24 h before mite infestations were used. Differences were detected in expression of the selected genes during the C. vitis-grapevine interaction. The resistant cultivar Atabaki increased the expression of LOX, STS, GLU, PGIP and PRP1 genes during the first 120 hami. On the contrary, in the susceptible Ghalati, all selected genes showed an expression level similar or lower than non-infested leaves. Muscat Gordo increased the expression of all selected genes in comparison with non-infested leaves, but it was lower than in Atabaki. Significant transcript accumulation of PIN gene was detected for Muscat Gordo whereas it was slightly up-regulated in Ghalati and Atabaki. LOX, STS, PIN, GLU, PGIP and PRP1 genes were clearly expressed in response to C. vitis infestation. We therefore infer that expression of PGIP, PIN and PRP1 genes could represent a defense strategy against C. vitis infestations in grapevine leaves.
Collapse
Affiliation(s)
- Saeid Javadi Khederi
- Department of Plant Protection, Faculty of Agriculture, Bu-Ali Sina University, Hamadan, Iran
| | - Mohammad Khanjani
- Department of Plant Protection, Faculty of Agriculture, Bu-Ali Sina University, Hamadan, Iran.
| | - Mansur Gholami
- Department of Horticulture, Faculty of Agriculture, Bu-Ali Sina University, Hamadan, Iran
| | - Giovanni Luigi Bruno
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
21
|
Ximénez-Embún MG, Glas JJ, Ortego F, Alba JM, Castañera P, Kant MR. Drought stress promotes the colonization success of a herbivorous mite that manipulates plant defenses. EXPERIMENTAL & APPLIED ACAROLOGY 2017; 73:297-315. [PMID: 29188401 PMCID: PMC5727147 DOI: 10.1007/s10493-017-0200-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/23/2017] [Indexed: 05/08/2023]
Abstract
Climate change is expected to bring longer periods of drought and this may affect the plant's ability to resist pests. We assessed if water deficit affects the tomato russet mite (TRM; Aculops lycopersici), a key tomato-pest. TRM thrives on tomato by suppressing the plant's jamonate defenses while these defenses typically are modulated by drought stress. We observed that the TRM population grows faster and causes more damage on drought-stressed plants. To explain this observation we measured several nutrients, phytohormones, defense-gene expression and the activity of defensive proteins in plants with or without drought stress or TRM. TRM increased the levels of total protein and several free amino acids. It also promoted the SA-response and upregulated the accumulation of jasmonates but down-regulated the downstream marker genes while promoting the activity of cysteine-but not serine-protease inhibitors, polyphenol oxidase and of peroxidase (POD). Drought stress, in turn, retained the down regulation of JA-marker genes and reduced the activity of serine protease inhibitors and POD, and altered the levels of some free-amino acids. When combined, drought stress antagonized the accumulation of POD and JA by TRM and synergized accumulation of free sugars and SA. Our data show that drought stress interacts with pest-induced primary and secondary metabolic changes and promotes pest performance.
Collapse
Affiliation(s)
- Miguel G Ximénez-Embún
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain.
| | - Joris J Glas
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Felix Ortego
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Juan M Alba
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Pedro Castañera
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Merijn R Kant
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Kozlov MV, Skoracka A, Zverev V, Lewandowski M, Zvereva EL. Two Birch Species Demonstrate Opposite Latitudinal Patterns in Infestation by Gall-Making Mites in Northern Europe. PLoS One 2016; 11:e0166641. [PMID: 27835702 PMCID: PMC5105990 DOI: 10.1371/journal.pone.0166641] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/01/2016] [Indexed: 11/19/2022] Open
Abstract
Latitudinal patterns in herbivory, i.e. variations in plant losses to animals with latitude, are generally explained by temperature gradients. However, earlier studies suggest that geographical variation in abundance and diversity of gall-makers may be driven by precipitation rather than by temperature. To test the above hypothesis, we examined communities of eriophyoid mites (Acari: Eriophyoidea) on leaves of Betula pendula and B. pubescens in boreal forests in Northern Europe. We sampled ten sites for each of five latitudinal gradients from 2008-2011, counted galls of six morphological types and identified mites extracted from these galls. DNA analysis revealed cryptic species within two of six morphologically defined mite species, and these cryptic species induced different types of galls. When data from all types of galls and from two birch species were pooled, the percentage of galled leaves did not change with latitude. However, we discovered pronounced variation in latitudinal changes between birch species. Infestation by eriophyoid mites increased towards the north in B. pendula and decreased in B. pubescens, while diversity of galls decreased towards the north in B. pendula and did not change in B. pubescens. The percentage of galled leaves did not differ among geographical gradients and study years, but was 20% lower in late summer relative to early summer, indicating premature abscission of infested leaves. Our data suggest that precipitation has little effect on abundance and diversity of eriophyoid mites, and that climate warming may impose opposite effects on infestation of two birch species by galling mites, favouring B. pendula near the northern tree limit.
Collapse
Affiliation(s)
- Mikhail V. Kozlov
- Section of Ecology, Department of Biology, University of Turku, Turku, Finland
- * E-mail:
| | - Anna Skoracka
- Population Ecology Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Vitali Zverev
- Section of Ecology, Department of Biology, University of Turku, Turku, Finland
| | - Mariusz Lewandowski
- Department of Applied Entomology, Faculty of Agriculture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences—SGGW, Warsaw, Poland
| | - Elena L. Zvereva
- Section of Ecology, Department of Biology, University of Turku, Turku, Finland
| |
Collapse
|
23
|
Buffon G, Blasi ÉAR, Adamski JM, Ferla NJ, Berger M, Santi L, Lavallée-Adam M, Yates JR, Beys-da-Silva WO, Sperotto RA. Physiological and Molecular Alterations Promoted by Schizotetranychus oryzae Mite Infestation in Rice Leaves. J Proteome Res 2015; 15:431-46. [PMID: 26667653 DOI: 10.1021/acs.jproteome.5b00729] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Infestation of phytophagous mite Schizotetranychus oryzae in rice causes critical yield losses. To better understand this interaction, we employed Multidimensional Protein Identification Technology (MudPIT) approach to identify differentially expressed proteins. We detected 18 and 872 unique proteins in control and infested leaves, respectively, along with 32 proteins more abundant in control leaves. S. oryzae infestation caused decreased abundance of proteins related to photosynthesis (mostly photosystem II-related), carbon assimilation and energy production, chloroplast detoxification, defense, and fatty acid and gibberellin synthesis. On the contrary, infestation caused increased abundance of proteins involved in protein modification and degradation, gene expression at the translation level, protein partitioning to different organelles, lipid metabolism, actin cytoskeleton remodeling, and synthesis of jasmonate, amino acid, and molecular chaperones. Our results also suggest that S. oryzae infestation promotes cell-wall remodeling and interferes with ethylene biosynthesis in rice leaves. Proteomic data were positively correlated with enzymatic assays and RT-qPCR analysis. Our findings describe the protein expression patterns of infested rice leaves and suggest that the acceptor side of PSII is probably the major damaged target in the photosynthetic apparatus. These data will be useful in future biotechnological approaches aiming to induce phytophagous mite resistance in rice.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mathieu Lavallée-Adam
- Department of Chemical Physiology, The Scripps Research Institute , La Jolla, California 92037, United States
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute , La Jolla, California 92037, United States
| | | | | |
Collapse
|
24
|
Zhang J, Li J, Wang Z, Xue XF. Three new species of eriophyoid mites (Acari, Eriophyoidea) from Xinjiang Uygur Autonomous Region, China. Zookeys 2015:97-111. [PMID: 26167123 PMCID: PMC4492208 DOI: 10.3897/zookeys.508.8940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 06/02/2015] [Indexed: 12/01/2022] Open
Abstract
Three new species of eriophyoid mites from Xinjiang Uygur Autonomous Region, China, are described and illustrated. They are Paracolomerusgongliussp. n. and Phyllocoptrutabeggerianaesp. n. collected on Rosabeggeriana Schrenk ex Fisch. & C. A. Mey. (Rosaceae), and Rhyncaphytoptusfuyuniensissp. n. collected on Cotoneasterignavus E. L. Wolf (Rosaceae). All eriophyoid mites described here are vagrants on the undersurface of leaves and any apparent damage was not observed.
Collapse
|
25
|
|
26
|
Daud RD, de Cássia Conforto E, Feres RJF. Changes in leaf physiology caused by Calacarus heveae (Acari, Eriophyidae) on rubber tree. EXPERIMENTAL & APPLIED ACAROLOGY 2012; 57:127-37. [PMID: 22527832 DOI: 10.1007/s10493-012-9552-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 03/31/2012] [Indexed: 05/08/2023]
Abstract
The influence of Calacarus heveae Feres on physiological processes was evaluated in two rubber tree clones. Experiments were conducted in a greenhouse with 5-month-old potted seedlings of RRIM 600 and GT 1 clones, that were either infested with C. heveae or not (non-infested control). The level of photosynthetic pigments, net photosynthetic rate, stomatal conductance, transpiration rate, changes in relative humidity between leaf surface and ambient air (Δw) and intercellular CO(2) concentration (Ci CO(2)) were evaluated. Infested plants showed significant reductions in the rate of transpiration, the rate of photosynthesis, stomatal conductance and Δw. RRIM 600 seedlings showed more pronounced physiological damage than GT 1 seedlings, indicating a lower physiological tolerance of the former clone to the mite. However, carotenoid levels were reduced only in GT 1 seedlings. Photosynthesis was probably reduced due to a decrease in stomatal opening, as indicated by reductions in transpiration rate and stomatal conductance and by the absence of differences in chlorophyll levels between treatments. Our results indicate that populations of C. heveae reduce the productivity of rubber trees. Thus, farmers must to be aware to control this mite pest in rubber tree plantations.
Collapse
Affiliation(s)
- Rodrigo Damasco Daud
- Department of Ecology, Instituto de Ciências Biológicas, Universidade Federal de Goiás (UFG), Campus Samambaia, Caixa Postal 131, Goiânia, CEP 74001-970, Brazil.
| | | | | |
Collapse
|
27
|
Stoeva A, Rector BG, Harizanova V. Biology of Leipothrix dipsacivagus (Acari: Eriophyidae), a candidate for biological control of invasive teasels (Dipsacus spp.). EXPERIMENTAL & APPLIED ACAROLOGY 2011; 55:225-232. [PMID: 21538206 DOI: 10.1007/s10493-011-9466-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The present study describes key aspects of the biology of Leipothrix dipsacivagus, an eriophyid mite that is under study as a biological control candidate of Dipsacus fullonum and D. laciniatus (Dipsacaceae). Preliminary host-specificity tests have shown that it can develop and reproduce only on Dipsacus spp. (teasels). Studies were conducted in a laboratory at 26 ± 2(o)C with 16 h of light per day. Mites for the stock colony were collected from D. laciniatus in Klokotnitsa, Bulgaria and reared on rosettes of D. laciniatus in the laboratory. Unfertilized L. dipsacivagus females reared in isolation from the juvenile stage produced male offspring only, while progeny of fertilized females were of both sexes, suggesting arrhenotokous parthenogenesis with haplodiploid sex determination. Experiments were designed to compare male progeny from fertilized females to males from unfertilized females and to compare males and females from fertilized females. Male progeny of virgin mothers had significantly longer durations of active immature stages and total egg-to-adult period than male progeny of fertilized females. Female progeny had significantly longer durations of egg incubation, active immature stages and egg-to-adult period than male progeny from fertilized mothers. Adult longevity was significantly greater in females than in males. Fertilized females produced significantly more eggs per day and overall than virgin females. The results of this study suggest that fertilization status of L. dipsacivagus females can affect both their own fecundity and the development of their male progeny.
Collapse
Affiliation(s)
- Atanaska Stoeva
- Department of Entomology, Agricultural University, 12 Mendeleev Blvd, Plovdiv 4000, Bulgaria
| | | | | |
Collapse
|