1
|
Di Gioacchino M, Verri M, Naciu AM, Paolucci A, di Masi A, Taffon C, Palermo A, Crescenzi A, Ricci MA, Sodo A. Could Raman spectroscopy investigate the changes of cell oxidative stress status in thyroid diseases? A pilot study on cytological samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 326:125206. [PMID: 39342717 DOI: 10.1016/j.saa.2024.125206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/18/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
The incidence of thyroid nodules is rapidly increasing worldwide. Raman spectroscopy (RS) is a powerful label-free and non-invasive technique, successfully used for early stage diagnosis. Here, RS is proposed as a tool to investigate the thyroid disease, including neoplasms, through the study of cell oxidative stress (OS), which represents one of the main cancer risk factors. In this study, we enrolled 28 patients, submitted to a first and second thyroid fine needle aspiration (FNA) during follow up. The cytological samples were studied by RS and morphological examination. Typical Raman spectra of thyroid cytological samples are reported and the contribution of oxidized and reduced cytochrome b and c and carotenoids are discussed. On the basis of the evolution of the Raman features over the time lapse between the two FNAs, the 28 patients have been classified into 4 different categories and the most representative case for each category is reported and discussed in detail. For each category, the different Raman intensity ratio between oxidized and reduced cytochromes b and c is reported and associated to different cell OS status, along with the presence of carotenoids. Overall, our results support a correlation among changes in oxidative stress, carotenoids uptake and thyroid diseases, which could inspire new fundamental research on biomarkers and signaling pathways involved in thyroid OS.
Collapse
Affiliation(s)
| | - Martina Verri
- Dipartimento di Scienze, Università degli studi Roma Tre, Roma, Italy; Pathology of Endocrine Organs and Neuromuscolar Pathology Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| | - Anda Mihaela Naciu
- Unit of Metabolic Bone and Thyroid Disorders, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| | - Alessio Paolucci
- Dipartimento di Scienze, Università degli studi Roma Tre, Roma, Italy
| | | | - Chiara Taffon
- Pathology of Endocrine Organs and Neuromuscolar Pathology Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| | - Andrea Palermo
- Unit of Metabolic Bone and Thyroid Disorders, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| | - Anna Crescenzi
- Pathology of Endocrine Organs and Neuromuscolar Pathology Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy; Department of Oncological Radiological and Pathological Sciences, Università degli studi La Sapienza of Rome, Roma, Italy
| | | | - Armida Sodo
- Dipartimento di Scienze, Università degli studi Roma Tre, Roma, Italy
| |
Collapse
|
2
|
Szczesny-Malysiak E, Bartkowiak A, Dybas J. Label-free tracking of cytochrome C oxidation state in live cells by resonance Raman imaging. FEBS Lett 2024; 598:1981-1988. [PMID: 38740560 DOI: 10.1002/1873-3468.14905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/16/2024]
Abstract
Free interconversion of cytochrome C (CytC) between native ferrous (Cyt-FeII) and oxidized ferric (CytC-FeIII) states is necessary to maintain the respiratory function of mitochondria. Disturbances in CytC-FeIII to total CytC ratio may indicate mitochondrial dysfunction and apoptosis. Thus, tracking CytC oxidation state delivers important information about cellular physiology. In this work, we propose a novel methodology based on resonance Raman (rR) imaging optimized uniquely to track and qualitatively analyze the transition of Cyt-FeII to CytC-FeIII within live cells without affecting their morphology. None of the commonly used excitation lines allows such clear-cut differentiation, contrary to the 405 nm applied in this work. The presented methodology provides a novel pathway in the label-free detection of ferrous and ferric heme proteins.
Collapse
Affiliation(s)
- Ewa Szczesny-Malysiak
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Amanda Bartkowiak
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Jakub Dybas
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| |
Collapse
|
3
|
Morse PT, Arroum T, Wan J, Pham L, Vaishnav A, Bell J, Pavelich L, Malek MH, Sanderson TH, Edwards BFP, Hüttemann M. Phosphorylations and Acetylations of Cytochrome c Control Mitochondrial Respiration, Mitochondrial Membrane Potential, Energy, ROS, and Apoptosis. Cells 2024; 13:493. [PMID: 38534337 DOI: 10.3390/cells13060493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 03/28/2024] Open
Abstract
Cytochrome c (Cytc) has both life-sustaining and cellular death-related functions, depending on subcellular localization. Within mitochondria, Cytc acts as a single electron carrier as part of the electron transport chain (ETC). When released into the cytosol after cellular insult, Cytc triggers the assembly of the apoptosome, committing the cell to intrinsic apoptosis. Due to these dual natures, Cytc requires strong regulation by the cell, including post-translational modifications, such as phosphorylation and acetylation. Six phosphorylation sites and three acetylation sites have been detected on Cytc in vivo. Phosphorylations at T28, S47, Y48, T49, T58, and Y97 tend to be present under basal conditions in a tissue-specific manner. In contrast, the acetylations at K8, K39, and K53 tend to be present in specific pathophysiological conditions. All of the phosphorylation sites and two of the three acetylation sites partially inhibit respiration, which we propose serves to maintain an optimal, intermediate mitochondrial membrane potential (ΔΨm) to minimize reactive oxygen species (ROS) production. Cytc phosphorylations are lost during ischemia, which drives ETC hyperactivity and ΔΨm hyperpolarization, resulting in exponential ROS production thus causing reperfusion injury following ischemia. One of the acetylation sites, K39, shows a unique behavior in that it is gained during ischemia, stimulating respiration while blocking apoptosis, demonstrating that skeletal muscle, which is particularly resilient to ischemia-reperfusion injury compared to other organs, possesses a different metabolic strategy to handle ischemic stress. The regulation of Cytc by these post-translational modifications underscores the importance of Cytc for the ETC, ΔΨm, ROS production, apoptosis, and the cell as a whole.
Collapse
Affiliation(s)
- Paul T Morse
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Tasnim Arroum
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Junmei Wan
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Lucynda Pham
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Asmita Vaishnav
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA
| | - Jamie Bell
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- Division of Pediatric Critical Care, Children's Hospital of Michigan, Central Michigan University, Detroit, MI 48201, USA
| | - Lauren Pavelich
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA
| | - Moh H Malek
- Department of Health Care Sciences, Eugene Applebaum College of Pharmacy & Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Thomas H Sanderson
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Brian F P Edwards
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
4
|
Rodríguez-Quintero P, Rubio-Osornio M, Uribe E, Moreno W, Marín-Castañeda LA, Morales Z, Portila A, Vázquez D, Rubio C. Exposure to Ozone Downregulates Bcl-2 and Increases Executing Caspases-3 and -8 in the Hippocampus, Frontal Cortex, and Cerebellum of Rats. Cureus 2024; 16:e54546. [PMID: 38516464 PMCID: PMC10956716 DOI: 10.7759/cureus.54546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 03/23/2024] Open
Abstract
Introduction Ozone (O3) is one of the most prevalent atmospheric pollutants, arising from a photochemical reaction between volatile organic compounds (VOC), nitrogen oxides (NOx), and sunlight. O3 triggers oxidative stress, resulting in lipid oxidation, inflammation, alterations in metabolic and cellular signaling, and potentially initiating cell death in vulnerable brain regions. Inflammation and oxidative stress are recognized for their ability to induce cell death, primarily through the apoptosis pathway, involving various proteins that participate in this process via two pathways: intrinsic and extrinsic. Objective This study aims to identify the expression of pro-apoptotic proteins and Bcl-2 in the frontal cortex, cerebellum, and hippocampus of rats exposed to O3 acutely. Methods Two groups of 20 Wistar rodents (250-300 g) were established. The control group (n=10) was exposed to unrestricted polluted air for 12 hours, while the experimental group (n=10) was exposed to 1 ppm of O3. After exposure, the animals were sacrificed for immunofluorescence and Western blot analysis. Using a t-test, the arbitrary units of pro-apoptotic proteins and Bcl-2 were compared between the two groups. Results Significant increases in caspase-8 and caspase-3 activation were found in the O3-exposed group compared to the control group, specifically in the frontal cortex, cerebellum, and hippocampus. Additionally, notable changes in Bcl-2 expression were observed in these brain regions. The TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) assay further indicated significant differences in immunopositivity between the groups in the same areas. However, intrinsic apoptotic proteins such as Bax, VDAC1, and cytochrome-c did not show significant differences between the groups within these structures. Western blot analyses aligned with the immunofluorescence results, showing statistically significant concentrations of caspase-8 in the cerebellum, caspase-3 in the hippocampus, and Bcl-2 in the frontal cortex in the O3 exposed group. Conversely, proteins like Bax, cytochrome-c, and VDAC1 did not exhibit significant differences in all analyzed structures. Conclusions This study demonstrates that acute exposure to 1 ppm of ozone can trigger neuronal apoptosis in the frontal cortex, hippocampus, and cerebellum of rats, primarily through the activation of the extrinsic apoptosis pathway via caspase-8 and caspase-3. Additionally, it causes a reduction in Bcl-2 expression, an essential antiapoptotic protein. Despite not observing the activation of intrinsic pathway proteins like BAX, VDAC, or cytochrome-c, the study suggests that chronic O3 exposure might promote cell death by activating this pathway, requiring further long-term research.
Collapse
Affiliation(s)
- Paola Rodríguez-Quintero
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Mexico City, MEX
| | - Moisés Rubio-Osornio
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Mexico City, MEX
| | - Eric Uribe
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Mexico City, MEX
| | - Wilhelm Moreno
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Mexico City, MEX
| | - Luis A Marín-Castañeda
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Mexico City, MEX
| | - Zayra Morales
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Mexico City, MEX
| | - Alonso Portila
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Mexico City, MEX
| | - David Vázquez
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Mexico City, MEX
| | - Carmen Rubio
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Mexico City, MEX
| |
Collapse
|
5
|
Banbury C, Harris G, Clancy M, Blanch RJ, Rickard JJS, Goldberg Oppenheimer P. Window into the mind: Advanced handheld spectroscopic eye-safe technology for point-of-care neurodiagnostic. SCIENCE ADVANCES 2023; 9:eadg5431. [PMID: 37967190 PMCID: PMC10651125 DOI: 10.1126/sciadv.adg5431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 10/19/2023] [Indexed: 11/17/2023]
Abstract
Traumatic brain injury (TBI), a major cause of morbidity and mortality worldwide, is hard to diagnose at the point of care with patients often exhibiting no clinical symptoms. There is an urgent need for rapid point-of-care diagnostics to enable timely intervention. We have developed a technology for rapid acquisition of molecular fingerprints of TBI biochemistry to safely measure proxies for cerebral injury through the eye, providing a path toward noninvasive point-of-care neurodiagnostics using simultaneous Raman spectroscopy and fundus imaging of the neuroretina. Detection of endogenous neuromarkers in porcine eyes' posterior revealed enhancement of high-wave number bands, clearly distinguishing TBI and healthy cohorts, classified via artificial neural network algorithm for automated data interpretation. Clinically, translating into reduced specialist support, this markedly improves the speed of diagnosis. Designed as a hand-held cost-effective technology, it can allow clinicians to rapidly assess TBI at the point of care and identify long-term changes in brain biochemistry in acute or chronic neurodiseases.
Collapse
Affiliation(s)
- Carl Banbury
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Georgia Harris
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Michael Clancy
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Ministry of Justice, 102 Petty France, Westminster, London, UK
| | - Richard J. Blanch
- Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, Birmingham, UK
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, Robert Aiken Institute for Clinical Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Department of Ophthalmology, Queen Elizabeth Hospital Birmingham, UHB NHS Foundation Trust, West Midlands, UK
| | | | - Pola Goldberg Oppenheimer
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Healthcare Technologies Institute, Institute of Translational Medicine, Mindelsohn Way, Birmingham, B15 2TH, UK
| |
Collapse
|
6
|
Abramczyk H, Surmacki JM. Control of Mitochondrial Electron Transport Chain Flux and Apoptosis by Retinoic Acid: Raman Imaging In Vitro Human Bronchial and Lung Cancerous Cells. Cancers (Basel) 2023; 15:4535. [PMID: 37760504 PMCID: PMC10526773 DOI: 10.3390/cancers15184535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
The multiple functions of cytochrome c (cyt c) and their regulation in life and death decisions of the mammalian cell go beyond respiration, apoptosis, ROS scavenging, and oxidation of cardiolipine. It has become increasingly evident that cyt c is involved in the propagation of mitogenic signals. It has been proposed that the mitogenic signals occur via the PKCδ-retinoic acid signal complex comprising the protein kinase Cδ, the adapter protein Src homologous collagen homolog (p66Shc), and cyt c. We showed the importance of retinoic acid in regulating cellular processes monitored by the Raman bands of cyt c. To understand the role of retinoids in regulating redox status of cyt c, we recorded the Raman spectra and images of cells receiving redox stimuli by retinoic acid at in vitro cell cultures. For these purposes, we incubated bronchial normal epithelial lung (BEpC) and lung cancer cells (A549) with retinoic acid at concentrations of 1, 10, and 50 µM for 24 and 48 h of incubations. The new role of retinoic acid in a change of the redox status of iron ion in the heme group of cyt c from oxidized Fe3+ to reduced Fe2+ form may have serious consequences on ATPase effectiveness and aborting the activation of the conventional mitochondrial signaling protein-dependent pathways, lack of triggering programmed cell death through apoptosis, and lack of cytokine induction. To explain the effect of retinoids on the redox status of cyt c in the electron transfer chain, we used the quantum chemistry models of retinoid biology. It has been proposed that retinol catalyzes resonance energy transfer (RET) reactions in cyt c. The paper suggests that RET is pivotally important for mitochondrial energy homeostasis by controlling oxidative phosphorylation by switching between activation and inactivation of glycolysis and regulation of electron flux in the electron transport chain. The key role in this process is played by protein kinase C δ (PKCδ), which triggers a signal to the pyruvate dehydrogenase complex. The PKCδ-retinoic acid complex reversibly (at normal physiological conditions) or irreversibly (cancer) responds to the redox potential of cyt c that changes with the electron transfer chain flux.
Collapse
Affiliation(s)
| | - Jakub Maciej Surmacki
- Laboratory of Laser Molecular Spectroscopy, Department of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland
| |
Collapse
|
7
|
Rakshit D, Nayak S, Kundu S, Angelopoulou E, Pyrgelis ES, Piperi C, Mishra A. The Pharmacological Activity of Garlic ( Allium sativum) in Parkinson's Disease: From Molecular Mechanisms to the Therapeutic Potential. ACS Chem Neurosci 2023; 14:1033-1044. [PMID: 36861262 DOI: 10.1021/acschemneuro.2c00789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Parkinson's disease (PD), one of the most common neurological diseases worldwide, is mainly characterized neuropathologically by the dopaminergic neurodegeneration in the substantia nigra pars compacta of the brainstem. Genetic and environmental factors contribute to PD pathophysiology through modulation of pleiotropic cellular mechanisms. The currently available treatment options focus only on replenishing dopamine and do not alter disease progression. Interestingly, garlic (Allium sativum), globally famed for its flavor and taste-enhancing properties, has shown protective activity in different PD models. Numerous chemical constituents of garlic, mainly the organosulfur compounds, have been shown to exhibit anti-Parkinsonian effects by targeting oxidative stress, mitochondrial impairment, and neuroinflammation-related signaling. However, despite its therapeutic potential against PD, the major bioactive components of garlic display some stability issues and some adverse effects. In the present review, we explore the therapeutic potential of garlic and its major constituents in PD, the molecular mechanisms responsible for its pharmaceutical activity, and the associated limitations that need to be overcome for its future potential use in clinical practice.
Collapse
Affiliation(s)
- Debarati Rakshit
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Changsari, Kamrup, Assam 781101, India
| | - Sudipta Nayak
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Changsari, Kamrup, Assam 781101, India
| | - Snehashis Kundu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Changsari, Kamrup, Assam 781101, India
| | - Efthalia Angelopoulou
- Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Athens 11528, Greece
| | - Efstratios-Stylianos Pyrgelis
- Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Athens 11528, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Changsari, Kamrup, Assam 781101, India
| |
Collapse
|
8
|
The Improvement of Functional State of Brain Mitochondria with Astaxanthin in Rats after Heart Failure. Int J Mol Sci 2022; 24:ijms24010031. [PMID: 36613474 PMCID: PMC9820232 DOI: 10.3390/ijms24010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The relationship between neurological damage and cardiovascular disease is often observed. This type of damage is both a cause and an effect of cardiovascular disease. Mitochondria are the key organelles of the cell and are primarily subject to oxidative stress. Mitochondrial dysfunctions are involved in the etiology of various diseases. A decrease in the efficiency of the heart muscle can lead to impaired blood flow and decreased oxygen supply to the brain. Astaxanthin (AST), a marine-derived xanthophyll carotenoid, has multiple functions and its effects have been shown in both experimental and clinical studies. We investigated the effects of AST on the functional state of brain mitochondria in rats after heart failure. Isoproterenol (ISO) was used to cause heart failure. In the present study, we found that ISO impaired the functional state of rat brain mitochondria (RBM), while the administration of AST resulted in an improvement in mitochondrial efficiency. The respiratory control index (RCI) in RBM decreased with the use of ISO, while AST administration led to an increase in this parameter. Ca2+ retention capacity (CRC) decreased in RBM isolated from rat brain after ISO injection, and AST enhanced CRC in RBM after heart failure. The study of changes in the content of regulatory proteins such as adenine nucleotide translocase 1 and 2 (ANT1/2), voltage dependent anion channel (VDAC), and cyclophilin D (CyP-D) of mitochondrial permeability transition pore (mPTP) showed that ISO reduced their level, while AST restored the content of these proteins almost to the control value. In general, AST improves the functional state of mitochondria and can be considered as a prophylactic drug in various therapeutic approaches.
Collapse
|
9
|
Abramczyk H, Sobkiewicz B, Walczak-Jędrzejowska R, Marchlewska K, Surmacki J. Decoding the role of cytochrome c in metabolism of human spermatozoa by Raman imaging. Front Cell Dev Biol 2022; 10:983993. [PMID: 36506104 PMCID: PMC9732575 DOI: 10.3389/fcell.2022.983993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
The normal functioning of sperm cells requires cytochrome c in the redox balanced forms: reduced and oxidized. The oxidized form of cytochrome c is localized in the mitochondrial intermembrane space and is a part of the electron transport chain. This ensures that electron shuttling between the complex III, cytochrome c, and complex IV can occur leading to controlled effective oxidative phosphorylation (respiration) and ATP production needed for most steps in spermatozoal maturation, motility, hyperactivation and fertilization. We studied the biochemical composition of specific organelles in sperm cells by Raman imaging. The structures of the head consisting of the nucleus and acrosome, the midpiece representing mitochondria, and the tail characterized by the sperm axoneme surrounded by outer dense fiber and covered by the membrane were measured. Metabolic biochemical analysis of mitochondria, head and tail of sperm cells, and seminal plasma by using Raman imaging combined with chemometric classification method of Cluster Analysis has been obtained. Our results show that cytochrome c, which is a key protein that is needed to maintain life (respiration) and cell death (apoptosis), is located in sperm mitochondria in the oxidized or reduced form of the heme group. This work demonstrated that an application of Raman micro-spectroscopy can be extended to monitoring the redox state of mitochondrial cytochrome c in sperm cells.
Collapse
Affiliation(s)
- Halina Abramczyk
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Lodz, Poland,*Correspondence: Halina Abramczyk, ; Jakub Surmacki,
| | | | | | - Katarzyna Marchlewska
- Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, Lodz, Poland
| | - Jakub Surmacki
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Lodz, Poland,*Correspondence: Halina Abramczyk, ; Jakub Surmacki,
| |
Collapse
|
10
|
Evaluation of central-metal effect on anticancer activity and mechanism of action of isostructural Cu(II) and Ni(II) complexes containing pyridine-2,6-dicarboxylate. Eur J Med Chem 2022; 245:114897. [DOI: 10.1016/j.ejmech.2022.114897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/23/2022] [Accepted: 10/29/2022] [Indexed: 11/05/2022]
|
11
|
van der Laarse WJ, Bogaards SJP, Schalij I, Vonk Noordegraaf A, Vaz FM, van Groen D. Work and oxygen consumption of isolated right ventricular papillary muscle in experimental pulmonary hypertension. J Physiol 2022; 600:4465-4484. [PMID: 35993114 DOI: 10.1113/jp282991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/12/2022] [Indexed: 11/08/2022] Open
Abstract
Right-sided myocardial mechanical efficiency (work output/metabolic energy input) in pulmonary hypertension can be severely reduced. We determined the contribution of intrinsic myocardial determinants of efficiency using papillary muscle preparations from monocrotaline-induced pulmonary hypertensive (MCT-PH) rats. The hypothesis tested was that efficiency is reduced by mitochondrial dysfunction in addition to increased activation heat reported previously. Right ventricular muscle preparations were subjected to 5 Hz sinusoidal length changes at 37°C. Work and suprabasal oxygen consumption (V ̇ O 2 ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ ) were measured before and after cross-bridge inhibition by blebbistatin. Cytosolic cytochrome c concentration, myocyte cross-sectional area, proton permeability of the inner mitochondrial membrane and monoamine oxidase and glucose 6-phosphate dehydrogenase activities and phosphatidylglycerol/cardiolipin contents were determined. Mechanical efficiency ranged from 23% to 11% in control (n = 6) and from 22% to 1% in MCT-PH (n = 15) and correlated with work (r2 = 0.68, P < 0.0001) but not withV ̇ O 2 ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ (r2 = 0.004, P = 0.7919).V ̇ O 2 ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ for cross-bridge cycling was proportional to work (r2 = 0.56, P = 0.0005). Blebbistatin-resistantV ̇ O 2 ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ (r2 = 0.32, P = 0.0167) and proton permeability of the mitochondrial inner membrane (r2 = 0.36, P = 0.0110) correlated inversely with efficiency. Together, these variables explained the variance of efficiency (coefficient of multiple determination r2 = 0.79, P = 0.0001). Cytosolic cytochrome c correlated inversely with work (r2 = 0.28, P = 0.0391), but not with efficiency (r2 = 0.20, P = 0.0867). Glucose 6-phosphate dehydrogenase, monoamine oxidase and phosphatidylglycerol/cardiolipin increased in the right ventricular wall of MCT-PH but did not correlate with efficiency. Reduced myocardial efficiency in MCT-PH is a result of activation processes and mitochondrial dysfunction. The variance of work and the ratio of activation heat reported previously and blebbistatin-resistantV ̇ O 2 ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ are discussed. KEY POINTS: Mechanical efficiency of right ventricular myocardium is reduced in pulmonary hypertension. Increased energy use for activation processes has been demonstrated previously, but the contribution of mitochondrial dysfunction is unknown. Work and oxygen consumption are determined during work loops. Oxygen consumption for activation and cross-bridge cycling confirm the previous heat measurements. Cytosolic cytochrome c concentration, proton permeability of the mitochondrial inner membrane and phosphatidylglycerol/cardiolipin are increased in experimental pulmonary hypertension. Reduced work and mechanical efficiency are related to mitochondrial dysfunction. Upregulation of the pentose phosphate pathway and a potential gap in the energy balance suggest mitochondrial dysfunction in right ventricular overload is a resiult of the excessive production of reactive oxygen species.
Collapse
Affiliation(s)
- Willem J van der Laarse
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Sylvia J P Bogaards
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Ingrid Schalij
- Department of Pulmonology, Amsterdam Cardiovascular Sciences, VU University Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Anton Vonk Noordegraaf
- Department of Pulmonology, Amsterdam Cardiovascular Sciences, VU University Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Frédéric M Vaz
- Amsterdam Cardiovascular Sciences, VU University Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands and Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Department of Clinical Chemistry, Amsterdam Gastroentrology Endocrinology Metabolism, Amsterdam, Department of Pediatrics, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Emma Children's Hospital, Amsterdam University Medical Centers, Core Facility Metabolomics, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Duncan van Groen
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Gao L, Yuan P, Wei Y, Fu Y, Hou Y, Li P, Chen Y, Ruan Y, Zhou N, Zheng X, Feng W. Total flavonoids of Selaginella tamariscina (P.Beauv.) Spring ameliorates doxorubicin-induced cardiotoxicity by modulating mitochondrial dysfunction and endoplasmic reticulum stress via activating MFN2/PERK. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154065. [PMID: 35358932 DOI: 10.1016/j.phymed.2022.154065] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 02/16/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Doxorubicin (DOX) is a highly effective chemotherapeutic that is effective for various tumours. However, the clinical application of DOX has been limited by adverse reactions such as cardiotoxicity and heart failure. Since DOX-induced cardiotoxicity is irreversible, drugs to prevent DOX-induced cardiotoxicity are needed. PURPOSE This study aimed to investigate the effect of total flavonoids of Selaginella tamariscina (P.Beauv.) Spring (TFST) on doxorubicin-induced cardiotoxicity. METHODS The present study established DOX-induced cardiotoxicity models in C57BL/6 mice treated with DOX (cumulative dose: 20 mg/kg body weight) and H9c2 cells incubated with DOX (1 μM/l) to explore the intervention effect and potential mechanism of TFST. Echocardiography was performed to evaluate left ventricular functions. Heart tissue samples were collected for histological evaluation. Myocardial injury markers and oxidative stress markers were examined. Mitochondrial energy metabolism pathway associated proteins PPARα/PGC-1α/Sirt3 were detected. We also explored the effects of TFST on endoplasmic reticulum (ER) stress and apoptosis. To further investigate the protective mechanism of TFST, we used the specific small interfering RNA MFN2 (siMFN2) to explore the effect of MFN2 on TFST against DOX-induced cardiotoxicity in vitro. Flow cytometry detected reactive oxygen species, mitochondrial membrane potential and apoptosis. Cell mitochondrial stress was measured by Seahorse XF analyser. RESULTS Both in vivo and in vitro studies verified that TFST observably alleviated DOX-induced mitochondrial dysfunction and ER stress. However, these effects were reversed after transfected siMFN2. CONCLUSION Our results indicated that TFST ameliorates DOX-induced cardiotoxicity by alleviating mitochondrial dysfunction and ER stress by activating MFN2/PERK. MFN2/PERK pathway activation may be a novel mechanism to protect against DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Liyuan Gao
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Peipei Yuan
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Yaxin Wei
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yang Fu
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ying Hou
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Panying Li
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yi Chen
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yuan Ruan
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ning Zhou
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Xiaoke Zheng
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China.
| | - Weisheng Feng
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China.
| |
Collapse
|
13
|
Abstract
Mitochondria are dynamic organelles vital for energy production with now appreciated roles in immune defense. During microbial infection, mitochondria serve as signaling hubs to induce immune responses to counteract invading pathogens like viruses. Mitochondrial functions are central to a variety of antiviral responses including apoptosis and type I interferon signaling (IFN-I). While apoptosis and IFN-I mediated by mitochondrial antiviral signaling (MAVS) are well-established defenses, new dimensions of mitochondrial biology are emerging as battlefronts during viral infection. Increasingly, it has become apparent that mitochondria serve as reservoirs for distinct cues that trigger immune responses and that alterations in mitochondrial morphology may also tip infection outcomes. Furthermore, new data are foreshadowing pivotal roles for classic, homeostatic facets of this organelle as host-virus interfaces, namely, the tricarboxylic acid (TCA) cycle and electron transport chain (ETC) complexes like respiratory supercomplexes. Underscoring the importance of "housekeeping" mitochondrial activities in viral infection is the growing list of viral-encoded inhibitors including mimics derived from cellular genes that antagonize these functions. For example, virologs for ETC factors and several enzymes from the TCA cycle have been recently identified in DNA virus genomes and serve to pinpoint new vulnerabilities during infection. Here, we highlight recent advances for known antiviral functions associated with mitochondria as well as where the next battlegrounds may be based on viral effectors. Collectively, new methodology and mechanistic insights over the coming years will strengthen our understanding of how an ancient molecular truce continues to defend cells against viruses.
Collapse
Affiliation(s)
- Mahsa Sorouri
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tyron Chang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Genetics, Disease, and Development Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Dustin C Hancks
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
14
|
Abramczyk H, Brozek-Pluska B, Kopeć M. Double face of cytochrome c in cancers by Raman imaging. Sci Rep 2022; 12:2120. [PMID: 35136078 PMCID: PMC8826388 DOI: 10.1038/s41598-022-04803-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/29/2021] [Indexed: 12/28/2022] Open
Abstract
Cytochrome c (Cyt c) is a key protein that is needed to maintain life (respiration) and cell death (apoptosis). The dual-function of Cyt c comes from its capability to act as mitochondrial redox carrier that transfers electrons between the membrane-embedded complexes III and IV and to serve as a cytoplasmic apoptosis-triggering agent, activating the caspase cascade. However, the precise roles of Cyt c in mitochondria, cytoplasm and extracellular matrix under normal and pathological conditions are not completely understood. To date, no pathway of Cyt c release that results in caspase activation has been compellingly demonstrated in any invertebrate. The significance of mitochondrial dysfunctionality has not been studied in ductal carcinoma to the best of our knowledge. We used Raman spectroscopy and imaging to monitor changes in the redox state of the mitochondrial cytochromes in ex vivo surgically resected specimens of human breast tissues, and in vitro human breast cells of normal cells (MCF 10A), slightly malignant cells (MCF7) and highly aggressive cells (MDA-MB-231). We showed that Raman imaging provides insight into the biology of human breast ductal cancer. Here we show that proper concentration of monounsaturated fatty acids, saturated fatty acids, cardiolipin and Cyt c is critical in the correct breast ductal functioning and constitutes an important parameter to assess breast epithelial cells integrity and homeostasis. We look inside human breast ducts by Raman imaging answering fundamental questions about location and distribution of various biochemical components inside the lumen, epithelial cells of the duct and the extracellular matrix around the cancer duct during cancer development in situ. Our results show that human breast cancers demonstrate a redox imbalance compared to normal tissue. The reduced cytochrome c is upregulated in all stages of cancers development. The results of the paper shed light on a largely non-investigated issues regarding cytochromes and mitochondrial function in electron transfer chain. We found in histopathologically controlled breast cancer duct that Cyt c, cardiolipin, and palmitic acid are the main components inside the lumen of cancerous duct in situ. The presented results show direct evidence that Cyt c is released to the lumen from the epithelial cells in cancerous duct. In contrast the lumen in normal duct is empty and free of Cyt c. Our results demonstrate how Cyt c is likely to function in cancer development. We anticipate our results to be a starting point for more sophisticated in vitro and in vivo animal models. For example, the correlation between concentration of Cyt c and cancer grade could be tested in various types of cancer. Furthermore, Cyt c is a target of anti-cancer drug development and a well-defined and quantitative Raman based assay for oxidative phosphorylation and apoptosis will be relevant for such developments.
Collapse
Affiliation(s)
- H Abramczyk
- Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Lodz University of Technology, Wroblewskiego 15, 93-590, Lodz, Poland.
| | - B Brozek-Pluska
- Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Lodz University of Technology, Wroblewskiego 15, 93-590, Lodz, Poland
| | - M Kopeć
- Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Lodz University of Technology, Wroblewskiego 15, 93-590, Lodz, Poland
| |
Collapse
|
15
|
Taddei E, Rosiles A, Hernandez L, Luna R, Rubio C. Apoptosis in the Dentate Nucleus Following Kindling-induced Seizures in Rats. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:511-519. [PMID: 34852754 DOI: 10.2174/1871527320666211201161800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/27/2020] [Accepted: 02/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Epilepsy is a common neurological disorder characterized by abnormal and recurrent neuronal discharges that result in epileptic seizures. The dentate nuclei of the cerebellum receive excitatory input from different brain regions. Purkinje cell loss due to chronic seizures could lead to decreased inhibition of these excitatory neurons, resulting in the activation of apoptotic cascades in the dentate nucleus. OBJECTIVE The present study was designed to determine whether there is a presence of apoptosis (either intrinsic or extrinsic) in the dentate nucleus, the final relay of the cerebellar circuit, following kindling-induced seizures. METHODS In order to determine this, seizures were triggered via the amygdaloid kindling model. Following 0, 15, or 45 stimuli, rats were sacrificed, and the cerebellum was extracted. It was posteriorly prepared for the immunohistochemical analysis with cell death biomarkers: TUNEL, Bcl-2, truncated Bid (tBid), Bax, cytochrome C, and cleaved caspase 3 (active form). Our findings reproduce results obtained in other parts of the cerebellum. RESULTS We found a decrease of Bcl-2 expression, an anti-apoptotic protein, in the dentate nucleus of kindled rats. We also determined the presence of TUNEL-positive neurons, which confirms the presence of apoptosis in the dentate nucleus. We observed the expression of tBid, Bax, as well as cytochrome C and cleaved caspase-3, the main executor caspase of apoptosis. CONCLUSION There is a clear activation of both the intrinsic and extrinsic apoptotic pathways in the cells of the dentate nucleus of the cerebellum of rats subjected to amygdaloid kindling.
Collapse
Affiliation(s)
- Elisa Taddei
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía"Manuel Velasco Suárez", Ciudad de México, México
| | - Artemio Rosiles
- Laboratorio de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía" Manuel Velasco Suárez", Ciudad de México, México
| | - Leonardo Hernandez
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía"Manuel Velasco Suárez", Ciudad de México, México
| | - Rudy Luna
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía"Manuel Velasco Suárez", Ciudad de México, México
| | - Carmen Rubio
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía"Manuel Velasco Suárez", Ciudad de México, México
| |
Collapse
|
16
|
Wei Y, Ni L, Pan J, Li X, Xu B, Deng Y, Yang T, Liu W. The Roles of Oxidative Stress in Regulating Autophagy in Methylmercury-induced Neurotoxicity. Neuroscience 2021; 469:175-190. [PMID: 34174372 DOI: 10.1016/j.neuroscience.2021.06.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/24/2022]
Abstract
Methylmercury (MeHg) is a potential neurotoxin that is highly toxic to the human central nervous system. Although MeHg neurotoxicity has been widely studied, the mechanism of MeHg neurotoxicity has not yet been fully elucidated. Some research evidence suggests that oxidative stress and autophagy are important molecular mechanisms of MeHg-induced neurotoxicity. Researchers have widely accepted that oxidative stress regulates the autophagy pathway. The current study reviews the activation of Nuclear factor-erythroid-2-related factor (Nrf2)-related oxidative stress pathways and autophagy signaling pathways in the case of MeHg neurotoxicity. In addition, autophagy mainly plays a role in the neurotoxicity of MeHg through mTOR-dependent and mTOR-independent autophagy signaling pathways. Finally, the regulation of autophagy by reactive oxygen species (ROS) and Nrf2 in MeHg neurotoxicity was explored in this review, providing a new concept for the study of the neurotoxicity mechanism of MeHg.
Collapse
Affiliation(s)
- Yanfeng Wei
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China
| | - Linlin Ni
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China
| | - Jingjing Pan
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China
| | - Xiaoyang Li
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China
| | - Tianyao Yang
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China.
| |
Collapse
|
17
|
IDO-1 inhibition protects against neuroinflammation, oxidative stress and mitochondrial dysfunction in 6-OHDA induced murine model of Parkinson's disease. Neurotoxicology 2021; 84:184-197. [PMID: 33774066 DOI: 10.1016/j.neuro.2021.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 01/02/2023]
Abstract
Parkinson's disease (PD), a common neurodegenerative motor disorder characterized by striatal dopaminergic neuronal loss and localized neuroinflammation in the midbrain region. Activation of microglia is associated with various inflammatory mediators and Kynurenine pathway (KP) being one of the major regulator of immune response, is involved in the neuroinflammatory and neurotoxic cascade in PD. In the current study, 1-Methyltryptophan (1-MT), an Indolamine-2,3-dioxygenase-1 (IDO-1) inhibitor was tested at different doses (2.5 mg/kg, 5 mg/kg and 10 mg/kg) for its effect on behavioral parameters, oxidative stress, neuroinflammation, apoptosis, mitochondrial dysfunction, neurotransmitter levels, biochemical and behavioral alterations in unilateral 6-OHDA (3 μg/μL) murine model of PD. The results showed improved locomotion in open field test and motor coordination in rota-rod, reduced oxidative stress, neuroinflammatory markers (TNF-α, IFN-γ, IL-6), mitochondrial dysfunction and neuronal apoptosis (caspase-3). Also, restoration of neurotransmitter levels (dopamine and homovanillic acid) in the striatum and increased striatal BDNF levels were observed. Overall findings suggest that 1-MT could be a potential candidate for further studies to explore its possibility as an alternative in the pharmacotherapy of PD.
Collapse
|
18
|
A photoactivatable Ru (II) complex bearing 2,9-diphenyl-1,10-phenanthroline: A potent chemotherapeutic drug inducing apoptosis in triple negative human breast adenocarcinoma cells. Chem Biol Interact 2020; 336:109317. [PMID: 33197429 DOI: 10.1016/j.cbi.2020.109317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/23/2020] [Accepted: 11/06/2020] [Indexed: 12/26/2022]
Abstract
The photoactivatable Ru (II) complex 1 [Ru(bipy)2(dpphen)]Cl2 (where bipy = 2,2'-bipyridine and dpphen = 2,9-diphenyl-1,10-phenanthroline) has been shown to possess promising anticancer activity against triple negative adenocarcinoma MDA-MB-231 cells. The present study aims to elucidate the plausible mechanism of action of the photoactivatable complex 1 against MDA-MB-231 cells. Upon photoactivation, complex 1 exhibited time-dependent cytotoxic activity with a phototoxicity index (P Index) of >100 after 72 h. A significant increase in cell rounding and detachment, loss of membrane integrity, ROS accumulation and DNA damage was observed. Flow cytometry and a fluorescent apoptosis/necrosis assay showed an induction of cell apoptosis. Western blot analysis revealed the induction of intrinsic and extrinsic pathways and inhibition of the MAPK and PI3K pathways. The photoproduct of complex 1 showed similar effects on key apoptotic protein expression confirming that it is behind the observed cell death. In conclusion, the present study revealed that complex 1 is a potent multi-mechanistic photoactivatable chemotherapeutic drug that may serve as a potential lead molecule for targeted cancer chemotherapy.
Collapse
|
19
|
N Kolodkin A, Sharma RP, Colangelo AM, Ignatenko A, Martorana F, Jennen D, Briedé JJ, Brady N, Barberis M, Mondeel TDGA, Papa M, Kumar V, Peters B, Skupin A, Alberghina L, Balling R, Westerhoff HV. ROS networks: designs, aging, Parkinson's disease and precision therapies. NPJ Syst Biol Appl 2020; 6:34. [PMID: 33106503 PMCID: PMC7589522 DOI: 10.1038/s41540-020-00150-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/28/2020] [Indexed: 12/11/2022] Open
Abstract
How the network around ROS protects against oxidative stress and Parkinson's disease (PD), and how processes at the minutes timescale cause disease and aging after decades, remains enigmatic. Challenging whether the ROS network is as complex as it seems, we built a fairly comprehensive version thereof which we disentangled into a hierarchy of only five simpler subnetworks each delivering one type of robustness. The comprehensive dynamic model described in vitro data sets from two independent laboratories. Notwithstanding its five-fold robustness, it exhibited a relatively sudden breakdown, after some 80 years of virtually steady performance: it predicted aging. PD-related conditions such as lack of DJ-1 protein or increased α-synuclein accelerated the collapse, while antioxidants or caffeine retarded it. Introducing a new concept (aging-time-control coefficient), we found that as many as 25 out of 57 molecular processes controlled aging. We identified new targets for "life-extending interventions": mitochondrial synthesis, KEAP1 degradation, and p62 metabolism.
Collapse
Affiliation(s)
- Alexey N Kolodkin
- Infrastructure for Systems Biology Europe (ISBE.NL), Amsterdam, The Netherlands.
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
- Molecular Cell Physiology, VU University Amsterdam, Amsterdam, The Netherlands.
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| | - Raju Prasad Sharma
- Molecular Cell Physiology, VU University Amsterdam, Amsterdam, The Netherlands
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Spain
| | - Anna Maria Colangelo
- Infrastructure for Systems Biology Europe (ISBE.IT), Milan, Italy
- SysBio Centre of Systems Biology (ISBE.IT), University of Milano-Bicocca, Milan, Italy
- Laboratory of Neuroscience "R Levi-Montalcini" Dept of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Andrew Ignatenko
- Luxembourg Institute of Science and Technology (LIST), Esch-sur-Alzette, Luxembourg
| | - Francesca Martorana
- Infrastructure for Systems Biology Europe (ISBE.IT), Milan, Italy
- SysBio Centre of Systems Biology (ISBE.IT), University of Milano-Bicocca, Milan, Italy
- Laboratory of Neuroscience "R Levi-Montalcini" Dept of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Danyel Jennen
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Jacco J Briedé
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Nathan Brady
- Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Matteo Barberis
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Surrey, UK
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Surrey, UK
| | - Thierry D G A Mondeel
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Surrey, UK
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Surrey, UK
| | - Michele Papa
- SysBio Centre of Systems Biology (ISBE.IT), University of Milano-Bicocca, Milan, Italy
- Infrastructure for Systems Biology Europe (ISBE.IT), Naples, Italy
- Department of Mental and Physical Health, University of Campania-L. Vanvitelli, Napoli, Italia
| | - Vikas Kumar
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Spain
- IISPV, Hospital Universitari Sant Joan de Reus, Universitat Rovira I Virgili, Reus, Spain
| | - Bernhard Peters
- Faculty of Science, Technology and Communication, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Alexander Skupin
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Lilia Alberghina
- Infrastructure for Systems Biology Europe (ISBE.IT), Milan, Italy
- SysBio Centre of Systems Biology (ISBE.IT), University of Milano-Bicocca, Milan, Italy
| | - Rudi Balling
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Hans V Westerhoff
- Infrastructure for Systems Biology Europe (ISBE.NL), Amsterdam, The Netherlands.
- Molecular Cell Physiology, VU University Amsterdam, Amsterdam, The Netherlands.
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
- Manchester Centre for Integrative Systems Biology, School for Chemical Engineering and Analytical Science, The University of Manchester, Manchester, UK.
| |
Collapse
|
20
|
Gebicka L. Redox reactions of heme proteins with flavonoids. J Inorg Biochem 2020; 208:111095. [PMID: 32442763 DOI: 10.1016/j.jinorgbio.2020.111095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/08/2020] [Accepted: 04/26/2020] [Indexed: 02/06/2023]
Abstract
Proteins containing heme groups perform a variety of important functions in living organisms. The heme groups are involved in catalyzing oxidation/reduction reactions, in electron transfer, and in binding small molecules, like oxygen or nitric oxide. Flavonoids, low molecular weight plant polyphenols, are ubiquitous components of human diet. They are also components of many plant extracts used in herbal medicine as well as of food supplements. Due to their relatively low reduction potential, flavonoids are prone to oxidation. This paper provides a review of redox reactions of various heme proteins, including catalase, some peroxidases, cytochrome P450, cytochrome c, myoglobin, and hemoglobin with flavonoids. Potential biological significance of these reactions is discussed, in particular when flavonoids are delivered to the body at pharmacological doses.
Collapse
Affiliation(s)
- Lidia Gebicka
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology (TUL), Lodz, Poland.
| |
Collapse
|
21
|
Martinis P, Grancara S, Kanamori Y, García-Argáez AN, Pacella E, Dalla Via L, Toninello A, Agostinelli E. Involvement of the biogenic active amine agmatine in mitochondrial membrane permeabilization and release of pro-apoptotic factors. Amino Acids 2019; 52:161-169. [DOI: 10.1007/s00726-019-02791-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 09/30/2019] [Indexed: 10/25/2022]
|
22
|
Electron transfer between cytochrome c and the binuclear center of cytochrome oxidase. J Theor Biol 2019; 460:134-141. [DOI: 10.1016/j.jtbi.2018.10.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 12/22/2022]
|
23
|
Mignolet A, Wood BR, Goormaghtigh E. Intracellular investigation on the differential effects of 4 polyphenols on MCF-7 breast cancer cells by Raman imaging. Analyst 2018; 143:258-269. [PMID: 29214243 DOI: 10.1039/c7an01460k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The past decades have seen significant interest in the study of polyphenolic compounds as potential therapeutic agents in medicine because they display a vast array of cellular effects beneficial to treat or manage a plethora of chronic diseases including inflammatory diseases, cardiovascular abnormalities and several types of cancer. These compounds act at different stages of carcinogenesis but deciphering their mode of action is a complex task. Live MCF-7 breast cancer cells were investigated using Raman imaging to evaluate the perturbations induced after incubating cells with four different polyphenols: EGCG, gallic acid, resveratrol and tannic acid. First, clear spectral changes could be observed between the spectra of the cytoplasm and the nucleus of live MCF-7 cancer cells demonstrating a difference in their respective global chemical composition. The treatments induced significant modifications in the cells but no clear common pattern of modifications from the 4 drugs could be observed in the cell spectra in the 1800-600 cm-1 region. The high spatial resolution of Raman confocal microscopy enabled both the nucleus and cytoplasm to be independently targeted to study the impact of the polyphenols on the cell line. Positive spectral variations at 2851 cm-1 and 2920 cm-1 as well as in the 1460-1420 cm-1 and 1660-1650 cm-1 spectral regions inside cell cytoplasm reflected an increase of the lipid content after exposure to polyphenols. Lipid accumulation appears to be an early biomarker of drug-induced cell stress and subsequent apoptosis. Interestingly an increase of cytochrome c into the cytosol was also induced by EGCG. These multiple events are possibly associated with cell apoptosis. In conclusion, Raman micro-spectroscopy provides a complementary spectroscopic method to realize biological investigations on live cancer cells and to evaluate the effects of polyphenols at the subcellular level.
Collapse
Affiliation(s)
- A Mignolet
- Center for Structural Biology and Bioinformatics, Laboratory for the Structure and Function of Biological Membranes; Université Libre de Bruxelles, Campus Plaine, Bld du Triomphe 2, CP206/2, B1050 Brussels, Belgium
| | | | | |
Collapse
|
24
|
Effect of glycerol on photobleaching of cytochrome Raman lines in frozen yeast cells. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2018; 47:655-662. [PMID: 29704025 DOI: 10.1007/s00249-018-1302-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 03/13/2018] [Accepted: 04/13/2018] [Indexed: 10/17/2022]
Abstract
We applied a Raman spectroscopy approach to investigate the effect of a cryoprotectant on the redox state of cytochromes on freezing yeast cells. The redox activity of cytochromes was studied using time-resolved photobleaching of the resonance Raman lines. It is found that ice formation causes a drastic change in the redox state of cytochromes in cells frozen without cryoprotectant, whereas in the presence of glycerol the effects of ice formation are more gradual. The photobleaching rate of cells frozen in glycerol solution shows a gradual slowing with temperature decrease and an abrupt slowdown below - 48 °C. This abrupt decrease was interpreted as originating from changes in protein conformational dynamics. Our findings provide important new insights into the transition from active to inactive cytochrome states as cells undergo freezing in the presence and absence of cryoprotectant.
Collapse
|
25
|
Therapeutic Potential of Novel Twin Compounds Containing Tetramethylpyrazine and Carnitine Substructures in Experimental Ischemic Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7191856. [PMID: 29387294 PMCID: PMC5745738 DOI: 10.1155/2017/7191856] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 07/16/2017] [Accepted: 08/13/2017] [Indexed: 02/07/2023]
Abstract
Although studies have seen dramatic advances in the understanding of the pathogenesis of stroke such as oxidative stress, inflammation, excitotoxicity, calcium overload and apoptosis, the delivery of stroke therapies is still a great challenge. In this study, we designed and synthesized a series of novel twin compounds containing tetramethylpyrazine and carnitine substructures and explored their therapeutic potential and mechanism in stroke-related neuronal injury. We first screened the neuroprotective effects of candidate compounds and found that among the tested compounds, LR134 and LR143 exhibited significant neuroprotection as evidenced by reducing cerebral infarct and edema, improving neurological function as well as blood-brain barrier integrity in rats after cerebral ischemia/reperfusion injury. We further demonstrated that the neuroprotective effects of compounds LR134 and LR143 were associated with the reduced inflammatory responses and NADPH oxidase- (NOX2-) mediated oxidative stress and the protection of mitochondria accompanied by the improvement of energy supply. In summary, this study provides direct evidence showing that the novel twin compounds containing tetramethylpyrazine and carnitine substructures have neuroprotective effects with multiple therapeutic targets, suggesting that modulation of these chemical structures may be an innovative therapeutic strategy for treating patients with stroke.
Collapse
|
26
|
Structural basis of mitochondrial dysfunction in response to cytochrome c phosphorylation at tyrosine 48. Proc Natl Acad Sci U S A 2017; 114:E3041-E3050. [PMID: 28348229 DOI: 10.1073/pnas.1618008114] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulation of mitochondrial activity allows cells to adapt to changing conditions and to control oxidative stress, and its dysfunction can lead to hypoxia-dependent pathologies such as ischemia and cancer. Although cytochrome c phosphorylation-in particular, at tyrosine 48-is a key modulator of mitochondrial signaling, its action and molecular basis remain unknown. Here we mimic phosphorylation of cytochrome c by replacing tyrosine 48 with p-carboxy-methyl-l-phenylalanine (pCMF). The NMR structure of the resulting mutant reveals significant conformational shifts and enhanced dynamics around pCMF that could explain changes observed in its functionality: The phosphomimetic mutation impairs cytochrome c diffusion between respiratory complexes, enhances hemeprotein peroxidase and reactive oxygen species scavenging activities, and hinders caspase-dependent apoptosis. Our findings provide a framework to further investigate the modulation of mitochondrial activity by phosphorylated cytochrome c and to develop novel therapeutic approaches based on its prosurvival effects.
Collapse
|
27
|
Okotrub KA, Surovtsev NV. Redox State of Cytochromes in Frozen Yeast Cells Probed by Resonance Raman Spectroscopy. Biophys J 2016; 109:2227-34. [PMID: 26636934 DOI: 10.1016/j.bpj.2015.10.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 12/20/2022] Open
Abstract
Cryopreservation is a well-established technique used for the long-term storage of biological materials whose biological activity is effectively stopped under low temperatures (suspended animation). Since most biological methods do not work in a low-temperature frozen environment, the mechanism and details of the depression of cellular activity in the frozen state remain largely uncharacterized. In this work, we propose, to our knowledge, a new approach to study the downregulation of the redox activity of cytochromes b and c in freezing yeast cells in a contactless, label-free manner. Our approach is based on cytochrome photobleaching effects observed in the resonance Raman spectra of live cells. Photoinduced and native redox reactions that contributed to the photobleaching rate were studied over a wide temperature range (from -173 to +25 °C). We found that ice formation influences both the rate of cytochrome redox reactions and the balance between the reduced and oxidized cytochromes. We demonstrate that the temperature dependence of native redox reaction rates can be well described by the thermal activation law with an apparent energy of 32.5 kJ/mol, showing that the redox reaction rate is ∼10(15) times slower at liquid nitrogen temperature than at room temperature.
Collapse
Affiliation(s)
- Konstantin A Okotrub
- Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk, Russia
| | - Nikolay V Surovtsev
- Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia.
| |
Collapse
|
28
|
Zanganeh S, Khosravi S, Namdar N, Amiri MH, Gharooni M, Abdolahad M. Electrochemical approach for monitoring the effect of anti tubulin drugs on breast cancer cells based on silicon nanograss electrodes. Anal Chim Acta 2016; 938:72-81. [PMID: 27619088 DOI: 10.1016/j.aca.2016.07.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/29/2016] [Accepted: 07/31/2016] [Indexed: 01/04/2023]
Abstract
One of the most interested molecular research in the field of cancer detection is the mechanism of drug effect on cancer cells. Translating molecular evidence into electrochemical profiles would open new opportunities in cancer research. In this manner, applying nanostructures with anomalous physical and chemical properties as well as biocompatibility would be a suitable choice for the cell based electrochemical sensing. Silicon based nanostructure are the most interested nanomaterials used in electrochemical biosensors because of their compatibility with electronic fabrication process and well engineering in size and electrical properties. Here we apply silicon nanograss (SiNG) probing electrodes produced by reactive ion etching (RIE) on silicon wafer to electrochemically diagnose the effect of anticancer drugs on breast tumor cells. Paclitaxel (PTX) and mebendazole (MBZ) drugs have been used as polymerizing and depolymerizing agents of microtubules. PTX would perturb the anodic/cathodic responses of the cell-covered biosensor by binding phosphate groups to deformed proteins due to extracellular signal-regulated kinase (ERK(1/2)) pathway. MBZ induces accumulation of Cytochrome C in cytoplasm. Reduction of the mentioned agents in cytosol would change the ionic state of the cells monitored by silicon nanograss working electrodes (SiNGWEs). By extending the contacts with cancer cells, SiNGWEs can detect minor signal transduction and bio recognition events, resulting in precise biosensing. Effects of MBZ and PTX drugs, (with the concentrations of 2 nM and 0.1 nM, respectively) on electrochemical activity of MCF-7 cells are successfully recorded which are corroborated by confocal and flow cytometry assays.
Collapse
Affiliation(s)
- Somayeh Zanganeh
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Eng, University of Tehran, P.O. Box 14395/515, Tehran, Iran; Nano Electronic Center of Excellence, Thin Film and Nanoelectronic Lab, School of Electrical and Computer Eng, University of Tehran, P.O. Box 14395/515, Tehran, Iran
| | - Safoora Khosravi
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Eng, University of Tehran, P.O. Box 14395/515, Tehran, Iran; Nano Electronic Center of Excellence, Thin Film and Nanoelectronic Lab, School of Electrical and Computer Eng, University of Tehran, P.O. Box 14395/515, Tehran, Iran
| | - Naser Namdar
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Eng, University of Tehran, P.O. Box 14395/515, Tehran, Iran; Nano Electronic Center of Excellence, Thin Film and Nanoelectronic Lab, School of Electrical and Computer Eng, University of Tehran, P.O. Box 14395/515, Tehran, Iran
| | - Morteza Hassanpour Amiri
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Eng, University of Tehran, P.O. Box 14395/515, Tehran, Iran; Nano Electronic Center of Excellence, Thin Film and Nanoelectronic Lab, School of Electrical and Computer Eng, University of Tehran, P.O. Box 14395/515, Tehran, Iran
| | - Milad Gharooni
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Eng, University of Tehran, P.O. Box 14395/515, Tehran, Iran; Nano Electronic Center of Excellence, Thin Film and Nanoelectronic Lab, School of Electrical and Computer Eng, University of Tehran, P.O. Box 14395/515, Tehran, Iran
| | - Mohammad Abdolahad
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Eng, University of Tehran, P.O. Box 14395/515, Tehran, Iran; Nano Electronic Center of Excellence, Thin Film and Nanoelectronic Lab, School of Electrical and Computer Eng, University of Tehran, P.O. Box 14395/515, Tehran, Iran.
| |
Collapse
|
29
|
Silicon nanowire based biosensing platform for electrochemical sensing of Mebendazole drug activity on breast cancer cells. Biosens Bioelectron 2016; 85:363-370. [PMID: 27196254 DOI: 10.1016/j.bios.2016.04.081] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/23/2016] [Accepted: 04/25/2016] [Indexed: 01/05/2023]
Abstract
Electrochemical approaches have played crucial roles in bio sensing because of their Potential in achieving sensitive, specific and low-cost detection of biomolecules and other bio evidences. Engineering the electrochemical sensing interface with nanomaterials tends to new generations of label-free biosensors with improved performances in terms of sensitive area and response signals. Here we applied Silicon Nanowire (SiNW) array electrodes (in an integrated architecture of working, counter and reference electrodes) grown by low pressure chemical vapor deposition (LPCVD) system with VLS procedure to electrochemically diagnose the presence of breast cancer cells as well as their response to anticancer drugs. Mebendazole (MBZ), has been used as antitubulin drug. It perturbs the anodic/cathodic response of the cell covered biosensor by releasing Cytochrome C in cytoplasm. Reduction of cytochrome C would change the ionic state of the cells monitored by SiNW biosensor. By applying well direct bioelectrical contacts with cancer cells, SiNWs can detect minor signal transduction and bio recognition events, resulting in precise biosensing. Our device detected the trace of MBZ drugs (with the concentration of 2nM) on electrochemical activity MCF-7 cells. Also, experimented biological analysis such as confocal and Flowcytometry assays confirmed the electrochemical results.
Collapse
|
30
|
Chattoraj S, Amin MA, Bhattacharyya K. Cytochrome c-Capped Fluorescent Gold Nanoclusters: Imaging of Live Cells and Delivery of Cytochrome c. Chemphyschem 2016; 17:2088-95. [PMID: 27028215 DOI: 10.1002/cphc.201501163] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Indexed: 01/09/2023]
Abstract
Cytochrome c-capped fluorescent gold nanoclusters (Au-NCs) are used for imaging of live lung and breast cells. Delivery of cytochrome c inside the cells is confirmed by covalently attaching a fluorophore (Alexa Fluor 594) to cytochrome c-capped Au-NCs and observing fluorescence from Alexa 594 inside the cell. Mass spectrometry studies suggest that in bulk water, addition of glutathione (GSH) to cytochrome c-capped Au-NCs results in the formation of glutathione-capped Au-NCs and free apo-cytochrome c. Thus glutathione displaces cytochrome c as a capping agent. Using confocal microscopy, the emission spectra and decay of Au-NCs are measured in live cells. From the position of the emission maximum it is shown that the Au-NCs exist as Au8 in bulk water and as Au13 inside the cells. Fluorescence resonance energy transfer from cytochrome c-Au-NC (donor) to Mitotracker Orange (acceptor) indicates that the Au-NCs localise in the mitochondria of live cells.
Collapse
Affiliation(s)
- Shyamtanu Chattoraj
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700 032, India), Fax: (91)-33-2473-2805
| | - Md Asif Amin
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700 032, India), Fax: (91)-33-2473-2805
| | - Kankan Bhattacharyya
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700 032, India), Fax: (91)-33-2473-2805.
| |
Collapse
|
31
|
Zhang L, Wang K, Lei Y, Li Q, Nice EC, Huang C. Redox signaling: Potential arbitrator of autophagy and apoptosis in therapeutic response. Free Radic Biol Med 2015; 89:452-65. [PMID: 26454086 DOI: 10.1016/j.freeradbiomed.2015.08.030] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/27/2015] [Accepted: 08/31/2015] [Indexed: 02/05/2023]
Abstract
Redox signaling plays important roles in the regulation of cell death and survival in response to cancer therapy. Autophagy and apoptosis are discrete cellular processes mediated by distinct groups of regulatory and executioner molecules, and both are thought to be cellular responses to various stress conditions including oxidative stress, therefore controlling cell fate. Basic levels of reactive oxygen species (ROS) may function as signals to promote cell proliferation and survival, whereas increase of ROS can induce autophagy and apoptosis by damaging cellular components. Growing evidence in recent years argues for ROS that below detrimental levels acting as intracellular signal transducers that regulate autophagy and apoptosis. ROS-regulated autophagy and apoptosis can cross-talk with each other. However, how redox signaling determines different cell fates by regulating autophagy and apoptosis remains unclear. In this review, we will focus on understanding the delicate molecular mechanism by which autophagy and apoptosis are finely orchestrated by redox signaling and discuss how this understanding can be used to develop strategies for the treatment of cancer.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory for Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, P.R. China; Department of Neurology, the Affiliated Hospital of Hainan Medical College, Haikou, 570102, P.R. China
| | - Kui Wang
- State Key Laboratory for Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, P.R. China
| | - Yunlong Lei
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Qifu Li
- Department of Neurology, the Affiliated Hospital of Hainan Medical College, Haikou, 570102, P.R. China
| | - Edouard Collins Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Canhua Huang
- State Key Laboratory for Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, P.R. China.
| |
Collapse
|
32
|
Hu Y, Deng H, Xu S, Zhang J. MicroRNAs Regulate Mitochondrial Function in Cerebral Ischemia-Reperfusion Injury. Int J Mol Sci 2015; 16:24895-917. [PMID: 26492239 PMCID: PMC4632781 DOI: 10.3390/ijms161024895] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 10/08/2015] [Indexed: 01/30/2023] Open
Abstract
Cerebral ischemia-reperfusion injury involves multiple independently fatal terminal pathways in the mitochondria. These pathways include the reactive oxygen species (ROS) generation caused by changes in mitochondrial membrane potential and calcium overload, resulting in apoptosis via cytochrome c (Cyt c) release. In addition, numerous microRNAs are associated with the overall process. In this review, we first briefly summarize the mitochondrial changes in cerebral ischemia-reperfusion and then describe the possible molecular mechanism of miRNA-regulated mitochondrial function, which likely includes oxidative stress and energy metabolism, as well as apoptosis. On the basis of the preceding analysis, we conclude that studies of microRNAs that regulate mitochondrial function will expedite the development of treatments for cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Yue Hu
- Graduate School, Tianjin University of Traditional Chinese Medicine, 312 An Shan Xi Road, Nan Kai District, Tianjin 300193, China.
| | - Hao Deng
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 314 An Shan Xi Road, Nan Kai District, Tianjin 300193, China.
| | - Shixin Xu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 314 An Shan Xi Road, Nan Kai District, Tianjin 300193, China.
| | - Junping Zhang
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 314 An Shan Xi Road, Nan Kai District, Tianjin 300193, China.
| |
Collapse
|
33
|
The hydrogen-peroxide-induced radical behaviour in human cytochrome c-phospholipid complexes: implications for the enhanced pro-apoptotic activity of the G41S mutant. Biochem J 2015; 456:441-52. [PMID: 24099549 DOI: 10.1042/bj20130758] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have investigated whether the pro-apoptotic properties of the G41S mutant of human cytochrome c can be explained by a higher than wild-type peroxidase activity triggered by phospholipid binding. A key complex in mitochondrial apoptosis involves cytochrome c and the phospholipid cardiolipin. In this complex cytochrome c has its native axial Met(80) ligand dissociated from the haem-iron, considerably augmenting the peroxidase capability of the haem group upon H2O2 binding. By EPR spectroscopy we reveal that the magnitude of changes in the paramagnetic haem states, as well as the yield of protein-bound free radical, is dependent on the phospholipid used and is considerably greater in the G41S mutant. A high-resolution X-ray crystal structure of human cytochrome c was determined and, in combination with the radical EPR signal analysis, two tyrosine residues, Tyr(46) and Tyr(48), have been rationalized to be putative radical sites. Subsequent single and double tyrosine-to-phenylalanine mutations revealed that the EPR signal of the radical, found to be similar in all variants, including G41S and wild-type, originates not from a single tyrosine residue, but is instead a superimposition of multiple EPR signals from different radical sites. We propose a mechanism of multiple radical formations in the cytochrome c-phospholipid complexes under H2O2 treatment, consistent with the stabilization of the radical in the G41S mutant, which elicits a greater peroxidase activity from cytochrome c and thus has implications in mitochondrial apoptosis.
Collapse
|
34
|
ORF005L from infectious spleen and kidney necrosis virus is located in the inner mitochondrial membrane and induces apoptosis. Virus Genes 2014; 49:269-77. [DOI: 10.1007/s11262-014-1088-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 05/09/2014] [Indexed: 11/25/2022]
|
35
|
Domazou AS, Gebicka L, Didik J, Gebicki JL, van der Meijden B, Koppenol WH. The kinetics of the reaction of nitrogen dioxide with iron(II)- and iron(III) cytochrome c. Free Radic Biol Med 2014; 69:172-80. [PMID: 24447894 DOI: 10.1016/j.freeradbiomed.2014.01.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 12/13/2013] [Accepted: 01/09/2014] [Indexed: 02/05/2023]
Abstract
The reactions of NO2 with both oxidized and reduced cytochrome c at pH 7.2 and 7.4, respectively, and with N-acetyltyrosine amide and N-acetyltryptophan amide at pH 7.3 were studied by pulse radiolysis at 23 °C. NO2 oxidizes N-acetyltyrosine amide and N-acetyltryptophan amide with rate constants of (3.1±0.3)×10(5) and (1.1±0.1)×10(6) M(-1) s(-1), respectively. With iron(III)cytochrome c, the reaction involves only its amino acids, because no changes in the visible spectrum of cytochrome c are observed. The second-order rate constant is (5.8±0.7)×10(6) M(-1) s(-1) at pH 7.2. NO2 oxidizes iron(II)cytochrome c with a second-order rate constant of (6.6±0.5)×10(7) M(-1) s(-1) at pH 7.4; formation of iron(III)cytochrome c is quantitative. Based on these rate constants, we propose that the reaction with iron(II)cytochrome c proceeds via a mechanism in which 90% of NO2 oxidizes the iron center directly-most probably via reaction at the solvent-accessible heme edge-whereas 10% oxidizes the amino acid residues to the corresponding radicals, which, in turn, oxidize iron(II). Iron(II)cytochrome c is also oxidized by peroxynitrite in the presence of CO2 to iron(III)cytochrome c, with a yield of ~60% relative to peroxynitrite. Our results indicate that, in vivo, NO2 will attack preferentially the reduced form of cytochrome c; protein damage is expected to be marginal, the consequence of formation of amino acid radicals on iron(III)cytochrome c.
Collapse
Affiliation(s)
- Anastasia S Domazou
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Zurich CH-8093, Switzerland.
| | - Lidia Gebicka
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, 93-590 Lodz, Poland
| | - Joanna Didik
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, 93-590 Lodz, Poland
| | - Jerzy L Gebicki
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, 93-590 Lodz, Poland
| | - Benjamin van der Meijden
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Zurich CH-8093, Switzerland
| | - Willem H Koppenol
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Zurich CH-8093, Switzerland
| |
Collapse
|
36
|
Augspurger AE, Stender AS, Han R, Fang N. Detecting Plasmon Resonance Energy Transfer with Differential Interference Contrast Microscopy. Anal Chem 2014; 86:1196-201. [DOI: 10.1021/ac403347e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ashley E. Augspurger
- Department of Chemistry, Iowa State University & The Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
| | - Anthony S. Stender
- Department of Chemistry, Iowa State University & The Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
| | - Rui Han
- Department of Chemistry, Iowa State University & The Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
| | - Ning Fang
- Department of Chemistry, Iowa State University & The Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
| |
Collapse
|
37
|
Abstract
SIGNIFICANCE The intrinsic apoptosis pathway is conserved from worms to humans and plays a critical role in the normal development and homeostatic control of adult tissues. As a result, numerous diseases from cancer to neurodegeneration are associated with either too little or too much apoptosis. RECENT ADVANCES B cell lymphoma-2 (BCL-2) family members regulate cell death, primarily via their effects on mitochondria. In stressed cells, proapoptotic BCL-2 family members promote mitochondrial outer membrane permeabilization (MOMP) and cytochrome c (cyt c) release into the cytoplasm, where it stimulates formation of the "apoptosome." This large, multimeric complex is composed of the adapter protein, apoptotic protease-activating factor-1, and the cysteine protease, caspase-9. Recent studies suggest that proteins involved in the processes leading up to (and including) formation of the apoptosome are subject to various forms of post-translational modification, including proteolysis, phosphorylation, and in some cases, direct oxidative modification. CRITICAL ISSUES Despite intense investigation of the intrinsic pathway, significant questions remain regarding how cyt c is released from mitochondria, how the apoptosome is formed and regulated, and how caspase-9 is activated within the complex. FUTURE DIRECTIONS Further studies on the biochemistry of MOMP and apoptosome formation are needed to understand the mechanisms that underpin these critical processes, and novel animal models will be necessary in the future to ascertain the importance of the many posttranslational modifications reported for BCL-2 family members and components of the apoptosome.
Collapse
Affiliation(s)
- Chu-Chiao Wu
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| | | |
Collapse
|
38
|
Barros S, Mencia N, Rodríguez L, Oleaga C, Santos C, Noé V, Ciudad CJ. The redox state of cytochrome c modulates resistance to methotrexate in human MCF7 breast cancer cells. PLoS One 2013; 8:e63276. [PMID: 23675469 PMCID: PMC3652835 DOI: 10.1371/journal.pone.0063276] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 04/01/2013] [Indexed: 11/19/2022] Open
Abstract
Background Methotrexate is a chemotherapeutic agent used to treat a variety of cancers. However, the occurrence of resistance limits its effectiveness. Cytochrome c in its reduced state is less capable of triggering the apoptotic cascade. Thus, we set up to study the relationship among redox state of cytochrome c, apoptosis and the development of resistance to methotrexate in MCF7 human breast cancer cells. Results Cell incubation with cytochrome c-reducing agents, such as tetramethylphenylenediamine, ascorbate or reduced glutathione, decreased the mortality and apoptosis triggered by methotrexate. Conversely, depletion of glutathione increased the apoptotic action of methotrexate, showing an involvement of cytochrome c redox state in methotrexate-induced apoptosis. Methotrexate-resistant MCF7 cells showed increased levels of endogenous reduced glutathione and a higher capability to reduce exogenous cytochrome c. Using functional genomics we detected the overexpression of GSTM1 and GSTM4 in methotrexate-resistant MCF7 breast cancer cells, and determined that methotrexate was susceptible of glutathionylation by GSTs. The inhibition of these GSTM isoforms caused an increase in methotrexate cytotoxicity in sensitive and resistant cells. Conclusions We conclude that overexpression of specific GSTMs, GSTM1 and GSTM4, together with increased endogenous reduced glutathione levels help to maintain a more reduced state of cytochrome c which, in turn, would decrease apoptosis, thus contributing to methotrexate resistance in human MCF7 breast cancer cells.
Collapse
Affiliation(s)
- Susana Barros
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, Barcelona, Spain
- Department of Biology, CESAM, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Núria Mencia
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Laura Rodríguez
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Carlota Oleaga
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Conceição Santos
- Department of Biology, CESAM, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Verónique Noé
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Carlos J. Ciudad
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
39
|
Conformational change and human cytochrome c function: mutation of residue 41 modulates caspase activation and destabilizes Met-80 coordination. J Biol Inorg Chem 2013; 18:289-97. [PMID: 23334161 DOI: 10.1007/s00775-012-0973-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 12/26/2012] [Indexed: 01/22/2023]
Abstract
Cytochrome c is a highly conserved protein, with 20 residues identical in all eukaryotic cytochromes c. Gly-41 is one of these invariant residues, and is the position of the only reported naturally occurring mutation in cytochrome c (human G41S). The basis, if any, for the conservation of Gly-41 is unknown. The mutation of Gly-41 to Ser enhances the apoptotic activity of cytochrome c without altering its role in mitochondrial electron transport. Here we have studied additional residue 41 variants and determined their effects on cytochrome c functions and conformation. A G41T mutation decreased the ability of cytochrome c to induce caspase activation and decreased the redox potential, whereas a G41A mutation had no impact on caspase induction but the redox potential increased. All residue 41 variants decreased the pK (a) of a structural transition of oxidized cytochrome c to the alkaline conformation, and this correlated with a destabilization of the interaction of Met-80 with the heme iron(III) at physiological pH. In reduced cytochrome c the G41T and G41S mutations had distinct effects on a network of hydrogen bonds involving Met-80, and in G41T the conformational mobility of two Ω-loops was altered. These results suggest the impact of residue 41 on the conformation of cytochrome c influences its ability to act in both of its physiological roles, electron transport and caspase activation.
Collapse
|
40
|
Sakata Y, Abajian M, Ripple MO, Springett R. Measurement of the oxidation state of mitochondrial cytochrome c from the neocortex of the mammalian brain. BIOMEDICAL OPTICS EXPRESS 2012; 3:1933-46. [PMID: 22876356 PMCID: PMC3409711 DOI: 10.1364/boe.3.001933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/19/2012] [Accepted: 07/21/2012] [Indexed: 05/02/2023]
Abstract
Diffuse optical remission spectra from the mammalian neocortex at visible wavelengths contain spectral features originating from the mitochondria. A new algorithm is presented, based on analytically relating the first differential of the attenuation spectrum to the first differential of the chromophore spectra, that can separate and calculate the oxidation state of cytochrome c as well as the absolute concentration and saturation of hemoglobin. The algorithm is validated in phantoms and then tested on the neocortex of the rat during an anoxic challenge. Implementation of the algorithm will provide detailed information of mitochondrial oxygenation and mitochondrial function in physiological studies of the mammalian brain.
Collapse
|
41
|
Thomas SN, Waters KM, Morgan WF, Yang AJ, Baulch JE. Quantitative proteomic analysis of mitochondrial proteins reveals prosurvival mechanisms in the perpetuation of radiation-induced genomic instability. Free Radic Biol Med 2012; 53:618-28. [PMID: 22569412 PMCID: PMC4708885 DOI: 10.1016/j.freeradbiomed.2012.03.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Revised: 03/05/2012] [Accepted: 03/27/2012] [Indexed: 11/26/2022]
Abstract
Radiation-induced genomic instability is a well-studied phenomenon that is measured as mitotically heritable genetic alterations observed in the progeny of an irradiated cell. The mechanisms that perpetuate this instability are unclear; however, a role for chronic oxidative stress has consistently been demonstrated. In the chromosomally unstable LS12 cell line, oxidative stress and genomic instability were correlated with mitochondrial dysfunction. To clarify this mitochondrial dysfunction and gain insight into the mechanisms underlying radiation-induced genomic instability we have evaluated the mitochondrial subproteome and performed quantitative mass spectrometry analysis of LS12 cells. Of 98 quantified mitochondrial proteins, 17 met criteria for fold changes and reproducibility; and 11 were statistically significant in comparison with the stable parental GM10115 cell line. Previous observations implicated defects in the electron transport chain (ETC) in the LS12 cell mitochondrial dysfunction. Proteomic analysis supports these observations, demonstrating significantly reduced levels of mitochondrial cytochrome c, the intermediary between complexes III and IV of the ETC. Results also suggest that LS12 cells compensate for ETC dysfunction and oxidative stress through increased levels of tricarboxylic acid cycle enzymes and upregulation of proteins that protect against oxidative stress and apoptosis. More than one cellular defect is likely to contribute to the genomic instability phenotype, and evaluation of gene and microRNA expression suggests that epigenetics play a role in the phenotype. These data suggest that LS12 cells have adapted mechanisms that allow survival under suboptimal conditions of oxidative stress and compromised mitochondrial function to perpetuate genomic instability.
Collapse
Affiliation(s)
- Stefani N. Thomas
- Radiation Oncology Research Laboratory, Department of Radiation Oncology, University of Maryland, Baltimore, Baltimore, MD 21201, USA
- The Greenebaum Cancer Center, University of Maryland, Baltimore, Baltimore, MD 21201, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Katrina M. Waters
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - William F. Morgan
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Austin J. Yang
- The Greenebaum Cancer Center, University of Maryland, Baltimore, Baltimore, MD 21201, USA
- Department of Anatomy and Neurobiology, University of Maryland, Baltimore, MD 21201, USA
| | - Janet E. Baulch
- Radiation Oncology Research Laboratory, Department of Radiation Oncology, University of Maryland, Baltimore, Baltimore, MD 21201, USA
| |
Collapse
|
42
|
Kulikov AV, Shilov ES, Mufazalov IA, Gogvadze V, Nedospasov SA, Zhivotovsky B. Cytochrome c: the Achilles' heel in apoptosis. Cell Mol Life Sci 2012; 69:1787-97. [PMID: 22179840 PMCID: PMC11114681 DOI: 10.1007/s00018-011-0895-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 10/30/2011] [Accepted: 11/22/2011] [Indexed: 10/14/2022]
Abstract
Cytochrome c is a well-known mitochondrial protein that fulfills life-supporting functions by transferring electrons to the respiratory chain to maintain ATP production. However, during the activation of apoptotic machinery, it is released from mitochondria and, being in the cytosol, it either triggers the activation of the caspase cascade in intrinsic apoptotic pathway, or it is involved in the amplification of extrinsic apoptotic signaling. Accumulating evidence suggests that only unmodified holocytochrome c is efficient in the stimulation of apoptosis. Considering the importance of cytochrome c in both life and death, it was of significant interest to investigate the complete or partial cytochrome c deficiency in vivo. Here, we discuss the importance of distinct amino acid residues for various functions of cytochrome c in cells and mice with targeted cytochrome c mutations.
Collapse
Affiliation(s)
- A V Kulikov
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
43
|
Kim N, Ripple MO, Springett R. Measurement of the mitochondrial membrane potential and pH gradient from the redox poise of the hemes of the bc1 complex. Biophys J 2012; 102:1194-203. [PMID: 22404942 DOI: 10.1016/j.bpj.2012.02.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 01/22/2012] [Accepted: 02/02/2012] [Indexed: 11/18/2022] Open
Abstract
The redox potentials of the hemes of the mitochondrial bc(1) complex are dependent on the proton-motive force due to the energy transduction. This allows the membrane potential and pH gradient components to be calculated from the oxidation state of the hemes measured with multi-wavelength cell spectroscopy. Oxidation states were measured in living RAW 264.7 cells under varying electron flux and membrane potential obtained by a combination of oligomycin and titration with a proton ionophore. A stochastic model of bc(1) turnover was used to confirm that the membrane potential and redox potential of the ubiquinone pool could be measured from the redox poise of the b-hemes under physiological conditions assuming the redox couples are in equilibrium. The pH gradient was then calculated from the difference in redox potentials of cytochrome c and ubiquinone pool using the stochastic model to evaluate the ΔG of the bc(1) complex. The technique allows absolute quantification of the membrane potential, pH gradient, and proton-motive force without the need for genetic manipulation or exogenous compounds.
Collapse
Affiliation(s)
- N Kim
- Department of Radiology, Dartmouth Medical School, Hanover, New Hampshire, USA
| | | | | |
Collapse
|
44
|
Lemeshko VV. Redox state-dependent aggregation of mitochondria induced by cytochrome c. Mol Cell Biochem 2011; 360:111-9. [PMID: 21904946 DOI: 10.1007/s11010-011-1049-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 08/27/2011] [Indexed: 11/27/2022]
Abstract
Cytochrome c is known to play central role in apoptosis. Here, it is shown that ferricytochrome c, but not ferrocytochrome c is able to directly induce the aggregation of rat liver mitochondria, similar to the effect caused by magnesium ions at high concentrations. The aggregation was revealed by a decrease in light dispersion of mitochondrial suspension and it was confirmed by the optical microscopy. In the medium containing NADH and cytochrome c, mitochondrial aggregation was initiated only after exhaustion of NADH leading to oxidation of cytochrome c. The aggregation induced by 30 μM ferricytochrome c, but not by 5 mM MgCl(2), was completely inhibited by 30-100 μM ferricyanide, thus indicating that ferricyanide-cytochrome c specific interaction prevents mitochondrial aggregation. After completion of the aggregation caused by ferricytochrome c, this effect cannot be readily reversed by subsequent reduction of cytochrome c. The aggregation induced by ferricytochrome c and/or magnesium ions explains masking of the external NADH-oxidase activity of mitochondria in vitro reported in the literature. This new cytochrome c redox state-dependent phenomenon might also be involved in more complex mechanisms controlling aggregation (clustering) of mitochondria in vivo under the influence of pro-apoptotic factors and requires further study.
Collapse
Affiliation(s)
- Victor V Lemeshko
- Escuela de Física, Facultad de Ciencias, Universidad Nacional de Colombia, Medellín, Colombia.
| |
Collapse
|
45
|
The multiple functions of cytochrome c and their regulation in life and death decisions of the mammalian cell: From respiration to apoptosis. Mitochondrion 2011; 11:369-81. [PMID: 21296189 DOI: 10.1016/j.mito.2011.01.010] [Citation(s) in RCA: 388] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 01/26/2011] [Accepted: 01/28/2011] [Indexed: 02/06/2023]
Abstract
Cytochrome c (Cytc) is essential in mitochondrial electron transport and intrinsic type II apoptosis. Mammalian Cytc also scavenges reactive oxygen species (ROS) under healthy conditions, produces ROS with the co-factor p66(Shc), and oxidizes cardiolipin during apoptosis. The recent finding that Cytc is phosphorylated in vivo underpins a model for the pivotal role of Cytc regulation in making life and death decisions. An apoptotic sequence of events is proposed involving changes in Cytc phosphorylation, increased ROS via increased mitochondrial membrane potentials or the p66(Shc) pathway, and oxidation of cardiolipin by Cytc followed by its release from the mitochondria. Cytc regulation in respiration and cell death is discussed in a human disease context including neurodegenerative and cardiovascular diseases, cancer, and sepsis.
Collapse
|
46
|
Liptak MD, Fagerlund RD, Ledgerwood EC, Wilbanks SM, Bren KL. The proapoptotic G41S mutation to human cytochrome c alters the heme electronic structure and increases the electron self-exchange rate. J Am Chem Soc 2010; 133:1153-5. [PMID: 21192676 DOI: 10.1021/ja106328k] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The naturally occurring G41S mutation to human (Hs) cytochrome (cyt) c enhances apoptotic activity based upon previous in vitro and in vivo studies, but the molecular mechanism underlying this enhancement remains unknown. Here, X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and density functional theory (DFT) calculations have been used to identify the structural and electronic differences between wild-type (WT) and G41S Hs cyt c. S41 is part of the hydrogen bonding network for propionate 7 of heme pyrrole ring A in the X-ray structure of G41S Hs cyt c and, compared to WT, G41S Hs cyt c has increased spin density on pyrrole ring C and a faster electron self-exchange rate. DFT calculations illustrate an electronic mechanism where structural changes near ring A can result in electronic changes at ring C. Since ring C is part of the solvent-exposed protein surface, we propose that this heme electronic structure change may ultimately be responsible for the enhanced proapoptotic activity of G41S Hs cyt c.
Collapse
Affiliation(s)
- Matthew D Liptak
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | | | | | | | | |
Collapse
|
47
|
Gorgoglione V, Palmitessa V, Lofrumento DD, La Piana G, Abbrescia DI, Marzulli D, Lofrumento NE. Ceramide-induced activation of cytosolic NADH/cytochrome c electron transport pathway: An additional source of energy for apoptosis. Arch Biochem Biophys 2010; 504:210-20. [PMID: 20850412 DOI: 10.1016/j.abb.2010.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 09/10/2010] [Accepted: 09/10/2010] [Indexed: 11/26/2022]
Abstract
We have investigated whether increase in the oxidation rate of exogenous cytochrome c (cyto-c), induced by long-chain ceramides, might be due to an increased rate of cytosolic NADH/cyto-c electron transport pathway. This process was identified in isolated liver mitochondria and has been studied in our laboratory for many years. Data from highly specific test of sulfite oxidase prove that exogenous cyto-c both in the absence and presence of ceramide cannot permeate through the mitochondrial outer membrane. However, the oxidation of added NADH, mediated by exogenous cyto-c and coupled to the generation of a membrane potential supporting the ATP synthesis, can also be stimulated by ceramide. The results obtained suggest that ceramide molecules, by increasing mitochondrial permeability, with the generation of either raft-like platforms or channels, may have a dual function. They can promote the release of endogenous cyto-c and activate, with an energy conserving process, the oxidation of cytosolic NADH either inducing the formation of new respiratory contact sites or increasing the frequency of the pre-existing porin contact sites. In agreement with the data in the literature, an increase of mitochondrial ceramide molecules level may represent an efficient strategy to activate and support the correct execution of apoptotic program.
Collapse
|