1
|
Abstract
Cardiovascular disease is the leading cause of death worldwide, and it commonly results from atherosclerotic plaque progression. One of the increasingly recognized drivers of atherosclerosis is dysfunctional efferocytosis, a homeostatic mechanism responsible for the clearance of dead cells and the resolution of inflammation. In atherosclerosis, the capacity of phagocytes to participate in efferocytosis is hampered, leading to the accumulation of apoptotic and necrotic tissue within the plaque, which results in enlargement of the necrotic core, increased luminal stenosis and plaque inflammation, and predisposition to plaque rupture or erosion. In this Review, we describe the different forms of programmed cell death that can occur in the atherosclerotic plaque and highlight the efferocytic machinery that is normally implicated in cardiovascular physiology. We then discuss the mechanisms by which efferocytosis fails in atherosclerosis and other cardiovascular and cardiometabolic diseases, including myocardial infarction and diabetes mellitus, and discuss therapeutic approaches that might reverse this pathological process.
Collapse
Affiliation(s)
- Shaunak S Adkar
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Nicholas J Leeper
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cardiovascular Institute, Stanford, CA, USA.
| |
Collapse
|
2
|
Sheng Y, Hu W, Chen S, Zhu X. Efferocytosis by macrophages in physiological and pathological conditions: regulatory pathways and molecular mechanisms. Front Immunol 2024; 15:1275203. [PMID: 38779685 PMCID: PMC11109379 DOI: 10.3389/fimmu.2024.1275203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Efferocytosis is defined as the highly effective phagocytic removal of apoptotic cells (ACs) by professional or non-professional phagocytes. Tissue-resident professional phagocytes ("efferocytes"), such as macrophages, have high phagocytic capacity and are crucial to resolve inflammation and aid in homeostasis. Recently, numerous exciting discoveries have revealed divergent (and even diametrically opposite) findings regarding metabolic immune reprogramming associated with efferocytosis by macrophages. In this review, we highlight the key metabolites involved in the three phases of efferocytosis and immune reprogramming of macrophages under physiological and pathological conditions. The next decade is expected to yield further breakthroughs in the regulatory pathways and molecular mechanisms connecting immunological outcomes to metabolic cues as well as avenues for "personalized" therapeutic intervention.
Collapse
Affiliation(s)
- Yan−Ran Sheng
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Wen−Ting Hu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Siman Chen
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Xiao−Yong Zhu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Makuch M, Stepanechko M, Bzowska M. The dance of macrophage death: the interplay between the inevitable and the microenvironment. Front Immunol 2024; 15:1330461. [PMID: 38576612 PMCID: PMC10993711 DOI: 10.3389/fimmu.2024.1330461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/26/2024] [Indexed: 04/06/2024] Open
Abstract
Macrophages are highly plastic cells ubiquitous in various tissues, where they perform diverse functions. They participate in the response to pathogen invasion and inflammation resolution following the immune response, as well as the maintenance of homeostasis and proper tissue functions. Macrophages are generally considered long-lived cells with relatively strong resistance to numerous cytotoxic factors. On the other hand, their death seems to be one of the principal mechanisms by which macrophages perform their physiological functions or can contribute to the development of certain diseases. In this review, we scrutinize three distinct pro-inflammatory programmed cell death pathways - pyroptosis, necroptosis, and ferroptosis - occurring in macrophages under specific circumstances, and explain how these cells appear to undergo dynamic yet not always final changes before ultimately dying. We achieve that by examining the interconnectivity of these cell death types, which in macrophages seem to create a coordinated and flexible system responding to the microenvironment. Finally, we discuss the complexity and consequences of pyroptotic, necroptotic, and ferroptotic pathway induction in macrophages under two pathological conditions - atherosclerosis and cancer. We summarize damage-associated molecular patterns (DAMPs) along with other microenvironmental factors, macrophage polarization states, associated mechanisms as well as general outcomes, as such a comprehensive look at these correlations may point out the proper methodologies and potential therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Małgorzata Bzowska
- Department of Immunology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
4
|
Wang X, Du W, Li Y, Yang HH, Zhang Y, Akbar R, Morgan H, Peng T, Chen J, Sadayappan S, Hu YC, Fan Y, Huang W, Fan GC. Macrophage-enriched Sectm1a promotes efficient efferocytosis to attenuate ischemia/reperfusion-induced cardiac injury. JCI Insight 2024; 9:e173832. [PMID: 38456501 PMCID: PMC10972593 DOI: 10.1172/jci.insight.173832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/23/2024] [Indexed: 03/09/2024] Open
Abstract
Efficient clearance and degradation of apoptotic cardiomyocytes by macrophages (collectively termed efferocytosis) is critical for inflammation resolution and restoration of cardiac function after myocardial ischemia/reperfusion (I/R). Here, we define secreted and transmembrane protein 1a (Sectm1a), a cardiac macrophage-enriched gene, as a modulator of macrophage efferocytosis in I/R-injured hearts. Upon myocardial I/R, Sectm1a-KO mice exhibited impaired macrophage efferocytosis, leading to massive accumulation of apoptotic cardiomyocytes, cardiac inflammation, fibrosis, and consequently, exaggerated cardiac dysfunction. By contrast, therapeutic administration of recombinant SECTM1A protein significantly enhanced macrophage efferocytosis and improved cardiac function. Mechanistically, SECTM1A could elicit autocrine effects on the activation of glucocorticoid-induced TNF receptor (GITR) at the surface of macrophages, leading to the upregulation of liver X receptor α (LXRα) and its downstream efferocytosis-related genes and lysosomal enzyme genes. Our study suggests that Sectm1a-mediated activation of the Gitr/LXRα axis could be a promising approach to enhance macrophage efferocytosis for the treatment of myocardial I/R injury.
Collapse
Affiliation(s)
| | - Wa Du
- Department of Cancer Biology, and
| | - Yutian Li
- Department of Pharmacology and Systems Physiology
| | - Hui-Hui Yang
- Department of Pharmacology and Systems Physiology
| | - Yu Zhang
- Department of Pharmacology and Systems Physiology
| | - Rubab Akbar
- Department of Pharmacology and Systems Physiology
| | - Hannah Morgan
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Tianqing Peng
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada
| | - Jing Chen
- Division of Biomedical Informatics and
| | - Sakthivel Sadayappan
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Yueh-Chiang Hu
- Transgenic Animal and Genome Editing Facility, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | | | - Wei Huang
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | |
Collapse
|
5
|
Liu X, Pang S, Jiang Y, Wang L, Liu Y. The Role of Macrophages in Atherosclerosis: Participants and Therapists. Cardiovasc Drugs Ther 2023:10.1007/s10557-023-07513-5. [PMID: 37864633 DOI: 10.1007/s10557-023-07513-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2023] [Indexed: 10/23/2023]
Abstract
Currently, atherosclerosis, characterized by the dysfunction of lipid metabolism and chronic inflammation in the intimal space of the vessel, is considered to be a metabolic disease. As the most abundant innate immune cells in the body, macrophages play a key role in the onset, progression, or regression of atherosclerosis. For example, macrophages exhibit several polarization states in response to microenvironmental stimuli; an increasing proportion of macrophages, polarized toward M2, can suppress inflammation, scavenge cell debris and apoptotic cells, and contribute to tissue repair and fibrosis. Additionally, specific exosomes, generated by macrophages containing certain miRNAs and effective efferocytosis of macrophages, are crucial for atherosclerosis. Therefore, macrophages have emerged as a novel potential target for anti-atherosclerosis therapy. This article reviews the role of macrophages in atherosclerosis from different aspects: origin, phenotype, exosomes, and efferocytosis, and discusses new approaches for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Xiaoyu Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shuchao Pang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Yangyang Jiang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Lixin Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yi Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
6
|
Aktar A, Heit B. Role of the pioneer transcription factor GATA2 in health and disease. J Mol Med (Berl) 2023; 101:1191-1208. [PMID: 37624387 DOI: 10.1007/s00109-023-02359-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
The transcription factor GATA2 is involved in human diseases ranging from hematopoietic disorders, to cancer, to infectious diseases. GATA2 is one of six GATA-family transcription factors that act as pioneering transcription factors which facilitate the opening of heterochromatin and the subsequent binding of other transcription factors to induce gene expression from previously inaccessible regions of the genome. Although GATA2 is essential for hematopoiesis and lymphangiogenesis, it is also expressed in other tissues such as the lung, prostate gland, gastrointestinal tract, central nervous system, placenta, fetal liver, and fetal heart. Gene or transcriptional abnormalities of GATA2 causes or predisposes patients to several diseases including the hematological cancers acute myeloid leukemia and acute lymphoblastic leukemia, the primary immunodeficiency MonoMAC syndrome, and to cancers of the lung, prostate, uterus, kidney, breast, gastric tract, and ovaries. Recent data has also linked GATA2 expression and mutations to responses to infectious diseases including SARS-CoV-2 and Pneumocystis carinii pneumonia, and to inflammatory disorders such as atherosclerosis. In this article we review the role of GATA2 in the etiology and progression of these various diseases.
Collapse
Affiliation(s)
- Amena Aktar
- Department of Microbiology and Immunology; the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Bryan Heit
- Department of Microbiology and Immunology; the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, ON, N6A 5C1, Canada.
- Robarts Research Institute, London, ON, N6A 3K7, Canada.
| |
Collapse
|
7
|
Han Z, Hu H, Yin M, Lin Y, Yan Y, Han P, Liu B, Jing B. HOXA1 participates in VSMC-to-macrophage-like cell transformation via regulation of NF-κB p65 and KLF4: a potential mechanism of atherosclerosis pathogenesis. Mol Med 2023; 29:104. [PMID: 37528397 PMCID: PMC10394793 DOI: 10.1186/s10020-023-00685-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/12/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Macrophage-like transformation of vascular smooth muscle cells (VSMCs) is a risk factor of atherosclerosis (AS) progression. Transcription factor homeobox A1 (HOXA1) plays functional roles in differentiation and development. This study aims to explore the role of HOXA1 in VSMC transformation, thereby providing evidence for the potential mechanism of AS pathogenesis. METHODS High fat diet (HFD)-fed apolipoprotein E knockout (ApoE-/-) mice were applied as an in vivo model to imitate AS, while 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POV-PC)-treated VSMCs were applied as an in vitro model. Recombinant adeno-associated-virus-1 (AAV-1) vectors that express short-hairpin RNAs targeting HOXA1, herein referred as AAV1-shHOXA1, were generated for the loss-of-function experiments throughout the study. RESULTS In the aortic root of AS mice, lipid deposition was severer and HOXA1 expression was higher than the wide-type mice fed with normal diet or HFD. Silencing of HOXA1 inhibited the AS-induced weight gain, inflammatory response, serum and liver lipid metabolism disorder and atherosclerotic plaque formation. Besides, lesions from AS mice with HOXA1 knockdown showed less trans-differentiation of VSMCs to macrophage-like cells, along with a suppression of krüppel-like factor 4 (KLF4) and nuclear factor (NF)-κB RelA (p65) expression. In vitro experiments consistently confirmed that HOXA1 knockdown suppressed lipid accumulation, VSMC-to-macrophage phenotypic switch and inflammation in POV-PC-treated VSMCs. Mechanism investigations further illustrated that HOXA1 transcriptionally activated RelA and KLF4 to participate in the pathological manifestations of VSMCs. CONCLUSIONS HOXA1 participates in AS progression by regulating VSMCs plasticity via regulation of NF-κB p65 and KLF4. HOXA1 has the potential to be a biomarker or therapeutic target for AS.
Collapse
Affiliation(s)
- Zhiyang Han
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Harbin, 150001, Heilongjiang, China
| | - Haidi Hu
- Department of General and Vascular Surgery, Shengjing Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - MingZhu Yin
- Department of Dermatology, Xiangya Hospital Central South University, Changsha, 410008, Hunan, China
- Human Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Yu Lin
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Harbin, 150001, Heilongjiang, China
| | - Yan Yan
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Harbin, 150001, Heilongjiang, China
| | - Peng Han
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Harbin, 150001, Heilongjiang, China
| | - Bing Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Harbin, 150001, Heilongjiang, China
| | - Bao Jing
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
8
|
Gao L, He Z, Wu Y. Advances in Anti-metabolic Disease Treatments Targeting CD47. Curr Pharm Des 2022; 28:3720-3728. [PMID: 36201266 DOI: 10.2174/1381612828666221006123144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 01/28/2023]
Abstract
Metabolic disorders include a cluster of conditions that result from hyperglycemia, hyperlipidemia, insulin resistance, obesity, and hepatic steatosis, which cause the dysfunction of immune cells and innate cells, such as macrophages, natural killer cells, vascular endothelial cells, hepatocytes, and human kidney tubular epithelial cells. Besides targeting the derangements in lipid metabolism, therapeutic modulations to regulate abnormal responses in the immune system and innate cell dysfunctions may prove to be promising strategies in the management of metabolic diseases. In recent years, several targets have been explored for the CD47 molecule (CD47), a glycosylated protein, which was originally reported to transmit an anti-phagocytic signal known as "don't eat me" in the atherosclerotic environment, hindering the efferocytosis of immune cells and promoting arterial plaque accumulation. Subsequently, the role of CD47 has been explored in obesity, fatty liver, and lipotoxic nephropathy, and its utility as a therapeutic target has been investigated using anti-CD47 antibodies or inhibitors of the THBS1/CD47 axis and the CD47/SIRPα signaling pathway. This review summarizes the mechanisms of action of CD47 in different cell types during metabolic diseases and the clinical research progress to date, providing a reference for the comprehensive targeting of CD47 to treat metabolic diseases and the devising of potential improvements to possible side effects.
Collapse
Affiliation(s)
- Li Gao
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Center for Scientific Research of Anhui Medical University, Hefei 230022, China
| | - Zhe He
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yonggui Wu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Center for Scientific Research of Anhui Medical University, Hefei 230022, China
| |
Collapse
|
9
|
Singh B, Li K, Cui K, Peng Q, Cowan DB, Wang DZ, Chen K, Chen H. Defective efferocytosis of vascular cells in heart disease. Front Cardiovasc Med 2022; 9:1031293. [PMID: 36247464 PMCID: PMC9561431 DOI: 10.3389/fcvm.2022.1031293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
The efficient phagocytic clearance of dying cells and apoptotic cells is one of the processes that is essential for the maintenance of physiologic tissue function and homeostasis, which is termed "efferocytosis." Under normal conditions, "find me" and "eat me" signals are released by apoptotic cells to stimulate the engulfment and efferocytosis of apoptotic cells. In contrast, abnormal efferocytosis is related to chronic and non-resolving inflammatory diseases such as atherosclerosis. In the initial steps of atherosclerotic lesion development, monocyte-derived macrophages display efficient efferocytosis that restricts plaque progression; however, this capacity is reduced in more advanced lesions. Macrophage reprogramming as a result of the accumulation of apoptotic cells and augmented inflammation accounts for this diminishment of efferocytosis. Furthermore, defective efferocytosis plays an important role in necrotic core formation, which triggers plaque rupture and acute thrombotic cardiovascular events. Recent publications have focused on the essential role of macrophage efferocytosis in cardiac pathophysiology and have pointed toward new therapeutic strategies to modulate macrophage efferocytosis for cardiac tissue repair. In this review, we discuss the molecular and cellular mechanisms that regulate efferocytosis in vascular cells, including macrophages and other phagocytic cells and detail how efferocytosis-related molecules contribute to the maintenance of vascular hemostasis and how defective efferocytosis leads to the formation and progression of atherosclerotic plaques.
Collapse
Affiliation(s)
- Bandana Singh
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Kathryn Li
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Kui Cui
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Qianman Peng
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Douglas B. Cowan
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Da-Zhi Wang
- Center for Regenerative Medicine, University of South Florida Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Kaifu Chen
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA, United States
| | - Hong Chen
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
10
|
Zaccagnini G, Greco S, Voellenkle C, Gaetano C, Martelli F. miR-210 hypoxamiR in Angiogenesis and Diabetes. Antioxid Redox Signal 2022; 36:685-706. [PMID: 34521246 DOI: 10.1089/ars.2021.0200] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: microRNA-210 (miR-210) is the master hypoxia-inducible miRNA (hypoxamiR) since it has been found to be significantly upregulated under hypoxia in a wide range of cell types. Recent advances: Gene ontology analysis of its targets indicates that miR-210 modulates several aspects of cellular response to hypoxia. Due to its high pleiotropy, miR-210 not only plays a protective role by fine-tuning mitochondrial metabolism and inhibiting red-ox imbalance and apoptosis, but it can also promote cell proliferation, differentiation, and migration, substantially contributing to angiogenesis. Critical issues: As most miRNAs, modulating different gene pathways, also miR-210 can potentially lead to different and even opposite effects, depending on the physio-pathological contexts in which it acts. Future direction: The use of miRNAs as therapeutics is a fast growing field. This review aimed at highlighting the role of miR-210 in angiogenesis in the context of ischemic cardiovascular diseases and diabetes in order to clarify the molecular mechanisms underpinning miR-210 action. Particular attention will be dedicated to experimentally validated miR-210 direct targets involved in cellular processes related to angiogenesis and diabetes mellitus, such as mitochondrial metabolism, redox balance, apoptosis, migration, and adhesion. Antioxid. Redox Signal. 36, 685-706.
Collapse
Affiliation(s)
- Germana Zaccagnini
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Simona Greco
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Christine Voellenkle
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Carlo Gaetano
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| |
Collapse
|
11
|
Different types of cell death in vascular diseases. Mol Biol Rep 2021; 48:4687-4702. [PMID: 34013393 DOI: 10.1007/s11033-021-06402-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/08/2021] [Indexed: 10/21/2022]
Abstract
In a mature organism, tissue homeostasis is regulated by cell division and cell demise as the two major physiological procedures. There is increasing evidence that deregulation of these processes is important in the pathogenicity of main diseases, including myocardial infarction, stroke, atherosclerosis, and inflammatory diseases. Therefore, there are ongoing efforts to discover modulating factors of the cell cycle and cell demise planners aiming at shaping innovative therapeutically modalities to the therapy of such diseases. Although the life of a cell is terminated by several modes of action, a few cell deaths exist-some of which resemble apoptosis and/or necrosis, and most of them are different from one another-that contribute to a wide range of functions to either support or disrupt the homoeostasis. Even in normal physiological conditions, cell life is severe within the cardiovascular system. Cells are persistently undergoing stretch, contraction, injurious metabolic byproducts, and hemodynamic forces, and a few of cells sustain decade-long lifetimes. The duration of vascular disease causes further exposure of vascular cells to a novel range of offences, most of which induce cell death. There is growing evidence on consequences of direct damage to a cell, as well as on responses of adjacent and infiltrating cells, which also have an effect on the pathology. In this study, by focusing on different pathways of cell death in different vascular diseases, an attempt is made to open a new perspective on the therapeutic goals associated with cell death in these diseases.
Collapse
|
12
|
Zheng DJ, Abou Taka M, Heit B. Role of Apoptotic Cell Clearance in Pneumonia and Inflammatory Lung Disease. Pathogens 2021; 10:134. [PMID: 33572846 PMCID: PMC7912081 DOI: 10.3390/pathogens10020134] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023] Open
Abstract
Pneumonia and inflammatory diseases of the pulmonary system such as chronic obstructive pulmonary disease and asthma continue to cause significant morbidity and mortality globally. While the etiology of these diseases is highly different, they share a number of similarities in the underlying inflammatory processes driving disease pathology. Multiple recent studies have identified failures in efferocytosis-the phagocytic clearance of apoptotic cells-as a common driver of inflammation and tissue destruction in these diseases. Effective efferocytosis has been shown to be important for resolving inflammatory diseases of the lung and the subsequent restoration of normal lung function, while many pneumonia-causing pathogens manipulate the efferocytic system to enhance their growth and avoid immunity. Moreover, some treatments used to manage these patients, such as inhaled corticosteroids for chronic obstructive pulmonary disease and the prevalent use of statins for cardiovascular disease, have been found to beneficially alter efferocytic activity in these patients. In this review, we provide an overview of the efferocytic process and its role in the pathophysiology and resolution of pneumonia and other inflammatory diseases of the lungs, and discuss the utility of existing and emerging therapies for modulating efferocytosis as potential treatments for these diseases.
Collapse
Affiliation(s)
- David Jiao Zheng
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, ON N0M 2N0, Canada; (D.J.Z.); (M.A.T.)
| | - Maria Abou Taka
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, ON N0M 2N0, Canada; (D.J.Z.); (M.A.T.)
| | - Bryan Heit
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, ON N0M 2N0, Canada; (D.J.Z.); (M.A.T.)
- Robarts Research Institute, London, ON N6A 5K8, Canada
| |
Collapse
|
13
|
Yin C, Vrieze AM, Rosoga M, Akingbasote J, Pawlak EN, Jacob RA, Hu J, Sharma N, Dikeakos JD, Barra L, Nagpal AD, Heit B. Efferocytic Defects in Early Atherosclerosis Are Driven by GATA2 Overexpression in Macrophages. Front Immunol 2020; 11:594136. [PMID: 33193444 PMCID: PMC7644460 DOI: 10.3389/fimmu.2020.594136] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/01/2020] [Indexed: 01/01/2023] Open
Abstract
The loss of efferocytosis-the phagocytic clearance of apoptotic cells-is an initiating event in atherosclerotic plaque formation. While the loss of macrophage efferocytosis is a prerequisite for advanced plaque formation, the transcriptional and cellular events in the pre-lesion site that drive these defects are poorly defined. Transcriptomic analysis of macrophages recovered from early-stage human atherosclerotic lesions identified a 50-fold increase in the expression of GATA2, a transcription factor whose expression is normally restricted to the hematopoietic compartment. GATA2 overexpression in vitro recapitulated many of the functional defects reported in patient macrophages, including deficits at multiple stages in the efferocytic process. These findings included defects in the uptake of apoptotic cells, efferosome maturation, and in phagolysosome function. These efferocytic defects were a product of GATA2-driven alterations in the expression of key regulatory proteins, including Src-family kinases, Rab7 and components of both the vacuolar ATPase and NADPH oxidase complexes. In summary, these data identify a mechanism by which efferocytic capacity is lost in the early stages of plaque formation, thus setting the stage for the accumulation of uncleared apoptotic cells that comprise the bulk of atherosclerotic plaques.
Collapse
Affiliation(s)
- Charles Yin
- Department of Microbiology and Immunology, and The Center for Human Immunology, The University of Western Ontario, London, ON, Canada
| | - Angela M Vrieze
- Department of Microbiology and Immunology, and The Center for Human Immunology, The University of Western Ontario, London, ON, Canada
| | - Mara Rosoga
- Department of Microbiology and Immunology, and The Center for Human Immunology, The University of Western Ontario, London, ON, Canada
| | - James Akingbasote
- Department of Microbiology and Immunology, and The Center for Human Immunology, The University of Western Ontario, London, ON, Canada
| | - Emily N Pawlak
- Department of Microbiology and Immunology, and The Center for Human Immunology, The University of Western Ontario, London, ON, Canada
| | - Rajesh Abraham Jacob
- Department of Microbiology and Immunology, and The Center for Human Immunology, The University of Western Ontario, London, ON, Canada
| | - Jonathan Hu
- Department of Microbiology and Immunology, and The Center for Human Immunology, The University of Western Ontario, London, ON, Canada
| | - Neha Sharma
- Department of Microbiology and Immunology, and The Center for Human Immunology, The University of Western Ontario, London, ON, Canada
| | - Jimmy D Dikeakos
- Department of Microbiology and Immunology, and The Center for Human Immunology, The University of Western Ontario, London, ON, Canada
| | - Lillian Barra
- Department of Microbiology and Immunology, and The Center for Human Immunology, The University of Western Ontario, London, ON, Canada.,Division of Rheumatology, Department of Medicine, The University of Western Ontario, London, ON, Canada
| | - A Dave Nagpal
- Division of Cardiac Surgery, Department of Surgery, The University of Western Ontario, London, ON, Canada.,Division of Critical Care Medicine, Department of Medicine, The University of Western Ontario, London, ON, Canada
| | - Bryan Heit
- Department of Microbiology and Immunology, and The Center for Human Immunology, The University of Western Ontario, London, ON, Canada.,Robarts Research Institute, London, ON, Canada
| |
Collapse
|
14
|
Boada-Romero E, Martinez J, Heckmann BL, Green DR. The clearance of dead cells by efferocytosis. Nat Rev Mol Cell Biol 2020; 21:398-414. [PMID: 32251387 DOI: 10.1038/s41580-020-0232-1] [Citation(s) in RCA: 407] [Impact Index Per Article: 101.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2020] [Indexed: 02/06/2023]
Abstract
Multiple modes of cell death have been identified, each with a unique function and each induced in a setting-dependent manner. As billions of cells die during mammalian embryogenesis and daily in adult organisms, clearing dead cells and associated cellular debris is important in physiology. In this Review, we present an overview of the phagocytosis of dead and dying cells, a process known as efferocytosis. Efferocytosis is performed by macrophages and to a lesser extent by other 'professional' phagocytes (such as monocytes and dendritic cells) and 'non-professional' phagocytes, such as epithelial cells. Recent discoveries have shed light on this process and how it functions to maintain tissue homeostasis, tissue repair and organismal health. Here, we outline the mechanisms of efferocytosis, from the recognition of dying cells through to phagocytic engulfment and homeostatic resolution, and highlight the pathophysiological consequences that can arise when this process is abrogated.
Collapse
Affiliation(s)
- Emilio Boada-Romero
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jennifer Martinez
- Inflammation & Autoimmunity Group, National Institute for Environmental Health Sciences, Research Triangle Park, Durham, NC, USA
| | - Bradlee L Heckmann
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
15
|
de Couto G, Jaghatspanyan E, DeBerge M, Liu W, Luther K, Wang Y, Tang J, Thorp EB, Marbán E. Mechanism of Enhanced MerTK-Dependent Macrophage Efferocytosis by Extracellular Vesicles. Arterioscler Thromb Vasc Biol 2019; 39:2082-2096. [PMID: 31434491 DOI: 10.1161/atvbaha.119.313115] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Extracellular vesicles secreted by cardiosphere-derived cells (CDCev) polarize macrophages toward a distinctive phenotype with enhanced phagocytic capacity (MCDCev). These changes underlie cardioprotection by CDCev and by the parent CDCs, notably attenuating the no-reflow phenomenon following myocardial infarction, but the mechanisms are unclear. Here, we tested the hypothesis that MCDCev are especially effective at scavenging debris from dying cells (ie, efferocytosis) to attenuate irreversible damage post-myocardial infarction. Approach and Results: In vitro efferocytosis assays with bone marrow-derived macrophages, and in vivo transgenic rodent models of myocardial infarction, demonstrate enhanced apoptotic cell clearance with MCDCev. CDCev exposure induces sustained MerTK expression in MCDCev through extracellular vesicle transfer of microRNA-26a (via suppression of Adam17); the cardioprotective response is lost in animals deficient in MerTK. Single-cell RNA-sequencing revealed phagocytic pathway activation in MCDCev, with increased expression of complement factor C1qa, a phagocytosis facilitator. CONCLUSIONS Together, these data demonstrate that extracellular vesicle modulation of MerTK and C1qa expression leads to enhanced macrophage efferocytosis and cardioprotection.
Collapse
Affiliation(s)
- Geoffrey de Couto
- From the Smidt Heart Institute (G.d.C., E.J., W.L., K.L., E.M.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Ervin Jaghatspanyan
- From the Smidt Heart Institute (G.d.C., E.J., W.L., K.L., E.M.), Cedars-Sinai Medical Center, Los Angeles, CA
| | | | - Weixin Liu
- From the Smidt Heart Institute (G.d.C., E.J., W.L., K.L., E.M.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Kristin Luther
- From the Smidt Heart Institute (G.d.C., E.J., W.L., K.L., E.M.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Yizhou Wang
- Genomics Core (Y.W., J.T.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Jie Tang
- Genomics Core (Y.W., J.T.), Cedars-Sinai Medical Center, Los Angeles, CA
| | | | - Eduardo Marbán
- From the Smidt Heart Institute (G.d.C., E.J., W.L., K.L., E.M.), Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
16
|
Long Noncoding Competing Endogenous RNA Networks in Age-Associated Cardiovascular Diseases. Int J Mol Sci 2019; 20:ijms20123079. [PMID: 31238513 PMCID: PMC6627372 DOI: 10.3390/ijms20123079] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 12/24/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the most serious health problem in the world, displaying high rates of morbidity and mortality. One of the main risk factors for CVDs is age. Indeed, several mechanisms are at play during aging, determining the functional decline of the cardiovascular system. Aging cells and tissues are characterized by diminished autophagy, causing the accumulation of damaged proteins and mitochondria, as well as by increased levels of oxidative stress, apoptosis, senescence and inflammation. These processes can induce a rapid deterioration of cellular quality-control systems. However, the molecular mechanisms of age-associated CVDs are only partially known, hampering the development of novel therapeutic strategies. Evidence has emerged indicating that noncoding RNAs (ncRNAs), such as long ncRNAs (lncRNAs) and micro RNAs (miRNAs), are implicated in most patho-physiological mechanisms. Specifically, lncRNAs can bind miRNAs and act as competing endogenous-RNAs (ceRNAs), therefore modulating the levels of the mRNAs targeted by the sponged miRNA. These complex lncRNA/miRNA/mRNA networks, by regulating autophagy, apoptosis, necrosis, senescence and inflammation, play a crucial role in the development of age-dependent CVDs. In this review, the emerging knowledge on lncRNA/miRNA/mRNA networks will be summarized and the way in which they influence age-related CVDs development will be discussed.
Collapse
|
17
|
Novikova OA, Laktionov PP, Karpenko AA. The roles of mechanotransduction, vascular wall cells, and blood cells in atheroma induction. Vascular 2018; 27:98-109. [PMID: 30157718 DOI: 10.1177/1708538118796063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND This paper describes and analyzes the cellular and molecular mechanisms underlying atherosclerosis development. In particular, the roles of monocytes/macrophages, smooth muscle cells, and vascular endothelium in the formation of stable/unstable atheromatous plaques, and the contributions of some processes to atheroma formation. METHODS AND RESULTS In this study we analyzed endothelium: function, dysfunction, and involvement into atherogenesis; cell proteins mediating mechanotransduction; proatherogenic role of monocytes; the role of macrophages in the development of unstable atheromatous plaques and smooth muscle cell origin in atherosclerosis. Smooth muscle cell phenotypic switching; their functioning; the ability to retain cholesterol and lipoproteins as well as secretion of pro- and anti-inflammatory molecules and extracellular matrix proteins, their response to extracellular stimuli secreted by other cells, and the effect of smooth muscle cells on the cells surrounding atheromatous plaques are fundamentally important for the insight into atherosclerosis molecular basis. CONCLUSION Atheromatous plaque transcriptome studies will be helpful in the identification of the key genes involved in atheroma transformation and development as well as discovery of the new targets for diagnosis and therapy.
Collapse
Affiliation(s)
- Olga A Novikova
- 1 Department of Vascular and Hybrid Surgery, National Medical Research Institute Academician E.N. Meshalkin National Medical Research Center, Ministry of Health of Russian Federation, Novosibirsk, Russian Federation
| | - Pavel P Laktionov
- 2 Laboratory of Molecular Medicine, SB RAS Institute of Chemical Biology and Fundamental Medicine; E.N. Meshalkin National Medical Research Center, Ministry of Health of Russian Federation, Novosibirsk, Russian Federation.,3 E.N. Meshalkin National Medical Research Center, Ministry of Health of Russian Federation, Novosibirsk, Russian Federation
| | - Andrey A Karpenko
- 1 Department of Vascular and Hybrid Surgery, National Medical Research Institute Academician E.N. Meshalkin National Medical Research Center, Ministry of Health of Russian Federation, Novosibirsk, Russian Federation
| |
Collapse
|
18
|
Taruc K, Yin C, Wootton DG, Heit B. Quantification of Efferocytosis by Single-cell Fluorescence Microscopy. J Vis Exp 2018. [PMID: 30176011 DOI: 10.3791/58149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Studying the regulation of efferocytosis requires methods that are able to accurately quantify the uptake of apoptotic cells and to probe the signaling and cellular processes that control efferocytosis. This quantification can be difficult to perform as apoptotic cells are often efferocytosed piecemeal, thus necessitating methods which can accurately delineate between the efferocytosed portion of an apoptotic target versus residual unengulfed cellular fragments. The approach outlined herein utilizes dual-labeling approaches to accurately quantify the dynamics of efferocytosis and efferocytic capacity of efferocytes such as macrophages. The cytosol of the apoptotic cell is labeled with a cell-tracking dye to enable monitoring of all apoptotic cell-derived materials, while surface biotinylation of the apoptotic cell allows for differentiation between internalized and non-internalized apoptotic cell fractions. The efferocytic capacity of efferocytes is determined by taking fluorescent images of live or fixed cells and quantifying the amount of bound versus internalized targets, as differentiated by streptavidin staining. This approach offers several advantages over methods such as flow cytometry, namely the accurate delineation of non-efferocytosed versus efferocytosed apoptotic cell fractions, the ability to measure efferocytic dynamics by live-cell microscopy, and the capacity to perform studies of cellular signaling in cells expressing fluorescently-labeled transgenes. Combined, the methods outlined in this protocol serve as the basis for a flexible experimental approach that can be used to accurately quantify efferocytic activity and interrogate cellular signaling pathways active during efferocytosis.
Collapse
Affiliation(s)
- Kyle Taruc
- Department of Microbiology and Immunology and the Center for Human Immunology, University of Western Ontario
| | - Charles Yin
- Department of Microbiology and Immunology and the Center for Human Immunology, University of Western Ontario
| | - Daniel G Wootton
- Institute of Infection and Global Health, University of Liverpool; Department of Respiratory Research, Aintree University Hospital NHS Foundation Trust
| | - Bryan Heit
- Department of Microbiology and Immunology and the Center for Human Immunology, University of Western Ontario;
| |
Collapse
|
19
|
Novikova OA, Laktionov PP, Karpenko AA. Mechanisms Underlying Atheroma Induction: The Roles of Mechanotransduction, Vascular Wall Cells, and Blood Cells. Ann Vasc Surg 2018; 53:224-233. [PMID: 30012457 DOI: 10.1016/j.avsg.2018.04.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/13/2018] [Accepted: 04/19/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND The objective of this article is to review cellular mechanism of atherosclerosis (AS) development. The pathogenesis of AS comprises a sequence of biological events leading to build up of a dense or loose atheromatous plaque (AP). METHODS In this review, we tried to attempt to analyze the cellular mechanisms underlying AS development, including the roles of monocytes/macrophages and smooth muscle cells in the formation of stable/unstable APs. RESULTS As a rule, APs are formed in the regions with irregular blood flow; both mechanical perturbations of the vascular wall and several biological events contribute to plaque formation. Blood lipid/lipoprotein deposition, recruitment of monocytes/macrophages, foam cell formation, migration and proliferation of smooth muscle cells, secretion of extracellular matrix, and formation of the connective tissue in plaques are among the latter events. CONCLUSIONS The review briefs the contributions of different processes to atheroma formation and describes the molecular mechanisms involved in AS development. AP transcriptome studies will be helpful in the identification of the key genes involved in atheroma transformation and development as well as discovery of the new targets for diagnosis and therapy.
Collapse
Affiliation(s)
- Olga A Novikova
- E.N. Meshalkin National Medical Research Center, Ministry of Health of Russian Federation, Novosibirsk, Russian Federation.
| | - Pavel P Laktionov
- Laboratory of Molecular Medicine, SB RAS Institute of Chemical Biology and Fundamental Medicine, E.N. Meshalkin National Medical Research Center, Ministry of Health of Russian Federation, Novosibirsk, Russian Federation
| | - Andrey A Karpenko
- E.N. Meshalkin National Medical Research Center, Ministry of Health of Russian Federation, Novosibirsk, Russian Federation
| |
Collapse
|
20
|
Tajbakhsh A, Rezaee M, Kovanen PT, Sahebkar A. Efferocytosis in atherosclerotic lesions: Malfunctioning regulatory pathways and control mechanisms. Pharmacol Ther 2018; 188:12-25. [DOI: 10.1016/j.pharmthera.2018.02.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Kim MJ, Lee YJ, Yoon YS, Kim M, Choi JH, Kim HS, Kang JL. Apoptotic cells trigger the ABCA1/STAT6 pathway leading to PPAR-γ expression and activation in macrophages. J Leukoc Biol 2018; 103:885-895. [PMID: 29603355 DOI: 10.1002/jlb.2a0817-341rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 02/06/2017] [Accepted: 02/25/2018] [Indexed: 11/12/2022] Open
Abstract
The signal transducer and activator of transcription 6 (STAT6) transcription factor activates peroxisome proliferator-activated receptor gamma (PPAR-γ)-regulated gene expression in immune cells. We investigated proximal membrane signaling that was initiated in macrophages after exposure to apoptotic cells that led to enhanced PPAR-γ expression and activity, using specific siRNAs for ABCA1, STAT6, and PPAR-γ, or their antagonists. The interactions between mouse bone marrow-derived macrophages or RAW 264.7 cells and apoptotic Jurkat cells, but not viable cells, resulted in the induction of STAT6 phosphorylation as well as PPAR-γ expression and activation. Knockdown of ATP-binding cassette transporter A1 (ABCA1) after the transfection of macrophages with ABCA1-specific siRNAs reduced apoptotic cell-induced STAT6 phosphorylation as well as PPAR-γ mRNA and protein expression. ABCA1 knockdown also reduced apoptotic cell-induced liver X receptor α (LXR-α) mRNA and protein expression. Moreover, inhibition of STAT6 with specific siRNAs or the pharmacological inhibitor AS1517499AS reversed the induction of PPAR-γ, LXR-α, and ABCA1 by apoptotic Jurkat cells. PPAR-γ-specific siRNAs or the PPAR-γ antagonist GW9662 inhibited apoptotic cell-induced increases in LXR-α and ABCA1 mRNA and protein levels. Thus, these results indicate that apoptotic cells trigger the ABCA1/STAT6 pathway, leading to the activation of the PPAR-γ/LXR-α/ABCA1 pathway in macrophages.
Collapse
Affiliation(s)
- Myeong-Joo Kim
- Department of Physiology, Ewha Womans University, Seoul, Korea
| | - Ye-Ji Lee
- Department of Physiology, Ewha Womans University, Seoul, Korea
| | - Young-So Yoon
- Department of Physiology, Ewha Womans University, Seoul, Korea
| | - Minsuk Kim
- Department of Pharmacology, Ewha Womans University, Seoul, Korea.,Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Ji Ha Choi
- Department of Pharmacology, Ewha Womans University, Seoul, Korea.,Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Hee-Sun Kim
- Department of Molecular Medicine, Ewha Womans University, Seoul, Korea.,Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Jihee Lee Kang
- Department of Physiology, Ewha Womans University, Seoul, Korea.,Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul, Korea
| |
Collapse
|
22
|
Abstract
The transcriptional signature of Kupffer cells & Alveolar macrophages are enriched for lipid metabolism genes. Lipid metabolism may control macrophage phenotype. Dysregulated lipid metabolism in macrophages contributes to disease pathology.
Distinct macrophage populations throughout the body display highly heterogeneous transcriptional and epigenetic programs. Recent research has highlighted that these profiles enable the different macrophage populations to perform distinct functions as required in their tissue of residence, in addition to the prototypical macrophage functions such as in innate immunity. These ‘extra’ tissue-specific functions have been termed accessory functions. One such putative accessory function is lipid metabolism, with macrophages in the lung and liver in particular being associated with this function. As it is now appreciated that cell metabolism not only provides energy but also greatly influences the phenotype and function of the cell, here we review how lipid metabolism affects macrophage phenotype and function and the specific roles played by macrophages in the pathogenesis of lipid-related diseases. In addition, we highlight the current questions limiting our understanding of the role of macrophages in lipid metabolism.
Collapse
Affiliation(s)
- Anneleen Remmerie
- Laboratory of Myeloid Cell Ontogeny and Functional Specialization, VIB-UGent Center for Inflammation Research, Technologiepark 927, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Charlotte L Scott
- Laboratory of Myeloid Cell Ontogeny and Functional Specialization, VIB-UGent Center for Inflammation Research, Technologiepark 927, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
23
|
Dangi A, Luo X. Harnessing Apoptotic Cells for Transplantation Tolerance: Current Status and Future Perspectives. CURRENT TRANSPLANTATION REPORTS 2017; 4:270-279. [PMID: 29177124 PMCID: PMC5697727 DOI: 10.1007/s40472-017-0167-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW The use of donor apoptotic cells is an emerging therapy for inducing transplantation tolerance. In this review, we will discuss current understanding of mechanisms of this approach, as well as crucial aspects necessary for successful translation of this approach to clinical transplantation. RECENT FINDINGS Transplantation tolerance by donor apoptotic cells is mediated by their homeostatic interaction with recipient phagocytes, and subsequent expansion of suppressor cell populations as well as inhibition of effector T cells via deletion and anergy. To ensure their tolerogenicity, it is critical to procure non-stressed donor cells, and to induce and arrest their apoptosis at the appropriate stage prior to their administration. Equally important is the monitoring of dynamics of recipient immunological status, and its influences on tolerance efficacy and longevity. Emerging concepts and technologies may significantly streamline tolerogen manufacture and delivery of this approach, and smooth its transition to clinical application. SUMMARY Hijacking homeostatic clearance of donor apoptotic cells is a promising strategy for transplantation tolerance. Timing is now mature for concerted efforts for transitioning this strategy to clinical transplantation.
Collapse
Affiliation(s)
- Anil Dangi
- Center for Kidney Research and Therapeutics, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Xunrong Luo
- Center for Kidney Research and Therapeutics, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
24
|
DeBerge M, Yeap XY, Dehn S, Zhang S, Grigoryeva L, Misener S, Procissi D, Zhou X, Lee DC, Muller WA, Luo X, Rothlin C, Tabas I, Thorp EB. MerTK Cleavage on Resident Cardiac Macrophages Compromises Repair After Myocardial Ischemia Reperfusion Injury. Circ Res 2017; 121:930-940. [PMID: 28851810 DOI: 10.1161/circresaha.117.311327] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 08/23/2017] [Accepted: 08/28/2017] [Indexed: 12/21/2022]
Abstract
RATIONALE Clinical benefits of reperfusion after myocardial infarction are offset by maladaptive innate immune cell function, and therapeutic interventions are lacking. OBJECTIVE We sought to test the significance of phagocytic clearance by resident and recruited phagocytes after myocardial ischemia reperfusion. METHODS AND RESULTS In humans, we discovered that clinical reperfusion after myocardial infarction led to significant elevation of the soluble form of MerTK (myeloid-epithelial-reproductive tyrosine kinase; ie, soluble MER), a critical biomarker of compromised phagocytosis by innate macrophages. In reperfused mice, macrophage Mertk deficiency led to decreased cardiac wound debridement, increased infarct size, and depressed cardiac function, newly implicating MerTK in cardiac repair after myocardial ischemia reperfusion. More notably, Mertk(CR) mice, which are resistant to cleavage, showed significantly reduced infarct sizes and improved systolic function. In contrast to other cardiac phagocyte subsets, resident cardiac MHCIILOCCR2- (major histocompatibility complex II/C-C motif chemokine receptor type 2) macrophages expressed higher levels of MerTK and, when exposed to apoptotic cells, secreted proreparative cytokines, including transforming growth factor-β. Mertk deficiency compromised the accumulation of MHCIILO phagocytes, and this was rescued in Mertk(CR) mice. Interestingly, blockade of CCR2-dependent monocyte infiltration into the heart reduced soluble MER levels post-ischemia reperfusion. CONCLUSIONS Our data implicate monocyte-induced MerTK cleavage on proreparative MHCIILO cardiac macrophages as a novel contributor and therapeutic target of reperfusion injury.
Collapse
Affiliation(s)
- Matthew DeBerge
- From the Department of Pathology and Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL (M.D., X.Y.Y., S.D., S.Z., L.G., S.M., D.P., X.Z., D.C.Le., W.A.M., X.L., E.B.T.); Division of Molecular Medicine at Columbia University, New York (I.T.); and Department of Immunobiology, School of Medicine, Yale University (C.R.)
| | - Xin Yi Yeap
- From the Department of Pathology and Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL (M.D., X.Y.Y., S.D., S.Z., L.G., S.M., D.P., X.Z., D.C.Le., W.A.M., X.L., E.B.T.); Division of Molecular Medicine at Columbia University, New York (I.T.); and Department of Immunobiology, School of Medicine, Yale University (C.R.)
| | - Shirley Dehn
- From the Department of Pathology and Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL (M.D., X.Y.Y., S.D., S.Z., L.G., S.M., D.P., X.Z., D.C.Le., W.A.M., X.L., E.B.T.); Division of Molecular Medicine at Columbia University, New York (I.T.); and Department of Immunobiology, School of Medicine, Yale University (C.R.)
| | - Shuang Zhang
- From the Department of Pathology and Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL (M.D., X.Y.Y., S.D., S.Z., L.G., S.M., D.P., X.Z., D.C.Le., W.A.M., X.L., E.B.T.); Division of Molecular Medicine at Columbia University, New York (I.T.); and Department of Immunobiology, School of Medicine, Yale University (C.R.)
| | - Lubov Grigoryeva
- From the Department of Pathology and Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL (M.D., X.Y.Y., S.D., S.Z., L.G., S.M., D.P., X.Z., D.C.Le., W.A.M., X.L., E.B.T.); Division of Molecular Medicine at Columbia University, New York (I.T.); and Department of Immunobiology, School of Medicine, Yale University (C.R.)
| | - Sol Misener
- From the Department of Pathology and Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL (M.D., X.Y.Y., S.D., S.Z., L.G., S.M., D.P., X.Z., D.C.Le., W.A.M., X.L., E.B.T.); Division of Molecular Medicine at Columbia University, New York (I.T.); and Department of Immunobiology, School of Medicine, Yale University (C.R.)
| | - Daniel Procissi
- From the Department of Pathology and Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL (M.D., X.Y.Y., S.D., S.Z., L.G., S.M., D.P., X.Z., D.C.Le., W.A.M., X.L., E.B.T.); Division of Molecular Medicine at Columbia University, New York (I.T.); and Department of Immunobiology, School of Medicine, Yale University (C.R.)
| | - Xin Zhou
- From the Department of Pathology and Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL (M.D., X.Y.Y., S.D., S.Z., L.G., S.M., D.P., X.Z., D.C.Le., W.A.M., X.L., E.B.T.); Division of Molecular Medicine at Columbia University, New York (I.T.); and Department of Immunobiology, School of Medicine, Yale University (C.R.)
| | - Daniel C Lee
- From the Department of Pathology and Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL (M.D., X.Y.Y., S.D., S.Z., L.G., S.M., D.P., X.Z., D.C.Le., W.A.M., X.L., E.B.T.); Division of Molecular Medicine at Columbia University, New York (I.T.); and Department of Immunobiology, School of Medicine, Yale University (C.R.)
| | - William A Muller
- From the Department of Pathology and Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL (M.D., X.Y.Y., S.D., S.Z., L.G., S.M., D.P., X.Z., D.C.Le., W.A.M., X.L., E.B.T.); Division of Molecular Medicine at Columbia University, New York (I.T.); and Department of Immunobiology, School of Medicine, Yale University (C.R.)
| | - Xunrong Luo
- From the Department of Pathology and Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL (M.D., X.Y.Y., S.D., S.Z., L.G., S.M., D.P., X.Z., D.C.Le., W.A.M., X.L., E.B.T.); Division of Molecular Medicine at Columbia University, New York (I.T.); and Department of Immunobiology, School of Medicine, Yale University (C.R.)
| | - Carla Rothlin
- From the Department of Pathology and Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL (M.D., X.Y.Y., S.D., S.Z., L.G., S.M., D.P., X.Z., D.C.Le., W.A.M., X.L., E.B.T.); Division of Molecular Medicine at Columbia University, New York (I.T.); and Department of Immunobiology, School of Medicine, Yale University (C.R.)
| | - Ira Tabas
- From the Department of Pathology and Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL (M.D., X.Y.Y., S.D., S.Z., L.G., S.M., D.P., X.Z., D.C.Le., W.A.M., X.L., E.B.T.); Division of Molecular Medicine at Columbia University, New York (I.T.); and Department of Immunobiology, School of Medicine, Yale University (C.R.)
| | - Edward B Thorp
- From the Department of Pathology and Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL (M.D., X.Y.Y., S.D., S.Z., L.G., S.M., D.P., X.Z., D.C.Le., W.A.M., X.L., E.B.T.); Division of Molecular Medicine at Columbia University, New York (I.T.); and Department of Immunobiology, School of Medicine, Yale University (C.R.).
| |
Collapse
|
25
|
Haddad Y, Lahoute C, Clément M, Laurans L, Metghalchi S, Zeboudj L, Giraud A, Loyer X, Vandestienne M, Wain-Hobson J, Esposito B, Potteaux S, Ait-Oufella H, Tedgui A, Mallat Z, Taleb S. The Dendritic Cell Receptor DNGR-1 Promotes the Development of Atherosclerosis in Mice. Circ Res 2017; 121:234-243. [DOI: 10.1161/circresaha.117.310960] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/06/2017] [Accepted: 06/09/2017] [Indexed: 02/07/2023]
Abstract
Rationale:
Necrotic core formation during the development of atherosclerosis is associated with a chronic inflammatory response and promotes accelerated plaque development and instability. However, the molecular links between necrosis and the development of atherosclerosis are not completely understood. Clec9a (C-type lectin receptor) or DNGR-1 (dendritic cell NK lectin group receptor-1) is preferentially expressed by the CD8α
+
subset of dendritic cells (CD8α
+
DCs) and is involved in sensing necrotic cells. We hypothesized that sensing of necrotic cells by DNGR-1 plays a determinant role in the inflammatory response of atherosclerosis.
Objective:
We sought to address the impact of total, bone marrow–restricted, or CD8α
+
DC–restricted deletion of DNGR-1 on atherosclerosis development.
Methods and Results:
We show that total absence of DNGR-1 in Apoe (apolipoprotein e)–deficient mice (
Apoe
−/−
) and bone marrow–restricted deletion of DNGR-1 in Ldlr (low-density lipoprotein receptor)–deficient mice (
Ldlr
−/−
) significantly reduce inflammatory cell content within arterial plaques and limit atherosclerosis development in a context of moderate hypercholesterolemia. This is associated with a significant increase of the expression of interleukin-10 (IL-10). The atheroprotective effect of DNGR-1 deletion is completely abrogated in the absence of bone marrow–derived IL-10. Furthermore, a specific deletion of DNGR-1 in CD8α
+
DCs significantly increases IL-10 expression, reduces macrophage and T-cell contents within the lesions, and limits the development of atherosclerosis.
Conclusions:
Our results unravel a new role of DNGR-1 in regulating vascular inflammation and atherosclerosis and potentially identify a new target for disease modulation.
Collapse
Affiliation(s)
- Yacine Haddad
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Research Center, Université Paris-Descartes, France (Y.H., C.L., L.L., S.M., L.Z., A.G., X.L., M.V., J.W.-H., B.E., S.P., H.A.-O., A.T., Z.M., S.T.); and Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, United Kingdom (M.C., Z.M.)
| | - Charlotte Lahoute
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Research Center, Université Paris-Descartes, France (Y.H., C.L., L.L., S.M., L.Z., A.G., X.L., M.V., J.W.-H., B.E., S.P., H.A.-O., A.T., Z.M., S.T.); and Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, United Kingdom (M.C., Z.M.)
| | - Marc Clément
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Research Center, Université Paris-Descartes, France (Y.H., C.L., L.L., S.M., L.Z., A.G., X.L., M.V., J.W.-H., B.E., S.P., H.A.-O., A.T., Z.M., S.T.); and Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, United Kingdom (M.C., Z.M.)
| | - Ludivine Laurans
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Research Center, Université Paris-Descartes, France (Y.H., C.L., L.L., S.M., L.Z., A.G., X.L., M.V., J.W.-H., B.E., S.P., H.A.-O., A.T., Z.M., S.T.); and Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, United Kingdom (M.C., Z.M.)
| | - Sarvenaz Metghalchi
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Research Center, Université Paris-Descartes, France (Y.H., C.L., L.L., S.M., L.Z., A.G., X.L., M.V., J.W.-H., B.E., S.P., H.A.-O., A.T., Z.M., S.T.); and Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, United Kingdom (M.C., Z.M.)
| | - Lynda Zeboudj
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Research Center, Université Paris-Descartes, France (Y.H., C.L., L.L., S.M., L.Z., A.G., X.L., M.V., J.W.-H., B.E., S.P., H.A.-O., A.T., Z.M., S.T.); and Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, United Kingdom (M.C., Z.M.)
| | - Andreas Giraud
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Research Center, Université Paris-Descartes, France (Y.H., C.L., L.L., S.M., L.Z., A.G., X.L., M.V., J.W.-H., B.E., S.P., H.A.-O., A.T., Z.M., S.T.); and Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, United Kingdom (M.C., Z.M.)
| | - Xavier Loyer
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Research Center, Université Paris-Descartes, France (Y.H., C.L., L.L., S.M., L.Z., A.G., X.L., M.V., J.W.-H., B.E., S.P., H.A.-O., A.T., Z.M., S.T.); and Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, United Kingdom (M.C., Z.M.)
| | - Marie Vandestienne
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Research Center, Université Paris-Descartes, France (Y.H., C.L., L.L., S.M., L.Z., A.G., X.L., M.V., J.W.-H., B.E., S.P., H.A.-O., A.T., Z.M., S.T.); and Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, United Kingdom (M.C., Z.M.)
| | - Julien Wain-Hobson
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Research Center, Université Paris-Descartes, France (Y.H., C.L., L.L., S.M., L.Z., A.G., X.L., M.V., J.W.-H., B.E., S.P., H.A.-O., A.T., Z.M., S.T.); and Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, United Kingdom (M.C., Z.M.)
| | - Bruno Esposito
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Research Center, Université Paris-Descartes, France (Y.H., C.L., L.L., S.M., L.Z., A.G., X.L., M.V., J.W.-H., B.E., S.P., H.A.-O., A.T., Z.M., S.T.); and Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, United Kingdom (M.C., Z.M.)
| | - Stephane Potteaux
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Research Center, Université Paris-Descartes, France (Y.H., C.L., L.L., S.M., L.Z., A.G., X.L., M.V., J.W.-H., B.E., S.P., H.A.-O., A.T., Z.M., S.T.); and Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, United Kingdom (M.C., Z.M.)
| | - Hafid Ait-Oufella
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Research Center, Université Paris-Descartes, France (Y.H., C.L., L.L., S.M., L.Z., A.G., X.L., M.V., J.W.-H., B.E., S.P., H.A.-O., A.T., Z.M., S.T.); and Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, United Kingdom (M.C., Z.M.)
| | - Alain Tedgui
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Research Center, Université Paris-Descartes, France (Y.H., C.L., L.L., S.M., L.Z., A.G., X.L., M.V., J.W.-H., B.E., S.P., H.A.-O., A.T., Z.M., S.T.); and Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, United Kingdom (M.C., Z.M.)
| | - Ziad Mallat
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Research Center, Université Paris-Descartes, France (Y.H., C.L., L.L., S.M., L.Z., A.G., X.L., M.V., J.W.-H., B.E., S.P., H.A.-O., A.T., Z.M., S.T.); and Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, United Kingdom (M.C., Z.M.)
| | - Soraya Taleb
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Research Center, Université Paris-Descartes, France (Y.H., C.L., L.L., S.M., L.Z., A.G., X.L., M.V., J.W.-H., B.E., S.P., H.A.-O., A.T., Z.M., S.T.); and Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, United Kingdom (M.C., Z.M.)
| |
Collapse
|
26
|
Abstract
The necrotic core has long been a hallmark of the vulnerable atherosclerotic plaque. Although apoptotic cells are cleared quickly in almost all other tissue beds, their removal appears to be significantly impaired in the diseased blood vessel. Emerging evidence indicates that this phenomenon is caused by a defect in efferocytosis, the process by which apoptotic tissue is recognized for engulfment by phagocytic cells such as macrophages. Genetic and experimental data suggest that efferocytosis is impaired during atherogenesis caused by dysregulation of so-called eat me ligands, which govern the edibility of cells undergoing programmed cell death. The following is a summary of recent data indicating that efferocytosis is a major unappreciated driver of lesion expansion but also a reversible defect that can potentially be targeted as a means to prevent plaque progression.
Collapse
Affiliation(s)
- Yoko Kojima
- From Department of Surgery, Division of Vascular Surgery (Y.K., N.J.L.), Institute for Stem Cell Biology and Regenerative Medicine (I.L.W.), and Department of Medicine, Division of Cardiovascular Medicine (N.J.L.), Stanford University School of Medicine, CA
| | - Irving L Weissman
- From Department of Surgery, Division of Vascular Surgery (Y.K., N.J.L.), Institute for Stem Cell Biology and Regenerative Medicine (I.L.W.), and Department of Medicine, Division of Cardiovascular Medicine (N.J.L.), Stanford University School of Medicine, CA
| | - Nicholas J Leeper
- From Department of Surgery, Division of Vascular Surgery (Y.K., N.J.L.), Institute for Stem Cell Biology and Regenerative Medicine (I.L.W.), and Department of Medicine, Division of Cardiovascular Medicine (N.J.L.), Stanford University School of Medicine, CA.
| |
Collapse
|
27
|
An SY, Jang YJ, Lim HJ, Han J, Lee J, Lee G, Park JY, Park SY, Kim JH, Do BR, Han C, Park HK, Kim OH, Song MJ, Kim SJ, Kim JH. Milk Fat Globule-EGF Factor 8, Secreted by Mesenchymal Stem Cells, Protects Against Liver Fibrosis in Mice. Gastroenterology 2017; 152:1174-1186. [PMID: 27956229 DOI: 10.1053/j.gastro.2016.12.003] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 11/16/2016] [Accepted: 12/03/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND & AIMS Mesenchymal stem cells (MSCs) mediate tissue repair and might be used to prevent or reduce liver fibrosis. However, little is known about the anti-fibrotic factors secreted from MSCs or their mechanisms. METHODS Umbilical cord-derived MSCs (UCMSCs) were differentiated into hepatocyte-like cells (hpUCMSCs), medium was collected, and secretome proteins were identified and quantified using nanochip-liquid chromatography/quadrupole time-of-flight mass spectrometry. Liver fibrosis was induced in mice by intraperitoneal injection of thioacetamide or CCl4; some mice were then given injections of secretomes or proteins. Liver tissues were collected and analyzed by histology or polymerase chain reaction array to analyze changes in gene expression patterns. We analyzed the effects of MSC secretomes and potential anti-fibrotic proteins on transforming growth factor β 1 (TGFβ1)-mediated activation of human hepatic stellate cell (HSC) lines (hTert-HSC and LX2) and human primary HSCs. Liver tissues were collected from 16 patients with liver cirrhosis and 16 individuals without cirrhosis (controls) in Korea and analyzed by immunohistochemistry and immunoblots. RESULTS In mice with fibrosis, accumulation of extracellular matrix proteins was significantly reduced 3 days after injecting secretomes from UCMSCs, and to a greater extent from hpUCMSCs; numbers of activated HSCs that expressed the myogenic marker α-smooth muscle actin (α-SMA, encoded by ACTA2 [actin, alpha 2, smooth muscle]) were also reduced. Secretomes from UCMSCs, and to a greater extent from hpUCMSCs, reduced liver expression of multiple fibrotic factors, collagens, metalloproteinases, TGFβ, and Smad proteins in the TGFβ signaling pathways. In HSC cell lines and primary HSCs, TGFβ1-stimulated upregulation of α-SMA was significantly inhibited (and SMAD2 phosphorylation reduced) by secretomes from UCMSCs, and to a greater extent from hpUCMSCs. We identified 32 proteins in secretomes of UCMSCs that were more highly concentrated in secretomes from hpUCMSCs and inhibited TGFβ-mediated activation of HSCs. One of these, milk fat globule-EGF factor 8 (MFGE8), was a strong inhibitor of activation of human primary HSCs. We found MFGE8 to down-regulate expression of TGFβ type I receptor by binding to αvβ3 integrin on HSCs and to be secreted by MSCs from umbilical cord, teeth, and bone marrow. In mice, injection of recombinant human MFGE8 had anti-fibrotic effects comparable to those of the hpUCMSC secretome, reducing extracellular matrix deposition and HSC activation. Co-injection of an antibody against MFGE8 reduced the anti-fibrotic effects of the hpUCMSC secretome in mice. Levels of MFGE8 were reduced in cirrhotic liver tissue from patients compared with controls. CONCLUSIONS MFGE8 is an anti-fibrotic protein in MSC secretomes that strongly inhibits TGFβ signaling and reduces extracellular matrix deposition and liver fibrosis in mice.
Collapse
Affiliation(s)
- Su Yeon An
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Yu Jin Jang
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Hee-Joung Lim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jiyou Han
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jaehun Lee
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Gyunggyu Lee
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Ji Young Park
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Seo-Young Park
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Ji Hyang Kim
- Biotechnology Research Institute, HurimBioCell Inc., Seoul, Republic of Korea
| | - Byung-Rok Do
- Biotechnology Research Institute, HurimBioCell Inc., Seoul, Republic of Korea
| | - Choongseong Han
- Department of Oral Medicine and Oral Diagnosis, Seoul National University Dental Hospital, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea; Nexel, Co., Ltd, Seoul, Republic of Korea
| | - Hee-Kyung Park
- Department of Oral Medicine and Oral Diagnosis, Seoul National University Dental Hospital, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Ok-Hee Kim
- Department of Surgery, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Daejeon, Republic of Korea
| | - Myeong Jun Song
- Division of Hepatology, Department of Internal Medicine, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Daejeon, Republic of Korea
| | - Say-June Kim
- Department of Surgery, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Daejeon, Republic of Korea
| | - Jong-Hoon Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
28
|
Zent CS, Elliott MR. Maxed out macs: physiologic cell clearance as a function of macrophage phagocytic capacity. FEBS J 2017; 284:1021-1039. [PMID: 27863012 PMCID: PMC5378628 DOI: 10.1111/febs.13961] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/01/2016] [Accepted: 11/10/2016] [Indexed: 12/28/2022]
Abstract
The phagocytic clearance of host cells is important for eliminating dying cells and for the therapeutic clearance of antibody-targeted cells. As ubiquitous, motile and highly phagocytic immune cells, macrophages are principal players in the phagocytic removal of host cells throughout the body. In recent years, great strides have been made in identifying the molecular mechanisms that control the recognition and phagocytosis of cells by macrophages. However, much less is known about the physical and metabolic constraints that govern the amount of cellular material macrophages can ingest and how these limitations affect the overall efficiency of host cell clearance in health and disease. In this review we will discuss, in the contexts of apoptotic cells and antibody-targeted malignant cells, how physical and metabolic factors associated with the internalization of host cells are relayed to the phagocytic machinery and how these signals can impact the overall efficiency of cell clearance. We also discuss how this information can be leveraged to increase cell clearance for beneficial therapeutic outcomes.
Collapse
Affiliation(s)
- Clive S. Zent
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Michael R. Elliott
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
29
|
Porphyromonas gingivalis gingipains cause defective macrophage migration towards apoptotic cells and inhibit phagocytosis of primary apoptotic neutrophils. Cell Death Dis 2017; 8:e2644. [PMID: 28252646 PMCID: PMC5386511 DOI: 10.1038/cddis.2016.481] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 01/17/2023]
Abstract
Periodontal disease is a prevalent chronic inflammatory condition characterised by an aberrant host response to a pathogenic plaque biofilm resulting in local tissue damage and frustrated healing that can result in tooth loss. Cysteine proteases (gingipains) from the key periodontal pathogen Porphyromonas gingivalis have been implicated in periodontal disease pathogenesis by inhibiting inflammation resolution and are linked with systemic chronic inflammatory conditions such as rheumatoid arthritis. Efficient clearance of apoptotic cells is essential for the resolution of inflammation and tissue restoration. Here we sought to characterise the innate immune clearance of apoptotic cells and its modulation by gingipains. We examined the capacity of gingipain-treated macrophages to migrate towards and phagocytose apoptotic cells. Lysine gingipain treatment of macrophages impaired macrophage migration towards apoptotic neutrophils. Furthermore, lysine gingipain treatment reduced surface expression levels of CD14, a key macrophage receptor for apoptotic cells, which resulted in reduced macrophage interactions with apoptotic cells. Additionally, while apoptotic cells and their derived secretome were shown to inhibit TNF-α-induced expression by P. gingivalis lipopolysaccharide, we demonstrated that gingipain preparations induced a rapid inflammatory response in macrophages that was resistant to the anti-inflammatory effects of apoptotic cells or their secretome. Taken together, these data indicate that P. gingivalis may promote the chronic inflammation seen in periodontal disease patients by multiple mechanisms, including rapid, potent gingipain-mediated inflammation, coupled with receptor cleavage leading to defective clearance of apoptotic cells and reduced anti-inflammatory responses. Thus, gingipains represent a potential therapeutic target for intervention in the management of chronic periodontal disease.
Collapse
|
30
|
Gendron DR, Lecours PB, Lemay AM, Beaulieu MJ, Huppé CA, Lee-Gosselin A, Flamand N, Don AS, Bissonnette É, Blanchet MR, Laplante M, Bourgoin SG, Bossé Y, Marsolais D. A Phosphorylatable Sphingosine Analog Induces Airway Smooth Muscle Cytostasis and Reverses Airway Hyperresponsiveness in Experimental Asthma. Front Pharmacol 2017; 8:78. [PMID: 28270767 PMCID: PMC5318459 DOI: 10.3389/fphar.2017.00078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/07/2017] [Indexed: 11/13/2022] Open
Abstract
In asthma, excessive bronchial narrowing associated with thickening of the airway smooth muscle (ASM) causes respiratory distress. Numerous pharmacological agents prevent experimental airway hyperresponsiveness (AHR) when delivered prophylactically. However, most fail to resolve this feature after disease is instated. Although sphingosine analogs are primarily perceived as immune modulators with the ability to prevent experimental asthma, they also influence processes associated with tissue atrophy, supporting the hypothesis that they could interfere with mechanisms sustaining pre-established AHR. We thus assessed the ability of a sphingosine analog (AAL-R) to reverse AHR in a chronic model of asthma. We dissected the pharmacological mechanism of this class of agents using the non-phosphorylatable chiral isomer AAL-S and the pre-phosphorylated form of AAL-R (AFD-R) in vivo and in human ASM cells. We found that a therapeutic course of AAL-R reversed experimental AHR in the methacholine challenge test, which was not replicated by dexamethasone or the non-phosphorylatable isomer AAL-S. AAL-R efficiently interfered with ASM cell proliferation in vitro, supporting the concept that immunomodulation is not necessary to interfere with cellular mechanisms sustaining AHR. Moreover, the sphingosine-1-phosphate lyase inhibitor SM4 and the sphingosine-1-phosphate receptor antagonist VPC23019 failed to inhibit proliferation, indicating that intracellular accumulation of sphingosine-1-phosphate or interference with cell surface S1P1/S1P3 activation, are not sufficient to induce cytostasis. Potent AAL-R-induced cytostasis specifically related to its ability to induce intracellular AFD-R accumulation. Thus, a sphingosine analog that possesses the ability to be phosphorylated in situ interferes with cellular mechanisms that beget AHR.
Collapse
Affiliation(s)
- David R Gendron
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec QC, Canada
| | - Pascale B Lecours
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec QC, Canada
| | - Anne-Marie Lemay
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec QC, Canada
| | - Marie-Josée Beaulieu
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec QC, Canada
| | - Carole-Ann Huppé
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec QC, Canada
| | - Audrey Lee-Gosselin
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec QC, Canada
| | - Nicolas Flamand
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, QuébecQC, Canada; Faculty of Medicine, Université Laval, QuébecQC, Canada
| | - Anthony S Don
- Centenary Institute and NHMRC Clinical Trials Centre, University of Sydney, Camperdown NSW, Australia
| | - Élyse Bissonnette
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, QuébecQC, Canada; Faculty of Medicine, Université Laval, QuébecQC, Canada
| | - Marie-Renée Blanchet
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, QuébecQC, Canada; Faculty of Medicine, Université Laval, QuébecQC, Canada
| | - Mathieu Laplante
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, QuébecQC, Canada; Faculty of Medicine, Université Laval, QuébecQC, Canada
| | - Sylvain G Bourgoin
- Faculty of Medicine, Université Laval, QuébecQC, Canada; Division of Infectious Diseases and Immunology, CHU de Québec Research Center, QuébecQC, Canada
| | - Ynuk Bossé
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, QuébecQC, Canada; Faculty of Medicine, Université Laval, QuébecQC, Canada
| | - David Marsolais
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, QuébecQC, Canada; Faculty of Medicine, Université Laval, QuébecQC, Canada
| |
Collapse
|
31
|
Abstract
Efferocytosis, the phagocytic removal of apoptotic cells, is a dynamic process requiring recruitment of numerous regulatory proteins to forming efferosomes in a tightly regulated manner. Herein we describe microscopy-based methods for the enumeration of efferocytic events and characterization of the spatiotemporal dynamics of signaling molecule recruitment to efferosomes, using genetically encoded probes and immunofluorescent labeling. While these methods are illustrated using macrophages, they are applicable to any efferocytic cell type.
Collapse
Affiliation(s)
- Amanda L Evans
- Department of Microbiology and Immunology and the Centre for Human Immunology, The University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Jack W D Blackburn
- Department of Microbiology and Immunology and the Centre for Human Immunology, The University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Charles Yin
- Department of Microbiology and Immunology and the Centre for Human Immunology, The University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Bryan Heit
- Department of Microbiology and Immunology and the Centre for Human Immunology, The University of Western Ontario, London, ON, N6A 5C1, Canada.
| |
Collapse
|
32
|
Yin C, Kim Y, Argintaru D, Heit B. Rab17 mediates differential antigen sorting following efferocytosis and phagocytosis. Cell Death Dis 2016; 7:e2529. [PMID: 28005073 PMCID: PMC5261003 DOI: 10.1038/cddis.2016.431] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 12/29/2022]
Abstract
Macrophages engulf and destroy pathogens (phagocytosis) and apoptotic cells (efferocytosis), and can subsequently initiate adaptive immune responses by presenting antigens derived from engulfed materials. Both phagocytosis and efferocytosis share a common degradative pathway in which the target is engulfed into a membrane-bound vesicle, respectively, termed the phagosome and efferosome, where they are degraded by sequential fusion with endosomes and lysosomes. Despite this shared maturation pathway, macrophages are immunogenic following phagocytosis but not efferocytosis, indicating that differential processing or trafficking of antigens must occur. Mass spectrometry and immunofluorescence microscopy of efferosomes and phagosomes in macrophages demonstrated that efferosomes lacked the proteins required for antigen presentation and instead recruited the recycling regulator Rab17. As a result, degraded materials from efferosomes bypassed the MHC class II loading compartment via the recycling endosome - a process not observed in phagosomes. Combined, these results indicate that macrophages prevent presentation of apoptotic cell-derived antigens by preferentially trafficking efferocytosed, but not phagocytosed, materials away from the MHC class II loading compartment via the recycling endosome pathway.
Collapse
Affiliation(s)
- Charles Yin
- Department of Microbiology and Immunology and The Centre for Human Immunology, The University of Western Ontario, Schulich School of Medicine and Dentistry, London, ON, Canada N6A 5C1
| | - Yohan Kim
- Department of Microbiology and Immunology and The Centre for Human Immunology, The University of Western Ontario, Schulich School of Medicine and Dentistry, London, ON, Canada N6A 5C1
| | - Dean Argintaru
- Department of Microbiology and Immunology and The Centre for Human Immunology, The University of Western Ontario, Schulich School of Medicine and Dentistry, London, ON, Canada N6A 5C1
| | - Bryan Heit
- Department of Microbiology and Immunology and The Centre for Human Immunology, The University of Western Ontario, Schulich School of Medicine and Dentistry, London, ON, Canada N6A 5C1
| |
Collapse
|
33
|
Liu D, Qi X, Li Q, Jia W, Wei L, Huang A, Liu K, Li Z. Increased complements and high-sensitivity C-reactive protein predict heart failure in acute myocardial infarction. Biomed Rep 2016; 5:761-765. [PMID: 28105343 DOI: 10.3892/br.2016.793] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/28/2016] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate whether the serum levels of complements and high-sensitivity C-reactive protein (hs-CRP) in patients with acute myocardial infarction (AMI) are associated with the severity of myocardial injury. Consecutive patients (n=110) with AMI and 33 healthy individuals, who served as control subjects, were enrolled from May 2013 to February 2015. These patients were divided into two groups, those with ST segment elevation MI (STEMI) and those with non-ST segment elevation MI (NSTEMI). The patients with STEMI exhibited progression to diastolic dysfunction and heart failure. Furthermore, the results revealed that the level of serum complement and hs-CRP in patients with AMI increased rapidly when compared with the subjects from the control group, particularly in the STEMI patients, at different time-points. A statistically significant elevation of the complement and hs-CRP levels was observed at day 3 after AMI in the STEMI group. The activation of complement and hs-CRP following AMI may serve as a specific marker to successfully predict left ventricular dysfunction. Thus, biomarker-based approaches may be adopted to identify the severity of AMI with distinct pathophysiologic responses in order to rationally implement clinical therapeutic strategies.
Collapse
Affiliation(s)
- Danni Liu
- Department of Pathophysiology, School of Medicine, Nankai University, Tianjin 300071, P.R. China; Department of Cardiology, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Xin Qi
- Department of Cardiology, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Qi Li
- Department of Cardiology, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Wenjun Jia
- Department of Cardiology, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Liping Wei
- Department of Cardiology, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Anan Huang
- Department of Pathophysiology, School of Medicine, Nankai University, Tianjin 300071, P.R. China; Department of Cardiology, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Keqiang Liu
- Department of Cardiology, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Zongjin Li
- Department of Pathophysiology, School of Medicine, Nankai University, Tianjin 300071, P.R. China
| |
Collapse
|
34
|
Eligini S, Fiorelli S, Tremoli E, Colli S. Inhibition of transglutaminase 2 reduces efferocytosis in human macrophages: Role of CD14 and SR-AI receptors. Nutr Metab Cardiovasc Dis 2016; 26:922-930. [PMID: 27378395 DOI: 10.1016/j.numecd.2016.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 04/28/2016] [Accepted: 05/25/2016] [Indexed: 01/23/2023]
Abstract
BACKGROUND AND AIMS Transglutaminase 2 (TGM2), a member of the transglutaminase family of enzymes, is a multifunctional protein involved in numerous events spanning from cell differentiation, to signal transduction, apoptosis, and wound healing. It is expressed in a variety of cells, macrophages included. Macrophage TGM2 promotes the clearance of apoptotic cells (efferocytosis) and emerging evidence suggests that defective efferocytosis contributes to the consequences of inflammation-associated diseases, including atherosclerotic lesion progression and its sequelae. Of interest, active TGM2 identified in human atherosclerotic lesions plays critical roles in plaque stability through effects on matrix cross-linking and TGFβ activity. This study explores the mechanisms by which TGM2 controls efferocytosis in human macrophages. METHODS AND RESULTS Herein we show that TGM2 increases progressively during monocyte differentiation towards macrophages and controls their efferocytic potential as well as morphology and viability. Two experimental approaches that took advantage of the inhibition of TGM2 activity and protein silencing give proof that TGM2 reduction significantly impairs macrophage efferocytosis. Among the mechanisms involved we highlighted a role of the receptors CD14 and SR-AI whose levels were markedly reduced by TGM2 inhibition. Conversely, CD36 receptor and αvβ3 integrin levels were not influenced. Of note, lipid accumulation and IL-10 secretion were reduced in macrophages displaying defective efferocytosis. CONCLUSION Overall, our data define a crucial role of TGM2 activity during macrophage differentiation via mechanisms involving CD14 and SR-AI receptors and show that TGM2 inhibition triggers a pro-inflammatory phenotype.
Collapse
Affiliation(s)
- S Eligini
- Centro Cardiologico Monzino I.R.C.C.S., Milan, Italy.
| | - S Fiorelli
- Centro Cardiologico Monzino I.R.C.C.S., Milan, Italy
| | - E Tremoli
- Centro Cardiologico Monzino I.R.C.C.S., Milan, Italy
| | - S Colli
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
35
|
Selective activation of CB2 receptor improves efferocytosis in cultured macrophages. Life Sci 2016; 161:10-8. [DOI: 10.1016/j.lfs.2016.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/19/2016] [Accepted: 07/25/2016] [Indexed: 01/06/2023]
|
36
|
Abstract
As a greater proportion of patients survive their initial cardiac insult, medical systems worldwide are being faced with an ever-growing need to understand the mechanisms behind the pathogenesis of chronic heart failure (HF). There is a wealth of information about the role of inflammatory cells and pathways during acute injury and the reparative processes that are subsequently activated. We discuss the different causes that lead to chronic HF development and how the sum of initial inflammatory and reparative responses only sets the trajectory for disease progression. Unfortunately, comparatively little is known about the contribution of the immune system once the trajectory has been set, and chronic HF has been established—which clinically represents the majority of patients. It is known that chronic HF is associated with circulating inflammatory cytokines that can predict clinical outcomes, yet the causative role inflammation plays in disease progression is not well defined, and the majority of clinical trials that target aspects of inflammation in patients with chronic HF have largely been negative. This review will present what is currently known about inflammation in chronic HF in both humans and animal models as a means to highlight the gap in our knowledge base that requires further examination.
Collapse
Affiliation(s)
- Sarah A. Dick
- From the Division of Cardiology, Department of Medicine, University Health Network, Toronto, Ontario, Canada (S.A.D, S.E.); University of Toronto, Toronto, Ontario, Canada (S.E); Peter Munk Cardiac Centre, Toronto, Ontario, Canada (S.A.D, S.E.); and Toronto General Hospital Research Institute, Toronto, Ontario, Canada (S.A.D, S.E.)
| | - Slava Epelman
- From the Division of Cardiology, Department of Medicine, University Health Network, Toronto, Ontario, Canada (S.A.D, S.E.); University of Toronto, Toronto, Ontario, Canada (S.E); Peter Munk Cardiac Centre, Toronto, Ontario, Canada (S.A.D, S.E.); and Toronto General Hospital Research Institute, Toronto, Ontario, Canada (S.A.D, S.E.)
| |
Collapse
|
37
|
Duque JC, Martinez L, Mesa A, Wei Y, Tabbara M, Salman LH, Vazquez-Padron RI. CD4(+) lymphocytes improve venous blood flow in experimental arteriovenous fistulae. Surgery 2015; 158:529-36. [PMID: 25999254 DOI: 10.1016/j.surg.2015.02.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/16/2015] [Accepted: 02/21/2015] [Indexed: 02/02/2023]
Abstract
BACKGROUND The role of immune cells in arteriovenous fistulae (AVF) maturation is poorly understood and has received, until quite recently, little attention. This study examines the function of T lymphocytes in AVF vascular remodeling. METHODS Experimental fistulae were created in athymic rnu nude rats lacking mature T lymphocytes and euthymic control animals by anastomosing the left superior epigastric vein to the nearby femoral artery. Blood flow rates, wall morphology, and histologic changes were assessed in AVF 21 days after creation. The effect of CD4(+) lymphocytes on AVF maturation in athymic animals was analyzed by adoptive transfer of cells after fistula creation. RESULTS The absence of T lymphocytes compromised blood flow in experimental fistulae. Histopathologic inspection of AVF from athymic rats revealed that T-cell immunodeficiency negatively affected venous vascular remodeling, as evidenced by a reduced lumen, a thick muscular layer, and a low number of inflammatory cells compared with control animals. Adoptive transfer of CD4(+) lymphocytes from euthymic rats into athymic animals after fistula creation improved blood flow and reduced intima-media thickness. CONCLUSION These results point at the protective role of CD4(+) lymphocytes in the remodeling of the AVF vascular wall.
Collapse
Affiliation(s)
- Juan C Duque
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Annia Mesa
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Yuntao Wei
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Marwan Tabbara
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Loay H Salman
- Section of Interventional Nephrology, University of Miami Miller School of Medicine, Miami, FL
| | - Roberto I Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL.
| |
Collapse
|
38
|
Ledford KJ, Zeigler F, Bartel RL. Ixmyelocel-T, an expanded multicellular therapy, contains a unique population of M2-like macrophages. Stem Cell Res Ther 2013; 4:134. [PMID: 24405629 PMCID: PMC4029268 DOI: 10.1186/scrt345] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 10/23/2013] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION M2 macrophages promote tissue repair and regeneration through various mechanisms including immunomodulation and scavenging of tissue debris. Delivering increased numbers of these cells to ischemic tissues may limit tissue injury and promote repair. Ixmyelocel-T is an expanded, autologous multicellular therapy cultured from bone-marrow mononuclear cells (BMMNCs). The purpose of this study was to characterize further a unique expanded population of M2-like macrophages, generated in ixmyelocel-T therapy. METHODS Approximately 50 ml of whole bone marrow was obtained from healthy donors and shipped overnight. BMMNCs were produced by using density-gradient separation and cultured for approximately 12 days to generate ixmyelocel-T. CD14+ cells were isolated from ixmyelocel-T with positive selection for analysis. Cell-surface phenotype was examined with flow cytometry and immunofluorescence, and expression of cytokines and chemokines was analyzed with enzyme-linked immunosorbent assay (ELISA). Quantitative real-time PCR was used to analyze expression of genes in BMMNCs, ixmyelocel-T, the CD14+ population from ixmyelocel-T, and M1 and M2 macrophages. Ixmyelocel-T was cultured with apoptotic BMMNCs, and then visualized under fluorescence microscopy to assess efferocytosis. RESULTS Macrophages in ixmyelocel-T therapy expressed surface markers of M2 macrophages, CD206, and CD163. These cells were also found to express several M2 markers, and few to no M1 markers. After stimulation with lipopolysaccharide (LPS), they showed minimal secretion of the proinflammatory cytokines interleukin-12 (IL-12) and tumor necrosis factor alpha (TNF-α) compared with M1 and M2 macrophages. Ixmyelocel-T macrophages efficiently ingested apoptotic BMMNCs. CONCLUSIONS Ixmyelocel-T therapy contains a unique population of M2-like macrophages that are characterized by expression of M2 markers, decreased secretion of proinflammatory cytokines after inflammatory stimuli, and efficient removal of apoptotic cells. This subpopulation of cells may have a potential role in tissue repair and regeneration.
Collapse
|
39
|
Abstract
The TAM receptors--Tyro3, Axl, and Mer--comprise a unique family of receptor tyrosine kinases, in that as a group they play no essential role in embryonic development. Instead, they function as homeostatic regulators in adult tissues and organ systems that are subject to continuous challenge and renewal throughout life. Their regulatory roles are prominent in the mature immune, reproductive, hematopoietic, vascular, and nervous systems. The TAMs and their ligands--Gas6 and Protein S--are essential for the efficient phagocytosis of apoptotic cells and membranes in these tissues; and in the immune system, they act as pleiotropic inhibitors of the innate inflammatory response to pathogens. Deficiencies in TAM signaling are thought to contribute to chronic inflammatory and autoimmune disease in humans, and aberrantly elevated TAM signaling is strongly associated with cancer progression, metastasis, and resistance to targeted therapies.
Collapse
Affiliation(s)
- Greg Lemke
- Molecular Neurobiology Laboratory, Immunobiology and Microbial Pathogenesis Laboratory, The Salk Institute, La Jolla, California 92037
| |
Collapse
|
40
|
Wan E, Yeap XY, Dehn S, Terry R, Novak M, Zhang S, Iwata S, Han X, Homma S, Drosatos K, Lomasney J, Engman DM, Miller SD, Vaughan DE, Morrow JP, Kishore R, Thorp EB. Enhanced efferocytosis of apoptotic cardiomyocytes through myeloid-epithelial-reproductive tyrosine kinase links acute inflammation resolution to cardiac repair after infarction. Circ Res 2013; 113:1004-12. [PMID: 23836795 PMCID: PMC3840464 DOI: 10.1161/circresaha.113.301198] [Citation(s) in RCA: 269] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
RATIONALE Efficient clearance of apoptotic cells (efferocytosis) is a prerequisite for inflammation resolution and tissue repair. After myocardial infarction, phagocytes are recruited to the heart and promote clearance of dying cardiomyocytes. The molecular mechanisms of efferocytosis of cardiomyocytes and in the myocardium are unknown. The injured heart provides a unique model to examine relationships between efferocytosis and subsequent inflammation resolution, tissue remodeling, and organ function. OBJECTIVE We set out to identify mechanisms of dying cardiomyocyte engulfment by phagocytes and, for the first time, to assess the causal significance of disrupting efferocytosis during myocardial infarction. METHODS AND RESULTS In contrast to other apoptotic cell receptors, macrophage myeloid-epithelial-reproductive tyrosine kinase was necessary and sufficient for efferocytosis of cardiomyocytes ex vivo. In mice, Mertk was specifically induced in Ly6c(LO) myocardial phagocytes after experimental coronary occlusion. Mertk deficiency led to an accumulation of apoptotic cardiomyocytes, independently of changes in noncardiomyocytes, and a reduced index of in vivo efferocytosis. Importantly, suppressed efferocytosis preceded increases in myocardial infarct size and led to delayed inflammation resolution and reduced systolic performance. Reduced cardiac function was reproduced in chimeric mice deficient in bone marrow Mertk; reciprocal transplantation of Mertk(+/+) marrow into Mertk(-/-) mice corrected systolic dysfunction. Interestingly, an inactivated form of myeloid-epithelial-reproductive tyrosine kinase, known as solMER, was identified in infarcted myocardium, implicating a natural mechanism of myeloid-epithelial-reproductive tyrosine kinase inactivation after myocardial infarction. CONCLUSIONS These data collectively and directly link efferocytosis to wound healing in the heart and identify Mertk as a significant link between acute inflammation resolution and organ function.
Collapse
Affiliation(s)
- Elaine Wan
- From the Department of Pathology, Microbiology and Immunology, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
The use of sequential staining for detection of heterogeneous intracellular response of individual Jurkat cells to lysophosphatidylcholine. J Immunol Methods 2013; 387:96-106. [DOI: 10.1016/j.jim.2012.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 09/29/2012] [Accepted: 10/04/2012] [Indexed: 12/16/2022]
|
42
|
Zhong K, Song W, Wang Q, Wang C, Liu X, Chen D, Zhu Z, Wu Y, Zhang W, Zhang M. Murine myeloid dendritic cells that phagocytose apoptotic T cells inhibit the immune response via NO. PLoS One 2012; 7:e49378. [PMID: 23166651 PMCID: PMC3499560 DOI: 10.1371/journal.pone.0049378] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 10/09/2012] [Indexed: 01/14/2023] Open
Abstract
The contraction phase of antigen-specific immune responses involves the apoptotic loss of numerous activated lymphocytes. While apoptotic cells are known to induce immune suppression, the mechanisms involved therein are still ambiguous. Some reports have speculated that macrophages can induce regulatory T cells (Tregs) after engulfing apoptotic cells. In this study, we showed that dendritic cells (DCs) that phagocytose apoptotic T cells acquire inhibitory function (named DCapos) toward CD4+ and CD8+ T cells. These inhibitory DCs could not induce the generation of Tregs, but they were found to directly inhibit mDCs that initiate CD4+ and CD8+ T cell proliferation both in vitro and in vivo. Soluble factors including NO play a role in the DCapos-induced suppression of CD4+ and CD8+ T cell proliferation. Further results showed that STAT3 phosphorylation and inducible nitric oxide synthase (iNOS) generation were enhanced when DCs were co-cultured with apoptotic cells. Both iNOS transcription and NO secretion were inhibited in the presence of the specific p-STAT3 inhibitor JSI-124. All the data indicated that apoptotic cells could turn DCs to inhibitory DCs, which might play important roles in the suppression of immune responses. STAT3 activation and the consequent release of NO are responsible for the inhibitory functions of DCapos.
Collapse
Affiliation(s)
- Kaili Zhong
- Department of Lymphoma, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Wengang Song
- Department of Immunology, Taishan Medical College, Tai’an, Shandong Province, People’s Republic of China
| | - Qian Wang
- Department of Immunology, Taishan Medical College, Tai’an, Shandong Province, People’s Republic of China
| | - Chao Wang
- Institute of Immunology, School of Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Xi Liu
- Institute of Immunology, School of Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Dongwei Chen
- Institute of Immunology, School of Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Zhongli Zhu
- Department of Immunology, Taishan Medical College, Tai’an, Shandong Province, People’s Republic of China
| | - Yiqing Wu
- Institute of Immunology, School of Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Weijing Zhang
- Department of Lymphoma, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, People’s Republic of China
- * E-mail: (WZ); (MZ)
| | - Minghui Zhang
- Institute of Immunology, School of Medicine, Tsinghua University, Beijing, People’s Republic of China
- * E-mail: (WZ); (MZ)
| |
Collapse
|
43
|
α-Enolase, a multifunctional protein: its role on pathophysiological situations. J Biomed Biotechnol 2012; 2012:156795. [PMID: 23118496 PMCID: PMC3479624 DOI: 10.1155/2012/156795] [Citation(s) in RCA: 260] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 06/25/2012] [Indexed: 12/29/2022] Open
Abstract
α-Enolase is a key glycolytic enzyme in the cytoplasm of prokaryotic and eukaryotic cells and is considered a multifunctional protein. α-enolase is expressed on the surface of several cell types, where it acts as a plasminogen receptor, concentrating proteolytic plasmin activity on the cell surface. In addition to glycolytic enzyme and plasminogen receptor functions, α-Enolase appears to have other cellular functions and subcellular localizations that are distinct from its well-established function in glycolysis. Furthermore, differential expression of α-enolase has been related to several pathologies, such as cancer, Alzheimer's disease, and rheumatoid arthritis, among others. We have identified α-enolase as a plasminogen receptor in several cell types. In particular, we have analyzed its role in myogenesis, as an example of extracellular remodelling process. We have shown that α-enolase is expressed on the cell surface of differentiating myocytes, and that inhibitors of α-enolase/plasminogen binding block myogenic fusion in vitro and skeletal muscle regeneration in mice. α-Enolase could be considered as a marker of pathological stress in a high number of diseases, performing several of its multiple functions, mainly as plasminogen receptor. This paper is focused on the multiple roles of the α-enolase/plasminogen axis, related to several pathologies.
Collapse
|
44
|
Abstract
Obesity rates are increasing alongside those of its co-morbidities, placing a huge strain on health systems across the globe. Evidence points to inappropriate levels of ectopic lipid accumulation outside of adipose tissue being a major factor in the progression of many of these diseases. Brown adipose tissue (BAT) has a huge capacity to remove lipids from the circulatory system to fuel thermogenesis. Multiple studies have now confirmed the existence of active BAT in adult humans, making strategies aimed at activating it a potential therapeutic option in obese subjects. In recent years, researchers working in murine models have found a wide range of endogenous molecules with specific roles regulating BAT. These findings place BAT firmly within the wider network of physiological regulation covering global metabolism. They also highlight the possibility of targeting thermogenesis in a safe and specific manner to remove potentially harmful lipids released from stressed or failing white adipose tissue in obese states.
Collapse
Affiliation(s)
- Andrew Whittle
- Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
| |
Collapse
|
45
|
Cross talk between engulfment receptors stabilin-2 and integrin αvβ5 orchestrates engulfment of phosphatidylserine-exposed erythrocytes. Mol Cell Biol 2012; 32:2698-708. [PMID: 22566688 DOI: 10.1128/mcb.06743-11] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Efficient cell corpse clearance is critical for health in organisms. Apoptotic cells displaying phosphatidylserine (PS) are recognized by engulfment receptors and ingested through two conserved pathways. In one pathway, engulfment receptor brain-specific angiogenesis inhibitor 1 (BAI-1) or integrin functions upstream of ELMO/DOCK180 and activate the small GTPase Rac1. In the other pathway, engulfment receptor CED-1 or stabilin-2 acts in concert with the adaptor protein GULP to activate Rac1. Stabilin-2, a PS receptor, facilitates phagocytosis of apoptotic cells and mediates the production of anti-inflammatory cytokines. Here, we propose that the stabilin-2 extracellular domain consisting of integrin-binding fasciclin 1 (FAS1) domains coordinates the activities of the two phagocytic pathways via direct interactions with integrin. Interactions between stabilin-2 and integrin were determined using biochemical assays, including coimmunoprecipitation and fluorescence resonance energy transfer (FRET). These interactions appear to have functional relevance, since knockdown of endogenous αvβ5 expression or treatment with a function-blocking αvβ5 antibody significantly decreased stabilin-2-mediated phagocytosis in the absence of soluble factors. Our data collectively suggest that the engulfment receptors of the two phagocytic pathways communicate with each other to orchestrate engulfment of damaged erythrocytes. Coordinated phagocytic signaling would be advantageous for physiological and pathological circumstances that require rapid clearance of abnormal (apoptotic or aged) cells.
Collapse
|
46
|
Zhao X, Bu DX, Hayfron K, Pinkerton KE, Bevins CL, Lichtman A, Wiedeman J. A combination of secondhand cigarette smoke and Chlamydia pneumoniae accelerates atherosclerosis. Atherosclerosis 2012; 222:59-66. [DOI: 10.1016/j.atherosclerosis.2012.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 01/18/2012] [Accepted: 02/02/2012] [Indexed: 10/28/2022]
|
47
|
High-fat diet increases and the polyphenol, S17834, decreases acetylation of the sirtuin-1-dependent lysine-382 on p53 and apoptotic signaling in atherosclerotic lesion-prone aortic endothelium of normal mice. J Cardiovasc Pharmacol 2012; 58:263-71. [PMID: 21654327 DOI: 10.1097/fjc.0b013e3182239eb7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Our purpose was to determine if high-fat diet and treatment with a polyphenol regulate the acetylation of lysine-382 of p53, the site regulated by sirtuin-1, and apoptosis in the endothelium of the atherosclerotic lesion-prone mouse aortic arch. In cultured endothelial cells, 2 atherogenic stimuli, hydrogen peroxide and tumor necrosis factor-α, increased the acetylation of p53 lysine-382, and caspase-3 cleavage, an indicator of apoptotic signaling. The polyphenol, S17834, significantly prevented these changes. In low-density lipoprotein receptor-deficient mice, a high-fat diet increased, and treatment with S17834 attenuated early atherosclerotic lesions on the lesser curvature of the aortic arch. In wild-type C57BL6 mice fed the same diet, no atherosclerotic lesions were observed in this lesion-prone area, but p53 acetylation and caspase-3 cleavage increased in the endothelium. In high-fat fed mice, S17834 increased sirtuin-1 protein in the lesion-prone endothelium and prevented both the increase in p53 acetylation and caspase-3 cleavage without affecting blood lipids. These results indicate that high-fat diet increases and S17834 decreases the acetylation of p53 in lesion-prone aortic endothelial cells of normal mice independently of blood lipids, suggesting that the polyphenol may regulate endothelial cell p53 acetylation and apoptosis via local actions.
Collapse
|
48
|
Van Vré EA, Ait-Oufella H, Tedgui A, Mallat Z. Apoptotic Cell Death and Efferocytosis in Atherosclerosis. Arterioscler Thromb Vasc Biol 2012; 32:887-93. [DOI: 10.1161/atvbaha.111.224873] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Apoptotic cell death is an important feature of atherosclerotic plaques, and it seems to exert both beneficial and detrimental effects depending on the cell type and plaque stage. Because late apoptotic cells can launch proatherogenic inflammatory responses, adequate engulfment of apoptotic cells (efferocytosis) by macrophages is important to withstand atherosclerosis progression. Several efferocytosis systems, composed of different phagocytic receptors, apoptotic ligands, and bridging molecules, can be distinguished. Because phagocytes in atherosclerotic plaques are very much solicited, a fully operative efferocytosis system seems to be an absolute requisite. Indeed, recent studies demonstrate that deletion of just 1 of the efferocytosis pathways aggravates atherosclerosis. This review discusses the role of apoptosis in atherosclerosis and general mechanisms of efferocytosis, to end with indirect and direct indications of the significance of effective efferocytosis in atherosclerosis.
Collapse
Affiliation(s)
- Emily A. Van Vré
- From the Institut National de la Santé et de la Recherche Médicale, Paris Cardiovascular Research Center, Paris, France (E.A.V.V., H.A.-O., A.T., Z.M.); Assistance Publique–Hôpitaux de Paris, Saint-Antoine Hospital, Paris, France (H.A.-O.); Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (Z.M.)
| | - Hafid Ait-Oufella
- From the Institut National de la Santé et de la Recherche Médicale, Paris Cardiovascular Research Center, Paris, France (E.A.V.V., H.A.-O., A.T., Z.M.); Assistance Publique–Hôpitaux de Paris, Saint-Antoine Hospital, Paris, France (H.A.-O.); Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (Z.M.)
| | - Alain Tedgui
- From the Institut National de la Santé et de la Recherche Médicale, Paris Cardiovascular Research Center, Paris, France (E.A.V.V., H.A.-O., A.T., Z.M.); Assistance Publique–Hôpitaux de Paris, Saint-Antoine Hospital, Paris, France (H.A.-O.); Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (Z.M.)
| | - Ziad Mallat
- From the Institut National de la Santé et de la Recherche Médicale, Paris Cardiovascular Research Center, Paris, France (E.A.V.V., H.A.-O., A.T., Z.M.); Assistance Publique–Hôpitaux de Paris, Saint-Antoine Hospital, Paris, France (H.A.-O.); Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (Z.M.)
| |
Collapse
|
49
|
Ucker DS, Jain MR, Pattabiraman G, Palasiewicz K, Birge RB, Li H. Externalized glycolytic enzymes are novel, conserved, and early biomarkers of apoptosis. J Biol Chem 2012; 287:10325-10343. [PMID: 22262862 DOI: 10.1074/jbc.m111.314971] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The intriguing cell biology of apoptotic cell death results in the externalization of numerous autoantigens on the apoptotic cell surface, including protein determinants for specific recognition, linked to immune responses. Apoptotic cells are recognized by phagocytes and trigger an active immunosuppressive response ("innate apoptotic immunity" (IAI)) even in the absence of engulfment. IAI is responsible for the lack of inflammation associated normally with the clearance of apoptotic cells; its failure also has been linked to inflammatory and autoimmune pathology, including systemic lupus erythematosus and rheumatic diseases. Apoptotic recognition determinants underlying IAI have yet to be identified definitively; we argue that these molecules are surface-exposed (during apoptotic cell death), ubiquitously expressed, protease-sensitive, evolutionarily conserved, and resident normally in viable cells (SUPER). Using independent and unbiased quantitative proteomic approaches to characterize apoptotic cell surface proteins and identify candidate SUPER determinants, we made the surprising discovery that components of the glycolytic pathway are enriched on the apoptotic cell surface. Our data demonstrate that glycolytic enzyme externalization is a common and early aspect of cell death in different cell types triggered to die with distinct suicidal stimuli. Exposed glycolytic enzyme molecules meet the criteria for IAI-associated SUPER determinants. In addition, our characterization of the apoptosis-specific externalization of glycolytic enzyme molecules may provide insight into the significance of previously reported cases of plasminogen binding to α-enolase on mammalian cells, as well as mechanisms by which commensal bacteria and pathogens maintain immune privilege.
Collapse
Affiliation(s)
- David S Ucker
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois 60612 and.
| | - Mohit Raja Jain
- Center for Advanced Proteomics Research, UMDNJ-New Jersey Medical School Cancer Center, Newark, New Jersey 07214; Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School Cancer Center, Newark, New Jersey 07214
| | - Goutham Pattabiraman
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois 60612 and
| | - Karol Palasiewicz
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois 60612 and
| | - Raymond B Birge
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School Cancer Center, Newark, New Jersey 07214
| | - Hong Li
- Center for Advanced Proteomics Research, UMDNJ-New Jersey Medical School Cancer Center, Newark, New Jersey 07214; Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School Cancer Center, Newark, New Jersey 07214.
| |
Collapse
|
50
|
Degnan AJ, Gillard JH. Improving atherosclerosis risk assessment: looking beyond plaque accumulation to imaging of embolization and healing. FUTURE NEUROLOGY 2012. [DOI: 10.2217/fnl.11.60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cerebrovascular and cardiovascular diseases constitute the most substantial disease burden worldwide and are only increasing in importance. Understanding how individuals with atherosclerosis may be better assessed for risk of stroke and myocardial infarction will have immense importance in deciding on therapeutic options. Carotid atherosclerosis is frequently portrayed as an orderly progression from asymptomatic plaque formation that enlarges with aging and culminates in either stable, calcified plaque or vulnerable, ruptured and inflamed plaque. New evidence suggests that atherosclerosis is better described as an equilibrium between synthetic and degradative processes. Putatively, plaques heal and decrease in size through processes such as efferocytosis in individuals unlikely to experience symptoms, whereas individuals who experience symptoms lack reparative mechanisms. Present clinically employed imaging strategies overlook plaque healing mechanisms. Other approaches that examine the downstream effects of plaque, rather than static plaque measurement, such as ultrasound emboli signal detection may address the gap between plaque that is vulnerable in appearance and that which is actually likely to cause symptoms. To ascertain the clinical risk of atherosclerosis optimally, both sides of the equation must be examined instead of relying on a unidirectional accumulative approach to atherosclerosis.
Collapse
Affiliation(s)
| | - Jonathan H Gillard
- Department of Radiology, Addenbrooke’s Hospital, University of Cambridge, Box 218, Hills Road, Cambridge, UK
| |
Collapse
|