1
|
Lan W, Geng W, Jiang X, Chen F, Zhou M, Shen G, Lin P, Xia Q, Zhao P, Li Z. Transgenic silkworm expressing bioactive human ciliary neurotrophic factor for biomedical application. INSECT SCIENCE 2024. [PMID: 39219303 DOI: 10.1111/1744-7917.13442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Ciliary neurotrophic factor (CNTF) acts as a potent neuroprotective agent in neuronal survival and regeneration, and can also induce the differentiation of several stem cells into neurons, which highlights the broad application of CNTF in biomedicine. However, large-scale production of bioactive recombinant human CNTF protein remains to be explored. Herein, this study aims to express a bioactive human CNTF protein on a large scale by genetically engineering a silk gland bioreactor of silkworm. Our results showed that CNTF protein was successfully expressed in the middle silk gland (MSG) of silkworm, which can be secreted into the silks with the amount of 3.2 mg/g cocoons. The fabrication of human CNTF-functionalized silk material was able to promote proliferation and migration of neural cells when compared to the natural silk protein. Importantly, this functional silk material could also facilitate neurite outgrowth of mouse retinal ganglion cell (RGC-5) cells. All these data demonstrated a high bioactivity of the recombinant human CNTF protein expressed in the MSG of silkworm. The further fabrication of different silk materials with CNTF bioactivity will give biomedical applications in tissue engineering and neuroregeneration.
Collapse
Affiliation(s)
- Weiqun Lan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Wenjing Geng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Xuechun Jiang
- Weste College, Southwest University, Chongqing, China
| | - Feng Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Mingyi Zhou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Guanwang Shen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Ping Lin
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Ping Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Zhiqing Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| |
Collapse
|
2
|
Wang F, Wang RY, Zhong DB, Zhao P, Xia QY. Highly efficient expression of human extracellular superoxide dismutase (rhEcSOD) with ultraviolet-B-induced damage-resistance activity in transgenic silkworm cocoons. INSECT SCIENCE 2024; 31:1150-1164. [PMID: 38010045 DOI: 10.1111/1744-7917.13289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/20/2023] [Accepted: 09/24/2023] [Indexed: 11/29/2023]
Abstract
Extracellular superoxide dismutase (EcSOD) protects tissues from oxidative stress, and thus is considered as a therapeutic agent for many diseases such as atherosclerosis, hypertension, and cancer. However, cost-effective production of bioactive recombinant human EcSOD (rhEcSOD) remains a challenge. Herein, we developed an efficient strategy for producing active rhEcSOD by transgenic silkworms. rhEcSOD was successfully synthesized as homodimers and homotetramers in the middle silk gland and spun into the cocoons with a concentration of 9.48 ± 0.21 mg/g. Purification of rhEcSOD from the cocoons could be conveniently achieved with a purity of 99.50% and a yield of 3.5 ± 0.5 mg/g. Additionally, N-glycosylation at the only site of N89 in rhEcSOD with 10 types were identified. The purified rhEcSOD gained the potent enzymatic activity of 4 162 ± 293 U/mg after Cu/Zn ions incorporation. More importantly, rhEcSOD was capable of penetrating and accumulating in the nuclei of cells to maintain cell morphology and attenuate ultraviolet B-induced cell apoptosis by eliminating reactive oxygen species and inhibiting the C-Jun N-terminal kinase signaling pathway. These results demonstrated that the transgenic silkworm could successfully produce rhEcSOD with enzymatic and biological activities for biomedical applications.
Collapse
Affiliation(s)
- Feng Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Ri-Yuan Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - De-Bin Zhong
- Century Legend Biotechnology Research Institute (Chongqing) Co., Ltd., Chongqing, China
| | - Ping Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Qing-You Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| |
Collapse
|
3
|
NODA M, DANSHIITSOODOL N, KANNO K, SUGIYAMA M. Silk-derived sericin/fibroin mixture drink fermented with plant-derived Lactococcus lactis BM32-1 improves constipation and related microbiota: a randomized, double-blind, and placebo-controlled clinical trial. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2024; 43:282-292. [PMID: 38966048 PMCID: PMC11220338 DOI: 10.12938/bmfh.2023-102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/18/2024] [Indexed: 07/06/2024]
Abstract
We previously showed through clinical trials that one plant-derived lactic acid bacteria (LAB) can improve constipation. We preliminarily found that the plant-derived LAB Lactococcus lactis BM32-1 can grow in a mixture of sericin and fibroin, which are extracted from silk and have been reported to help promote health. Thus, in the present study, we evaluated the favorable effect of a sericin/fibroin mixture (S/F-M), which was extracted from silk prepared from cocoons reared in an aseptic rearing system using an artificial diet, fermented with the BM32-1 strain through a clinical trial. The trial was conducted at Hiroshima University from June to October 2022 as a double-blind, placebo-controlled, randomized parallel-group comparative study with 50 eligible subjects (aged 23-71) who had an average defecation frequency of less than 5 times per week. The subjects were instructed to drink 100 mL of fermented S/F-M or placebo every day. After the 12 weeks of the clinical trial period, the average defecation frequency increased significantly-1.4 times higher than that at baseline in the test group-as compared with the placebo group. Furthermore, the fecal microbiota was also compared before and after treatment, revealing that intake of the fermented S/F-M significantly multiplied the relative abundance of the genera Enterococcus and Clostridium, which have been reported to contribute to the amelioration of constipation by improving the gut microbiota and producing butyric acid, respectively. In conclusion, the S/F-M fermented using the BM32-1 strain improves defecation frequency through alteration of the gut microbiota.
Collapse
Affiliation(s)
- Masafumi NODA
- Department of Probiotic Science for Preventive Medicine,
Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi,
Minami-ku, Hiroshima 734-8551, Japan
| | - Narandalai DANSHIITSOODOL
- Department of Probiotic Science for Preventive Medicine,
Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi,
Minami-ku, Hiroshima 734-8551, Japan
| | - Keishi KANNO
- Department of General Internal Medicine, Hiroshima University
Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Masanori SUGIYAMA
- Department of Probiotic Science for Preventive Medicine,
Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi,
Minami-ku, Hiroshima 734-8551, Japan
| |
Collapse
|
4
|
Bitar L, Isella B, Bertella F, Bettker Vasconcelos C, Harings J, Kopp A, van der Meer Y, Vaughan TJ, Bortesi L. Sustainable Bombyx mori's silk fibroin for biomedical applications as a molecular biotechnology challenge: A review. Int J Biol Macromol 2024; 264:130374. [PMID: 38408575 DOI: 10.1016/j.ijbiomac.2024.130374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
Silk is a natural engineering material with a unique set of properties. The major constituent of silk is fibroin, a protein widely used in the biomedical field because of its mechanical strength, toughness and elasticity, as well as its biocompatibility and biodegradability. The domestication of silkworms allows large amounts of fibroin to be extracted inexpensively from silk cocoons. However, the industrial extraction process has drawbacks in terms of sustainability and the quality of the final medical product. The heterologous production of fibroin using recombinant DNA technology is a promising approach to address these issues, but the production of such recombinant proteins is challenging and further optimization is required due to the large size and repetitive structure of fibroin's DNA and amino acid sequence. In this review, we describe the structure-function relationship of fibroin, the current extraction process, and some insights into the sustainability of silk production for biomedical applications. We focus on recent advances in molecular biotechnology underpinning the production of recombinant fibroin, working toward a standardized, successful and sustainable process.
Collapse
Affiliation(s)
- Lara Bitar
- Maastricht University-Aachen Maastricht Institute for Biobased Materials (AMIBM), Urmonderbaan 22, 6167 RD Geleen, the Netherlands; Fibrothelium GmbH, Philipsstraße 8, 52068 Aachen, Germany
| | - Benedetta Isella
- Fibrothelium GmbH, Philipsstraße 8, 52068 Aachen, Germany; Biomechanics Research Centre (BioMEC), Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, University Road, H91 TK33 Galway, Ireland
| | - Francesca Bertella
- Maastricht University-Aachen Maastricht Institute for Biobased Materials (AMIBM), Urmonderbaan 22, 6167 RD Geleen, the Netherlands; B4Plastics, IQ Parklaan 2A, 3650 Dilsen-Stokkem, Belgium
| | - Carolina Bettker Vasconcelos
- Maastricht University-Aachen Maastricht Institute for Biobased Materials (AMIBM), Urmonderbaan 22, 6167 RD Geleen, the Netherlands; Umlaut GmbH, Am Kraftversorgungsturm 3, 52070 Aachen, Germany
| | - Jules Harings
- Maastricht University-Aachen Maastricht Institute for Biobased Materials (AMIBM), Urmonderbaan 22, 6167 RD Geleen, the Netherlands
| | - Alexander Kopp
- Fibrothelium GmbH, Philipsstraße 8, 52068 Aachen, Germany
| | - Yvonne van der Meer
- Maastricht University-Aachen Maastricht Institute for Biobased Materials (AMIBM), Urmonderbaan 22, 6167 RD Geleen, the Netherlands
| | - Ted J Vaughan
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, University Road, H91 TK33 Galway, Ireland
| | - Luisa Bortesi
- Maastricht University-Aachen Maastricht Institute for Biobased Materials (AMIBM), Urmonderbaan 22, 6167 RD Geleen, the Netherlands.
| |
Collapse
|
5
|
Dai X, Ye X, Shi L, Yu S, Wang X, Zhong B. High mechanical property silk produced by transgenic silkworms expressing the Drosophila Dumpy. Front Bioeng Biotechnol 2024; 12:1359587. [PMID: 38410165 PMCID: PMC10895422 DOI: 10.3389/fbioe.2024.1359587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/24/2024] [Indexed: 02/28/2024] Open
Abstract
Extensive research has been conducted on utilizing transgenic silkworms and their natural spinning apparatus to produce high-performance spider silk fibers. However, research on using non-spider biological proteins to optimize the molecular structure of silk protein and improve the mechanical performance of silk fibers is still relatively scarce. Dumpy, a massive extracellular matrix polypeptide, is essential for preserving the shape and structural integrity of the insect cuticle due to its remarkable tension and elasticity. Here, we constructed two transgenic donor plasmids containing the fusion genes of FibH-Dumpy and FibL-Dumpy. The results indicated the successful integration of two exogenous gene expression cassettes, driven by endogenous promoters, into the silkworm genome using piggyBac-mediated transgenic technology. Secondary structure analysis revealed a 16.7% and 13.6% increase in the β-sheet content of transgenic silks compared to wild-type (WT) silk fibers. Mechanical testing demonstrated that, compared to the WT, HDUY and LDUY transgenic silk fibers exhibited respective increases of 39.54% and 21.45% in maximum stress, 44.43% and 45.02% in toughness, and 24.91% and 28.51% in elastic recovery rate. These findings suggest that Drosophila Dumpy significantly enhanced the mechanical properties of silk, positioning it as an excellent candidate for the development of extraordinary-performance fibers. This study provides rich inspiration for using other biological proteins to construct high-performance silk fibers and expands the possibilities for designing and applying novel biomaterials.
Collapse
Affiliation(s)
- Xiangping Dai
- Institute of Silkworm and Bee Research, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
| | - Xiaogang Ye
- Institute of Silkworm and Bee Research, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
| | - Liangen Shi
- Institute of Applied Bioresource Research, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Shihua Yu
- Institute of Silkworm and Bee Research, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
| | - Xinqiu Wang
- Institute of Silkworm and Bee Research, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
| | - Boxiong Zhong
- Institute of Silkworm and Bee Research, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
| |
Collapse
|
6
|
Tan H, Ji Y, Lei H, Wang F, Dong H, Yang S, Zhou H, Deng H, Chen S, Kaplan DL, Xia Q, Wang F. Large-scale and cost-effective production of recombinant human serum albumin (rHSA) in transgenic Bombyx mori cocoons. Int J Biol Macromol 2023:125527. [PMID: 37379947 DOI: 10.1016/j.ijbiomac.2023.125527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
HSA is considered a versatile natural cargo carrier with multiple bio-functions and applications. However, insufficient supply of HSA has limited widespread use. Although various recombinant expression systems had been applied to produce the rHSA to overcome the limited resource, cost-effective and large scale production of rHSA remains a challenge. Herein, we provide a strategy for the large-scale and cost-effective production of rHSA in cocoons of transgenic silkworms, achieving a final 13.54 ± 1.34 g/kg of rHSA yield in cocoons. rHSA was efficiently synthesized and stable over the long-term in the cocoons at room temperature. Artificial control of silk crystal structure during silk spinning significantly facilitated rHSA extraction and purification, with 99.69 ± 0.33 % purity and a productivity of 8.06 ± 0.17 g rHSA from 1 kg cocoons. The rHSA had the same secondary structure to natural HSA, along with effective drug binding capacity, biocompatibility, and bio-safe. The rHSA was successfully evaluated as a potential substitute in serum-free cell culture. These findings suggest the silkworm bioreactor is promising for large-scale and cost-effective production of high quality rHSA to meet the increased worldwide demand.
Collapse
Affiliation(s)
- Huanhuan Tan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, PR China
| | - Yanting Ji
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, PR China
| | - Hexu Lei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, PR China
| | - Fangyu Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, PR China
| | - Huan Dong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, PR China
| | - Shifeng Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, PR China
| | - Hongji Zhou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, PR China
| | - Hanxin Deng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, PR China
| | - Siyu Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, PR China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, PR China.
| | - Feng Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
7
|
Zhang W, Li Z, Lan W, Guo H, Chen F, Wang F, Shen G, Xia Q, Zhao P. Bioengineered silkworm model for expressing human neurotrophin-4 with potential biomedical application. Front Physiol 2023; 13:1104929. [PMID: 36685209 PMCID: PMC9846172 DOI: 10.3389/fphys.2022.1104929] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023] Open
Abstract
Neurotrophin-4 (NT-4) is a neurotrophic factor that plays important roles in maintaining nerve cell survival, regulating neuronal differentiation and apoptosis, and promoting nerve injury repair. However, the source of sufficient NT-4 protein and efficient delivery of NT-4 remain a challenge. This study aims to express an activated human NT-4 protein in a large scale by genetically engineering silk gland bioreactor of silkworm as a host. We showed that the expression of human NT-4-functionalized silk material could promote proliferation of mouse HT22 cells when compared to the natural silk protein, and no obvious cytotoxicity was observed under the conditions of different silk materials. Importantly, this functional silk material was able to induce the potential differentiation of HT22 cells, promote peripheral neural cell migration and neurite outgrowth of chicken embryo dorsal root ganglion (DRG). All these results demonstrated a high bioactivity of human NT-4 protein produced in silk gland. Therefore, based on the silkworm model, the further fabrication of different silk materials-carrying active NT-4 protein with good mechanical properties and great biocompatibility will give promising applications in tissue engineering and neurons regeneration.
Collapse
Affiliation(s)
- Wenchang Zhang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China,Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Chongqing, China,Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Zhiqing Li
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China,Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Chongqing, China,Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Weiqun Lan
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China,Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Chongqing, China,Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Hao Guo
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China,Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Chongqing, China,Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Feng Chen
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China,Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Chongqing, China,Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Feng Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China,Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Chongqing, China,Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Guanwang Shen
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China,Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Chongqing, China,Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China,Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Chongqing, China,Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China,Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Chongqing, China,Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China,*Correspondence: Ping Zhao,
| |
Collapse
|
8
|
Kajiura H, Tatematsu KI, Nomura T, Miyazawa M, Usami A, Tamura T, Sezutsu H, Fujiyama K. Insights into the quality of recombinant proteins produced by two different Bombyx mori expression systems. Sci Rep 2022; 12:18502. [PMID: 36323753 PMCID: PMC9628610 DOI: 10.1038/s41598-022-22565-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 10/17/2022] [Indexed: 11/26/2022] Open
Abstract
The silkworm, Bombyx mori, is an attractive host for recombinant protein production due to its high expression efficiency, quality, and quantity. Two expression systems have been widely used for recombinant protein production in B. mori: baculovirus/silkworm expression system and transgenic silkworm expression system. Both expression systems enable high protein production, but the qualities of the resulting recombinant proteins have not been well evaluated. In this study, we expressed bovine interferon γ (IFN-γ) using the two systems and examined the quality of the resulting proteins in terms of N-glycosylation and protein cleavage. Both expression systems successfully produced IFN-γ as an N-glycoprotein. Although the production in the baculovirus/silkworm expression system was much more efficient than that in the transgenic silkworm expression system, unexpected variants of IFN-γ were also produced in the former system due to the different N-glycosylation and C-terminal truncations. These results indicate that while high protein production could be achieved in the baculovirus/silkworm expression system, unintentional protein modification might occur, and therefore protein expression in the transgenic silkworm expression system is preferable from the point-of-view of N-glycosylation of the recombinant protein and evasion of unexpected attack by a protease in B. mori.
Collapse
Affiliation(s)
- Hiroyuki Kajiura
- grid.136593.b0000 0004 0373 3971International Center for Biotechnology, Osaka University, 2-1 Yamada-Oka, Suita-Shi, Osaka, 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-1 Yamada-Oka, Suita-Shi, Osaka, 565-0871 Japan
| | - Ken-ichiro Tatematsu
- grid.416835.d0000 0001 2222 0432Division of Silk-Producing Insect Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki 305-8634 Japan
| | - Tsuyoshi Nomura
- grid.419812.70000 0004 1777 4627Sysmex Corporation, 1548 Ooaza Shimookudomi, Sayama, Saitama 350-1332 Japan
| | - Mitsuhiro Miyazawa
- grid.416835.d0000 0001 2222 0432Division of Biomaterial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki 305-8634 Japan
| | - Akihiro Usami
- grid.419812.70000 0004 1777 4627Sysmex Corporation, 1548 Ooaza Shimookudomi, Sayama, Saitama 350-1332 Japan
| | - Toshiki Tamura
- grid.416629.e0000 0004 0377 2137Silk Science and Technology Research Institute, 1053, Iikura, Ami-Machi, Ibaraki, 300-0324 Japan
| | - Hideki Sezutsu
- grid.416835.d0000 0001 2222 0432Division of Silk-Producing Insect Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki 305-8634 Japan
| | - Kazuhito Fujiyama
- grid.136593.b0000 0004 0373 3971International Center for Biotechnology, Osaka University, 2-1 Yamada-Oka, Suita-Shi, Osaka, 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-1 Yamada-Oka, Suita-Shi, Osaka, 565-0871 Japan ,grid.10223.320000 0004 1937 0490Osaka University Cooperative Research Station in Southeast Asia (OU:CRS), Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
9
|
Lian AA, Yamaji Y, Kajiwara K, Takaki K, Mori H, Liew MWO, Kotani E, Maruta R. A Bioengineering Approach for the Development of Fibroblast Growth Factor-7-Functionalized Sericin Biomaterial Applicable for the Cultivation of Keratinocytes. Int J Mol Sci 2022; 23:ijms23179953. [PMID: 36077351 PMCID: PMC9456417 DOI: 10.3390/ijms23179953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/21/2022] [Accepted: 08/30/2022] [Indexed: 12/04/2022] Open
Abstract
Growth factors, including fibroblast growth factor-7 (FGF-7), are a group of proteins that stimulate various cellular processes and are often used with carriers to prevent the rapid loss of their activities. Sericin with great biocompatibility has been investigated as a proteinaceous carrier to enhance the stability of incorporated proteins. The difficulties in obtaining intact sericin from silkworm cocoons and the handling of growth factors with poor stability necessitate an efficient technique to incorporate the protein into a sericin-based biomaterial. Here, we report the generation of a transgenic silkworm line simultaneously expressing and incorporating FGF-7 into cocoon shells containing almost exclusively sericin. Growth-factor-functionalized sericin cocoon shells requiring simple lyophilization and pulverization processes were successfully used to induce the proliferation and migration of keratinocytes. Moreover, FGF-7 incorporated into sericin-cocoon powder exhibited remarkable stability, with more than 70% of bioactivity being retained after being stored as a suspension at 25 °C for 3 months. Transgenic sericin-cocoon powder was used to continuously supply biologically active FGF-7 to generate a three-dimensionally cultured keratinocyte model in vitro. The outcomes of this study propound a feasible approach to producing cytokine-functionalized sericin materials that are ready to use for cell cultivation.
Collapse
Affiliation(s)
- Ai Ai Lian
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yuka Yamaji
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kazuki Kajiwara
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Keiko Takaki
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
- Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hajime Mori
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Mervyn Wing On Liew
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
| | - Eiji Kotani
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
- Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
- Correspondence: (E.K.); (R.M.); Tel.: +81-75-724-7774 (E.K. & R.M.)
| | - Rina Maruta
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
- Correspondence: (E.K.); (R.M.); Tel.: +81-75-724-7774 (E.K. & R.M.)
| |
Collapse
|
10
|
Zabelina V, Vrchotova M, Yonemura N, Sezutsu H, Tamura T, Klymenko V, Sehnal F, Zurovec M, Sehadova H, Sauman I. The Exact Timing of Microinjection of Parthenogenetic Silkworm Embryos Is Crucial for Their Successful Transgenesis. Front Physiol 2022; 13:822900. [PMID: 35399273 PMCID: PMC8990321 DOI: 10.3389/fphys.2022.822900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/28/2022] [Indexed: 12/03/2022] Open
Abstract
The use of parthenogenetic silkworm (Bombyx mori) strains, which eliminate the problem of recombination, is a useful tool for maintaining transgenic clonal lines. The generation of genetically identical individuals is becoming an important tool in genetic engineering, allowing replication of an existing advantageous trait combination without the mixing that occurs during sexual reproduction. Thus, an animal with a particular genetic modification, such as the ability to produce transgenic proteins, can reproduce more rapidly than by natural mating. One obstacle to the widespread use of parthenogenesis in silkworm genetic engineering is the relatively low efficiency of downstream transgenesis techniques. In this work, we seek to optimize the use of transgenesis in conjunction with the production of parthenogenetic individuals. We found that a very important parameter for the introduction of foreign genes into a parthenogenetic strain is the precise timing of embryo microinjection. Our modification of the original method increased the efficiency of transgene injection as well as the survival rate of injected embryos. We also provide a detailed description of the methodological procedure including a graphical overview of the entire protocol.
Collapse
Affiliation(s)
- Valeriya Zabelina
- Biology Center CAS, Institute of Entomology, České Budějovice, Czechia.,Faculty of Science, University of South Bohemia, České Budějovice, Czechia.,National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Marketa Vrchotova
- Biology Center CAS, Institute of Entomology, České Budějovice, Czechia.,Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Naoyuki Yonemura
- National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Hideki Sezutsu
- National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Toshiki Tamura
- National Agriculture and Food Research Organization, Tsukuba, Japan.,Silk Sciences and Technology Research Institute, Ibaraki, Japan
| | - Vyacheslav Klymenko
- Faculty of Automation and Information Technology in Management, Ryazan State Radio Engineering University, Ryazan, Russia
| | - Frantisek Sehnal
- Biology Center CAS, Institute of Entomology, České Budějovice, Czechia.,Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Michal Zurovec
- Biology Center CAS, Institute of Entomology, České Budějovice, Czechia.,Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Hana Sehadova
- Biology Center CAS, Institute of Entomology, České Budějovice, Czechia.,Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Ivo Sauman
- Biology Center CAS, Institute of Entomology, České Budějovice, Czechia.,Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| |
Collapse
|
11
|
Berger O, Battistella C, Chen Y, Oktawiec J, Siwicka ZE, Tullman-Ercek D, Wang M, Gianneschi NC. Mussel Adhesive-Inspired Proteomimetic Polymer. J Am Chem Soc 2022; 144:4383-4392. [PMID: 35238544 DOI: 10.1021/jacs.1c10936] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Herein, a synthetic polymer proteomimetic is described that reconstitutes the key structural elements and function of mussel adhesive protein. The proteomimetic was prepared via graft-through ring-opening metathesis polymerization of a norbornenyl-peptide monomer. The peptide was derived from the natural underwater glue produced by marine mussels that is composed of a highly repetitive 10 amino acid tandem repeat sequence. The hypothesis was that recapitulation of the repeating unit in this manner would provide a facile route to a nature-inspired adhesive. To this end, the material, in which the arrangement of peptide units was as side chains on a brush polymer rather than in a linear fashion as in the natural protein, was examined and compared to the native protein. Mechanical measurements of adhesion forces between solid surfaces revealed improved adhesion properties over the natural protein, making this strategy attractive for diverse applications. One such application is demonstrated, using the polymers as a surface adhesive for the immobilization of live cells.
Collapse
Affiliation(s)
- Or Berger
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Claudia Battistella
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yusu Chen
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Julia Oktawiec
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Zofia E Siwicka
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Muzhou Wang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Nathan C Gianneschi
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.,Department of Pharmacology, Northwestern University, Chicago, Illinois 60611, United States.,Department of Biomedical Engineering, Northwestern University, Chicago, Illinois 60611, United States.,Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.,International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States.,Simpson-Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
12
|
Tzenov P, Cappellozza S, Saviane A. Black, Caspian Seas and Central Asia Silk Association (BACSA) for the Future of Sericulture in Europe and Central Asia. INSECTS 2021; 13:insects13010044. [PMID: 35055887 PMCID: PMC8780608 DOI: 10.3390/insects13010044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/17/2021] [Accepted: 12/28/2021] [Indexed: 11/30/2022]
Abstract
Simple Summary This paper describes the 16-years long activity of the Black Caspian Seas and Central Asia Silk Association, which was founded in 2005 to revive the sericultural activity in the area indicated by its own denomination. The reasons why this Association was established are described as a direct consequence of the decline in the sericulture agroindustry following the collapse of the Soviet Union and the world cocoon/raw silk decrease of production (except for China and India) since the 90s of the 20th century. Therefore, the enlargement of its membership to countries outside of the boundaries of the geographical area is outlined as well as its internal organization and the actions performed to promote the interaction among the member countries, especially the biyearly conferences. The international scenario is depicted to explain the criticalities experienced in promoting sericultural activities in the region, as well as the opportunities offered by the new applications of the silk, silk proteins and mulberry derivatives. Abstract The history and recent activities of the Black Caspian Seas and Central Asia Silk Association are presented in this paper: the countries that participated in its foundation, the FAO’s action to revitalize sericulture in Eastern Europe and Central Asia, the following widening of the Association geographical limits of to enclose other European countries, which were not well-represented in other similar organizations. Some statistical data are illustrated for a better description of the scenario in which the BACSA executive board acted: the world silk production quantity and the relative production of BACSA countries in respect to the Chinese expansion. The themes treated in the BACSA conferences are reported to explain which matters the Executive Board considered the most relevant for the relaunch of this activity in relationships to the international challenges in the subsequent years; the project proposals that were presented to international donors are summarized. A SWOT (Strengths, Weaknesses, Opportunities, Threats) analysis is shown, where key-factors in determining the strengths and weaknesses of this organization and its member countries for a successful re-establishment of sericulture, are considered. In addition, future trends of sericulture with regard to innovative productions and the Green Deal are examined.
Collapse
Affiliation(s)
- Panomir Tzenov
- Agricultural Academy, Scientific Center on Sericulture, 3000 Vratsa, Bulgaria
- Correspondence:
| | - Silvia Cappellozza
- Council for Agricultural Research and Economics, Research Center for Agriculture and Environment, Padua Seat, 35143 Padua, Italy; (S.C.); (A.S.)
| | - Alessio Saviane
- Council for Agricultural Research and Economics, Research Center for Agriculture and Environment, Padua Seat, 35143 Padua, Italy; (S.C.); (A.S.)
| |
Collapse
|
13
|
Khosropanah MH, Vaghasloo MA, Shakibaei M, Mueller AL, Kajbafzadeh AM, Amani L, Haririan I, Azimzadeh A, Hassannejad Z, Zolbin MM. Biomedical applications of silkworm (Bombyx Mori) proteins in regenerative medicine (a narrative review). J Tissue Eng Regen Med 2021; 16:91-109. [PMID: 34808032 DOI: 10.1002/term.3267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 12/19/2022]
Abstract
Silk worm (Bombyx Mori) protein, have been considered as potential materials for a variety of advanced engineering and biomedical applications for decades. Recently, silkworm silk has gained significant importance in research attention mainly because of its remarkable and exceptional mechanical properties. Silk has already been shown to have unique interactions with cells in tissues through bio-recognition units. The natural silk contains fibroin and sericin and has been used in various tissues of the human body (skin, bone, nerve, and so on). Besides, silk also still has anti-cancer, anti-tyrosinase, anti-coagulant, anti-oxidant, anti-bacterial, and anti-diabetic properties. This article is supposed to describe the diverse biomedical capabilities of B. Mori silk as the appropriate biomaterial among the assorted natural and artificial polymers that are presently accessible, and ideal for usage in regenerative medicine fields.
Collapse
Affiliation(s)
- Mohammad Hossein Khosropanah
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Alizadeh Vaghasloo
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Anna-Lena Mueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Amani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy and Department of Pharmaceutics, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashkan Azimzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Hassannejad
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
|
15
|
Zabelina V, Yonemura N, Uchino K, Iizuka T, Mochida Y, Takemura Y, Klymenko V, Sezutsu H, Sehnal F, Tamura T. Production of cloned transgenic silkworms by breeding non-diapausing parthenogenetic strains. JOURNAL OF INSECT PHYSIOLOGY 2021; 132:104265. [PMID: 34097982 DOI: 10.1016/j.jinsphys.2021.104265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
Clonal transgenic silkworms are useful for the functional analysis of insect genes and for the production of recombinant proteins. Such silkworms have previously been created using an existing ameiotic parthenogenetic strain. However, the process was labor intensive, and the efficiency of producing transgenic silkworms was very low. To overcome this issue, we developed a more convenient and efficient method by breeding non-diapausing parthenogenetic strains. The strains produced non-diapausing eggs only when the embryogenesis of the parent eggs was performed at low temperatures, which could then be used for injecting vector plasmids. This demonstrated that transgenic silkworms could be produced with greater ease and efficiency. To breed the strains, we crossed the existing parthenogenetic strains with bivoltine strains and made F1 and F2 from each cross. Then we selected the silkworms whose eggs have a high ability of parthenogenesis and became non-diapausing. We also demonstrated that the germplasm could be cryopreserved in liquid nitrogen. Thus, this method increases the efficiency and ease of using genetically engineered silkworms to analyze gene function and produce recombinant proteins, potentially impacting various industries.
Collapse
Affiliation(s)
- Valeriya Zabelina
- Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki 305-8634, Japan
| | - Naoyuki Yonemura
- Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki 305-8634, Japan
| | - Keiro Uchino
- Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki 305-8634, Japan
| | - Tetsuya Iizuka
- Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki 305-8634, Japan
| | - Yuji Mochida
- Institute of Sericulture, Iikura 1053, 300-0324 Ami-machi, Ibaraki, Japan
| | - Yoko Takemura
- Institute of Sericulture, Iikura 1053, 300-0324 Ami-machi, Ibaraki, Japan
| | | | - Hideki Sezutsu
- Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki 305-8634, Japan
| | | | - Toshiki Tamura
- Institute of Sericulture, Iikura 1053, 300-0324 Ami-machi, Ibaraki, Japan.
| |
Collapse
|
16
|
Yamada K, Masuda K, Ida S, Tada H, Bando M, Abe K, Tatematsu KI, Sezutsu H, Oyama T, Chikamatsu K, Takeda S. In vitro assessment of antitumor immune responses using tumor antigen proteins produced by transgenic silkworms. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:58. [PMID: 33999320 PMCID: PMC8128804 DOI: 10.1007/s10856-021-06526-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
The evaluation of antitumor immune responses is essential for immune monitoring to predict clinical outcomes as well as treatment efficacies in cancer patients. In this study, we produced two tumor antigen (TA) proteins, melanoma antigen family A4 and wild type p53, using TG silkworm systems and evaluated anti-TA-specific immune responses by enzyme-linked immunosorbent spot assays in patients with head and neck cancer. Eleven (61.1%) of 18 patients showed significant IFN-γ production in response to at least one TA; however, the presence of TA-specific immune responses did not significantly contribute to better prognosis (overall survival, p = 0.1768; progression-free survival, p = 0.4507). Further studies will need to be performed on a larger scale to better assess the clinical significance of these systems. The production of multiple TA proteins may provide new avenues for the development of immunotherapeutic strategies to stimulate a potent and specific immune response against tumor cells as well as precise assessment of antitumor immune responses in cancer patients.
Collapse
Affiliation(s)
- Kanae Yamada
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, Kiryu, Gunma, 376-8515, Japan
| | - Kei Masuda
- Department of Pathology, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Shota Ida
- Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Hiroe Tada
- Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Minori Bando
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, Kiryu, Gunma, 376-8515, Japan
| | - Kanako Abe
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, Kiryu, Gunma, 376-8515, Japan
| | - Ken-Ichiro Tatematsu
- Transgenic Silkworm Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8634, Japan
| | - Hideki Sezutsu
- Transgenic Silkworm Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8634, Japan
| | - Tetsunari Oyama
- Department of Pathology, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Kazuaki Chikamatsu
- Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan.
| | - Shigeki Takeda
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, Kiryu, Gunma, 376-8515, Japan.
| |
Collapse
|
17
|
P25 Gene Knockout Contributes to Human Epidermal Growth Factor Production in Transgenic Silkworms. Int J Mol Sci 2021; 22:ijms22052709. [PMID: 33800168 PMCID: PMC7962452 DOI: 10.3390/ijms22052709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/21/2021] [Accepted: 03/04/2021] [Indexed: 12/30/2022] Open
Abstract
Transgenic silkworm expression systems have been applied for producing various recombinant proteins. Knocking out or downregulating an endogenous silk protein is considered a viable strategy for improving the ability of transgenic expression systems to produce exogenous proteins. Here, we report the expression of human epidermal growth factor (hEGF) in a P25 gene knockout silkworm. The hEGF gene regulated by the P25 gene promoter was integrated into a silkworm's genome. Five transgenic positive silkworm lineages were generated with different insertion sites on silkworm chromosomes and the ability to synthesize and secrete proteins into cocoons. Then, a cross-strategy was used to produce transgenic silkworms with a P25 gene knockout background. The results of the protein analysis showed that the loss of an endogenous P25 protein can increase the hEGF production to about 2.2-fold more than normal silkworms. Compared to those of transgenic silkworms with wild type (non-knockout) background, the morphology and secondary structure of cocoon silks were barely changed in transgenic silkworms with a P25 gene knockout background, indicating their similar physical properties of cocoon silks. In conclusion, P25 gene knockout silkworms may become an efficient bioreactor for the production of exogenous proteins and a promising tool for producing various protein-containing silk biomaterials.
Collapse
|
18
|
Yang CC, Yokoi K, Yamamoto K, Jouraku A. An update of KAIKObase, the silkworm genome database. Database (Oxford) 2021; 2021:baaa099. [PMID: 33645624 PMCID: PMC7918157 DOI: 10.1093/database/baaa099] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022]
Abstract
KAIKObase was established in 2009 as the genome database of the domesticated silkworm Bombyx mori. It provides several gene sets and genetic maps as well as genome annotation obtained from the sequencing project of the International Silkworm Genome Consortium in 2008. KAIKObase has been used widely for silkworm and insect studies even though there are some erroneous predicted genes due to misassembly and gaps in the genome. In 2019, we released a new silkworm genome assembly, showing improvements in gap closure and covering more and longer gene models. Therefore, there is a need to include new genome and new gene models to KAIKObase. In this article, we present the updated contents of KAIKObase and the methods to generate, integrate and analyze the data sets. Database URL: https://kaikobase.dna.affrc.go.jp.
Collapse
Affiliation(s)
- Ching-chia Yang
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Kakeru Yokoi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Kimiko Yamamoto
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Akiya Jouraku
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| |
Collapse
|
19
|
Wang Y, Ren J, Ye C, Pei Y, Ling S. Thermochromic Silks for Temperature Management and Dynamic Textile Displays. NANO-MICRO LETTERS 2021; 13:72. [PMID: 34138303 PMCID: PMC8187528 DOI: 10.1007/s40820-021-00591-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/20/2020] [Indexed: 05/16/2023]
Abstract
HIGHLIGHTS Wearable and smart textiles are constructed by integrating embroidery technology and 5G cloud communication, showing promising applications in temperature management and real-time dynamic textile displays. Thermochromism is introduced into the natural silk to produce high-performance thermochromic silks (TCSs) through a low cost, sustainable, efficient, and scalable strategy. The interfacial bonding of the continuously produced TCSs is in situ analyzed and improved through pre-solvent treatment and is confirmed using synchrotron Fourier transform infrared microspectroscopy. ABSTRACT Silks have various advantages compared with synthetic polymer fibers, such as sustainability, mechanical properties, luster, as well as air and humidity permeability. However, the functionalization of silks has not yet been fully developed. Functionalization techniques that retain or even improve the sustainability of silk production are required. To this end, a low-cost, effective, and scalable strategy to produce TCSs by integrating yarn-spinning and continuous dip coating technique is developed herein. TCSs with extremely long length (> 10 km), high mechanical performance (strength of 443.1 MPa, toughness of 56.0 MJ m−3, comparable with natural cocoon silk), and good interfacial bonding were developed. TCSs can be automatically woven into arbitrary fabrics, which feature super-hydrophobicity as well as rapid and programmable thermochromic responses with good cyclic performance: the response speed reached to one second and remained stable after hundreds of tests. Finally, applications of TCS fabrics in temperature management and dynamic textile displays are demonstrated, confirming their application potential in smart textiles, wearable devices, flexible displays, and human–machine interfaces. Moreover, combination of the fabrication and the demonstrated applications is expected to bridge the gap between lab research and industry and accelerate the commercialization of TCSs. [Image: see text] SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s40820-021-00591-w.
Collapse
Affiliation(s)
- Yang Wang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, People's Republic of China
| | - Jing Ren
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, People's Republic of China
| | - Chao Ye
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, People's Republic of China
| | - Ying Pei
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, People's Republic of China.
| |
Collapse
|
20
|
Nakaya H, Tatematsu KI, Sezutsu H, Kuwabara N, Koibuchi N, Takeda S. Secretory expression of thyroid hormone receptor using transgenic silkworms and its DNA binding activity. Protein Expr Purif 2020; 176:105723. [PMID: 32768455 DOI: 10.1016/j.pep.2020.105723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 10/23/2022]
Abstract
Silkworms are economically important insects that have the ability to produce large amounts of silk. They have mass breeding methods and silk glands, which are specialized tissues that secrete silk fibroin and sericin. Thus, the production of recombinant proteins in a transgenic silkworm system is a promising approach. We developed a silkworm, Bombyx mori, as a host expression insect for recombinant proteins and successfully produced different proteins including antibodies, glycoproteins, and membrane receptors. The thyroid hormone receptor (TR) is a regulatory factor for many physiological phenomena. It is a lipophilic protein that has DNA-binding and ligand-binding domains. Based on our previous experiences, it was inferred that the recombinant TR easily formed aggregates and precipitates which is potentially due to an unstructured hinge domain. We applied the silkworm expression system to produce mice TRβ1 that was fused with glutathione S-transferase. Using 160 larvae, the yield of the recombinant GST-TRβ was approximately 4 mg, and the purified GST-TRβ completely retained its physiological activity. Our results indicated that the recombinant TRβ was secreted extracellularly using the silk fibroin signal peptide sequence. Moreover, we found that the expression system of silkworms was applicable to nuclear proteins.
Collapse
Affiliation(s)
- Hirofumi Nakaya
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, Kiryu, Gunma, 376-8515, Japan
| | - Ken-Ichiro Tatematsu
- Transgenic Silkworm Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8634, Japan
| | - Hideki Sezutsu
- Transgenic Silkworm Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8634, Japan
| | - Nobuo Kuwabara
- Gunma Sericultural Technology Center, Maebashi, Gunma, 371-8570, Japan
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi Maebashi, Gunma, 371-8511, Japan
| | - Shigeki Takeda
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, Kiryu, Gunma, 376-8515, Japan.
| |
Collapse
|
21
|
Chen T, Sun Q, Ma Y, Zeng W, Liu R, Qu D, Huang L, Xu H. A transcriptome atlas of silkworm silk glands revealed by PacBio single-molecule long-read sequencing. Mol Genet Genomics 2020; 295:1227-1237. [PMID: 32524299 DOI: 10.1007/s00438-020-01691-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/25/2020] [Indexed: 02/05/2023]
Abstract
The silk gland of the silkworm Bombyx mori is a specialized organ where silk proteins are efficiently synthesized under precise regulation that largely determines the properties of silk fibers. To understand the genes involved in the regulation of silk protein synthesis, considerable research has focused on the transcripts expressed in silk glands; however, the complete transcriptome profile of this organ has yet to be elucidated. Here, we report a full-length silk gland transcriptome obtained by PacBio single-molecule long-read sequencing technology. In total, 11,697 non-redundant transcripts were identified in mixed samples of silk glands dissected from larvae at five developmental stages. When compared with the published reference, the full-length transcripts optimized the structures of 3002 known genes, and a total of 9061 novel transcripts with an average length of 2171 bp were detected. Among these, 1403 (15.5%) novel transcripts were computationally revealed to be lncRNAs, 8135 (89.8%) novel transcripts were annotated to different protein and nucleotide databases, and 5655 (62.4%) novel transcripts were predicted to have complete ORFs. Furthermore, we found 1867 alternative splicing events, 2529 alternative polyadenylation events, 784 fusion events and 6596 SSRs. This study provides a comprehensive set of reference transcripts and greatly revises and expands the available silkworm transcript data. In addition, these data will be very useful for studying the regulatory mechanisms of silk protein synthesis.
Collapse
Affiliation(s)
- Tao Chen
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
- The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Nanjing, 212018, Jiangsu, China
| | - Qiwei Sun
- International Bioinformatics Center, BGI Genomics Co., Ltd, Shenzhen, 518083, Guangdong, China
| | - Yan Ma
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Wenhui Zeng
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Rongpeng Liu
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Dawei Qu
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Lihua Huang
- International Bioinformatics Center, BGI Genomics Co., Ltd, Shenzhen, 518083, Guangdong, China
| | - Hanfu Xu
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
22
|
Leem JW, Fraser MJ, Kim YL. Transgenic and Diet-Enhanced Silk Production for Reinforced Biomaterials: A Metamaterial Perspective. Annu Rev Biomed Eng 2020; 22:79-102. [PMID: 32160010 DOI: 10.1146/annurev-bioeng-082719-032747] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Silk fibers, which are protein-based biopolymers produced by spiders and silkworms, are fascinating biomaterials that have been extensively studied for numerous biomedical applications. Silk fibers often have remarkable physical and biological properties that typical synthetic materials do not exhibit. These attributes have prompted a wide variety of silk research, including genetic engineering, biotechnological synthesis, and bioinspired fiber spinning, to produce silk proteins on a large scale and to further enhance their properties. In this review, we describe the basic properties of spider silk and silkworm silk and the important production methods for silk proteins. We discuss recent advances in reinforced silk using silkworm transgenesis and functional additive diets with a focus on biomedical applications. We also explain that reinforced silk has an analogy with metamaterials such that user-designed atypical responses can be engineered beyond what naturally occurring materials offer. These insights into reinforced silk can guide better engineering of superior synthetic biomaterials and lead to discoveries of unexplored biological and medical applications of silk.
Collapse
Affiliation(s)
- Jung Woo Leem
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Malcolm J Fraser
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA.,Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Young L Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.,Purdue University Center for Cancer Research, Regenstrief Center for Healthcare Engineering, and Purdue Quantum Science and Engineering Institute, West Lafayette, Indiana 47907, USA;
| |
Collapse
|
23
|
Production of a correctly assembled fibrinogen using transgenic silkworms. Transgenic Res 2020; 29:339-353. [PMID: 32367383 DOI: 10.1007/s11248-020-00202-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/17/2020] [Indexed: 10/24/2022]
Abstract
Fibrinogen from human blood is used as a main component of coagulants, including surgical tissue sealants. The development of a recombinant human fibrinogen (rFib) is anticipated to eliminate the risks of blood-borne infections. Here, we report the efficient production of rFib in a transgenic silkworm system. A silkworm line carrying cDNAs of the fibrinogen Aα and γ chains (Aα/γ-silkworm) produced Aα and γ chains in its cocoons, however, the Bβ chains were not detected from cocoons of another silkworm line carrying the cDNA of fibrinogen Bβ chains (Bβ-silkworm). A silkworm line for all three fibrinogen chains was generated by crossing Aα/γ-silkworms with Bβ-silkworms, which secreted Aα2Bβ2γ2 fibrinogen (rFib) into cocoons at high contents. The N-terminal amino acid sequences of the three rFib chains were identical to those of the corresponding chains of native fibrinogen (nFib). The N-glycan profile of the rFib comprised oligomannose-type (53%), complex-type (34%), and paucimannose-type (13%); neither high-mannose-type (six or more mannose residues) nor core-fucosylated glycans were observed. The coagulation activity of the rFib was evaluated for the amount of thrombin-released fibrinopeptide A (FpA) and the kinetics for turbidity increase (non-covalent network formation) in the solution. FpA release rates were equivalent between rFib and nFib; by contrast, the kinetics of the turbidity increase for rFib were accelerated nearly two-fold, for both the rate and maximum value, compared to those of nFib. These results demonstrate that the rFib produced in the transgenic silkworm system is comparable to nFib in both physical and coagulative properties. This rFib is a promising candidate component for safe hemostatic pharmaceuticals.
Collapse
|
24
|
Direct Recovery of the Rare Earth Elements Using a Silk Displaying a Metal-Recognizing Peptide. Molecules 2020; 25:molecules25030761. [PMID: 32050621 PMCID: PMC7037070 DOI: 10.3390/molecules25030761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/15/2020] [Accepted: 02/04/2020] [Indexed: 11/26/2022] Open
Abstract
Rare earth elements (RE) are indispensable metallic resources in the production of advanced materials; hence, a cost- and energy-effective recovery process is required to meet the rapidly increasing RE demand. Here, we propose an artificial RE recovery approach that uses a functional silk displaying a RE-recognizing peptide. Using the piggyBac system, we constructed a transgenic silkworm in which one or two copies of the gene coding for the RE-recognizing peptide (Lamp1) was fused with that of the fibroin L (FibL) protein. The purified FibL-Lamp1 fusion protein from the transgenic silkworm was able to recognize dysprosium (Dy3+), a RE, under physiological conditions. This method can also be used with silk from which sericin has been removed. Furthermore, the Dy-recovery ability of this silk was significantly improved by crushing the silk. Our simple approach is expected to facilitate the direct recovery of RE from an actual mixed solution of metal ions, such as seawater and industrial wastewater, under mild conditions without additional energy input.
Collapse
|
25
|
Wang F, Hou K, Chen W, Wang Y, Wang R, Tian C, Xu S, Ji Y, Yang Q, Zhao P, Yu L, Lu Z, Zhang H, Li F, Wang H, He B, Kaplan DL, Xia Q. Transgenic PDGF-BB/sericin hydrogel supports for cell proliferation and osteogenic differentiation. Biomater Sci 2020; 8:657-672. [DOI: 10.1039/c9bm01478k] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The present study demonstrates fabrication of PDGF-BB functionalized sericin hydrogel to explore biomaterials-related utility in bone tissue engineering.
Collapse
|
26
|
Zhang T, Liu R, Luo Q, Qu D, Chen T, Yao O, Xu H. Expression and characterization of recombinant human VEGF165 in the middle silk gland of transgenic silkworms. Transgenic Res 2019; 28:601-609. [PMID: 31541344 DOI: 10.1007/s11248-019-00173-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/13/2019] [Indexed: 01/28/2023]
Abstract
Recombinant human vascular endothelial growth factor (rhVEGF) has important applications in therapeutic angiogenesis and inhibition of VEGF-mediated pathological angiogenesis. Previous studies have shown that rhVEGF can be produced in several expression systems, including Escherichia coli, yeasts, insect cells and mammalian cells. However, little is known regarding the effective production of this protein in organs of live organisms. Here, we report for the first time the expression and characterization of rhVEGF165 in the middle silk gland (MSG) of the transgenic silkworm line S1-V165. Our results confirmed that (1) rhVEGF165 was highly expressed in MSG cells and was secreted into the cocoon of S1-V165; (2) the dimeric form of rhVEGF165 could be easily dissolved from S1-V165 cocoons using an alkaline solution; (3) rhVEGF165 extracted from S1-V165 cocoons exhibited slightly better cell proliferative activity than the hVEGF165 standard in cultured human umbilical vein endothelial cells. This study provides an alternative strategy for the production of bioactive rhVEGF165 using the MSG of transgenic silkworms.
Collapse
Affiliation(s)
- Tianyang Zhang
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Rongpeng Liu
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Qin Luo
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Dawei Qu
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Tao Chen
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Ou Yao
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Hanfu Xu
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
27
|
Janani G, Kumar M, Chouhan D, Moses JC, Gangrade A, Bhattacharjee S, Mandal BB. Insight into Silk-Based Biomaterials: From Physicochemical Attributes to Recent Biomedical Applications. ACS APPLIED BIO MATERIALS 2019; 2:5460-5491. [DOI: 10.1021/acsabm.9b00576] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Ichino F, Bono H, Nakazato T, Toyoda A, Fujiyama A, Iwabuchi K, Sato R, Tabunoki H. Construction of a simple evaluation system for the intestinal absorption of an orally administered medicine using Bombyx mori larvae. Drug Discov Ther 2019; 12:7-15. [PMID: 29553084 DOI: 10.5582/ddt.2018.01004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Human intestinal absorption is estimated using a human colon carcinoma cell line (Caco-2) cells from human colorectal adenocarcinoma, intestinal perfusion, or a mammalian model. These current evaluation systems are limited in their ability to estimate human intestinal absorption. In addition, in vivo evaluation systems using laboratory animals such as mice and rats entail animal ethics problems, and it is difficult to screen compounds on a large scale at the drug discovery stage. Thus, we propose the use of Bombyx mori larvae for evaluation of intestinal absorption of compounds as an alternative system in this study. First, to compare the characteristics among Caco-2 cells, human intestine, and B. mori larval midgut, we analyzed their RNA-seq data, and we found 26 drug transporters common to humans and B. mori. Next, we quantitatively developed an oral administration technique in B. mori and established a method using silkworm B. mori larvae that can easily estimate the intestinal permeability of compounds. Consequently, we could determine the dose and technique for oral administration in B. mori larvae. We also developed a B. mori model to evaluate the intestinal permeability of orally administered. Our constructed evaluation system will be useful for evaluating intestinal permeability in medical drug development.
Collapse
Affiliation(s)
- Fumika Ichino
- Department of Science of Biological Production, Graduate School of Agriculture, Tokyo University of Agriculture and Technology
| | - Hidemasa Bono
- Database Center for Life Science (DBCLS), Joint Support-Center for Data Science Research, Research Organization of Information and Systems (ROIS)
| | - Takeru Nakazato
- Database Center for Life Science (DBCLS), Joint Support-Center for Data Science Research, Research Organization of Information and Systems (ROIS)
| | - Atsushi Toyoda
- Center for Information Biology, National Institute of Genetics
| | - Asao Fujiyama
- Center for Information Biology, National Institute of Genetics
| | - Kikuo Iwabuchi
- Department of Science of Biological Production, Graduate School of Agriculture, Tokyo University of Agriculture and Technology
| | - Ryoichi Sato
- Graduate School of Bio-Applications and Systems Engineering (BASE), Tokyo University of Agriculture and Technology
| | - Hiroko Tabunoki
- Department of Science of Biological Production, Graduate School of Agriculture, Tokyo University of Agriculture and Technology
| |
Collapse
|
29
|
A silkworm based silk gland bioreactor for high-efficiency production of recombinant human lactoferrin with antibacterial and anti-inflammatory activities. J Biol Eng 2019; 13:61. [PMID: 31312254 PMCID: PMC6612213 DOI: 10.1186/s13036-019-0186-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
Background Silk glands are used by silkworms to spin silk fibers for making their cocoons. These have recently been regarded as bioreactor hosts for the cost-effective production of other valuable exogenous proteins and have drawn wide attention. Results In this study, we established a transgenic silkworm strain which synthesizes the recombinant human lactoferrin (rhLF) in the silk gland and spins them into the cocoon by our previously constructed silk gland based bioreactor system. The yield of the rhLF with the highest expression level was estimated to be 12.07 mg/g cocoon shell weight produced by the transgenic silkworm strain 34. Utilizing a simple purification protocol, 9.24 mg of the rhLF with recovery of 76.55% and purity of 95.45% on average could be purified from 1 g of the cocoons. The purified rhLF was detected with a secondary structure similar with the commercially purchased human lactoferrin. Eight types of N-glycans which dominated by the GlcNAc (4) Man (3) (61.15%) and the GlcNAc (3) Man (3) (17.98%) were identified at the three typical N-glycosylation sites of the rhLF. Biological activities assays showed the significant evidence that the purified rhLF could relief the lipopolysaccharide (LPS)-induced cell inflammation in RAW264.7 cells and exhibit potent antibacterial bioactivities against the Escherichia coli (E. coli) and Bacillus subtilis. Conclusions These results show that the middle silk gland of silkworm can be an efficient bioreactor for the mass production of rhLF and the potential application in anti-inflammation and antibacterial. Electronic supplementary material The online version of this article (10.1186/s13036-019-0186-z) contains supplementary material, which is available to authorized users.
Collapse
|
30
|
Sun X, Zhang S, Qin S, Hou C, Zhang G, Li M. MicroRNA Expression Analysis of Naked Silkworms. JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:2876-2883. [PMID: 30124955 DOI: 10.1093/jee/toy235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Indexed: 06/08/2023]
Abstract
The silk gland (SG) is characterized by the synthesis and secretion of silk protein in the economically important silkworm, Bombyx mori L. (Lepidoptera: Bombycidae). Nd and Nd-s are two fibroin-secretion-deficient silkworm mutants. MicroRNA (miRNA) plays an important role in many biological processes, such as cell proliferation, differentiation, and apoptosis. Using the Dazao silkworm as a control, we explored the miRNA expression profiles in the SGs of u02 (Nd) and u05 (Nd-s) to reveal the potential functions of miRNAs in silk protein expression and SG development. Here, we sequenced small RNA libraries made from the whole SGs of three strains. There are 260, 236, and 233 known miRNAs and 20, 18, and 18 potential new miRNAs identified from Dazao, u02, and u05, respectively. Fifty-three miRNAs are differentially expressed between Dazao and u02, 51 between Dazao and u05, and 16 between u02 and u05. Gene ontology/KEGG analyses show that most of the predicted target genes of differentially expressed miRNAs were assigned to functional categories involved in cell proliferation, organ development, and cellular compartment structures. The miRNA expression profile of naked silkworms will pave the way for the understanding of SG development and the regulation of silk protein expression.
Collapse
Affiliation(s)
- Xia Sun
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, China
| | - Shu Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Sheng Qin
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, China
| | - Chengxiang Hou
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, China
| | - Guozheng Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, China
| | - Muwang Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, China
| |
Collapse
|
31
|
Fabrication of the FGF1-functionalized sericin hydrogels with cell proliferation activity for biomedical application using genetically engineered Bombyx mori (B. mori) silk. Acta Biomater 2018; 79:239-252. [PMID: 30149211 DOI: 10.1016/j.actbio.2018.08.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 12/28/2022]
Abstract
Sericin, as the major component of Bombyx mori silk, is a useful biomaterial for tissue engineering due to its hydrophilicity, biocompatibility and biodegradability. Here, we report the fabrication of a human acidic fibroblast growth factor (FGF1)-functionalized sericin hydrogel using a transgenic silkworm spun silk with FGF1 incorporated in its sericin layer. Sericin, together with FGF1, were simultaneously extracted from the silk fiber and then exposed to cold-induced hydrogel formation without additional crosslinking. The fabricated FGF1 sericin hydrogels demonstrated injectability, useful mechanical properties and a porous microstructure, which contributed to cell adhesion and survival. In addition, FGF1 achieved long-term storage in the sericin hydrogels over a wide range of temperatures. Further, the sericin-FGF1 demonstrated sustained release to promote cell proliferation and wound healing. Furthermore, cellular inflammatory responses showed that the FGF1 sericin hydrogels exhibited biocompatibility and no immunogenicity. This study revealed the successful exploration of FGF1-functionalized sericin hydrogels as a new protein-based biomaterial to expand applications of FGF1 and sericin in tissue and medical engineering. Further, we demonstrated a strategy for the predesign of exogenous protein-functionalized sericin hydrogels through genetically modifying silk fibers as sources for their cost effective production at a large scale. STATEMENT OF SIGNIFICANCE Sericin from the Bombyx mori silk, is regarded as a desirable biomaterial for tissue engineering due to its hydrophilicity, biocompatibility and biodegradability. Genetically engineering the sericin with functional exogenous proteins would enhance its biofunctions and further expand its application in tissue engineering. In this study, we demonstrated a method to fabricate a human acidic fibroblast growth factor (FGF1)-functionalized sericin hydrogel using a transgenic silkworm spun silk with FGF1 incorporated in its sericin layer. The fabricated FGF1 sericin hydrogels demonstrated injectability, porous microstructure, biocompatibility and no immunogenicity which contributed to cell adhesion and survival. Remarkably, FGF1 could achieve a long-term stability in the sericin hydrogels over a wide range of temperatures and sustained release to promote cell proliferation and wound healing. This study revealed the successful exploration of FGF1-functionalized sericin hydrogels as a new protein-based biomaterial in tissue and medical engineering application, and provided a strategy for the predesign of exogenous protein-functionalized sericin hydrogels through genetically modifying silk fibers as sources for their cost effective production at a large scale.
Collapse
|
32
|
Chen W, Wang F, Tian C, Wang Y, Xu S, Wang R, Hou K, Zhao P, Yu L, Lu Z, Xia Q. Transgenic Silkworm-Based Silk Gland Bioreactor for Large Scale Production of Bioactive Human Platelet-Derived Growth Factor (PDGF-BB) in Silk Cocoons. Int J Mol Sci 2018; 19:ijms19092533. [PMID: 30150526 PMCID: PMC6164493 DOI: 10.3390/ijms19092533] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 08/20/2018] [Indexed: 01/17/2023] Open
Abstract
Human platelet derived growth factor (PDGF) is a major therapeutic protein with great demand in the clinical setting; however, its rate of supply is far from meeting needs. Here, we provide an effective strategy to produce PDGF-BB in large quantities using a transgenic silkworm. The codon-optimized PDGF-B gene regulated by the highly efficient sericin-1 expression system was integrated into the genome of a silkworm. The high transcriptional expression of the PDGF-BB gene in the transgenic silkworm competitively inhibited the transcription expression of the endogenous sericin-1 gene which caused a significant 37.5% decline. The PDGF-BB synthesized in the middle silk gland (MSG) of transgenic silkworms could form a homodimer through intermolecular disulfide bonds, which is then secreted into sericin lumen and finally, distributed in the sericin layer of the cocoon. In this study, a protein quantity of approximately 0.33 mg/g was found in the cocoon. Following a purification process, approximately 150.7 μg of recombinant PDGF-BB with a purity of 82% was purified from 1 g of cocoons. Furthermore, the bioactivity assays showed that the purified recombinant PDGF-BB was able to promote the growth, proliferation and migration of NIH/3T3 cells significantly. These results suggest that the silk gland bioreactor can produce active recombinant PDGF-BB as an efficient mitogen and wound healing agent.
Collapse
Affiliation(s)
- Wenjing Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China.
- Chongqing Key Laboratory of Mulberry Silkworm, Southwest University, Chongqing 400715, China.
| | - Feng Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China.
- Chongqing Key Laboratory of Mulberry Silkworm, Southwest University, Chongqing 400715, China.
| | - Chi Tian
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China.
- Chongqing Key Laboratory of Mulberry Silkworm, Southwest University, Chongqing 400715, China.
| | - Yuancheng Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China.
- Chongqing Key Laboratory of Mulberry Silkworm, Southwest University, Chongqing 400715, China.
| | - Sheng Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China.
- Chongqing Key Laboratory of Mulberry Silkworm, Southwest University, Chongqing 400715, China.
| | - Riyuan Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China.
- Chongqing Key Laboratory of Mulberry Silkworm, Southwest University, Chongqing 400715, China.
| | - Kai Hou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China.
- Chongqing Key Laboratory of Mulberry Silkworm, Southwest University, Chongqing 400715, China.
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China.
- Chongqing Key Laboratory of Mulberry Silkworm, Southwest University, Chongqing 400715, China.
| | - Ling Yu
- Institute for Clean Energy & Advanced Materials, Faculty of Materials & Energy, Southwest University, Chongqing 400715, China.
| | - Zhisong Lu
- Institute for Clean Energy & Advanced Materials, Faculty of Materials & Energy, Southwest University, Chongqing 400715, China.
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China.
- Chongqing Key Laboratory of Mulberry Silkworm, Southwest University, Chongqing 400715, China.
| |
Collapse
|
33
|
Sezutsu H, Sumitani M, Kondo M, Kobayashi I, Takasu Y, Suzuki T, Yonemura N, Iizuka T, Uchino K, Tamura T, Tsubota T, Tatematsu KI. Construction of a Platform for the Development of Pharmaceutical and Medical Applications Using Transgenic Silkworms. YAKUGAKU ZASSHI 2018; 138:863-874. [DOI: 10.1248/yakushi.17-00202-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hideki Sezutsu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization
- Graduate School of Frontier Sciences, The University of Tokyo
| | - Megumi Sumitani
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization
| | - Mari Kondo
- Graduate School of Frontier Sciences, The University of Tokyo
| | - Isao Kobayashi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization
| | - Yoko Takasu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization
| | - Takao Suzuki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization
| | - Naoyuki Yonemura
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization
| | - Tetsuya Iizuka
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization
| | - Keiro Uchino
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization
| | - Toshiki Tamura
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization
| | - Takuya Tsubota
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization
| | - Ken-ichiro Tatematsu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization
| |
Collapse
|
34
|
Zhang K, Li C, Weng X, Su J, Shen L, Pan G, Long D, Zhao A, Cui H. Transgenic characterization of two silkworm tissue-specific promoters in the haemocyte plasmatocyte cells. INSECT MOLECULAR BIOLOGY 2018; 27:133-142. [PMID: 29131435 DOI: 10.1111/imb.12360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Haemocytes play crucial roles in insect metabolism, metamorphosis, and innate immunity. As a model of lepidopteran insects, the silkworm is a useful model to study the functions of both haematopoiesis and haemocytes. Tissue-specific promoters are excellent tools for genetic manipulation and are widely used in fundamental biological research. Herein, two haemocyte-specific genes, Integrin β2 and Integrin β3, were confirmed. Promoter activities of Integrin β2 and Integrin β3 were evaluated by genetic manipulation. Quantitative real-time PCR and western blotting suggested that both promoters can drive enhanced green fluorescent protein (EGFP) specifically expressed in haemocytes. Further evidence clearly demonstrated that the transgenic silkworm exhibited a high level of EGFP signal in plasmatocytes, but not in other detected haemocyte types. Moreover, EGFP fluorescence signals were observed in the haematopoietic organ of both transgenic strains. Thus, two promoters that enable plasmatocytes to express genes of interest were confirmed in our study. It is expected that the results of this study will facilitate advances in our understanding of insect haematopoiesis and immunity in the silkworm, Bombyx mori.
Collapse
Affiliation(s)
- K Zhang
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - C Li
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - X Weng
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
- College of Biotechnology, Southwest University, Chongqing, China
| | - J Su
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - L Shen
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - G Pan
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - D Long
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - A Zhao
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - H Cui
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| |
Collapse
|
35
|
Choi SM, Chaudhry P, Zo SM, Han SS. Advances in Protein-Based Materials: From Origin to Novel Biomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1078:161-210. [PMID: 30357624 DOI: 10.1007/978-981-13-0950-2_10] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Biomaterials play a very important role in biomedicine and tissue engineering where they directly affect the cellular activities and their microenvironment . Myriad of techniques have been employed to fabricate a vast number natural, artificial and recombinant polymer s in order to harness these biomaterials in tissue regene ration , drug delivery and various other applications. Despite of tremendous efforts made in this field during last few decades, advanced and new generation biomaterials are still lacking. Protein based biomaterials have emerged as an attractive alternatives due to their intrinsic properties like cell to cell interaction , structural support and cellular communications. Several protein based biomaterials like, collagen , keratin , elastin , silk protein and more recently recombinant protein s are being utilized in a number of biomedical and biotechnological processes. These protein-based biomaterials have enormous capabilities, which can completely revolutionize the biomaterial world. In this review, we address an up-to date review on the novel, protein-based biomaterials used for biomedical field including tissue engineering, medical science, regenerative medicine as well as drug delivery. Further, we have also emphasized the novel fabrication techniques associated with protein-based materials and implication of these biomaterials in the domain of biomedical engineering .
Collapse
Affiliation(s)
- Soon Mo Choi
- Regional Research Institute for Fiber&Fashion Materials, Yeungnam University, Gyeongsan, South Korea
| | - Prerna Chaudhry
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Sun Mi Zo
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea.
| |
Collapse
|
36
|
Gauza-Włodarczyk M, Kubisz L, Mielcarek S, Włodarczyk D. Comparison of thermal properties of fish collagen and bovine collagen in the temperature range 298–670 K. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 80:468-471. [DOI: 10.1016/j.msec.2017.06.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 05/26/2017] [Accepted: 06/16/2017] [Indexed: 11/16/2022]
|
37
|
Bienert M, Hoss M, Bartneck M, Weinandy S, Böbel M, Jockenhövel S, Knüchel R, Pottbacker K, Wöltje M, Jahnen-Dechent W, Neuss S. Growth factor-functionalized silk membranes support wound healing
in vitro. Biomed Mater 2017; 12:045023. [DOI: 10.1088/1748-605x/aa7695] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
38
|
Transgenic silkworms secrete the recombinant glycosylated MRJP1 protein of Chinese honeybee, Apis cerana cerana. Transgenic Res 2017; 26:653-663. [PMID: 28801873 DOI: 10.1007/s11248-017-0034-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/10/2017] [Indexed: 12/17/2022]
Abstract
Major royal jelly protein-1 (MRJP1) is the most abundant glycoprotein of royal jelly (RJ) and is considered a potential component of functional foods. In this study, we used silkworm transgenic technology to obtain five transgenic silkworm lineages expressing the exogenous recombinant Chinese honeybee, Apis cerana cerana, protein-1 (rAccMRJP1) under the control of a fibroin light chain (Fib-L) promoter in the posterior silk glands. The protein was successfully secreted into cocoons; specifically, the highest rAccMRJP1 protein content was 0.78% of the dried cocoons. Our results confirmed that the protein band of the exogenous rAccMRJP1 protein expressed in the transgenic silkworm lineages was a glycosylated protein. Therefore, this rAccMRJP1 protein could be used as an alternative standard protein sample to measure the freshness of RJ. Moreover, we also found that the overall trend between the expression of the endogenous and exogenous genes was that the expression level of the endogenous Fib-L gene declined as the expression of the exogenous rAccMRJP1 gene increased in the transgenic silkworm lineages. Thus, by employing genome editing technology to reduce silk protein expression levels, a silkworm bioreactor expression system could be developed as a highly successful system for producing various valuable heterologous proteins, potentially broadening the applications of the silkworm.
Collapse
|
39
|
Ma S, Xia X, Li Y, Sun L, Liu Y, Liu Y, Wang X, Shi R, Chang J, Zhao P, Xia Q. Increasing the yield of middle silk gland expression system through transgenic knock-down of endogenous sericin-1. Mol Genet Genomics 2017; 292:823-831. [PMID: 28357595 DOI: 10.1007/s00438-017-1311-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/14/2017] [Indexed: 11/29/2022]
Abstract
Various genetically modified bioreactor systems have been developed to meet the increasing demands of recombinant proteins. Silk gland of Bombyx mori holds great potential to be a cost-effective bioreactor for commercial-scale production of recombinant proteins. However, the actual yields of proteins obtained from the current silk gland expression systems are too low for the proteins to be dissolved and purified in a large scale. Here, we proposed a strategy that reducing endogenous sericin proteins would increase the expression yield of foreign proteins. Using transgenic RNA interference, we successfully reduced the expression of BmSer1 to 50%. A total 26 transgenic lines expressing Discosoma sp. red fluorescent protein (DsRed) in the middle silk gland (MSG) under the control of BmSer1 promoter were established to analyze the expression of recombinant. qRT-PCR and western blotting showed that in BmSer1 knock-down lines, the expression of DsRed had significantly increased both at mRNA and protein levels. We did an additional analysis of DsRed/BmSer1 distribution in cocoon and effect of DsRed protein accumulation on the silk fiber formation process. This study describes not only a novel method to enhance recombinant protein expression in MSG bioreactor, but also a strategy to optimize other bioreactor systems.
Collapse
Affiliation(s)
- Sanyuan Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, People's Republic of China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, 2, Tiansheng Road, Beibei, Chongqing, 400716, China
| | - Xiaojuan Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, People's Republic of China
| | - Yufeng Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, People's Republic of China
| | - Le Sun
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, People's Republic of China
| | - Yue Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, People's Republic of China
| | - Yuanyuan Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, People's Republic of China
| | - Xiaogang Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, People's Republic of China
| | - Run Shi
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, People's Republic of China
| | - Jiasong Chang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, People's Republic of China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, People's Republic of China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, 2, Tiansheng Road, Beibei, Chongqing, 400716, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, People's Republic of China.
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, 2, Tiansheng Road, Beibei, Chongqing, 400716, China.
| |
Collapse
|
40
|
Co-expression of BirA with biotin bait achieves in vivo biotinylation of overexpressed stable N-glycosylated sRAGE in transgenic silkworms. Sci Rep 2017; 7:356. [PMID: 28336960 PMCID: PMC5428419 DOI: 10.1038/s41598-017-00420-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 02/27/2017] [Indexed: 12/23/2022] Open
Abstract
Here, we demonstrated the expression of the N-glycosylated extracellular ligand binding domain of receptor for advanced glycation end products (sRAGE) in middle silk glands (MSGs) of transgenic silkworms using the GAL4/UAS system. Over 1 mg of sRAGE was obtained from one transgenic silkworm. sRAGE purified from the silkworm exhibited good stability and maintained specific ligand-binding ability. In addition, N-glycan analysis of sRAGE revealed that N-glucan completely lacked potentially allergenic fucose. Moreover, co-expression of biotin ligase (BirA) with C-terminal BioEase-tagged sRAGE in MSGs resulted in efficient biotinylation of sRAGE after addition of biotin bait. C-terminal biotinylated sRAGE could be immobilized onto a solid surface in one direction through binding to streptavidin without any loss of ability. The dissociation constant of sRAGE with fructose-BSA, a typical RAGE ligand, was 7.25 × 10−7 M, consistent with that on the mammalian cell surface. Thus, we developed a novel, innovative silkworm expression system for efficient expression of recombinant sRAGE, which could serve as a basis for the elucidation of RAGE-ligand interactions and facilitate the search for new ligands and inhibitors.
Collapse
|
41
|
Abstract
Silk is a protein-based material which is predominantly produced by insects and spiders. Hundreds of millions of years of evolution have enabled these animals to utilize different, highly adapted silk types in a broad variety of applications. Silk occurs in several morphologies, such as sticky glue or in the shape of fibers and can, depending on the application by the respective animal, dissipate a high mechanical energy, resist heat and radiation, maintain functionality when submerged in water and withstand microbial settling. Hence, it's unsurprising that silk piqued human interest a long time ago, which catalyzed the domestication of silkworms for the production of silk to be used in textiles. Recently, scientific progress has enabled the development of analytic tools to gain profound insights into the characteristics of silk proteins. Based on these investigations, the biotechnological production of artificial and engineered silk has been accomplished, which allows the production of a sufficient amount of silk materials for several industrial applications. This chapter provides a review on the biotechnological production of various silk proteins from different species, as well as on the processing techniques to fabricate application-oriented material morphologies.
Collapse
Affiliation(s)
- Gregor Lang
- Research Group Biopolymer Processing, University of Bayreuth, Universitätsstr. 30, 95440, Bayreuth, Germany
| | - Heike Herold
- Department of Biomaterials, University of Bayreuth, Universitätsstr. 30, 95440, Bayreuth, Germany
| | - Thomas Scheibel
- Department of Biomaterials, University of Bayreuth, Universitätsstr. 30, 95440, Bayreuth, Germany.
| |
Collapse
|
42
|
Morbioli GG, Mazzu-Nascimento T, Aquino A, Cervantes C, Carrilho E. Recombinant drugs-on-a-chip: The usage of capillary electrophoresis and trends in miniaturized systems – A review. Anal Chim Acta 2016; 935:44-57. [DOI: 10.1016/j.aca.2016.06.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 06/07/2016] [Accepted: 06/10/2016] [Indexed: 01/09/2023]
|
43
|
Large-scale production of bioactive recombinant human acidic fibroblast growth factor in transgenic silkworm cocoons. Sci Rep 2015; 5:16323. [PMID: 26567460 PMCID: PMC4644950 DOI: 10.1038/srep16323] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/13/2015] [Indexed: 12/29/2022] Open
Abstract
With an increasing clinical demand for functional therapeutic proteins every year, there is an increasing requirement for the massive production of bioactive recombinant human acidic fibroblast growth factor (r-haFGF). In this present study, we delicately explore a strategy for the mass production of r-haFGF protein with biological activity in the transgenic silkworm cocoons. The sequence-optimized haFGF was inserted into an enhanced sericin-1 expression system to generate the original transgenic silkworm strain, which was then further crossed with a PIG jumpstarter strain to achieve the remobilization of the expression cassette to a “safe harbor” locus in the genome for the efficient expression of r-haFGF. In consequence, the expression of r-haFGF protein in the mutant line achieved a 5.6-fold increase compared to the original strain. The high content of r-haFGF facilitated its purification and large-scald yields. Furthermore, the r-haFGF protein bioactively promoted the growth, proliferation and migration of NIH/3T3 cells, suggesting the r-haFGF protein possessed native mitogenic activity and the potential for wound healing. These results show that the silk gland of silkworm could be an efficient bioreactor strategy for recombinant production of bioactive haFGF in silkworm cocoons.
Collapse
|
44
|
Nikaido Y, Kurosawa A, Saikawa H, Kuroiwa S, Suzuki C, Kuwabara N, Hoshino H, Obata H, Saito S, Saito T, Osada H, Kobayashi I, Sezutsu H, Takeda S. In vivo and in vitro evaluation of novel μ-opioid receptor agonist compounds. Eur J Pharmacol 2015; 767:193-200. [PMID: 26476280 DOI: 10.1016/j.ejphar.2015.10.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/09/2015] [Accepted: 10/12/2015] [Indexed: 10/22/2022]
Abstract
Opioids are the most effective and widely used drugs for pain treatment. Morphine is an archetypal opioid and is an opioid receptor agonist. Unfortunately, the clinical usefulness of morphine is limited by adverse effects such as analgesic tolerance and addiction. Therefore, it is important to study the development of novel opioid agonists as part of pain control. The analgesic effects of opioids are mediated by three opioid receptors, namely opioid μ-, δ-, and κ-receptors. They belong to the G protein-coupled receptor superfamily and are coupled to Gi proteins. In the present study, we developed a ligand screening system to identify novel opioid μ-receptor agonists that measures [(35)S]GTPγS binding to cell membrane fractions prepared from the fat body of transgenic silkworms expressing μ-receptor-Gi1α fusion protein. We screened the RIKEN Natural Products Depository (NPDepo) chemical library, which contains 5848 compounds, and analogs of hit compounds. We successfully identified a novel, structurally unique compound, that we named GUM1, with agonist activity for the opioid μ-receptor (EC50 of 1.2 µM). The Plantar Test (Hargreaves' Method) demonstrated that subcutaneous injection of 3mg/kg of GUM1 into wild-type rats significantly extended latency time. This extension was also observed in a rat model of morphine tolerance and was inhibited by pre-treatment of naloxone. The unique molecular skeleton of GUM1 makes it an attractive molecule for further ligand-opioid receptor binding studies.
Collapse
Affiliation(s)
- Yoshiaki Nikaido
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Aya Kurosawa
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Hitomi Saikawa
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Satoshi Kuroiwa
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Chiharu Suzuki
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Nobuo Kuwabara
- Gunma Sericultural Technology Center, 1-1-1 Ohte-machi, Maebashi, Gunma 371-8570, Japan
| | - Hazime Hoshino
- Department of Anesthesiology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Hideaki Obata
- Department of Anesthesiology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Shigeru Saito
- Department of Anesthesiology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Tamio Saito
- Collaboration Promotion Unit, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroyuki Osada
- Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Isao Kobayashi
- Transgenic Silkworm Research Center, National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Hideki Sezutsu
- Transgenic Silkworm Research Center, National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Shigeki Takeda
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan.
| |
Collapse
|
45
|
Zabelina V, Uchino K, Mochida Y, Yonemura N, Klymenko V, Sezutsu H, Tamura T, Sehnal F. Construction and long term preservation of clonal transgenic silkworms using a parthenogenetic strain. JOURNAL OF INSECT PHYSIOLOGY 2015; 81:28-35. [PMID: 26112978 DOI: 10.1016/j.jinsphys.2015.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 06/20/2015] [Accepted: 06/22/2015] [Indexed: 06/04/2023]
Abstract
For the functional analysis of insect genes as well as for the production of recombinant proteins for biomedical use, clonal transgenic silkworms are very useful. We examined if they could be produced in the parthenogenetic strain that had been maintained for more than 40years as a female line in which embryogenesis is induced with nearly 100% efficiency by a heat shock treatment of unfertilized eggs. All individuals have identical female genotype. Silkworm transgenesis requires injection of the DNA constructs into the non-diapausing eggs at the preblastodermal stage of embryogenesis. Since our parthenogenetic silkworms produce diapausing eggs, diapause programing was eliminated by incubating ovaries of the parthenogenetic strain in standard male larvae. Chorionated eggs were dissected from the implants, activated by the heat shock treatment and injected with the transgene construct. Several transgenic individuals occurred in the daughter generation. Southern blotting analysis of two randomly chosen transgenic lines VTG1 and VTG14 revealed multiple transgene insertions. Insertions found in the parental females were transferred to the next generation without any changes in their sites and copy numbers, suggesting that transgenic silkworms can be maintained as clonal strains with homozygous transgenes. Cryopreservation was developed for the storage of precious genotypes. As shown for the VTG1 and VTG14 lines, larval ovaries can be stored in DMSO at the temperature of liquid nitrogen, transferred to Grace's medium during defrosting, and then implanted into larvae of either sex of the standard silkworm strains C146 and w1-pnd. Chorionated eggs, which developed in the implants, were dissected and activated by the heat shock to obtain females (nearly 100% efficiency) or by a cold shock to induce development to both sexes in 4% of the eggs. It was then possible to establish bisexual lines homozygous for the transgene.
Collapse
Affiliation(s)
| | - Keiro Uchino
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan.
| | - Yuji Mochida
- Institute of Sericulture, Iikura 1053, 300-0324 Ami-machi, Ibaraki, Japan.
| | - Naoyuki Yonemura
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan.
| | | | - Hideki Sezutsu
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| | - Toshiki Tamura
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan.
| | | |
Collapse
|
46
|
Mabashi-Asazuma H, Sohn BH, Kim YS, Kuo CW, Khoo KH, Kucharski CA, Fraser MJ, Jarvis DL. Targeted glycoengineering extends the protein N-glycosylation pathway in the silkworm silk gland. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 65:20-7. [PMID: 26163436 PMCID: PMC4628589 DOI: 10.1016/j.ibmb.2015.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 07/02/2015] [Accepted: 07/03/2015] [Indexed: 05/12/2023]
Abstract
The silkworm silk glands are powerful secretory organs that can produce and secrete proteins at high levels. As such, it has been suggested that the biosynthetic and secretory power of the silk gland can be harnessed to produce and secrete recombinant proteins in tight or loose association with silk fibers. However, the utility of the silkworm platform is constrained by the fact that it has a relatively primitive protein N-glycosylation pathway, which produces relatively simple insect-type, rather than mammalian-type N-glycans. In this study, we demonstrate for the first time that the silk gland protein N-glycosylation pathway can be glycoengineered. We accomplished this by using a dual piggyBac vector encoding two distinct mammalian glycosyltransferases under the transcriptional control of a posterior silk gland (PSG)-specific promoter. Both mammalian transgenes were expressed and each mammalian N-glycan processing activity was induced in transformed silkworm PSGs. In addition, the transgenic animals produced endogenous glycoproteins containing significant proportions of mammalian-type, terminally galactosylated N-glycans, while the parental animals produced none. This demonstration of the ability to glycoengineer the silkworm extends its potential utility as a recombinant protein production platform.
Collapse
Affiliation(s)
| | - Bong-Hee Sohn
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Young-Soo Kim
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Chu-Wei Kuo
- Institute of Biological Chemistry, Academia Sinica 128, Nankang, Taipei 115, Taiwan
| | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica 128, Nankang, Taipei 115, Taiwan
| | - Cheryl A Kucharski
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Malcolm J Fraser
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Donald L Jarvis
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
47
|
Wang H, Wang L, Wang Y, Tao H, Yin W, SiMa Y, Wang Y, Xu S. High yield exogenous protein HPL production in the Bombyx mori silk gland provides novel insight into recombinant expression systems. Sci Rep 2015; 5:13839. [PMID: 26370318 PMCID: PMC4570194 DOI: 10.1038/srep13839] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 08/06/2015] [Indexed: 01/24/2023] Open
Abstract
The silk gland of Bombyx mori (BmSG) has gained significant attention by dint of superior synthesis and secretion of proteins. However, the application of BmSG bioreactor is still a controversial issue because of low yields of recombinant proteins. Here, a 3057 bp full-length coding sequence of Hpl was designed and transformed into the silkworm genome, and then the mutant (Hpl/Hpl) with specific expression of Hpl in posterior BmSG (BmPSG) was obtained. In the mutants, the transcription level of Fib-L and P25, and corresponding encoding proteins, did not decrease. However, the mRNA level of Fib-H was reduced by 71.1%, and Fib-H protein in the secreted fibroin was decreased from 91.86% to 71.01%. The mRNA level of Hpl was 0.73% and 0.74% of Fib-H and Fib-L, respectively, while HPL protein accounted for 18.85% of fibroin and 15.46% of the total amount of secreted silk protein. The exogenous protein was therefore very efficiently translated and secreted. Further analysis of differentially expressed gene (DEG) was carried out in the BmPSG cells and 891 DEGs were detected, of which 208 genes were related to protein metabolism. Reduced expression of endogenous silk proteins in the BmPSG could effectively improve the production efficiency of recombinant exogenous proteins.
Collapse
Affiliation(s)
- Huan Wang
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China
| | - Lu Wang
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China
| | - Yulong Wang
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China
| | - Hui Tao
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China
| | - Weimin Yin
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China
| | - Yanghu SiMa
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China
| | - Yujun Wang
- R&D Division, Okamoto Corporation, Nara 635-8550, Japan
| | - Shiqing Xu
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China.,National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China
| |
Collapse
|
48
|
Zabelina V, Klymenko V, Tamura T, Doroshenko K, Liang H, Sezutsu H, Sehnal F. Genome engineering and parthenocloning in the silkworm, Bombyx mori. J Biosci 2015; 40:645-55. [DOI: 10.1007/s12038-015-9548-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
49
|
Tada M, Tatematsu KI, Ishii-Watabe A, Harazono A, Takakura D, Hashii N, Sezutsu H, Kawasaki N. Characterization of anti-CD20 monoclonal antibody produced by transgenic silkworms (Bombyx mori). MAbs 2015; 7:1138-50. [PMID: 26261057 PMCID: PMC4966511 DOI: 10.1080/19420862.2015.1078054] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In response to the successful use of monoclonal antibodies (mAbs) in the treatment of various diseases, systems for expressing recombinant mAbs using transgenic animals or plants have been widely developed. The silkworm (Bombyx mori) is a highly domesticated insect that has recently been used for the production of recombinant proteins. Because of their cost-effective breeding and relatively easy production scale-up, transgenic silkworms show great promise as a novel production system for mAbs. In this study, we established a transgenic silkworm stably expressing a human-mouse chimeric anti-CD20 mAb having the same amino acid sequence as rituximab, and compared its characteristics with rituximab produced by Chinese hamster ovary (CHO) cells (MabThera®). The anti-CD20 mAb produced in the transgenic silkworm showed a similar antigen-binding property, but stronger antibody-dependent cell-mediated cytotoxicity (ADCC) and weaker complement-dependent cytotoxicity (CDC) compared to MabThera. Post-translational modification analysis was performed by peptide mapping using liquid chromatography/mass spectrometry. There was a significant difference in the N-glycosylation profile between the CHO- and the silkworm-derived mAbs, but not in other post-translational modifications including oxidation and deamidation. The mass spectra of the N-glycosylated peptide revealed that the observed biological properties were attributable to the characteristic N-glycan structures of the anti-CD20 mAbs produced in the transgenic silkworms, i.e., the lack of the core-fucose and galactose at the non-reducing terminal. These results suggest that the transgenic silkworm may be a promising expression system for the tumor-targeting mAbs with higher ADCC activity.
Collapse
Affiliation(s)
- Minoru Tada
- a Division of Biological Chemistry and Biologicals; National Institute of Health Sciences ; Tokyo , Japan
| | - Ken-ichiro Tatematsu
- b Transgenic Silkworm Research Unit; National Institute of Agrobiological Sciences ; Ibaraki , Japan
| | - Akiko Ishii-Watabe
- a Division of Biological Chemistry and Biologicals; National Institute of Health Sciences ; Tokyo , Japan
| | - Akira Harazono
- a Division of Biological Chemistry and Biologicals; National Institute of Health Sciences ; Tokyo , Japan
| | - Daisuke Takakura
- a Division of Biological Chemistry and Biologicals; National Institute of Health Sciences ; Tokyo , Japan.,c Manufacturing Technology Research Association of Biologics ; Kobe , Japan
| | - Noritaka Hashii
- a Division of Biological Chemistry and Biologicals; National Institute of Health Sciences ; Tokyo , Japan
| | - Hideki Sezutsu
- b Transgenic Silkworm Research Unit; National Institute of Agrobiological Sciences ; Ibaraki , Japan
| | - Nana Kawasaki
- a Division of Biological Chemistry and Biologicals; National Institute of Health Sciences ; Tokyo , Japan
| |
Collapse
|
50
|
Kotani E, Yamamoto N, Kobayashi I, Uchino K, Muto S, Ijiri H, Shimabukuro J, Tamura T, Sezutsu H, Mori H. Cell proliferation by silk gut incorporating FGF-2 protein microcrystals. Sci Rep 2015; 5:11051. [PMID: 26053044 PMCID: PMC4459171 DOI: 10.1038/srep11051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 05/14/2015] [Indexed: 11/09/2022] Open
Abstract
Silk gut processed from the silk glands of the silkworm could be an ideal biodegradable carrier for cell growth factors. We previously demonstrated that polyhedra, microcrystals of Cypovirus 1 polyhedrin, can serve as versatile carrier proteins. Here, we report the generation of a transgenic silkworm that expresses polyhedrin together with human basic fibroblast growth factor (FGF-2) in its posterior silk glands to utilize silk gut as a proteinaceous carrier to protect and slowly release active cell growth factors. In the posterior silk glands, polyhedrin formed polyhedral microcrystals, and FGF-2 became encapsulated within the polyhedra due to a polyhedron-immobilization signal. Silk gut powder prepared from posterior silk glands containing polyhedron-encapsulated FGF-2 stimulated the phosphorylation of p44/p42 MAP kinase and induced the proliferation of serum-starved NIH3T3 cells by releasing bioactive FGF-2. Even after a one-week incubation at 25 °C, significantly higher biological activity of FGF-2 was observed for silk gut powder incorporating polyhedron-encapsulated FGF-2 relative to silk gut powder with non-encapsulated FGF-2. Our results demonstrate that posterior silk glands incorporating polyhedron-encapsulated FGF-2 are applicable to the preparation of biodegradable silk gut, which can protect and release FGF-2 that is produced in a virus- and serum-free expression system with significant application potential.
Collapse
Affiliation(s)
- Eiji Kotani
- 1] Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan [2] Insect Biomedical Centre, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Naoto Yamamoto
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Isao Kobayashi
- Transgenic Silkworm Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| | - Keiro Uchino
- Transgenic Silkworm Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| | - Sayaka Muto
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hiroshi Ijiri
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Junji Shimabukuro
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Toshiki Tamura
- Transgenic Silkworm Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| | - Hideki Sezutsu
- Transgenic Silkworm Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| | - Hajime Mori
- 1] Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan [2] Insect Biomedical Centre, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|