1
|
Martinaud E, Hierro-Iglesias C, Hammerton J, Hadad B, Evans R, Sacharczuk J, Lester D, Derry MJ, Topham PD, Fernandez-Castane A. Valorising Cassava Peel Waste Into Plasticized Polyhydroxyalkanoates Blended with Polycaprolactone with Controllable Thermal and Mechanical Properties. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2024; 32:3503-3515. [PMID: 39161457 PMCID: PMC11330390 DOI: 10.1007/s10924-023-03167-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 08/21/2024]
Abstract
Approximately 99% of plastics produced worldwide were produced by the petrochemical industry in 2019 and it is predicted that plastic consumption may double between 2023 and 2050. The use of biodegradable bioplastics represents an alternative solution to petroleum-based plastics. However, the production cost of biopolymers hinders their real-world use. The use of waste biomass as a primary carbon source for biopolymers may enable a cost-effective production of bioplastics whilst providing a solution to waste management towards a carbon-neutral and circular plastics economy. Here, we report for the first time the production of poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) with a controlled molar ratio of 2:1 3-hydroxybutyrate:3-hydroxvalerate (3HB:3HV) through an integrated pre-treatment and fermentation process followed by alkaline digestion of cassava peel waste, a renewable low-cost substrate, through Cupriavidus necator biotransformation. PHBV was subsequently melt blended with a biodegradable polymer, polycaprolactone (PCL), whereby the 30:70 (mol%) PHBV:PCL blend exhibited an excellent balance of mechanical properties and higher degradation temperatures than PHBV alone, thus providing enhanced stability and controllable properties. This work represents a potential environmental solution to waste management that can benefit cassava processing industries (or other crop processing industries) whilst developing new bioplastic materials that can be applied, for example, to packaging and biomedical engineering. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s10924-023-03167-4.
Collapse
Affiliation(s)
- Emma Martinaud
- École Nationale Supérieure de Chimie, de Biologie et de Physique, Polytechnic Institute of Bordeaux, 33607 Pessac Cedex, France
- Energy and Bioproducts Research Institute, Aston University, Birmingham, B4 7ET UK
- Aston Advanced Materials Research Centre, Aston University, Birmingham, B4 7ET UK
| | | | - James Hammerton
- Aston Advanced Materials Research Centre, Aston University, Birmingham, B4 7ET UK
| | - Bawan Hadad
- Aston Advanced Materials Research Centre, Aston University, Birmingham, B4 7ET UK
| | - Rob Evans
- Aston Advanced Materials Research Centre, Aston University, Birmingham, B4 7ET UK
| | - Jakub Sacharczuk
- Aston Advanced Materials Research Centre, Aston University, Birmingham, B4 7ET UK
| | - Daniel Lester
- Polymer Characterisation Research Technology Platform, University of Warwick, Coventry, CV4 7AL UK
| | - Matthew J. Derry
- Aston Advanced Materials Research Centre, Aston University, Birmingham, B4 7ET UK
| | - Paul D. Topham
- Aston Advanced Materials Research Centre, Aston University, Birmingham, B4 7ET UK
| | - Alfred Fernandez-Castane
- Energy and Bioproducts Research Institute, Aston University, Birmingham, B4 7ET UK
- Aston Advanced Materials Research Centre, Aston University, Birmingham, B4 7ET UK
| |
Collapse
|
2
|
Goswami L, Kushwaha A, Napathorn SC, Kim BS. Valorization of organic wastes using bioreactors for polyhydroxyalkanoate production: Recent advancement, sustainable approaches, challenges, and future perspectives. Int J Biol Macromol 2023; 247:125743. [PMID: 37423435 DOI: 10.1016/j.ijbiomac.2023.125743] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Microbial polyhydroxyalkanoates (PHA) are encouraging biodegradable polymers, which may ease the environmental problems caused by petroleum-derived plastics. However, there is a growing waste removal problem and the high price of pure feedstocks for PHA biosynthesis. This has directed to the forthcoming requirement to upgrade waste streams from various industries as feedstocks for PHA production. This review covers the state-of-the-art progress in utilizing low-cost carbon substrates, effective upstream and downstream processes, and waste stream recycling to sustain entire process circularity. This review also enlightens the use of various batch, fed-batch, continuous, and semi-continuous bioreactor systems with flexible results to enhance the productivity and simultaneously cost reduction. The life-cycle and techno-economic analyses, advanced tools and strategies for microbial PHA biosynthesis, and numerous factors affecting PHA commercialization were also covered. The review includes the ongoing and upcoming strategies viz. metabolic engineering, synthetic biology, morphology engineering, and automation to expand PHA diversity, diminish production costs, and improve PHA production with an objective of "zero-waste" and "circular bioeconomy" for a sustainable future.
Collapse
Affiliation(s)
- Lalit Goswami
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Anamika Kushwaha
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | | | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
3
|
An J, Ha B, Lee SK. Production of polyhydroxyalkanoates by the thermophile Cupriavidus cauae PHS1. BIORESOURCE TECHNOLOGY 2023; 371:128627. [PMID: 36646360 DOI: 10.1016/j.biortech.2023.128627] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Thermophilic production of polyhydroxyalkanoate is considered a very promising way to overcome the problems that may arise when using mesophilic strains. This study reports the first thermophilic polyhydroxybutyrate-producing Cupriavidus species, which are known as the best polyhydroxybutyrate-producing microorganisms. Cupriavidus cauae PHS1 harbors a phbCABR cluster with high similarity to the corresponding proteins of C. necator H16 (80, 93, 96, and 97 %). This strain can produce polyhydroxybutyrate from a range of substrates, including acetate (5 g/L) and phenol (1 g/L), yielding 7.6 % and 18.9 % polyhydroxybutyrate, respectively. Moreover, the strain produced polyhydroxybutyrate at temperatures ranging from 25 to 50 °C, with the highest polyhydroxybutyrate content (47 °C) observed at 45 °C from gluconate. Additionally, the strain could incorporate 3-hydroxyvalerate (12.5 mol. %) into the polyhydroxybutyrate polymer using levulinic acid as a precursor. Thus, Cupriavidus cauae PHS1 may be a promising polyhydroxybutyrate producer as alternative for mesophilic polyhydroxybutyrate-producing Cupriavidus species.
Collapse
Affiliation(s)
- Jeongvin An
- School of Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Boram Ha
- School of Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sung Kuk Lee
- School of Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
4
|
Rehakova V, Pernicova I, Kourilova X, Sedlacek P, Musilova J, Sedlar K, Koller M, Kalina M, Obruca S. Biosynthesis of versatile PHA copolymers by thermophilic members of the genus Aneurinibacillus. Int J Biol Macromol 2023; 225:1588-1598. [PMID: 36435467 DOI: 10.1016/j.ijbiomac.2022.11.215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
Thermophilic members of the genus Aneurinibacillus constitute a remarkable group of microorganisms that exhibit extraordinary flexibility in terms of polyhydroxyalkanoates (PHA) synthesis. In this study, we demonstrate that these Gram-positive bacteria are capable of the utilization of selected lactones, namely, γ-valerolactone (GVL), γ-hexalactone (GHL), and δ-valerolactone (DVL) as the structural precursors of related PHA monomers. In the presence of GVL, a PHA copolymer consisting of 3-hydroxybutyrate, 3-hydroxyvalerate, and also 4-hydroxyvalerate was synthesized, with a 4 HV fraction as high as 53.1 mol%. Similarly, the application of GHL resulted in the synthesis of PHA copolymer containing 4-hydroxyhexanaote (4HHx) (4HHx fraction reached up to 11.5 mol%) and DVL was incorporated into PHA in form of 5-hydroxyvalerate (5 HV) (maximal 5 HV content was 44.2 mol%). The produced materials were characterized by thermoanalytical and spectroscopic methods; the results confirmed extremely appealing material properties of produced copolymers. Further, due to their unique metabolic features and capability of incorporating various PHA monomers into the PHA chain, thermophilic Aneurinibacillus spp. can be considered not only promising chassis for PHA production but also potential donors of PHA-relevant genes to improve PHA production in other thermophiles by using approaches of synthetic biology.
Collapse
Affiliation(s)
- Veronika Rehakova
- Department of Food Science and Biotechnology, Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic
| | - Iva Pernicova
- Department of Food Science and Biotechnology, Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic
| | - Xenie Kourilova
- Department of Food Science and Biotechnology, Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic
| | - Petr Sedlacek
- Department of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic
| | - Jana Musilova
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| | - Karel Sedlar
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| | - Martin Koller
- Research Management and Service, c/o Institute of Chemistry, NAWI Graz, University of Graz, Graz, Austria; ARENA Arbeitsgemeinschaft für Ressourcenschonende & Nachhaltige Technologien, Graz, Austria
| | - Michal Kalina
- Department of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic
| | - Stanislav Obruca
- Department of Food Science and Biotechnology, Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic.
| |
Collapse
|
5
|
Thorough Investigation of the Effects of Cultivation Factors on Polyhydroalkanoates (PHAs) Production by Cupriavidus necator from Food Waste-Derived Volatile Fatty Acids. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Volatile fatty acids (VFAs) have become promising candidates for replacing the conventional expensive carbon sources used to produce polyhydroxyalkanoates (PHAs). Considering the inhibitory effect of VFAs at high concentrations and the influence of VFA mixture composition on bacterial growth and PHA production, a thorough investigation of different cultivation parameters such as VFA concentrations and composition (synthetic and waste-derived VFAs) media, pH, aeration, C/N ratio, and type of nitrogen sources was conducted. Besides common VFAs of acetic, butyric and propionic acids, Cupriavidus necator showed good capability for assimilating longer-chained carboxylate compounds of valeric, isovaleric, isobutyric and caproic acids in feasible concentrations of 2.5–5 g/L. A combination of pH control at 7.0, C/N of 6, and aeration of 1 vvm was found to be the optimal condition for the bacterial growth, yielding a maximum PHA accumulation and PHA yield on biomass of 1.5 g/L and 56%, respectively, regardless of the nitrogen sources. The accumulated PHA was found to be poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with the percentage of hydroxybutyrate in the range 91–96%. Any limitation in the cultivation factors was found to enhance the PHA yield, the promotion of which was a consequence of the reduction in biomass production.
Collapse
|
6
|
Kontárová S, Přikryl R, Škarpa P, Kriška T, Antošovský J, Gregušková Z, Figalla S, Jašek V, Sedlmajer M, Menčík P, Mikolajová M. Slow-Release Nitrogen Fertilizers with Biodegradable Poly(3-hydroxybutyrate) Coating: Their Effect on the Growth of Maize and the Dynamics of N Release in Soil. Polymers (Basel) 2022; 14:polym14204323. [PMID: 36297901 PMCID: PMC9610826 DOI: 10.3390/polym14204323] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
Fertilizers play an essential role in agriculture due to the rising food demand. However, high input fertilizer concentration and the non-controlled leaching of nutrients cause an unwanted increase in reactive, unassimilated nitrogen and induce environmental pollution. This paper investigates the preparation and properties of slow-release fertilizer with fully biodegradable poly(3-hydroxybutyrate) coating that releases nitrogen gradually and is not a pollutant for soil. Nitrogen fertilizer (calcium ammonium nitrate) was pelletized with selected filler materials (poly(3-hydroxybutyrate), struvite, dried biomass). Pellets were coated with a solution of poly(3-hydroxybutyrate) in dioxolane that formed a high-quality and thin polymer coating. Coated pellets were tested in aqueous and soil environments. Some coated pellets showed excellent resistance even after 76 days in water, where only 20% of the ammonium nitrate was released. Pot experiments in Mitscherlich vegetation vessels monitored the effect of the application of coated fertilizers on the development and growth of maize and the dynamics of N release in the soil. We found that the use of our coated fertilizers in maize nutrition is a suitable way to supply nutrients to plants concerning their needs and that the poly(3-hydroxybutyrate) that was used for the coating does not adversely affect the growth of maize plants.
Collapse
Affiliation(s)
- Soňa Kontárová
- Institute of Materials Chemistry, Faculty of Chemistry, Brno University of Technology, 61200 Brno, Czech Republic
- Correspondence:
| | - Radek Přikryl
- Institute of Materials Chemistry, Faculty of Chemistry, Brno University of Technology, 61200 Brno, Czech Republic
| | - Petr Škarpa
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Mendel University in Brno, 61200 Brno, Czech Republic
| | - Tomáš Kriška
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Mendel University in Brno, 61200 Brno, Czech Republic
| | - Jiří Antošovský
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Mendel University in Brno, 61200 Brno, Czech Republic
| | - Zuzana Gregušková
- Institute of Materials Chemistry, Faculty of Chemistry, Brno University of Technology, 61200 Brno, Czech Republic
| | - Silvestr Figalla
- Institute of Materials Chemistry, Faculty of Chemistry, Brno University of Technology, 61200 Brno, Czech Republic
| | - Vojtěch Jašek
- Institute of Materials Chemistry, Faculty of Chemistry, Brno University of Technology, 61200 Brno, Czech Republic
| | - Marek Sedlmajer
- Institute of Materials Chemistry, Faculty of Chemistry, Brno University of Technology, 61200 Brno, Czech Republic
| | - Přemysl Menčík
- Institute of Materials Chemistry, Faculty of Chemistry, Brno University of Technology, 61200 Brno, Czech Republic
| | - Mária Mikolajová
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
| |
Collapse
|
7
|
Gutschmann B, Högl TH, Huang B, Maldonado Simões M, Junne S, Neubauer P, Grimm T, Riedel SL. Polyhydroxyalkanoate production from animal by-products: Development of a pneumatic feeding system for solid fat/protein-emulsions. Microb Biotechnol 2022; 16:286-294. [PMID: 36168730 PMCID: PMC9871516 DOI: 10.1111/1751-7915.14150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/02/2022] [Accepted: 09/10/2022] [Indexed: 01/27/2023] Open
Abstract
Fat-containing animal by-product streams are locally available in large quantities. Depending on their quality, they can be inexpensive substrates for biotechnological processes. To accelerate industrial polyhydroxyalkanoate (PHA) bioplastic production, the development of efficient bioprocesses that are based on animal by-product streams is a promising approach to reduce overall production costs. However, the solid nature of animal by-product streams requires a tailor-made process development. In this study, a fat/protein-emulsion (FPE), which is a by-product stream from industrial-scale pharmaceutical heparin production and of which several hundred tons are available annually, was evaluated for PHA production with Ralstonia eutropha. The FPE was used as the sole source of carbon and nitrogen in shake flask and bioreactor cultivations. A tailored pneumatic feeding system was built for laboratory bioreactors to facilitate fed-batch cultivations with the solid FPE. The process yielded up to 51 g L-1 cell dry weight containing 71 wt% PHA with a space-time yield of 0.6 gPHA L-1 h-1 without using any carbon or nitrogen sources other than FPE. The presented approach highlights the potential of animal by-product stream valorization into PHA and contributes to a transition towards a circular bioeconomy.
Collapse
Affiliation(s)
- Björn Gutschmann
- Technische Universität Berlin, Chair of Bioprocess EngineeringBerlinGermany
| | - Thomas H. Högl
- Technische Universität Berlin, Chair of Bioprocess EngineeringBerlinGermany
| | - Boyang Huang
- Technische Universität Berlin, Chair of Bioprocess EngineeringBerlinGermany
| | | | - Stefan Junne
- Technische Universität Berlin, Chair of Bioprocess EngineeringBerlinGermany
| | - Peter Neubauer
- Technische Universität Berlin, Chair of Bioprocess EngineeringBerlinGermany
| | | | | |
Collapse
|
8
|
Musilova J, Kourilova X, Pernicova I, Bezdicek M, Lengerova M, Obruca S, Sedlar K. Novel thermophilic polyhydroxyalkanoates producing strain Aneurinibacillus thermoaerophilus CCM 8960. Appl Microbiol Biotechnol 2022; 106:4669-4681. [PMID: 35759037 DOI: 10.1007/s00253-022-12039-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 11/26/2022]
Abstract
Aneurinibacillus thermoaerophilus CCM 8960 is a thermophilic bacterium isolated from compost in Brno. The bacterium accumulates polyhydroxyalkanoates (PHAs), a biodegradable and renewable alternative to petrochemical polymers. The bacterium reveals several features that make it a very interesting candidate for the industrial production of PHA. At first, due to its thermophilic character, the bacterium can be utilized in agreement with the concept of next-generation industrial biotechnology (NGIB), which relies on extremophiles. Second, the bacterium is capable of producing PHA copolymers containing a very high portion of 4-hydroxybutyrate (4HB). Such materials possess unique properties and can be advantageously used in multiple applications, including but not limited to medicine and healthcare. Therefore, this work focuses on the in-depth characterization of A. thermoaerophilus CCM 8960. In particular, we sequenced and assembled the genome of the bacterium and identified its most important genetic features, such as the presence of plasmids, prophages, CRISPR arrays, antibiotic-resistant genes, and restriction-modification (R-M) systems, which might be crucial for the development of genome editing tools. Furthermore, we focused on genes directly involved in PHA metabolism. We also experimentally studied the kinetics of glycerol and 1,4-butanediol (1,4BD) utilization as well as biomass growth and PHA production during cultivation. Based on these data, we constructed a metabolic model to reveal metabolic fluxes and nodes of glycerol and 1,4BD concerning their incorporation into the poly(3-hydroxybutyrate-co-4-hydroxybutyrate (P(3HB-co-4HB)) structure. KEY POINTS: • Aneurinibacillus sp. H1 was identified as Aneurinibacillus thermoaerophilus. • PHA metabolism pathway with associated genes was presented. • Unique monomer composition of produced PHAs was reported.
Collapse
Affiliation(s)
- Jana Musilova
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Xenie Kourilova
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic
| | - Iva Pernicova
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic
| | - Matej Bezdicek
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | - Martina Lengerova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | - Stanislav Obruca
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic
| | - Karel Sedlar
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic.
- Department of Informatics, Institute of Bioinformatics, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
9
|
Pospisilova A, Vodicka J, Trudicova M, Juglova Z, Smilek J, Mencik P, Masilko J, Slaninova E, Melcova V, Kalina M, Obruca S, Sedlacek P. Effects of Differing Monomer Compositions on Properties of P(3HB-co-4HB) Synthesized by Aneurinibacillus sp. H1 for Various Applications. Polymers (Basel) 2022; 14:polym14102007. [PMID: 35631889 PMCID: PMC9146627 DOI: 10.3390/polym14102007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
Films prepared from poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymers produced by Aneurinibacillus sp. H1 using an automatic film applicator were homogeneous and had a defined thickness, which allowed a detailed study of physicochemical properties. Their properties were compared with those of a poly (3-hydroxybutyrate) homopolymer film prepared by the same procedure, which proved to be significantly more crystalline by DSC and XRD. Structural differences between samples had a major impact on their properties. With increasing 4-hydroxybutyrate content, the ductility and release rate of the model hydrophilic active ingredient increased significantly. Other observed properties, such as the release of the hydrophobic active substance, the contact angle with water and ethylene glycol, or the surface morphology and roughness, were also affected by the composition. The identified properties predetermine these copolymers for wide use in areas such as biomedicine or smart biodegradable packaging for food or cosmetics. The big advantage is the possibility of fine-tuning properties simply by changing the fermentation conditions.
Collapse
|
10
|
Degradation of P(3HB-co-4HB) Films in Simulated Body Fluids. Polymers (Basel) 2022; 14:polym14101990. [PMID: 35631874 PMCID: PMC9143980 DOI: 10.3390/polym14101990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
A novel model of biodegradable PHA copolymer films preparation was applied to evaluate the biodegradability of various PHA copolymers and to discuss its biomedical applicability. In this study, we illustrate the potential biomaterial degradation rate affectability by manipulation of monomer composition via controlling the biosynthetic strategies. Within the experimental investigation, we have prepared two different copolymers of 3-hydroxybutyrate and 4-hydroxybutyrate—P(3HB-co-36 mol.% 4HB) and P(3HB-co-66 mol.% 4HB), by cultivating the thermophilic bacterial strain Aneurinibacillus sp. H1 and further investigated its degradability in simulated body fluids (SBFs). Both copolymers revealed faster weight reduction in synthetic gastric juice (SGJ) and artificial colonic fluid (ACF) than simple homopolymer P3HB. In addition, degradation mechanisms differed across tested polymers, according to SEM micrographs. While incubated in SGJ, samples were fragmented due to fast hydrolysis sourcing from substantially low pH, which suggest abiotic degradation as the major degradation mechanism. On the contrary, ACF incubation indicated obvious enzymatic hydrolysis. Further, no cytotoxicity of the waste fluids was observed on CaCO-2 cell line. Based on these results in combination with high production flexibility, we suggest P(3HB-co-4HB) copolymers produced by Aneurinibacillus sp. H1 as being very auspicious polymers for intestinal in vivo treatments.
Collapse
|
11
|
Wang J, Liu S, Huang J, Qu Z. A review on polyhydroxyalkanoate production from agricultural waste Biomass: Development, Advances, circular Approach, and challenges. BIORESOURCE TECHNOLOGY 2021; 342:126008. [PMID: 34592618 DOI: 10.1016/j.biortech.2021.126008] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/15/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Polyhydroxyalkanoates are biopolymers produced by microbial fermentation. They have excellent biodegradability and biocompatibility, which are regarded as promising substitutes for traditional plastics in various production and application fields. This review details the research progress in PHA production from lignocellulosic crop residues, lipid-type agricultural wastes, and other agro-industrial wastes such as molasses and whey. The effective use of agricultural waste can further reduce the cost of PHA production while avoiding competition between industrial production and food. The latest information on fermentation parameter optimization, fermentation strategies, kinetic studies, and circular approach has also been discussed. This review aims to analyze the crucial process of the PHA production from agricultural wastes to provide support and reference for further scale-up and industrial production.
Collapse
Affiliation(s)
- Jianfei Wang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse NY13210, United States
| | - Shijie Liu
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse NY13210, United States.
| | - Jiaqi Huang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse NY13210, United States; The Center for Biotechnology & Interdisciplinary Studies (CBIS) at Rensselaer Polytechnic Institute, Troy NY12180, United States
| | - Zixuan Qu
- School of Engineering, Tufts University, Medford, MA 02155, United States
| |
Collapse
|
12
|
Pospisilova A, Melcova V, Figalla S, Mencik P, Prikryl R. Techniques for increasing the thermal stability of poly[(R)-3-hydroxybutyrate] recovered by digestion methods. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2021.109727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Production of eco-friendly PHB-based bioplastics by Pseudomonas aeruginosa CWS2020 isolate using poultry (chicken feather) waste. Biol Futur 2021; 72:497-508. [PMID: 34606079 DOI: 10.1007/s42977-021-00099-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
Nowadays, the accumulation of non-degradable plastics and other disposed wastes leads to environmental pollution across the world. The production of eco-friendly and cost-effective poly-β-hydroxybutyrate (PHB) could be a better alternative to conventional petroleum-based plastics and prevent environmental pollution. Besides, the area in and around Namakkal, Tamil Nadu, India is well known for poultries, currently facing the number of environmental issues due to the accumulation of chicken feather waste. This study focused on the production of eco-friendly PHB by recycling poultry (chicken feather) waste as the substrate. The native PHB producers were screened from the chicken waste disposal site in Namakkal by Sudan black B staining method. Further, the potent bacterial isolate was identified as Pseudomonas aeruginosa (NCBI accession MF18889) by phenotypic and genotypic characteristics. The PHB production media with chicken feather waste was statistically optimized by response surface methodology. The dry weight of PHB produced under optimized condition (15.96 g/L chicken feather waste, 37 °C temperature, 19.8 g/L glucose and 6.85 pH) was found to be 4.8 g/L. Besides, PHB was characterized and confirmed by thin-layer chromatography, Fourier-transform infrared spectroscopy and Gas chromatography-mass spectrometry analysis. Thus, this study concludes that poultry waste could be a complex nitrogen source for improving the growth of PHB producers and substantially increasing the yield of PHB, and it will be an eco-friendly and low-cost production in bioprocess technology.
Collapse
|
14
|
Manzoni S, Ding Y, Warren C, Banfield CC, Dippold MA, Mason-Jones K. Intracellular Storage Reduces Stoichiometric Imbalances in Soil Microbial Biomass – A Theoretical Exploration. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.714134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Microbial intracellular storage is key to defining microbial resource use strategies and could contribute to carbon (C) and nutrient cycling. However, little attention has been devoted to the role of intracellular storage in soil processes, in particular from a theoretical perspective. Here we fill this gap by integrating intracellular storage dynamics into a microbially explicit soil C and nutrient cycling model. Two ecologically relevant modes of storage are considered: reserve storage, in which elements are routed to a storage compartment in proportion to their uptake rate, and surplus storage, in which elements in excess of microbial stoichiometric requirements are stored and limiting elements are remobilized from storage to fuel growth and microbial maintenance. Our aim is to explore with this model how these different storage modes affect the retention of C and nutrients in active microbial biomass under idealized conditions mimicking a substrate pulse experiment. As a case study, we describe C and phosphorus (P) dynamics using literature data to estimate model parameters. Both storage modes enhance the retention of elements in microbial biomass, but the surplus storage mode is more effective to selectively store or remobilize C and nutrients according to microbial needs. Enhancement of microbial growth by both storage modes is largest when the substrate C:nutrient ratio is high (causing nutrient limitation after substrate addition) and the amount of added substrate is large. Moreover, storage increases biomass nutrient retention and growth more effectively when resources are supplied in a few large pulses compared to several smaller pulses (mimicking a nearly constant supply), which suggests storage to be particularly relevant in highly dynamic soil microhabitats. Overall, our results indicate that storage dynamics are most important under conditions of strong stoichiometric imbalance and may be of high ecological relevance in soil environments experiencing large variations in C and nutrient supply.
Collapse
|
15
|
Kouřilová X, Schwarzerová J, Pernicová I, Sedlář K, Mrázová K, Krzyžánek V, Nebesářová J, Obruča S. The First Insight into Polyhydroxyalkanoates Accumulation in Multi-Extremophilic Rubrobacter xylanophilus and Rubrobacter spartanus. Microorganisms 2021; 9:909. [PMID: 33923216 PMCID: PMC8146576 DOI: 10.3390/microorganisms9050909] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/27/2022] Open
Abstract
Actinobacteria belonging to the genus Rubrobacter are known for their multi-extremophilic growth conditions-they are highly radiation-resistant, halotolerant, thermotolerant or even thermophilic. This work demonstrates that the members of the genus are capable of accumulating polyhydroxyalkanoates (PHA) since PHA-related genes are widely distributed among Rubrobacter spp. whose complete genome sequences are available in public databases. Interestingly, all Rubrobacter strains possess both class I and class III synthases (PhaC). We have experimentally investigated the PHA accumulation in two thermophilic species, R. xylanophilus and R. spartanus. The PHA content in both strains reached up to 50% of the cell dry mass, both bacteria were able to accumulate PHA consisting of 3-hydroxybutyrate and 3-hydroxyvalerate monomeric units, none other monomers were incorporated into the polymer chain. The capability of PHA accumulation likely contributes to the multi-extremophilic characteristics since it is known that PHA substantially enhances the stress robustness of bacteria. Hence, PHA can be considered as extremolytes enabling adaptation to extreme conditions. Furthermore, due to the high PHA content in biomass, a wide range of utilizable substrates, Gram-stain positivity, and thermophilic features, the Rubrobacter species, in particular Rubrobacter xylanophilus, could be also interesting candidates for industrial production of PHA within the concept of Next-Generation Industrial Biotechnology.
Collapse
Affiliation(s)
- Xenie Kouřilová
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (X.K.); (I.P.)
| | - Jana Schwarzerová
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 12, 616 00 Brno, Czech Republic; (J.S.); (K.S.)
| | - Iva Pernicová
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (X.K.); (I.P.)
| | - Karel Sedlář
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 12, 616 00 Brno, Czech Republic; (J.S.); (K.S.)
| | - Kateřina Mrázová
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Kralovopolska 147, 612 64 Brno, Czech Republic; (K.M.); (V.K.)
| | - Vladislav Krzyžánek
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Kralovopolska 147, 612 64 Brno, Czech Republic; (K.M.); (V.K.)
| | - Jana Nebesářová
- Biology Centre, The Czech Academy of Sciences, v.v.i., Branisovska 31, 370 05 Ceske Budejovice, Czech Republic;
- Faculty of Science, Charles University, Vinicna 7, 128 44 Prague 2, Czech Republic
| | - Stanislav Obruča
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (X.K.); (I.P.)
| |
Collapse
|
16
|
Ganesh Saratale R, Cho SK, Dattatraya Saratale G, Kadam AA, Ghodake GS, Kumar M, Naresh Bharagava R, Kumar G, Su Kim D, Mulla SI, Seung Shin H. A comprehensive overview and recent advances on polyhydroxyalkanoates (PHA) production using various organic waste streams. BIORESOURCE TECHNOLOGY 2021; 325:124685. [PMID: 33508681 DOI: 10.1016/j.biortech.2021.124685] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Polyhydroxyalkanoates (PHA) are appealing as an important alternative to replace synthetic plastics owing to its comparable physicochemical properties to that of synthetic plastics, and biodegradable and biocompatible nature. This review gives an inclusive overview of the current research activities dealing with PHA production by utilizing different waste fluxes generated from food, milk and sugar processing industries. Valorization of these waste fluxes makes the process cost effective and practically applicable. Recent advances in the approaches adopted for waste treatment, fermentation strategies, and genetic engineering can give insights to the researchers for future direction of waste to bioplastics production. Lastly, synthesis and application of PHA-nanocomposites, research and development challenges, future perspectives for sustainable and cost-effective PHB production are also discussed. In addition, the review addresses the useful information about the opportunities and confines associated with the sustainable PHA production using different waste streams and their evaluation for commercial implementation within a biorefinery.
Collapse
Affiliation(s)
- Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - Si-Kyung Cho
- Department of Biological and Environmental Science, Dongguk University, Ilsandong-gu, Goyang-si, Gyonggido 10326, Republic of Korea
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea.
| | - Avinash A Kadam
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - Gajanan S Ghodake
- Department of Biological and Environmental Science, Dongguk University, Ilsandong-gu, Goyang-si, Gyonggido 10326, Republic of Korea
| | - Manu Kumar
- Department of Life Science, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea
| | - Ram Naresh Bharagava
- Department of Microbiology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow 226 025, U.P., India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Dong Su Kim
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Sikandar I Mulla
- Department of Biochemistry, School of Applied Sciences, REVA University, Bangalore 560 064, India
| | - Han Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| |
Collapse
|
17
|
Pospisilova A, Novackova I, Prikryl R. Isolation of poly(3-hydroxybutyrate) from bacterial biomass using soap made of waste cooking oil. BIORESOURCE TECHNOLOGY 2021; 326:124683. [PMID: 33524885 DOI: 10.1016/j.biortech.2021.124683] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
The aim of this work was to develop a soap-based method for the isolation of poly(3-hydroxybutyrate) from bacterial biomass. The method consisted of adding soap derived from waste cooking oil to a concentrated (25%) biomass suspension, heating and centrifugal separation. Purity above 95% could be achieved with soap:cell dry mass ratios at least 0.125 g/g, making the method comparable to other surfactant-based protocols. Molecular weights Mw of products from all experiments were between 350 and 450 kDa, being high enough for future material applications. Addition of hydrochloric acid to the wastewater led to the precipitation of soap and part of non-P3HB cell mass. The resulting precipitate was utilized as a carbon source in biomass production and increased substrate-to-P3HB conversion.
Collapse
Affiliation(s)
- Aneta Pospisilova
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, Brno, Czech Republic.
| | - Ivana Novackova
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, Brno, Czech Republic.
| | - Radek Prikryl
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, Brno, Czech Republic.
| |
Collapse
|
18
|
Stöckl M, Harms S, Dinges I, Dimitrova S, Holtmann D. From CO 2 to Bioplastic - Coupling the Electrochemical CO 2 Reduction with a Microbial Product Generation by Drop-in Electrolysis. CHEMSUSCHEM 2020; 13:4086-4093. [PMID: 32677318 PMCID: PMC7496250 DOI: 10.1002/cssc.202001235] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/01/2020] [Indexed: 05/19/2023]
Abstract
CO2 has been electrochemically reduced to the intermediate formate, which was subsequently used as sole substrate for the production of the polymer polyhydroxybutyrate (PHB) by the microorganism Cupriavidus necator. Faradaic efficiencies (FE) up to 54 % have been reached with Sn-based gas-diffusion electrodes in physiological electrolyte. The formate containing electrolyte can be used directly as drop-in solution in the following biological polymer production by resting cells. 56 mg PHB L-1 and a ratio of 34 % PHB per cell dry weight were achieved. The calculated overall FE for the process was as high as 4 %. The direct use of the electrolyte as drop-in media in the bioconversion enables simplified processes with a minimum of intermediate purification effort. Thus, an optimal coupling between electrochemical and biotechnological processes can be realized.
Collapse
Affiliation(s)
- Markus Stöckl
- Electrochemistry, Industrial BiotechnologyDECHEMA Research InstituteTheodor-Heuss-Allee 2560486Frankfurt am MainGermany
| | - Svenja Harms
- Electrochemistry, Industrial BiotechnologyDECHEMA Research InstituteTheodor-Heuss-Allee 2560486Frankfurt am MainGermany
| | - Ida Dinges
- Electrochemistry, Industrial BiotechnologyDECHEMA Research InstituteTheodor-Heuss-Allee 2560486Frankfurt am MainGermany
- Institute for Anorganic and Analytic ChemistryGoethe-Universität Frankfurt am MainMax-von-Laue-Straße 760438Frankfurt am MainGermany
| | - Steliyana Dimitrova
- Electrochemistry, Industrial BiotechnologyDECHEMA Research InstituteTheodor-Heuss-Allee 2560486Frankfurt am MainGermany
| | - Dirk Holtmann
- Electrochemistry, Industrial BiotechnologyDECHEMA Research InstituteTheodor-Heuss-Allee 2560486Frankfurt am MainGermany
- Institute of Bioprocess Engineering and Pharmaceutical TechnologyUniversity of Applied Sciences MittelhessenWiesenstrasse 1435390GiessenGermany
| |
Collapse
|
19
|
Sedlacek P, Pernicova I, Novackova I, Kourilova X, Kalina M, Kovalcik A, Koller M, Nebesarova J, Krzyzanek V, Hrubanova K, Masilko J, Slaninova E, Trudicova M, Obruca S. Introducing the Newly Isolated Bacterium Aneurinibacillus sp. H1 as an Auspicious Thermophilic Producer of Various Polyhydroxyalkanoates (PHA) Copolymers-2. Material Study on the Produced Copolymers. Polymers (Basel) 2020; 12:polym12061298. [PMID: 32517027 PMCID: PMC7362046 DOI: 10.3390/polym12061298] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 11/29/2022] Open
Abstract
Aneurinibacillus sp. H1 is a promising, moderately thermophilic, novel Gram-positive bacterium capable of the biosynthesis of polyhydroxyalkanoates (PHA) with tunable monomer composition. In particular, the strain is able to synthesize copolymers of 3-hydroxybutyrate (3HB), 4-hydroxybutyrate (4HB) and 3-hydroxyvalerate (3HV) with remarkably high 4HB and 3HV fractions. In this study we performed an in-depth material analysis of PHA polymers produced by Aneurinibacillus sp. H1 in order to describe how the monomer composition affects fundamental structural and physicochemical parameters of the materials in the form of solvent-casted films. Results of infrared spectroscopy, X-ray diffractometry and thermal analysis clearly show that controlling the monomer composition enables optimization of PHA crystallinity both qualitatively (the type of the crystalline lattice) and quantitatively (the overall degree of crystallinity). Furthermore, resistance of the films against thermal and/or enzymatic degradation can also be manipulated by the monomer composition. Results of this study hence confirm Aneurinibacillus sp. H1 as an auspicious candidate for thermophilic production of PHA polymers with material properties that can be tuned together with their chemical composition by the corresponding adjustment of the cultivation process.
Collapse
Affiliation(s)
- Petr Sedlacek
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (P.S.); (I.P.); (I.N.); (X.K.); (M.K.); (A.K.); (J.M.); (E.S.); (M.T.)
| | - Iva Pernicova
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (P.S.); (I.P.); (I.N.); (X.K.); (M.K.); (A.K.); (J.M.); (E.S.); (M.T.)
| | - Ivana Novackova
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (P.S.); (I.P.); (I.N.); (X.K.); (M.K.); (A.K.); (J.M.); (E.S.); (M.T.)
| | - Xenie Kourilova
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (P.S.); (I.P.); (I.N.); (X.K.); (M.K.); (A.K.); (J.M.); (E.S.); (M.T.)
| | - Michal Kalina
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (P.S.); (I.P.); (I.N.); (X.K.); (M.K.); (A.K.); (J.M.); (E.S.); (M.T.)
| | - Adriana Kovalcik
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (P.S.); (I.P.); (I.N.); (X.K.); (M.K.); (A.K.); (J.M.); (E.S.); (M.T.)
| | - Martin Koller
- Institute of Chemistry, NAWI Graz, University of Graz, Heinrichstrasse 28/VI, 8010 Graz, Austria;
- ARENA Arbeitsgemeinschaft für Ressourcenschonende & Nachhaltige Technologien, Inffeldgasse 21b, 8010 Graz, Austria
| | - Jana Nebesarova
- Biology Centre, The Czech Academy of Sciences, v.v.i., Branisovska 31, 370 05 Ceske Budejovice, Czech Republic;
- Faculty of Science, University of South Bohemia, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic
| | - Vladislav Krzyzanek
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Kralovopolska 147, 612 64 Brno, Czech Republic; (V.K.); (K.H.)
| | - Kamila Hrubanova
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Kralovopolska 147, 612 64 Brno, Czech Republic; (V.K.); (K.H.)
| | - Jiri Masilko
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (P.S.); (I.P.); (I.N.); (X.K.); (M.K.); (A.K.); (J.M.); (E.S.); (M.T.)
| | - Eva Slaninova
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (P.S.); (I.P.); (I.N.); (X.K.); (M.K.); (A.K.); (J.M.); (E.S.); (M.T.)
| | - Monika Trudicova
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (P.S.); (I.P.); (I.N.); (X.K.); (M.K.); (A.K.); (J.M.); (E.S.); (M.T.)
| | - Stanislav Obruca
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (P.S.); (I.P.); (I.N.); (X.K.); (M.K.); (A.K.); (J.M.); (E.S.); (M.T.)
- Correspondence: ; Tel.: +420-541-149-354
| |
Collapse
|
20
|
Pernicova I, Novackova I, Sedlacek P, Kourilova X, Kalina M, Kovalcik A, Koller M, Nebesarova J, Krzyzanek V, Hrubanova K, Masilko J, Slaninova E, Obruca S. Introducing the Newly Isolated Bacterium Aneurinibacillus sp. H1 as an Auspicious Thermophilic Producer of Various Polyhydroxyalkanoates (PHA) Copolymers-1. Isolation and Characterization of the Bacterium. Polymers (Basel) 2020; 12:polym12061235. [PMID: 32485983 PMCID: PMC7362256 DOI: 10.3390/polym12061235] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/15/2020] [Accepted: 05/26/2020] [Indexed: 11/25/2022] Open
Abstract
Extremophilic microorganisms are considered being very promising candidates for biotechnological production of various products including polyhydroxyalkanoates (PHA). The aim of this work was to evaluate the PHA production potential of a novel PHA-producing thermophilic Gram-positive isolate Aneurinibacillus sp. H1. This organism was capable of efficient conversion of glycerol into poly(3-hydroxybutyrate) (P3HB), the homopolyester of 3-hydroxybutyrate (3HB). In flasks experiment, under optimal cultivation temperature of 45 °C, the P3HB content in biomass and P3HB titers reached 55.31% of cell dry mass and 2.03 g/L, respectively. Further, the isolate was capable of biosynthesis of PHA copolymers and terpolymers containing high molar fractions of 3-hydroxyvalerate (3HV) and 4-hydroxybutyrate (4HB). Especially 4HB contents in PHA were very high (up to 91 mol %) when 1,4-butanediol was used as a substrate. Based on these results, it can be stated that Aneurinibacillus sp. H1 is a very promising candidate for production of PHA with tailored material properties.
Collapse
Affiliation(s)
- Iva Pernicova
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (I.P.); (I.N.); (P.S.); (X.K.); (M.K.); (A.K.); (J.M.); (E.S.)
| | - Ivana Novackova
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (I.P.); (I.N.); (P.S.); (X.K.); (M.K.); (A.K.); (J.M.); (E.S.)
| | - Petr Sedlacek
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (I.P.); (I.N.); (P.S.); (X.K.); (M.K.); (A.K.); (J.M.); (E.S.)
| | - Xenie Kourilova
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (I.P.); (I.N.); (P.S.); (X.K.); (M.K.); (A.K.); (J.M.); (E.S.)
| | - Michal Kalina
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (I.P.); (I.N.); (P.S.); (X.K.); (M.K.); (A.K.); (J.M.); (E.S.)
| | - Adriana Kovalcik
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (I.P.); (I.N.); (P.S.); (X.K.); (M.K.); (A.K.); (J.M.); (E.S.)
| | - Martin Koller
- Office of Research and Management, c/o Institute of Chemistry, NAWI Graz, University of Graz, Heinrichstrasse 28/VI, 8010 Graz, Austria;
- ARENA Arbeitsgemeinschaft für Ressourcenschonende & Nachhaltige Technologien, Inffeldgasse 21b, 8010 Graz, Austria
| | - Jana Nebesarova
- Biology Centre, The Czech Academy of Sciences, v.v.i., Branisovska 31, 370 05 Ceske Budejovice, Czech Republic;
- Faculty of Science, University of South Bohemia, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic
| | - Vladislav Krzyzanek
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Kralovopolska 147, 612 64 Brno, Czech Republic; (V.K.); (K.H.)
| | - Kamila Hrubanova
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Kralovopolska 147, 612 64 Brno, Czech Republic; (V.K.); (K.H.)
| | - Jiri Masilko
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (I.P.); (I.N.); (P.S.); (X.K.); (M.K.); (A.K.); (J.M.); (E.S.)
| | - Eva Slaninova
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (I.P.); (I.N.); (P.S.); (X.K.); (M.K.); (A.K.); (J.M.); (E.S.)
| | - Stanislav Obruca
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (I.P.); (I.N.); (P.S.); (X.K.); (M.K.); (A.K.); (J.M.); (E.S.)
- Correspondence: ; Tel.: +420-541-149-354
| |
Collapse
|
21
|
Zhang Y, Li T, Shen Y, Wang L, Zhang H, Qian H, Qi X. Preparation, statistical optimization and characterization of poly(3-hydroxybutyrate) fermented by Cupriavidus necator utilizing various hydrolysates of alligator weed (Alternanthera philoxeroides) as a sole carbon source. Biotechnol Prog 2020; 36:e2992. [PMID: 32185881 DOI: 10.1002/btpr.2992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/06/2020] [Accepted: 03/12/2020] [Indexed: 12/29/2022]
Abstract
Alligator weed (Alternanthera philoxeroides) is a stoloniferous, amphibious and perennial herb which has invaded many parts of the world and led to serious environmental and ecological problems. In order to exploit cheap carbon source for poly(3-hydroxybutyrate) (PHB) production, alligator weed hydrolysates were prepared by acid and enzyme treatment and used for PHB production via Cupriavidus necator. The bacterium utilized alligator weed enzymatic hydrolysate and produced the PHB concentration of 3.8 ± 0.2 g/L at the conditions of pH 7.0, 27.5°C, 1.5 g/L of nitrogen source, and 25 g/L of carbon source, this exceeded the value of 2.1 ± 0.1 g/L from acid hydrolysate media at the same conditions. In order to obtain the optimum conditions of PHB production, response surface methodology was employed which improved PHB content. The optimum conditions for PHB production are as follows: carbon source, 34 g/L; nitrogen source, 2 g/L; pH, 7; temperature, 28°C. After 72 hr of incubation, the bacterium produced 8.5 g/L of dry cell weight and 4.8 g/L of PHB. The PHB was subjected to Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and Molecular weight analysis and found the melting temperature, number average molecular mass, and polydispersity were 168.20°C, 185 kDa, and 2.1, respectively.
Collapse
Affiliation(s)
- Youwei Zhang
- School of Food Science and Technology, Jiangsu Food and Pharmaceutical Science College, Huai'an, China
| | - Tingting Li
- Department of Food Science and Technology, College of Light Industry and Food Engineer, Nanjing Forestry University, Nanjing, China
| | - Yingbin Shen
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Li Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hui Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Haifeng Qian
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiguang Qi
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
22
|
Israni N, Venkatachalam P, Gajaraj B, Varalakshmi KN, Shivakumar S. Whey valorization for sustainable polyhydroxyalkanoate production by Bacillus megaterium: Production, characterization and in vitro biocompatibility evaluation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 255:109884. [PMID: 32063322 DOI: 10.1016/j.jenvman.2019.109884] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/13/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are biodegradable biopolymers acclaimed as an eco-friendly substitute of hazardously polluting petrochemical plastics. Using industrial by-products as PHA feedstocks could improve its process economics and market implementation. Valorizing the plenteous, nutritive pollutant whey as PHA production feedstock would be an excellent whey management strategy. This study aimed at whole/crude whey valorization for value-added PHA production using B. megaterium Ti3 innate protease, alleviating pretreatments. Response surface methodology (RSM) media optimization ascertained whey (%) as the key influential factor (p < 0.05). The optimized and validated RSM model (R2, 0.991; desirability, 1) facilitated 12.2, 11.5 folds increased PHA yield (2.20 ± 0.11 g/L) and productivity (0.05 gPHA/L/h). A positive correlation (r2, 0.95 and 0.87) was observed amid the innate enzymes (protease and lipase) and PHA production. The PHA was characterized by 1H and 13C NMR, GPC, TGA, and was identified as poly (3-hydroxybutyrate) (P3HB) by NMR. A significantly reduced roughness (110 ± 5.6 nm); increased hydrophilicity (8.6 ± 0.3 and 8.7 ± 0.5%), protein adsorption (68.75 ± 2.55 μg/cm2) and 1.6 folds higher biocompatibility achieved on poly (ethylene glycol) (PEG) blending compared to neat P3HB films. This is the first report on B. megaterium innate enzyme based whey valorization to PHAs also demonstrating its biomedical applicability.
Collapse
Affiliation(s)
- Neetu Israni
- Department of Microbiology, School of Sciences, Jain University, 18/3, 9th Main, Jayanagar 3rd Block, Bangalore, 560011, Karnataka, India
| | - Prerana Venkatachalam
- Department of Biotechnology, School of Sciences, Jain University, 18/3, 9th Main, Jayanagar 3rd Block, Bangalore, 560011, Karnataka, India
| | - Bharath Gajaraj
- Department of Biotechnology, School of Sciences, Jain University, 18/3, 9th Main, Jayanagar 3rd Block, Bangalore, 560011, Karnataka, India
| | - Kilingar Nadumane Varalakshmi
- Department of Biotechnology, School of Sciences, Jain University, 18/3, 9th Main, Jayanagar 3rd Block, Bangalore, 560011, Karnataka, India
| | - Srividya Shivakumar
- Department of Microbiology, School of Sciences, Jain University, 18/3, 9th Main, Jayanagar 3rd Block, Bangalore, 560011, Karnataka, India.
| |
Collapse
|
23
|
Kerketta A, Vasanth D. Madhuca indica flower extract as cheaper carbon source for production of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) using Ralstonia eutropha. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Wang P, Chen XT, Qiu YQ, Liang XF, Cheng MM, Wang YJ, Ren LH. Production of polyhydroxyalkanoates by halotolerant bacteria with volatile fatty acids from food waste as carbon source. Biotechnol Appl Biochem 2019; 67:307-316. [PMID: 31702835 DOI: 10.1002/bab.1848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/05/2019] [Indexed: 12/29/2022]
Abstract
In this study, a halotolerant strain was isolated from high salinity leachate and identified as Bacillus cereus NT-3. It can produce a high concentration of polyhydroxyalkanoates (PHAs) with no significant changes when NaCl concentration is up to 50 g/L. FTIR and NMR spectra of PHAs synthesized by Bacillus cereus NT-3 were similar to the standard or previous results. Effluent from acidogenic fermentation of food waste and pure volatile fatty acids (VFAs) mixture was used as carbon source to check the effect of non-VFAs compounds of the effluent on PHAs production. The maximum PHAs production was 0.42 g/L for effluent fermentation, whereas it was 0.34 g/L for pure VFAs fermentation, indicating that bacteria could use actual effluent in a better way. Furthermore, a mathematical model was established for describing kinetic behavior of bacteria using different carbon sources. These results provided a promising approach for PHAs biosynthesis with a low-cost carbon source.
Collapse
Affiliation(s)
- Pan Wang
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| | - Xi Teng Chen
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| | - Yin Quan Qiu
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China.,Beijing Municipal Solid Waste and Chemical Management Center, Beijing, China
| | - Xiao Fei Liang
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| | - Meng Meng Cheng
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| | - Yong Jing Wang
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| | - Lian Hai Ren
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
25
|
Amaro TMMM, Rosa D, Comi G, Iacumin L. Prospects for the Use of Whey for Polyhydroxyalkanoate (PHA) Production. Front Microbiol 2019; 10:992. [PMID: 31143164 PMCID: PMC6520646 DOI: 10.3389/fmicb.2019.00992] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/18/2019] [Indexed: 11/13/2022] Open
Abstract
Plastic production and accumulation have devastating environmental effects, and consequently, the world is in need of environmentally friendly plastic substitutes. In this context, polyhydroxyalkanoates (PHAs) appear to be true alternatives to common plastics because they are biodegradable and biocompatible and can be biologically produced. Despite having comparable characteristics to common plastics, extensive PHA use is still hampered by its high production cost. PHAs are bacterial produced, and one of the major costs associated with their production derives from the carbon source used for bacterial fermentation. Thus, several industrial waste streams have been studied as candidate carbon sources for bacterial PHA production, including whey, an environmental contaminant by-product from the dairy industry. The use of whey for PHA production could transform PHA production into a less costly and more environmentally friendly process. However, the efficient use of whey as a carbon source for PHA production is still hindered by numerous issues, including whey pre-treatments and PHA producing strain choice. In this review, current knowledge on using whey for PHA production were summarized and new ways to overcome the challenges associated with this production process were proposed.
Collapse
Affiliation(s)
| | | | | | - Lucilla Iacumin
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, Italy
| |
Collapse
|
26
|
Application of whey retentate as complex nitrogen source for growth of the polyhydroxyalkanoate producer Hydrogenophaga pseudoflava strain DSM1023. THE EUROBIOTECH JOURNAL 2019. [DOI: 10.2478/ebtj-2019-0009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Abstract
Polyhydroxyalkanoates, microbial polyesters produced in vivo starting from renewable resources, are considered the future materials of choice to compete recalcitrant petro-chemical plastic on the polymer market. In order to make polyhydroxyalkanoates market-fit, (techno)economics of their production need to be improved. Among the multifarious factors affecting costs of polyhydroxyalkanoate production, increased volumetric productivity is of utmost importance. Improving microbial growth kinetics and increasing cell density are strategies leading to a high concentration of catalytically active biomass within a short time; after changing cultivation conditions, these cells can accumulate polyhydroxyalkanoates as intracellular products. The resulting increase of volumetric productivity for polyhydroxyalkanoates can be realized by supplying complex nitrogen sources to growing microbial cultures. In the present study, the impact of different expensive and inexpensive complex nitrogen sources, in particular whey retentate, on the growth and specific growth rates of Hydrogenophaga pseudoflava was tested.
Based on a detailed kinetic process analysis, the study demonstrates that especially whole (not hydrolyzed) whey retentate, an amply available surplus material from dairy industry, displays positive effects on cultivations of H. pseudoflava in defined media (increase of concentration of catalytically active biomass after 26.25 h of cultivation by about 50%, increase of specific growth rate μ from 0.28 to 0.41 1/h during exponential growth), while inhibiting effects (inhibition constant K i
= 6.1 g/L) of acidically hydrolyzed whey retentate need to be overcome. Considering the huge amounts of surplus whey accruing especially in Europe, the combined utilization of whey permeate (carbon source) and whey retentate (complex nitrogen source) for biopolyester production can be considered a viable bioeconomic strategy for the next future.
Collapse
|
27
|
Sen KY, Hussin MH, Baidurah S. Biosynthesis of poly(3-hydroxybutyrate) (PHB) by Cupriavidus necator from various pretreated molasses as carbon source. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2018.11.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Kucera D, Pernicová I, Kovalcik A, Koller M, Mullerova L, Sedlacek P, Mravec F, Nebesarova J, Kalina M, Marova I, Krzyzanek V, Obruca S. Characterization of the promising poly(3-hydroxybutyrate) producing halophilic bacterium Halomonas halophila. BIORESOURCE TECHNOLOGY 2018; 256:552-556. [PMID: 29478784 DOI: 10.1016/j.biortech.2018.02.062] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/08/2018] [Accepted: 02/13/2018] [Indexed: 06/08/2023]
Abstract
This work explores molecular, morphological as well as biotechnological features of the highly promising polyhydroxyalkanoates (PHA) producer Halomonas halophila. Unlike many other halophiles, this bacterium does not require expensive complex media components and it is capable to accumulate high intracellular poly(3-hydroxybutyrate) (PHB) fractions up to 82% of cell dry mass. Most remarkably, regulating the concentration of NaCl apart from PHB yields influences also the polymer's molecular mass and polydispersity. The bacterium metabolizes various carbohydrates including sugars predominant in lignocelluloses and other inexpensive substrates. Therefore, the bacterium was employed for PHB production on hydrolysates of cheese whey, spent coffee grounds, sawdust and corn stover, which were hydrolyzed by HCl; required salinity of cultivation media was set up during neutralization by NaOH. The bacterium was capable to use all the tested hydrolysates as well as sugar beet molasses for PHB biosynthesis, indicating its potential for industrial PHB production.
Collapse
Affiliation(s)
- Dan Kucera
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Iva Pernicová
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Adriana Kovalcik
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Martin Koller
- Institute of Chemistry, NAWI Graz, University of Graz, Heinrichstrasse 28/III, 8010 Graz, Austria; ARENA Arbeitsgemeinschaft für Ressourcenschonende & Nachhaltige Technologien, Inffeldgasse 21b, 8010 Graz, Austria
| | - Lucie Mullerova
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Petr Sedlacek
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Filip Mravec
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Jana Nebesarova
- Biology Centre, The Czech Academy of Sciences, V.v.i., Branisovska 31, 370 05 Ceske Budejovice, Czech Republic; University of South Bohemia, Faculty of Science, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic
| | - Michal Kalina
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Ivana Marova
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Vladislav Krzyzanek
- Institute of Scientific Instruments, Academy of Sciences of the Czech Republic, Vvi Kralovopolska 147, 612 64 Brno, Czech Republic
| | - Stanislav Obruca
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic.
| |
Collapse
|
29
|
Advanced approaches to produce polyhydroxyalkanoate (PHA) biopolyesters in a sustainable and economic fashion. EUROBIOTECH JOURNAL 2018. [DOI: 10.2478/ebtj-2018-0013] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Polyhydroxyalkanoates (PHA), the only group of “bioplastics” sensu stricto, are accumulated by various prokaryotes as intracellular “carbonosomes”. When exposed to exogenous stress or starvation, presence of these microbial polyoxoesters of hydroxyalkanoates assists microbes to survive.
“Bioplastics” such as PHA must be competitive with petrochemically manufactured plastics both in terms of material quality and manufacturing economics. Cost-effectiveness calculations clearly show that PHA production costs, in addition to bioreactor equipment and downstream technology, are mainly due to raw material costs. The reason for this is PHA production on an industrial scale currently relying on expensive, nutritionally relevant “1st-generation feedstocks”, such as like glucose, starch or edible oils. As a way out, carbon-rich industrial waste streams (“2nd-generation feedstocks”) can be used that are not in competition with the supply of food; this strategy not only reduces PHA production costs, but can also make a significant contribution to safeguarding food supplies in various disadvantaged parts of the world. This approach increases the economics of PHA production, improves the sustainability of the entire lifecycle of these materials, and makes them unassailable from an ethical perspective.
In this context, our EU-funded projects ANIMPOL and WHEYPOL, carried out by collaborative consortia of academic and industrial partners, successfully developed PHA production processes, which resort to waste streams amply available in Europe. As real 2nd-generation feedstocks”, waste lipids and crude glycerol from animal-processing and biodiesel industry, and surplus whey from dairy and cheese making industry were used in these processes. Cost estimations made by our project partners determine PHA production prices below 3 € (WHEYPOL) and even less than 2 € (ANIMPOL), respectively, per kg; these values already reach the benchmark of economic feasibility.
The presented studies clearly show that the use of selected high-carbon waste streams of (agro)industrial origin contributes significantly to the cost-effectiveness and sustainability of PHA biopolyester production on an industrial scale.
Collapse
|
30
|
Light scattering on PHA granules protects bacterial cells against the harmful effects of UV radiation. Appl Microbiol Biotechnol 2018; 102:1923-1931. [DOI: 10.1007/s00253-018-8760-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 10/18/2022]
|
31
|
Kourmentza C, Costa J, Azevedo Z, Servin C, Grandfils C, De Freitas V, Reis MAM. Burkholderia thailandensis as a microbial cell factory for the bioconversion of used cooking oil to polyhydroxyalkanoates and rhamnolipids. BIORESOURCE TECHNOLOGY 2018; 247:829-837. [PMID: 30060419 DOI: 10.1016/j.biortech.2017.09.138] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 06/08/2023]
Abstract
The present work assessed the feasibility of used cooking oil as a low cost carbon source for rhamnolipid biosurfactant production employing the strain Burkholderia thailandensis. According to the results, B. thailandensis was able to produce rhamnolipids up to 2.2 g/L, with the dominant congener being the di-rhamnolipid Rha-Rha-C14-C14. Rhamnolipids had the ability to reduce the surface tension to 37.7 mN/m and the interfacial tension against benzene and oleic acid to 4.2 and 1.5 mN/m, while emulsification index against kerosene reached up to 64%. The ability of B. thailandensis to accumulate intracellular biopolymers, in the form of polyhydroxyalkanoates (PHA), was also monitored. Polyhydroxybutyrate (PHB) was accumulated simultaneously and consisted of up to 60% of the cell dry weight. PHB was further characterized in terms of its molecular weight and thermal properties. This is the first study reporting the simultaneous production of polyhydroxyalkanoates and rhamnolipids by the non-pathogen rhamnolipid producer B. thailandensis.
Collapse
Affiliation(s)
- C Kourmentza
- UCIBIO-REQUIMTE, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa (FCT/UNL), 2829-516 Caparica, Portugal.
| | - J Costa
- UCIBIO-REQUIMTE, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa (FCT/UNL), 2829-516 Caparica, Portugal
| | - Z Azevedo
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - C Servin
- Interfacultary Research Centre of Biomaterials (CEIB), University of Liège, B-4000 Liège, Belgium
| | - C Grandfils
- Interfacultary Research Centre of Biomaterials (CEIB), University of Liège, B-4000 Liège, Belgium
| | - V De Freitas
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - M A M Reis
- UCIBIO-REQUIMTE, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa (FCT/UNL), 2829-516 Caparica, Portugal
| |
Collapse
|
32
|
Obruca S, Sedlacek P, Mravec F, Krzyzanek V, Nebesarova J, Samek O, Kucera D, Benesova P, Hrubanova K, Milerova M, Marova I. The presence of PHB granules in cytoplasm protects non-halophilic bacterial cells against the harmful impact of hypertonic environments. N Biotechnol 2017; 39:68-80. [DOI: 10.1016/j.nbt.2017.07.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 06/03/2017] [Accepted: 07/16/2017] [Indexed: 12/12/2022]
|
33
|
Benesova P, Kucera D, Marova I, Obruca S. Chicken feather hydrolysate as an inexpensive complex nitrogen source for PHA production byCupriavidus necatoron waste frying oils. Lett Appl Microbiol 2017; 65:182-188. [DOI: 10.1111/lam.12762] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/19/2017] [Accepted: 05/31/2017] [Indexed: 12/20/2022]
Affiliation(s)
- P. Benesova
- Faculty of Chemistry; Materials Research Centre; Brno University of Technology; Brno Czech Republic
- Faculty of Chemistry; Institute of Food Chemistry and Biotechnology; Brno University of Technology; Brno Czech Republic
| | - D. Kucera
- Faculty of Chemistry; Materials Research Centre; Brno University of Technology; Brno Czech Republic
- Faculty of Chemistry; Institute of Food Chemistry and Biotechnology; Brno University of Technology; Brno Czech Republic
| | - I. Marova
- Faculty of Chemistry; Materials Research Centre; Brno University of Technology; Brno Czech Republic
- Faculty of Chemistry; Institute of Food Chemistry and Biotechnology; Brno University of Technology; Brno Czech Republic
| | - S. Obruca
- Faculty of Chemistry; Materials Research Centre; Brno University of Technology; Brno Czech Republic
- Faculty of Chemistry; Institute of Food Chemistry and Biotechnology; Brno University of Technology; Brno Czech Republic
| |
Collapse
|
34
|
Koller M, Maršálek L, de Sousa Dias MM, Braunegg G. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. N Biotechnol 2017; 37:24-38. [DOI: 10.1016/j.nbt.2016.05.001] [Citation(s) in RCA: 311] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/11/2016] [Accepted: 05/03/2016] [Indexed: 11/30/2022]
|
35
|
Mravec F, Obruca S, Krzyzanek V, Sedlacek P, Hrubanova K, Samek O, Kucera D, Benesova P, Nebesarova J. Accumulation of PHA granules inCupriavidus necatoras seen by confocal fluorescence microscopy. FEMS Microbiol Lett 2016; 363:fnw094. [DOI: 10.1093/femsle/fnw094] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2016] [Indexed: 11/12/2022] Open
|
36
|
Wine lees valorization: Biorefinery development including production of a generic fermentation feedstock employed for poly(3-hydroxybutyrate) synthesis. Food Res Int 2015. [DOI: 10.1016/j.foodres.2015.02.020] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Metabolic Engineering of Escherichia coli for Poly(3-hydroxybutyrate) Production under Microaerobic Condition. BIOMED RESEARCH INTERNATIONAL 2015; 2015:789315. [PMID: 25945345 PMCID: PMC4405016 DOI: 10.1155/2015/789315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 03/24/2015] [Accepted: 03/26/2015] [Indexed: 12/05/2022]
Abstract
The alcohol dehydrogenase promoter PadhE and mixed acid fermentation pathway deficient mutants of Escherichia coli were employed to produce poly(3-hydroxybutyrate) (P3HB) under microaerobic condition. The E. coli mutant with ackA-pta, poxB, ldhA, and adhE deletions accumulated 0.67 g/L P3HB, up to 78.84% of cell dry weight in tube cultivation. The deletion of pyruvate formate-lyase gene pflB drastically decreased P3HB production and P3HB content to 0.09 g/L and 24.44%, respectively. Overexpressing pflB via the plasmid in its knocked out mutant restored cell growth and P3HB accumulation, indicating the importance of the pyruvate formate-lyase in microaerobic carbon metabolism. The engineered E. coli BWapld (pWYC09) produced 5.00 g/L P3HB from 16.50 g/L glucose in 24 h batch fermentation, and P3HB production yield from glucose was 0.30 g/g, which reached up to 63% of maximal theoretical yield.
Collapse
|
38
|
Recycling of Waste Streams of the Biotechnological Poly(hydroxyalkanoate) Production byHaloferax mediterraneion Whey. INT J POLYM SCI 2015. [DOI: 10.1155/2015/370164] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
For manufacturing “bioplastics” such as poly(hydroxyalkanoates) (PHA), the combination of utilization of inexpensive carbon sources with the application of robust microbial production strains is considered a decisive step to make this process more cost-efficient and sustainable. PHA production based on surplus whey from dairy industry was accomplished by the extremely halophile archaeonHaloferax mediterranei. After fermentative production of PHA-rich biomass and the subsequent cell harvest and downstream processing for PHA recovery, environmentally hazardous, highly saline residues, namely spent fermentation broth and cell debris, remain as residues. These waste streams were used for recycling experiments to assess their recyclability in subsequent production processes. It was demonstrated that spent fermentation broth can be used to replace a considerable part of fresh saline fermentation medium in subsequent production processes. In addition, 29% of the expensive yeast extract, needed as nitrogen and phosphate source for efficient cultivation of the microorganism, can be replaced by cell debris from prior cultivations. The presented study provides strategies to combine the reduction of costs for biomediated PHA production with minimizing ecological risks by recycling precarious waste streams. Overall, the presented work shall contribute to the quick economic success of these promising biomaterials.
Collapse
|