1
|
Mustafa S, Alharbi LM, Abdelraheem MZ, Mobashar M, Qamar W, A Al-Doaiss A, Abbas RZ. Role of Silver Nanoparticles for the Control of Anthelmintic Resistance in Small and Large Ruminants. Biol Trace Elem Res 2024; 202:5502-5521. [PMID: 38436800 DOI: 10.1007/s12011-024-04132-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Helminths are considered a significant threat to the livestock industry, as they cause substantial economic losses in small and large ruminant farming. Their morbidity and mortality rates are also increasing day by day as they have zoonotic importance. Anthelmintic drugs have been used for controlling these parasites; unfortunately, due to the development of resistance of these drugs in helminths (parasites), especially in three major classes like benzimidazoles, nicotinic agonists, and macrocyclic lactones, their use is becoming very low. Although new anthelmintics are being developed, the process is time-consuming and costly. As a result, nanoparticles are being explored as an alternative to anthelmintics. Nanoparticles enhance drug effectiveness, drug delivery, and target specificity and have no resistance against parasites. Different types of nanoparticles are used, such as organic (chitosan) and inorganic (gold, silver, zinc oxide, iron oxide, and nickel oxide). One of them, silver nanoparticles (AgNPs), has unique properties in various fields, especially parasitology. AgNPs are synthesized from three primary methods: physical, chemical, and biological. Their primary mechanism of action is causing stress through the production of ROS that destroys cells, organs, proteins, and DNA parasites. The present review is about AgNPs, their mode of action, and their role in controlling anthelmintic resistance against small and large ruminants.
Collapse
Affiliation(s)
- Sahar Mustafa
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, Pakistan
| | - Lafi M Alharbi
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, 51452, Buraidah, Saudi Arabia
| | - Mona Z Abdelraheem
- The National Institute of Oceanography and Fisheries (NIOF), Aswan, Egypt
| | - Muhammad Mobashar
- Department of Animal Nutrition, The University of Agriculture, Peshawar, Pakistan
| | - Warda Qamar
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan.
| | - Amin A Al-Doaiss
- Biology Department, College of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Rao Zahid Abbas
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
2
|
Hassan MH, Emam IA, Farghali H, Ibrahim MA, Hassan NH, Farroh KY, Hassanen EI. Toxicological screening of zinc oxide nanoparticles in mongrel dogs after seven days of repeated subcutaneous injections. BMC Vet Res 2024; 20:476. [PMID: 39425163 PMCID: PMC11487719 DOI: 10.1186/s12917-024-04268-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/04/2024] [Indexed: 10/21/2024] Open
Abstract
Zinc oxide nanoparticles (ZnO NPs) have recently been applied in various veterinary and medical fields, however, the toxicological evaluations of these NPs in dogs are lacking. Therefore, the current study is designed to assess the impact of exposure to daily subcutaneous (SC) injections of ZnO NPs at different concentrations on various organs of mongrel dogs. Nine dogs were randomly divided into three groups (n = 3 for each) as follows: group (1) served as the control group, whereas groups (2&3) received SC injections of 50 and 100 ppm ZnO NPs (8 and 16 μg/kg bwt), respectively, once/day for 7 days. Our results revealed that ZnO NPs disrupted the oxidant/antioxidant balance in the lungs, liver, and kidneys of dogs in a dose-dependent manner. ZnO NPs induced dose-dependent radiological, ultrasonographical, and histopathological alterations in various organs especially lungs, spleen, liver, and kidneys along with disturbance in both liver and kidney biomarkers levels. Most organs of both ZnO NPs receiving groups displayed strong caspase-3 protein expression. Additionally, it upregulates the transcriptase levels of TNF-α and VEGF, as well as downregulates the antiapoptotic gene IL-10 in lung, kidney, and liver tissue homogenates. It was concluded that the daily SC injections of dogs with ZnO NPs at concentrations of 50 and 100 ppm caused extensive oxidative stress damage in various organs which provoked serious pathological processes such as apoptosis and inflammation.
Collapse
Affiliation(s)
- Marwa H Hassan
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ibrahim A Emam
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Haitham Farghali
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Neven H Hassan
- Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Khaled Y Farroh
- Nanotechnology and Advanced Materials Central Lab, Agricultural Research Center, Giza, Egypt
| | - Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, P.O. Box 12211, Giza, Egypt.
| |
Collapse
|
3
|
Bhushan D, Shoran S, Kumar R, Gupta R. Plant biomass-based nanoparticles for remediation of contaminants from water ecosystems: Recent trends, challenges, and future perspectives. CHEMOSPHERE 2024; 365:143340. [PMID: 39278321 DOI: 10.1016/j.chemosphere.2024.143340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Green nanomaterials can mitigate ecological concerns by minimizing the impact of toxic contaminants on human and environmental health. Biosynthesis seems to be drawing unequivocal attention as the traditional methods of producing nanoparticles through chemical and physical routes are not sustainable. In order to utilize plant biomass, the current review outlines a sustainable method for producing non-toxic plant biomass-based nanoparticles and discusses their applications as well as recent trends involved in the remediation of contaminants, like organic/inorganic pollutants, pharmaceuticals, and radioactive pollutants from aquatic ecosystems. Plant biomass-based nanoparticles have been synthesized using various vegetal components, such as leaves, roots, flowers, stems, seeds, tuber, and bark, for applications in water purification. Phyto-mediated green nanoparticles are effectively utilized to treat contaminated water and reduce harmful substances. Effectiveness of adsorption has also been studied using variable parameters, e.g., pH, initial contaminant concentration, contact time, adsorbent dose, and temperature. Removal of environmental contaminants through reduction, photocatalytic degradation, and surface adsorption mechanisms, such as physical adsorption, precipitation, complexation, and ion exchange, primarily due to varying pH solutions and complex functional groups. In the case of organic pollutants, most of the contaminants have been treated by catalytic reduction and photodegradation involving the formation of NaBH4, H2O2, or both. Whereas electrostatic interaction, metal complexation, H-bonding, π- π associations, and chelation along with reduction have played a major role in the adsorption of heavy metals, pharmaceuticals, radioactive, and other inorganic pollutants. This review also highlights several challenges, like particle size, toxicity, stability, functional groups, cost of nanoparticle production, nanomaterial dynamics, and biological interactions, along with renewability and recycling of nanoparticles. Lastly, this review concluded that plant-biomass-based nanoparticles provide a sustainable, eco-friendly remediation method, utilizing the unique properties of nanomaterials and minimizing chemical synthesis risks.
Collapse
Affiliation(s)
- Divya Bhushan
- Department of Environmental Sciences, J.C. Bose University of Science & Technology, YMCA, Faridabad, Haryana, India
| | - Sachin Shoran
- Department of Environmental Sciences, J.C. Bose University of Science & Technology, YMCA, Faridabad, Haryana, India
| | - Rakesh Kumar
- Department of Biosystems Engineering, Auburn University, Auburn, AL, 36849, USA.
| | - Renuka Gupta
- Department of Environmental Sciences, J.C. Bose University of Science & Technology, YMCA, Faridabad, Haryana, India.
| |
Collapse
|
4
|
Rezghi Rami M, Forouzandehdel S, Aalizadeh F. Enhancing biodegradable smart food packaging: Fungal-synthesized nanoparticles for stabilizing biopolymers. Heliyon 2024; 10:e37692. [PMID: 39315154 PMCID: PMC11417270 DOI: 10.1016/j.heliyon.2024.e37692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
The increasing global concern over environmental plastic waste has propelled the progress of biodegradable supplies for food packaging. Biopolymer-based packaging is undergoing modifications to enhance its mechanical properties, aligning with the requirements of smart food packaging. Polymer nanocomposites, incorporating reinforcements such as fibers, platelets, and nanoparticles, demonstrate significantly improved mechanical, thermal, optical, and physicochemical characteristics. Fungi, in particular, have garnered significant interest for producing metallic nanoparticles, offering advantages such as easy scaling up, streamlined downstream handling, economic feasibility, and a large surface area. This review provides an overview of nano-additives utilized in biopackaging, followed by an exploration of the recent advancements in using microbial-resistant metal nanoparticles for food packaging. The mycofabrication process, involving fungi in the extracellular or intracellular synthesis of metal nanoparticles, is introduced. Fungal functionalized nanostructures represent a promising avenue for application across various stages of food processing, packaging, and safety. The integration of fungal-derived nanostructures into food packaging materials presents a sustainable and effective approach to combatting microbial contamination." By harnessing fungal biomass, this research contributes to the development of economical and environmentally friendly methods for enhancing food packaging functionality. The findings underscore the promising role of fungal-based nanotechnologies in advancing the field of active food packaging, addressing both safety and sustainability concerns. The study concludes with an investigation into potential fungal isolates for nanoparticle biosynthesis, highlighting their relevance and potential in advancing sustainable and efficient packaging solutions.
Collapse
Affiliation(s)
- Mina Rezghi Rami
- Department of Chemistry, KN Toosi University of Technology, Tehran, Iran
| | | | - Farhad Aalizadeh
- Department of Mechanical and Aerospace Engineering, Brunel University London, Uxbridge, UB8 3PH, UK
| |
Collapse
|
5
|
Ansari FS, Daneshjou S. Optimizing the green synthesis of antibacterial TiO 2 - anatase phase nanoparticles derived from spinach leaf extract. Sci Rep 2024; 14:22440. [PMID: 39341863 PMCID: PMC11438858 DOI: 10.1038/s41598-024-73344-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
Titanium dioxide nanoparticles, renowned for their abundance, non-toxicity, and stability, have emerged as indispensable components in various fields such as air purification, healthcare, and industrial processes. Their applications as photocatalysts and antibacterial agents are particularly prominent. The synthesis methods significantly influence the properties and subsequent applications of these nanoparticles. While several techniques exist, the biological approach using plant extracts offers advantages such as simplicity, biocompatibility, and cost-effectiveness. This study focused on the green synthesis of titanium dioxide nanoparticles utilizing spinach leaf extract. Within the scope of this investigation, the green synthesis of titanium dioxide nanoparticles through spinach leaf extract were synthesized and optimized, followed by a comprehensive examination of their morphological, structural, and chemical attributes with UV-visible spectroscopy, FTIR spectroscopy, XRD, FESEM, and EDX. The minimum inhibitory concentration (MIC) against E. coli and S. aureus was determined to evaluate their antibacterial potential. Optimal synthesis conditions were identified at 50 °C, using a 1/30 concentration and 20 ml of spinach leaf extract. Spherical anatase nanoparticles, ranging from 10 to 40 nm, were produced under these conditions. The change in the color of the extract, absorption at 247 nm, change and increase of the peak at 800 - 400 wavelengths, and the maximum intensity of X-ray diffraction at the angle of 25.367 with the crystal plane 101 were indications of the synthesis of these nanoparticles. Notably, the synthesized nanoparticles exhibited antibacterial activity with MIC values of 0.5 mg/ml against E. coli and 2 mg/ml against S. aureus. This research presents a novel, eco-friendly approach to synthesizing titanium dioxide nanoparticles with promising antibacterial properties.
Collapse
Affiliation(s)
- Fatemeh Sheikh Ansari
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Sara Daneshjou
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
6
|
Dalei G, Jena D, Das S. 5-Fluorouracil-loaded green chitosan nanoparticles/ guar gum nanocomposite hydrogel in controlled drug delivery. Carbohydr Res 2024; 545:109257. [PMID: 39236345 DOI: 10.1016/j.carres.2024.109257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/31/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
In recent years nanotechnologies have been applied to human health with promising results, especially in the field of drug delivery. Polymeric nanoparticles (NPs) have garnered much importance in controlled drug delivery owing to their size. Chitosan (Cs) is a well-recognized biopolymer and Cs NPs have been widely explored in drug delivery. Nonetheless, reports pertaining to green synthesis of Cs NPs are scarce. Thus, in this study, green synthesis of Cs NPs was accomplished from raw mango peel extract. Spherical Cs NPs with positively charged surface of 33.4 mV was accomplished by this process. Cs NPs, in varied content, were integrated in a guar gum network matrix resulting in a nanocomposite hydrogel. The mechanical and thermal stability of the hydrogel improved upon addition of Cs NPs. The hydrogel exhibited smart swelling, good antioxidant and anti-inflammatory propensities. Cs NPs encapsulating 5-Fluorouracil demonstrated a controlled release drug profile in the colorectum and the kinetics implied the anomalous nature of drug release mechanism. The exposure of the drug-loaded nanocomposite hydrogel displayed improved anticancer effects in HT-29 colon cancer cells. Taken altogether, this study puts forth the greater efficacy of Cs NPs in controlled drug delivery for anticancer therapy.
Collapse
Affiliation(s)
- Ganeswar Dalei
- Department of Chemistry, Odisha University of Technology and Research, Bhubaneswar, 751029, Odisha, India
| | - Debasis Jena
- Department of Chemistry, Ravenshaw University, Cuttack, 753003, Odisha, India
| | - Subhraseema Das
- Department of Chemistry, Odisha University of Technology and Research, Bhubaneswar, 751029, Odisha, India; Department of Chemistry, Ravenshaw University, Cuttack, 753003, Odisha, India.
| |
Collapse
|
7
|
Sarkar S, Roy A, Mitra R, Kundu S, Banerjee P, Acharya Chowdhury A, Ghosh S. Escaping the ESKAPE pathogens: A review on antibiofilm potential of nanoparticles. Microb Pathog 2024; 194:106842. [PMID: 39117012 DOI: 10.1016/j.micpath.2024.106842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
ESKAPE pathogens, a notorious consortium comprising Enterococcusfaecium, Staphylococcusaureus, Klebsiellapneumoniae, Acinetobacterbaumannii, Pseudomonasaeruginosa, and Enterobacter species, pose formidable challenges in healthcare settings due to their multidrug-resistant nature. The increasing global cases of antimicrobial-resistant ESKAPE pathogens are closely related to their remarkable ability to form biofilms. Thus, understanding the unique mechanisms of antimicrobial resistance of ESKAPE pathogens and the innate resilience of biofilms against traditional antimicrobial agents is important for developing innovative strategies to establish effective control methods against them. This review offers a thorough analysis of biofilm dynamics, with a focus on the general mechanisms of biofilm formation, the significant contribution of persister cells in the resistance mechanisms, and the recurrence of biofilms in comparison to planktonic cells. Additionally, this review highlights the potential strategies of nanoparticles for managing biofilms in the ESKAPE group of pathogens. Nanoparticles, with their unique physicochemical properties, provide promising opportunities for disrupting biofilm structures and improving antimicrobial effectiveness. The review has explored interactions between nanoparticles and biofilms, covering a range of nanoparticle types such as metal, metal-oxide, surface-modified, and functionalized nanoparticles, along with organic nanoparticles and nanomaterials. The additional focus of this review also encompasses green synthesis techniques of nanoparticles that involve plant extract and supernatants from bacterial and fungal cultures as reducing agents. Furthermore, the use of nanocomposites and nano emulsions in biofilm management of ESKAPE is also discussed. To conclude, the review addresses the current obstacles and future outlooks in nanoparticle-based biofilm management, stressing the necessity for further research and development to fully exploit the potential of nanoparticles in addressing biofilm-related challenges.
Collapse
Affiliation(s)
| | - Ankita Roy
- Department of Biosciences, JIS University, Kolkata, India
| | - Rangan Mitra
- Department of Biosciences, JIS University, Kolkata, India
| | - Sweta Kundu
- Department of Biosciences, JIS University, Kolkata, India
| | | | | | - Suparna Ghosh
- Department of Biosciences, JIS University, Kolkata, India.
| |
Collapse
|
8
|
Anjum MS, Khaliq S, Ashraf N, Anwar MA, Akhtar K. Bioactive Streptomycetes: A Powerful Tool to Synthesize Diverse Nanoparticles With Multifarious Properties. J Basic Microbiol 2024; 64:e2400129. [PMID: 38922954 DOI: 10.1002/jobm.202400129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
Nanobiotechnology has gained significant attention due to its capacity to generate substantial benefits through the integration of microbial biotechnology and nanotechnology. Among microbial organisms, Actinomycetes, particularly the prominent genus Streptomycetes, have garnered attention for their prolific production of antibiotics. Streptomycetes have emerged as pivotal contributors to the discovery of a substantial number of antibiotics and play a dominant role in combating infectious diseases on a global scale. Despite the noteworthy progress achieved through the development and utilization of antibiotics to combat infectious pathogens, the prevalence of infectious diseases remains a prominent cause of mortality worldwide, particularly among the elderly and children. The emergence of antibiotic resistance among pathogens has diminished the efficacy of antibiotics in recent decades. Nevertheless, Streptomycetes continue to demonstrate their potential by producing bioactive metabolites for the synthesis of nanoparticles. Streptomycetes are instrumental in producing nanoparticles with diverse bioactive characteristics, including antiviral, antibacterial, antifungal, antioxidant, and antitumor properties. Biologically synthesized nanoparticles have exhibited a meaningful reduction in the impact of antibiotic resistance, providing resources for the development of new and effective drugs. This review succinctly outlines the significant applications of Streptomycetes as a crucial element in nanoparticle synthesis, showcasing their potential for diverse and enhanced beneficial applications.
Collapse
Affiliation(s)
- Muhammad Sultan Anjum
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Shazia Khaliq
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Neelma Ashraf
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
- Institute of Pharmaceutical Sciences, Pharmaceutical Biology and Biotechnology, Albert-Ludwig University of Freiburg, Freiburg im Breisgau, Germany
| | - Munir Ahmad Anwar
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Kalsoom Akhtar
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| |
Collapse
|
9
|
Mohamed A, Dayo M, Alahmadi S, Ali S. Anti-Inflammatory and Antimicrobial Activity of Silver Nanoparticles Green-Synthesized Using Extracts of Different Plants. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1383. [PMID: 39269046 PMCID: PMC11397093 DOI: 10.3390/nano14171383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024]
Abstract
In this study, an easy, efficient, economical, and eco-friendly green bio-synthesis method was utilized to synthesize silver nanoparticles (AgNPs) using the extracts of four plants: Ginkgo biloba, Cichorium Intybus, Adiantum Capillus-Veneris, and Rosmarinus Officinalis. The synthesis of AgNPs was confirmed by using a uv-vis spectrometer, which showed distinct surface plasmon resonance (SPR) bands. The surface of AgNPs was characterized using scanning electron microscopy and Fourier-transform infrared spectroscopy. The anti-inflammatory activity of Tenoxicam/Meloxicam-loaded AgNPs has been studied using the inhibition of albumin denaturation method. Tenoxicam-loaded AgNPs showed higher % Inhibition, but Meloxicam-loaded AgNPs showed lower % Inhibition. Furthermore, the AgNPs showed excellent antimicrobial activity on both Gram-negative and Gram-positive bacteria.
Collapse
Affiliation(s)
- Amr Mohamed
- Chemistry Department, College of Science, Taibah University, Al-Madinah Al-Munawarah 42353, Saudi Arabia
- The Higher Institute of Optics Technology (HIOT), Heliopolis, Cairo 17361, Egypt
| | - Marwa Dayo
- Chemistry Department, College of Science, Taibah University, Al-Madinah Al-Munawarah 42353, Saudi Arabia
| | - Sana Alahmadi
- Chemistry Department, College of Science, Taibah University, Al-Madinah Al-Munawarah 42353, Saudi Arabia
| | - Samah Ali
- Chemistry Department, College of Science, Taibah University, Al-Madinah Al-Munawarah 42353, Saudi Arabia
- The National Organization for Drug Control and Research, Giza 12622, Egypt
| |
Collapse
|
10
|
David M, Enache TA, Barbu-Tudoran L, Bala C, Florescu M. Biologically Synthesized Gold Nanoparticles with Enhanced Antioxidant and Catalytic Properties. Pharmaceuticals (Basel) 2024; 17:1105. [PMID: 39338271 PMCID: PMC11434865 DOI: 10.3390/ph17091105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Increasing levels of reactive oxygen species generate oxidative stress in the human body that can lead to various medical conditions. The use of nanomaterials exhibiting antioxidant properties may prevent these effects. The biological synthesis of metallic nanoparticles using plant extracts with antioxidant properties can offer benefits due to their active compounds. The used extracts contained reducing and stabilizing agents, which were shown to be transferred onto the gold nanoparticles, functionalizing them. Herin, we report a gold nanoparticle synthesis by eco-friendly biological methods (b-AuNPs) using extracts of sea buckthorn, lavender, walnuts, and grapes, obtained through ultrasound-assisted extraction and pressure-enhanced extraction. The obtained b-AuNPs were characterized by UV-Vis and FTIR spectroscopies and visualized using transmission electron microscopy. The catalytic and scavenging effect of the b-AuNPs towards H2O2 (as reactive oxygen species) was evaluated electrochemically, highlighting the protective behavior of b-AuNPs towards lipid peroxidation. All experiments demonstrated the stability and reproducibility of prepared b-AuNPs with enhanced antioxidant and catalytic properties, opening a new perspective for their use in biomedical applications.
Collapse
Affiliation(s)
- Melinda David
- Laboratory for Quality Control and Process Monitoring, University of Bucharest, 4-12 Elisabeta Blvd., 030018 Bucharest, Romania;
- Department of Fundamental, Prophylactic and Clinical Disciplines, Faculty of Medicine, Transilvania University of Brasov, Str. Universitatii no. 1, 500068 Brasov, Romania
| | - Teodor A. Enache
- National Institute of Material Physics, Atomistilor 405A, 077125 Magurele, Romania;
| | - Lucian Barbu-Tudoran
- Electron Microscopy Center “C. Craciun”, Biology and Geology Faculty, Babes-Bolyai University Cluj-Napoca, 4-6 Clinicilor Str., 400006 Cluj-Napoca, Romania;
- National Institute for R&D of Isotopic and Molecular Technologies (INCDTIM) Cluj-Napoca, 67-103 Donath Str., 400293 Cluj-Napoca, Romania
| | - Camelia Bala
- Laboratory for Quality Control and Process Monitoring, University of Bucharest, 4-12 Elisabeta Blvd., 030018 Bucharest, Romania;
- Department of Analytical Chemistry and Physical Chemistry, University of Bucharest, 4-12 Elisabeta Blvd., 030018 Bucharest, Romania
| | - Monica Florescu
- Department of Fundamental, Prophylactic and Clinical Disciplines, Faculty of Medicine, Transilvania University of Brasov, Str. Universitatii no. 1, 500068 Brasov, Romania
| |
Collapse
|
11
|
Mod B, Baskar AV, Bahadur R, Tavakkoli E, Van Zwieten L, Singh G, Vinu A. From cane to nano: advanced nanomaterials derived from sugarcane products with insights into their synthesis and applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2393568. [PMID: 39238510 PMCID: PMC11376298 DOI: 10.1080/14686996.2024.2393568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024]
Abstract
Sugarcane-based products are inherently rich in elements such as silicon, carbon and nitrogen. As such, these become ideal precursors for utilization in a wide array of application fields. One of the appealing areas is to transform them into nanomaterials of high interest that can be employed in several prominent applications. Among nanomaterials, sugarcane products based on silica nanoparticles (SNPs), carbon dots (CDs), metal/metal oxide-based NPs, nanocellulose, cellulose nanofibers (CNFs), and nano biochar are becoming increasingly reported. Through manipulation of the experimental conditions and choosing suitable starting precursors and elements, it is possible to devise these nanomaterials with highly desired properties suited for specific applications. The current review presents the findings from the recent literature wherein an effort has been made to convey new development in the field of sugarcane-based products for the synthesis of the above-mentioned nanomaterials. Various nanomaterials were systematically discussed in terms of their synthesis and application perspectives. Wherever possible, a comparative analysis was carried out to highlight the potential of sugarcane products for the intended purpose as compared to other biomass-based materials. This review is expected to stand out in delivering an up-to-date survey of the literature and provide readers with necessary directions for future research.
Collapse
Affiliation(s)
- Bhavya Mod
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, Callaghan, NSW, Australia
| | - Arun V Baskar
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, Callaghan, NSW, Australia
| | - Rohan Bahadur
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, Callaghan, NSW, Australia
| | - Ehsan Tavakkoli
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, Australia
| | - Lukas Van Zwieten
- NSW Department of Primary Industries, Wollongbar Primary Industries Institute, Wollongbar, NSW, Australia
| | - Gurwinder Singh
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, Callaghan, NSW, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
12
|
Kim C, Kim S, Jung AR, Jang JH, Bae J, Choi WII, Sung D. Nanoparticle Encapsulation of the Hexane Fraction of Cyperus Rotundus Extract for Enhanced Antioxidant and Anti-Inflammatory Activities in vitro. Int J Nanomedicine 2024; 19:8403-8415. [PMID: 39165772 PMCID: PMC11335006 DOI: 10.2147/ijn.s452636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/12/2024] [Indexed: 08/22/2024] Open
Abstract
Aim Cyperus rotundus L. (CR) is traditionally used in medicine for its anti-inflammatory properties. In particular, α-cyperone, which is isolated from the essential oil and found primarily in the n-hexane fraction of the ethanolic extract, is known to inhibit NO production in LPS-stimulated RAW 264.7 cells. However, high concentrations of α-cyperone are required for sufficient anti-inflammatory activity. Even, essential oil obtained from C. rotundus has the disadvantage of low solubility and stability in aqueous environment, which makes it difficult to be applied in various fields and easily loses its activity. Therefore, in this study, we aimed to increase the extraction yield of C. rotundus by microbubble extraction and prepare nanoparticles (NPs) that can preserve its activity in a stable and bioavailable manner by utilizing nanoprecipitation. Methods C. rotundus rhizomes were extracted in 50% ethanol using microbubbles and then fractionated with n-hexane to obtain α-cyperone-rich C. rotundus n-hexane fraction (CRHF). The biodegradable plant extract, α-cyperone, was prepared as green nanoparticles (CR@NPs) by nanoprecipitation technique under mild reaction conditions. The physicochemical properties of CR@NPs, including size, polydispersity index, and surface charge, were determined using dynamic light scattering. The extraction yield and encapsulation efficiency of α-cyperone were quantified by high-performance liquid chromatography. Antioxidant and anti-inflammatory activities were evaluated by DPPH assay and in vitro ROS and NO assays, and biocompatibility was assessed by MTT assay. Results C. rotundus loaded nanoparticles demonstrated overcoming the limitation of α-cyperone solubility and stability in CRHF and also the antioxidant, anti-inflammatory properties as evidenced by in vitro assays in cellular models. Conclusion The versatility of green chemistry, such as α-cyperone, enables the production of nanoparticles with promising biomedical applications such as cosmetics, pharmaceuticals, and food products.
Collapse
Affiliation(s)
- Chaehyun Kim
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, Cheongju, 28160, Republic of Korea
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sangwoo Kim
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, Cheongju, 28160, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Ah-Reum Jung
- J2K-Metabiome, J2KBIO, Cheongju, 28104, Republic of Korea
| | - Jun-Hwan Jang
- J2K-Metabiome, J2KBIO, Cheongju, 28104, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| | - Juntae Bae
- J2K-Metabiome, J2KBIO, Cheongju, 28104, Republic of Korea
| | - Won I I Choi
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, Cheongju, 28160, Republic of Korea
| | - Daekyung Sung
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, Cheongju, 28160, Republic of Korea
| |
Collapse
|
13
|
Budhathoki S, Chaudhary N, Guragain B, Baral D, Adhikari J, Chaudhary NK. Green synthesis of silver nanoparticles from Brassaiopsis hainla extract for the evaluation of antibacterial and anticorrosion properties. Heliyon 2024; 10:e35642. [PMID: 39170326 PMCID: PMC11336820 DOI: 10.1016/j.heliyon.2024.e35642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
Plant-mediated synthesis of silver nanoparticles (AgNPs) is an eco-friendly and convenient alternative to conventional methods. Brassaiopsis hainla (B. hainla) leaf extract (BHE) was used in this study to reduce metal salts and cap and stabilize nanoparticles (NPs), which were characterized and tested for antibacterial and anti-corrosion properties. Stirring the B. hainla extract with AgNO3 led to a color change, indicating nanoparticle formation. The absorption peak at 428 nm in the UV-visible spectrum further validated its formation. The AgNPs were characterized using various techniques such as FTIR, UV-visible, PXRD, HRTEM, SEM, and EDX. Powder X-ray diffraction analysis confirmed its nanocrystalline nature, with an average crystallite size of 17.92 nm. The FTIR spectrum showed hydroxyl, amine, amide, and carbonyl groups as capping and reducing agents for the AgNPs. SEM analysis revealed poly-dispersed NPs of various sizes, while EDX showed an intense peak for Ag, and TEM images revealed mostly hexagonal and triangular NPs. Antibacterial activity was tested against three human pathogens: Staphylococcus aureus (S. aureus), Pseudomonas, and Klebsiella oxytoca (K. oxytoca). Significant antibacterial activity was observed specifically against K. oxytoca, with an 11 mm inhibition zone. Both plant extracts and AgNPs inhibited acid-induced corrosion, with the highest inhibition efficiencies of 81.69 % and 69.54 % at 1000 ppm, respectively. With rising concerns over bacterial resistance and metal corrosion, this study addresses global challenges related to new antimicrobial agents, which are crucial for combating antibiotic resistance and protecting metals in various industries.
Collapse
Affiliation(s)
- Sujan Budhathoki
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, Biratnagar, Tribhuvan University, Nepal
| | - Nabina Chaudhary
- Department of Intensive Care Unit, Birat Medical College and Teaching Hospital, Biratnagar, Nepal
| | - Biswash Guragain
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, Biratnagar, Tribhuvan University, Nepal
| | - Dipak Baral
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, Biratnagar, Tribhuvan University, Nepal
| | - Janak Adhikari
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, Biratnagar, Tribhuvan University, Nepal
| | - Narendra Kumar Chaudhary
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, Biratnagar, Tribhuvan University, Nepal
| |
Collapse
|
14
|
Khalifa SAM, Shetaia AA, Eid N, Abd El-Wahed AA, Abolibda TZ, El Omri A, Yu Q, Shenashen MA, Hussain H, Salem MF, Guo Z, Alanazi AM, El-Seedi HR. Green Innovation and Synthesis of Honeybee Products-Mediated Nanoparticles: Potential Approaches and Wide Applications. Bioengineering (Basel) 2024; 11:829. [PMID: 39199787 PMCID: PMC11351265 DOI: 10.3390/bioengineering11080829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/26/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
Bee products, abundant in bioactive ingredients, have been utilized in both traditional and contemporary medicine. Their antioxidant, antimicrobial, and anti-inflammatory properties make them valuable for food, preservation, and cosmetics applications. Honeybees are a vast reservoir of potentially beneficial products such as honey, bee pollen, bee bread, beeswax, bee venom, and royal jelly. These products are rich in metabolites vital to human health, including proteins, amino acids, peptides, enzymes, sugars, vitamins, polyphenols, flavonoids, and minerals. The advancement of nanotechnology has led to a continuous search for new natural sources that can facilitate the easy, low-cost, and eco-friendly synthesis of nanomaterials. Nanoparticles (NPs) are actively synthesized using honeybee products, which serve dual purposes in preventive and interceptive treatment strategies due to their richness in essential metabolites. This review aims to highlight the potential role of bee products in this line and their applications as catalysts and food preservatives and to point out their anticancer, antibacterial, antifungal, and antioxidant underlying impacts. The research used several online databases, namely Google Scholar, Science Direct, and Sci Finder. The overall findings suggest that these bee-derived substances exhibit remarkable properties, making them promising candidates for the economical and eco-friendly production of NPs.
Collapse
Affiliation(s)
- Shaden A. M. Khalifa
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China;
- Neurology and Psychiatry Department, Capio Saint Göran’s Hospital, Sankt Göransplan 1, 112 19 Stockholm, Sweden
| | - Aya A. Shetaia
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 31100107, Egypt; (A.A.S.); (N.E.)
| | - Nehal Eid
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 31100107, Egypt; (A.A.S.); (N.E.)
| | - Aida A. Abd El-Wahed
- Department of Bee Research, Plant Protection Research Institute, Agricultural Research Centre, Giza 12627, Egypt;
| | - Tariq Z. Abolibda
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia; (M.A.S.); (A.M.A.)
| | - Abdelfatteh El Omri
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha 3050, Qatar;
- Vice President for Medical and Health Sciences Office, QU-Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Qiang Yu
- Polysaccharides of Jiangxi Province, Nanchang University College of Food Science and Technology, 235 Nanjing East Road, Nanchang 330047, China;
| | - Mohamed A. Shenashen
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia; (M.A.S.); (A.M.A.)
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba-Shi 305-0047, Ibaraki-Ken, Japan
| | - Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany;
| | - Mohamed F. Salem
- Department of Environmental Biotechnology, Genetic Engineering and Biotechnology Research Institute, GEBRI, University of Sadat City, Sadat City P.O. Box 79, Egypt;
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Abdulaziz M. Alanazi
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia; (M.A.S.); (A.M.A.)
| | - Hesham R. El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China;
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 31100107, Egypt; (A.A.S.); (N.E.)
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia; (M.A.S.); (A.M.A.)
| |
Collapse
|
15
|
Koul S, Singhvi M, Kim BS. Green Synthesis of Cobalt-Doped CeFe 2O 5 Nanocomposites Using Waste Gossypium arboreum L. Stalks and Their Application in the Removal of Toxic Water Pollutants. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1339. [PMID: 39195377 DOI: 10.3390/nano14161339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/15/2024] [Accepted: 06/24/2024] [Indexed: 08/29/2024]
Abstract
Currently, there is an increasing need to find new ways to purify water by eliminating bacterial biofilms, textile dyes, and toxic water pollutants. These contaminants pose significant risks to both human health and the environment. To address this issue, in this study, we have developed an eco-friendly approach that involves synthesizing a cobalt-doped cerium iron oxide (CCIO) nanocomposite (NC) using an aqueous extract of Gossypium arboreum L. stalks. The resulting nanoparticles can be used to effectively purify water and tackle the challenges associated with these harmful pollutants. Nanoparticles excel in water pollutant removal by providing a high surface area for efficient adsorption, versatile design for the simultaneous removal of multiple contaminants, catalytic properties for organic pollutant degradation, and magnetic features for easy separation, offering cost-effective and sustainable water treatment solutions. A CCIO nanocomposite was synthesized via a green co-precipitation method utilizing biomolecules and co-enzymes extracted from the aqueous solution of Gossypium arboreum L. stalk. This single-step synthesis process was accomplished within a 5-h reaction period. Furthermore, the synthesis of nanocomposites was confirmed by various characterization techniques such as Fourier-transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), dynamic light scattering (DLS), and energy dispersive X-ray (EDX) technology. CCIO NCs were discovered to have a spherical shape and an average size of 40 nm. Based on DLS zeta potential analysis, CCIO NCs were found to be anionic. CCIO NCs also showed significant antimicrobial and antioxidant activity. Overall, considering their physical and chemical properties, the application of CCIO NCs for the adsorption of various dyes (~91%) and water pollutants (chromium = ~60%) has been considered here since they exhibit great adsorption capacity owing to their microporous structure, and represent a step forward in water purification.
Collapse
Affiliation(s)
- Saloni Koul
- Department of Biotechnology (with Jointly Merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune 411007, India
| | - Mamata Singhvi
- Department of Biotechnology (with Jointly Merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune 411007, India
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
| |
Collapse
|
16
|
Akhtar MS, Fiaz S, Aslam S, Chung S, Ditta A, Irshad MA, Al-Mohaimeed AM, Iqbal R, Al-Onazi WA, Rizwan M, Nakashima Y. Green synthesis of magnetite iron oxide nanoparticles using Azadirachta indica leaf extract loaded on reduced graphene oxide and degradation of methylene blue. Sci Rep 2024; 14:18172. [PMID: 39107555 PMCID: PMC11303770 DOI: 10.1038/s41598-024-69184-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
In the current arena, new-generation functional nanomaterials are the key players for smart solutions and applications including environmental decontamination of pollutants. Among the plethora of new-generation nanomaterials, graphene-based nanomaterials and nanocomposites are in the driving seat surpassing their counterparts due to their unique physicochemical characteristics and superior surface chemistry. The purpose of the present research was to synthesize and characterize magnetite iron oxide/reduced graphene oxide nanocomposites (FeNPs/rGO) via a green approach and test its application in the degradation of methylene blue. The modified Hummer's protocol was adopted to synthesize graphene oxide (GO) through a chemical exfoliation approach using a graphitic route. Leaf extract of Azadirachta indica was used as a green reducing agent to reduce GO into reduced graphene oxide (rGO). Then, using the green deposition approach and Azadirachta indica leaf extract, a nanocomposite comprising magnetite iron oxides and reduced graphene oxide i.e., FeNPs/rGO was synthesized. During the synthesis of functionalized FeNPs/rGO, Azadirachta indica leaf extract acted as a reducing, capping, and stabilizing agent. The final synthesized materials were characterized and analyzed using an array of techniques such as scanning electron microscopy (SEM)-energy dispersive X-ray microanalysis (EDX), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction analysis, and UV-visible spectrophotometry. The UV-visible spectrum was used to evaluate the optical characteristics and band gap. Using the FT-IR spectrum, functional groupings were identified in the synthesized graphene-based nanomaterials and nanocomposites. The morphology and elemental analysis of nanomaterials and nanocomposites synthesized via the green deposition process were investigated using SEM-EDX. The GO, rGO, FeNPs, and FeNPs/rGO showed maximum absorption at 232, 265, 395, and 405 nm, respectively. FTIR spectrum showed different functional groups (OH, COOH, C=O), C-O-C) modifying material surfaces. Based on Debye Sherrer's equation, the mean calculated particle size of all synthesized materials was < 100 nm (GO = 60-80, rGO = 90-95, FeNPs = 70-90, Fe/GO = 40-60, and Fe/rGO = 80-85 nm). Graphene-based nanomaterials displayed rough surfaces with clustered and spherical shapes and EDX analysis confirmed the presence of both iron and oxygen in all the nanocomposites. The final nanocomposites produced via the synthetic process degraded approximately 74% of methylene blue. Based on the results, it is plausible to conclude that synthesized FeNPs/rGO nanocomposites can also be used as a potential photocatalyst degrader for other different dye pollutants due to their lower band gap.
Collapse
Affiliation(s)
- Muhammad Shahbaz Akhtar
- Department of Environmental Sciences, Forman Christian College University, Lahore, 54600, Pakistan.
| | - Sania Fiaz
- Department of Environmental Sciences, Forman Christian College University, Lahore, 54600, Pakistan
| | - Sohaib Aslam
- Department of Environmental Sciences, Forman Christian College University, Lahore, 54600, Pakistan
| | - Shinho Chung
- Department of Environmental Sciences, Forman Christian College University, Lahore, 54600, Pakistan
| | - Allah Ditta
- Department of Environmental Sciences, Shaheed Benazir Bhutto University, Sheringal, Dir (U), 18000, Pakistan.
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia.
| | - Muhammad Atif Irshad
- Department of Environmental Sciences, University of Lahore, Lahore, 54000, Pakistan
| | - Amal M Al-Mohaimeed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, 11495, Riyadh, Saudi Arabia
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan
| | - Wedad A Al-Onazi
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, 11495, Riyadh, Saudi Arabia
| | - Muhammad Rizwan
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53115, Bonn, Germany.
| | - Yoshitaka Nakashima
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan
| |
Collapse
|
17
|
Sus B, Baltaci MO, Nadaroglu H, Adiguzel A. From agro-food waste to nanoparticles: green synthesis of copper nanoparticles with lignin peroxidase enzyme produced by Anoxybacillus rupiensis using peanut shells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52049-52059. [PMID: 39138728 DOI: 10.1007/s11356-024-34489-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024]
Abstract
This study presents a novel approach for the eco-friendly green synthesis of copper nanoparticles (Cu NPs) using enzymatic mediation which is an environmentally benign alternative to conventional methods, offering control over particle size and shape. Anoxybacillus rupiensis BS1 thermophilic bacterium was isolated from Erzurum's Pasinler hot spring and lignin peroxidase enzyme production conditions (incubation time 96 h, 40 g/L shell amount, pH 8.5, 150 rpm, and 60 °C temperature) were used in the production of peroxidase enzyme using peanut waste which has been optimized. The characterization of the synthesized Cu NPs was performed using various analytical techniques, including UV-vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM), confirming the successful production of stable and well-defined nanoparticles. Furthermore, the biological activities of the synthesized Cu NPs were explored, revealing their potential for antimicrobial applications. The antibacterial efficacy of the Cu NPs against some pathogens such as Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, Streptococcus pyogenes, and Bacillus cereus was examined. It was determined that Cu NPs were effective on all pathogens and had the highest effectiveness against the S. pyogenes pathogen (19.0 mm). This study not only presents an innovative and sustainable approach for the synthesis of Cu NPs but also highlights the multifaceted biological activities of these nanoparticles, opening avenues for diverse applications in the fields of medicine, agriculture, and environmental remediation. The utilization of peanut shell wastes as a substrate for enzyme production adds value to agricultural by-products, contributing to the development of a circular and sustainable economy.
Collapse
Affiliation(s)
- Bircan Sus
- Department of Molecular Biology and Genetic, Faculty of Science, Ataturk University, 25240, Erzurum, Turkey
| | - Mustafa Ozkan Baltaci
- Department of Molecular Biology and Genetic, Faculty of Science, Ataturk University, 25240, Erzurum, Turkey.
| | - Hayrunnisa Nadaroglu
- Department of Nanoscience and Nanoengineering, Graduate School of Natural and Applied Science, Atatürk University, 25240, Erzurum, Turkey
- Department of Food Technology, Technical Vocational School, Atatürk University, 25240, Erzurum, Turkey
| | - Ahmet Adiguzel
- Department of Molecular Biology and Genetic, Faculty of Science, Ataturk University, 25240, Erzurum, Turkey
| |
Collapse
|
18
|
Tahir K, Haroon U, Akbar M, Elahi M, Quraishi UM. Tetragonal crystalline MnO nanoparticles alleviate Pb stress in wheat by modulating antioxidant enzymes in leaves. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1401-1411. [PMID: 39184563 PMCID: PMC11341510 DOI: 10.1007/s12298-024-01488-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 06/03/2024] [Accepted: 07/09/2024] [Indexed: 08/27/2024]
Abstract
Agriculture ecosystems are seriously threatened by lead (Pb) contamination, which impacts plant growth and productivity. In this study, green synthesized manganese oxide nanoparticles (MnO NPs) using citrus peel were used for priming of wheat seeds. For the synthesis of MnO nanoparticles, peel extract of Citrus paradisi and 1 mM solution of manganese acetate were stirred and calcinated at 500 °C. Successful synthesis of MnO NPs was determined using advanced techniques. In Fourier-transform infrared spectroscopy (FTIR), the presence of amines, alkanes, aldehydes, and alcohol molecules, on the surface of MnO NPs, confirmed their stability. X-ray diffraction analysis described their average size (22 nm), while scanning electron microscopy showed tetragonal crystalline shape and nano-flowers structure of MnO NPs. Sharp peaks of energy dispersive x-ray analysis described the presence of oxygen (28.81%) and manganese (71.19%) on MnO NPs. Priming of wheat seeds with synthesized MnO NPs significantly improved the growth attributes of wheat seedlings including the size of leaf, root length, size of shoots, chlorophyll and carotenoid contents, relative water content, decreased relative electrolyte leakage, high proline accumulation and decreased concentration of malondialdehyde. Application of MnO NPs also helped plants to accumulate antioxidant enzymes in their leaves. These results proved that the priming of MnO NPs can greatly reduce lead-induced stress in wheat seedlings and these NPs can also be used for the priming of other crops.
Collapse
Affiliation(s)
- Kinza Tahir
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320 Pakistan
| | - Urooj Haroon
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320 Pakistan
| | - Mahnoor Akbar
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320 Pakistan
| | - Minhas Elahi
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320 Pakistan
| | - Umar Masood Quraishi
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320 Pakistan
| |
Collapse
|
19
|
Hussain A, Azam S, Rehman K, Ali M, Hamid Akash MS, Zhou X, Rauf A, Alshammari A, Albekairi NA, AL-Ghamdi AH, Quresh AK, Khan S, Khan MU. Green synthesis of Fe and Zn-NPs, phytochemistry and pharmacological evaluation of Phlomis cashmeriana Royle ex Benth. Heliyon 2024; 10:e33327. [PMID: 39027488 PMCID: PMC467069 DOI: 10.1016/j.heliyon.2024.e33327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
This investigation portrays the phytochemical screening, green synthesis, characterization of Fe and Zn nanoparticles, their antibacterial, anti-inflammation, cytotoxicity, and anti-thrombolytic activities. Four dissimilar solvents such as, n-hexane, chloroform, ethyl acetate and n-butanol were used to prepare the extracts of Phlomis cashmeriana Royle ex Benth. This is valued medicinal plant (Family Lamiaceae), native to mountains of Afghanistan and Kashmir. In the GC-MS study of its extract, the identified phytoconstituents have different nature such as terpenoids, alcohol and esters. The synthesized nanoparticles were characterized by SEM, UV, XRD, and FT-IR. The phytochemical analysis showed that the plant contains TPC (total phenolic content) 297.51 mg GAE/g and TFC (total flavonoid content) 467.24 mg CE/g. The cytotoxicity values have shown that the chloroform, n-butanol and aqueous extracts were more toxic than other extracts. The anti-inflammatory potential of n-butanol and aqueous extracts was found higher than all other extracts. Chloroform and n-hexane extracts have low MIC values against both E. coli and S. aureus bacterial strains. Chloroform and aqueous extracts have great anti-thrombolytic potential than all other extracts. Overall, this study successfully synthesized the nanoparticles and provides evidence that P. cashmeriana have promising bioactive compounds that could serve as potential source in the drug formulation.
Collapse
Affiliation(s)
- Amjad Hussain
- Institute of Chemistry, University of Okara, Okara, 56300, Punjab, Pakistan
| | - Sajjad Azam
- Institute of Chemistry, University of Okara, Okara, 56300, Punjab, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, The Women University, Multan, Pakistan
| | - Meher Ali
- Department of Chemistry, Karakoram International University, Gilgit, 15100, Pakistan
| | | | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Pakistan
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh, 11451, Saudi Arabia
| | - Norah A. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdullah Hamed AL-Ghamdi
- Pharmaceutical Care Department, Namerah General Hospital, Ministry of Health, Namerah, 65439, Saudi Arabia
| | - Ahmad Kaleem Quresh
- Department of Chemistry, University of Sahiwal, Sahiwal, 574000, Punjab, Pakistan
| | - Shoaib Khan
- Department of chemistry, Abbottabad University of Science and Technology AUST, Havelian, Abbottabad, Pakistan
| | | |
Collapse
|
20
|
Dang KPT, Nguyen TTG, Cao TD, Le VD, Dang CH, Duy NPH, Phuong PTT, Huy DM, Kim Chi TT, Nguyen TD. Biogenic fabrication of a gold nanoparticle sensor for detection of Fe 3+ ions using a smartphone and machine learning. RSC Adv 2024; 14:20466-20478. [PMID: 38946772 PMCID: PMC11208897 DOI: 10.1039/d4ra03265a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/21/2024] [Indexed: 07/02/2024] Open
Abstract
In recent years, smartphones have been integrated into rapid colorimetric sensors for heavy metal ions, but challenges persist in accuracy and efficiency. Our study introduces a novel approach to utilize biogenic gold nanoparticle (AuNP) sensors in conjunction with designing a lightbox with a color reference and machine learning for detection of Fe3+ ions in water. AuNPs were synthesized using the aqueous extract of Eleutherine bulbosa leaf as reductants and stabilizing agents. Physicochemical analyses revealed diverse AuNP shapes and sizes with an average size of 19.8 nm, with a crystalline structure confirmed via SAED and XRD techniques. AuNPs exhibited high sensitivity and selectivity in detection of Fe3+ ions through UV-vis spectroscopy and smartphones, relying on nanoparticle aggregation. To enhance image quality, we developed a lightbox and implemented a reference color value for standardization, significantly improving performance of machine learning algorithms. Our method achieved approximately 6.7% higher evaluation metrics (R 2 = 0.8780) compared to non-normalized approaches (R 2 = 0.8207). This work presented a promising tool for quantitative Fe3+ ion analysis in water.
Collapse
Affiliation(s)
- Kim-Phuong T Dang
- Institute of Chemical Technology, Vietnam Academy of Science and Technology Ho Chi Minh City Vietnam
| | - T Thanh-Giang Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology Ho Chi Minh City Vietnam
| | - Tien-Dung Cao
- School of Information Technology, Tan Tao University Long An Vietnam
| | - Van-Dung Le
- Institute of Chemical Technology, Vietnam Academy of Science and Technology Ho Chi Minh City Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay District Hanoi Vietnam
| | - Chi-Hien Dang
- Institute of Chemical Technology, Vietnam Academy of Science and Technology Ho Chi Minh City Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay District Hanoi Vietnam
| | - Nguyen Phuc Hoang Duy
- Institute of Chemical Technology, Vietnam Academy of Science and Technology Ho Chi Minh City Vietnam
| | - Pham Thi Thuy Phuong
- Institute of Chemical Technology, Vietnam Academy of Science and Technology Ho Chi Minh City Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay District Hanoi Vietnam
| | - Do Manh Huy
- Institute of Chemical Technology, Vietnam Academy of Science and Technology Ho Chi Minh City Vietnam
| | - Tran Thi Kim Chi
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay District Hanoi Vietnam
| | - Thanh-Danh Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology Ho Chi Minh City Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay District Hanoi Vietnam
| |
Collapse
|
21
|
Zavala-Zapata V, Ramírez-Barrón SN, Sánchez-Borja M, Aguirre-Uribe LA, Delgado-Ortiz JC, Sánchez-Peña SR, Mayo-Hernández J, García-López JI, Vargas-Tovar JA, Hernández-Juárez A. Insecticide Efficacy of Green Synthesis Silver Nanoparticles on Diaphorina citri Kuwayama (Hemiptera: Liviidae). INSECTS 2024; 15:469. [PMID: 39057202 PMCID: PMC11277115 DOI: 10.3390/insects15070469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024]
Abstract
Diaphorina citri Kuwayama (Hemiptera: Liviidae) is a vector of Liberibacter asiaticus Jagoueix et al. and Liberibacter americanus Teixeira et al., causal agents of the critical yellow dragon disease or Huanglongbing (HLB), which affects citrus production worldwide. Recently, green synthetic nanoparticles have emerged as a potential alternative to control of agricultural insect pests. The insecticide effect of silver nanoparticles (AgNPs) on 2nd instar nymphs of D. citri under laboratory and greenhouse conditions was evaluated. Mortality was recorded 24, 48, and 72 h after application on D. citri nymphs under both laboratory and greenhouse conditions. The laboratory results showed that AgNPs caused 97.84 and 100% mortality at 32 and 64 ppm, respectively, 72 h after treatment. In the greenhouse, AgNPs caused 78.69 and 80.14% mortality using 64 and 128 ppm 72 h after application. This research is the first to evaluate the green synthesis AgNPs on D. citri and are a promising strategy to control the pest.
Collapse
Affiliation(s)
- Vidal Zavala-Zapata
- Departamento de Parasitología, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro 1923, Buenavista, Saltillo 25315, Mexico; (V.Z.-Z.); (L.A.A.-U.); (J.C.D.-O.); (S.R.S.-P.); (J.M.-H.)
| | - Sonia N. Ramírez-Barrón
- Departamento de Ciencias Básicas, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro 1923, Buenavista, Saltillo 25315, Mexico;
| | - Maricarmen Sánchez-Borja
- Insectos Benéficos del Norte, Carretera Inter Ejidal, Camino Ejidal Libertad s/n, Ciudad Victoria 87260, Mexico;
| | - Luis A. Aguirre-Uribe
- Departamento de Parasitología, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro 1923, Buenavista, Saltillo 25315, Mexico; (V.Z.-Z.); (L.A.A.-U.); (J.C.D.-O.); (S.R.S.-P.); (J.M.-H.)
| | - Juan Carlos Delgado-Ortiz
- Departamento de Parasitología, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro 1923, Buenavista, Saltillo 25315, Mexico; (V.Z.-Z.); (L.A.A.-U.); (J.C.D.-O.); (S.R.S.-P.); (J.M.-H.)
- Investigador por México, Consejo Nacional de Humanidades, Ciencias y Tecnologías, Ciudad de México 03940, Mexico
| | - Sergio R. Sánchez-Peña
- Departamento de Parasitología, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro 1923, Buenavista, Saltillo 25315, Mexico; (V.Z.-Z.); (L.A.A.-U.); (J.C.D.-O.); (S.R.S.-P.); (J.M.-H.)
| | - Juan Mayo-Hernández
- Departamento de Parasitología, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro 1923, Buenavista, Saltillo 25315, Mexico; (V.Z.-Z.); (L.A.A.-U.); (J.C.D.-O.); (S.R.S.-P.); (J.M.-H.)
| | - Josué I. García-López
- Departamento de Fitomejoramiento, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro 1923, Buenavista, Saltillo 25315, Mexico;
| | - Jesus A. Vargas-Tovar
- Tecnológico Nacional de México, Campus Instituto Tecnológico de Cd. Victoria, Boulevard Emilio Portes Gil 1301, Ciudad Victoria 87010, Mexico;
| | - Agustín Hernández-Juárez
- Departamento de Parasitología, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro 1923, Buenavista, Saltillo 25315, Mexico; (V.Z.-Z.); (L.A.A.-U.); (J.C.D.-O.); (S.R.S.-P.); (J.M.-H.)
| |
Collapse
|
22
|
Herrera Pérez GM, Castellano LE, Ramírez Valdespino CA. Trichoderma and Mycosynthesis of Metal Nanoparticles: Role of Their Secondary Metabolites. J Fungi (Basel) 2024; 10:443. [PMID: 39057328 PMCID: PMC11278454 DOI: 10.3390/jof10070443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 07/28/2024] Open
Abstract
Nanocompounds are widely used in many fields such as environmental, medicine, or agriculture. Nowadays, these nanocompounds are mainly synthesized by chemical methods, causing environmental pollution and potential health problems. Thus, microorganisms have been investigated as potential nanoparticle green biosynthesizers. The main research is focused on the synthesis of nanoparticles (NPs) using algae, yeast, bacteria, and fungi. Among them, fungi have been the most used, due to their simple and effective mycosynthesis. Fungi as well as other organisms involved in green synthesis of NPs use their secondary metabolites (SMs) to mediate and catalyze the reactions to produce metal nanoparticles (MNPs) as well as being able to act as capping agents producing different physicochemical characteristics and biological activities in the MNPs. Among the various fungi used for mycosynthesis are Trichoderma species, which mediate the production of Ag, Cu, CuO, Zn, ZnO, and other MNPs. Here, we review the main SMs from Trichoderma that have been reported or suggested to contribute to synthesize or act as capping agents and their applications, as well as present the main challenges faced by this type of synthesis.
Collapse
Affiliation(s)
- Guillermo M. Herrera Pérez
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Centro de Investigación en Materiales Avanzados, S. C. (CIMAV), Miguel de Cervantes #120, Complejo Industrial Chihuahua, Chihuahua 31136, Chih., Mexico;
| | - Laura E. Castellano
- División de Ciencias e Ingenierías Campus León, Universidad de Guanajuato, Loma del Bosque #103, Lomas del Campestre, León de los Aldama 37150, Gto., Mexico;
| | - Claudia A. Ramírez Valdespino
- Centro de Investigación en Materiales Avanzados, S. C. (CIMAV), Av. Miguel de Cervantes #120, Complejo Industrial Chihuahua, Chihuahua 31136, Chih., Mexico
| |
Collapse
|
23
|
Fatima E, Arooj I, Javeed M, Yin J. Green synthesis, characterization and applications of Phyllanthus emblica fruit extract mediated chromium oxide nanoparticles. DISCOVER NANO 2024; 19:68. [PMID: 38625606 PMCID: PMC11019192 DOI: 10.1186/s11671-024-04006-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/08/2024] [Indexed: 04/17/2024]
Abstract
The green synthesis of metallic nanoparticles is attributable towards diverse applications in various fields, recently. In this research, we report simple and eco-friendly synthesis of chromium oxide (Cr2O3) nanoparticles using the fruit extract of Phyllanthus emblica as a reducing and capping agent. The absorbance peaks at 350 nm and 450 nm validated the nanoparticle formation in UV-visible spectrum. FTIR spectrum revealed the nature of functional groups. The crystalline properties of nanoparticles were ascertained by XRD analysis. EDX spectrum corroborated the elemental composition of nanoparticles in which chromium and oxygen constituted 68% of total weight. SEM images demonstrated agglomeration of nanoparticles resulting in the formation of large irregularly shaped flakes. Cr2O3 nanoparticles demonstrated excellent antimicrobial properties against 11 bacterial isolates and 1 fungal isolate. The largest inhibition zone (53 mm) was measured against A. baumannii while the smallest inhibition zone (26 mm) was recorded against S. aureus. Minimum inhibitory concentration (MIC) values were < 1 µg/ml for all microbes. However, the synthesized nanoparticles did not reveal synergism with any of the selected antibiotics (FICI values > 1). Nanoparticles possessed potent anti-biofilm powers with maximum (77%) inhibition of E. coli biofilms and minimum (45%) inhibition of S. enterica biofilms. Photocatalytic activity of Cr2O3 nanoparticles was evaluated to determine their efficacy in environmental bioremediation. Outcomes demonstrated degradation of methyl red (84%) but not of methylene blue dye. Furthermore, the Cr2O3 nanoparticles displayed considerable antioxidant (43%) as well as anti-inflammatory (44%) potentials. Hence, the present study accounts for the versatile applications of P. emblica-mediated Cr2O3 nanoparticles which could be pursued for future biomedical and environmental applications.
Collapse
Affiliation(s)
- Easha Fatima
- Department of Microbiology and Molecular Genetics, Faculty of Life Sciences, The Women University, Multan, 66000, Pakistan
| | - Iqra Arooj
- Department of Microbiology and Molecular Genetics, Faculty of Life Sciences, The Women University, Multan, 66000, Pakistan.
| | - Mehvish Javeed
- Department of Microbiology and Molecular Genetics, Faculty of Life Sciences, The Women University, Multan, 66000, Pakistan
| | - Jian Yin
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, Jiangsu, China
| |
Collapse
|
24
|
Shende SS, Gade AK, Minkina TM, Ingle PU, Rajput VD, Sushkova SN, Mandzhieva SS, Rai M, Wong MH. Exploring sustainable management by using green nano-silver to combat three post-harvest pathogenic fungi in crops. DISCOVER NANO 2024; 19:53. [PMID: 38503968 PMCID: PMC10951150 DOI: 10.1186/s11671-024-03986-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/06/2024] [Indexed: 03/21/2024]
Abstract
Global crop protection and food security have become critical issues to achieve the 'Zero Hunger' goal in recent years, as significant crop damage is primarily caused by biotic factors. Applying nanoparticles in agriculture could enhance crop yield. Nano-silver, or AgNPs, have colossal importance in many fields like biomedical, agriculture, and the environment due to their antimicrobial potential. In this context, nano-silver was fabricated by Citrus medica L. (Cm) fruit juice, detected visually and by UV-Vis spectrophotometric analysis. Further, AgNPs were characterized by advanced techniques. UV-Vis spectroscopic analysis revealed absorbance spectra at around 487 nm. The zeta potential measurement value was noted as -23.7 mV. Spectral analysis by FT-IR proved the capping of the acidic groups. In contrast, the XRD analysis showed the Miller indices like the face-centered cubic (fcc) crystalline structure. NTA revealed a mean size of 35 nm for nano-silver with a 2.4 × 108 particles mL-1 concentration. TEM analysis demonstrated spherical Cm-AgNPs with 20-30 nm sizes. The focus of this research was to evaluate the antifungal activity of biogenic AgNPs against post-harvest pathogenic fungi, including Aspergillus niger, A. flavus, and Alternaria alternata. The Cm-AgNPs showed significant antifungal activity in the order of A. niger > A. flavus > A. alternata. The biogenic Cm-AgNPs can be used for the inhibition of toxigenic fungi.
Collapse
Affiliation(s)
- Sudhir S Shende
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia.
- Nanobiotechnology Laboratory, Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati, MS, India.
| | - Aniket K Gade
- Nanobiotechnology Laboratory, Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati, MS, India.
- Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Mumbai, India.
- Department of Microbiology, Nicolaus Copernicus University, Torun, Poland.
| | - Tatiana M Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Pramod U Ingle
- Nanobiotechnology Laboratory, Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati, MS, India
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Svetlana N Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Saglara S Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Mahendra Rai
- Nanobiotechnology Laboratory, Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati, MS, India
- Department of Chemistry, Federal University of Piaui (UFPI), Teresina, Brazil
| | - Ming H Wong
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
- Consortium On Health, Environment, Education, and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| |
Collapse
|
25
|
Fadhila FR, Umar A, Chandren S, Apriandanu DOB, Yulizar Y. Biosynthesis of CoCr 2O 4/ZnO nanocomposites using Basella alba L. leaves extracts with enhanced photocatalytic degradation of malachite green in aqueous media. CHEMOSPHERE 2024; 352:141215. [PMID: 38253085 DOI: 10.1016/j.chemosphere.2024.141215] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/11/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Abstract
The use of chemical materials to tackle environmental concerns has undergone significant evolution, particularly in the pursuit of strategies for removing pollutants from wastewater as part of environmental remediation an increasingly crucial research topic. Employing green photocatalysts stands out as an efficient and cost-effective approach, playing a key role in promoting sustainable environmental remediation. This study introduces the modification of zinc oxide with cobalt chromite (CoCr2O4/ZnO) through a green synthesis method employing Basella alba L. leaves extract (BALE). Utilizing various characterization techniques, including FT-IR, UV-Vis DRS, XRD, SEM-EDS, and TEM, key features of ZnO, CoCr2O4, and CoCr2O4/ZnO nanocomposites were identified. The optical band gaps for ZnO, CoCr2O4, and CoCr2O4/ZnO nanocomposites were determined as 3.16, 1.71, and 2.80 eV, respectively, where it was shown that the band gap of the ZnO was reduced significantly. CoCr2O4/ZnO nanocomposites displayed a cubic shape of CoCr2O4 on the surface of ZnO, with a particle size of 23.84 ± 8.08 nm. The photocatalytic activity was assessed through the degradation of malachite green under visible light irradiation, where the CoCr2O4/ZnO nanocomposites exhibited superior photodegradation efficiency at 90.91%, surpassing ZnO alone (57.09%). This improvement in photocatalytic activity is attributed to a reduced band gap energy and a high rate constant value of 9.57 × 10-3 min-1, demonstrating pseudo-first-order reaction kinetics. In summary, this research presents the development of a ZnO-based photocatalyst with exceptional performance, especially in the visible light spectrum, making it a promising candidate for applications in wastewater removal.
Collapse
Affiliation(s)
- Fathia Rizqa Fadhila
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16424, Indonesia
| | - Aminah Umar
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16424, Indonesia
| | - Sheela Chandren
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Dewangga Oky Bagus Apriandanu
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16424, Indonesia
| | - Yoki Yulizar
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16424, Indonesia.
| |
Collapse
|
26
|
Thiruvengadam R, Easwaran M, Rethinam S, Madasamy S, Siddiqui SA, Kandhaswamy A, Venkidasamy B. Boosting plant resilience: The promise of rare earth nanomaterials in growth, physiology, and stress mitigation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108519. [PMID: 38490154 DOI: 10.1016/j.plaphy.2024.108519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/21/2024] [Accepted: 03/08/2024] [Indexed: 03/17/2024]
Abstract
Rare earth elements (REE) have been extensively used in a variety of applications such as cell phones, electric vehicles, and lasers. REEs are also used as nanomaterials (NMs), which have distinctive features that make them suitable candidates for biomedical applications. In this review, we have highlighted the role of rare earth element nanomaterials (REE-NMs) in the growth of plants and physiology, including seed sprouting rate, shoot biomass, root biomass, and photosynthetic parameters. In addition, we discuss the role of REE-NMs in the biochemical and molecular responses of plants. Crucially, REE-NMs influence the primary metabolites of plants, namely sugars, amino acids, lipids, vitamins, enzymes, polyols, sorbitol, and mannitol, and secondary metabolites, like terpenoids, alkaloids, phenolics, and sulfur-containing compounds. Despite their protective effects, elevated concentrations of NMs are reported to induce toxicity and affect plant growth when compared with lower concentrations, and they not only induce toxicity in plants but also affect soil microbes, aquatic organisms, and humans via the food chain. Overall, we are still at an early stage of understanding the role of REE in plant physiology and growth, and it is essential to examine the interaction of nanoparticles with plant metabolites and their impact on the expression of plant genes and signaling networks.
Collapse
Affiliation(s)
- Rekha Thiruvengadam
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, India
| | - Maheswaran Easwaran
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Senthil Rethinam
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Sivagnanavelmurugan Madasamy
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315, Straubing, Germany; German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing Str. 7, 49610, D-Quakenbrück, Germany
| | - Anandhi Kandhaswamy
- Post Graduate Research Department of Microbiology, Dhanalakshmi Srinivasan College of Arts and Science for Women (Autonomous), Perambalur, 621212, Tamil Nadu, India
| | - Baskar Venkidasamy
- Department of Oral & Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India.
| |
Collapse
|
27
|
Banerjee D, Adhikary S, Bhattacharya S, Chakraborty A, Dutta S, Chatterjee S, Ganguly A, Nanda S, Rajak P. Breaking boundaries: Artificial intelligence for pesticide detection and eco-friendly degradation. ENVIRONMENTAL RESEARCH 2024; 241:117601. [PMID: 37977271 DOI: 10.1016/j.envres.2023.117601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/21/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Pesticides are extensively used agrochemicals across the world to control pest populations. However, irrational application of pesticides leads to contamination of various components of the environment, like air, soil, water, and vegetation, all of which build up significant levels of pesticide residues. Further, these environmental contaminants fuel objectionable human toxicity and impose a greater risk to the ecosystem. Therefore, search of methodologies having potential to detect and degrade pesticides in different environmental media is currently receiving profound global attention. Beyond the conventional approaches, Artificial Intelligence (AI) coupled with machine learning and artificial neural networks are rapidly growing branches of science that enable quick data analysis and precise detection of pesticides in various environmental components. Interestingly, nanoparticle (NP)-mediated detection and degradation of pesticides could be linked to AI algorithms to achieve superior performance. NP-based sensors stand out for their operational simplicity as well as their high sensitivity and low detection limits when compared to conventional, time-consuming spectrophotometric assays. NPs coated with fluorophores or conjugated with antibody or enzyme-anchored sensors can be used through Surface-Enhanced Raman Spectrometry, fluorescence, or chemiluminescence methodologies for selective and more precise detection of pesticides. Moreover, NPs assist in the photocatalytic breakdown of various organic and inorganic pesticides. Here, AI models are ideal means to identify, classify, characterize, and even predict the data of pesticides obtained through NP sensors. The present study aims to discuss the environmental contamination and negative impacts of pesticides on the ecosystem. The article also elaborates the AI and NP-assisted approaches for detecting and degrading a wide range of pesticide residues in various environmental and agrecultural sources including fruits and vegetables. Finally, the prevailing limitations and future goals of AI-NP-assisted techniques have also been dissected.
Collapse
Affiliation(s)
- Diyasha Banerjee
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| | - Satadal Adhikary
- Post Graduate Department of Zoology, A. B. N. Seal College, Cooch Behar, West Bengal, India.
| | | | - Aritra Chakraborty
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| | - Sohini Dutta
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| | - Sovona Chatterjee
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| | - Abhratanu Ganguly
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| | - Sayantani Nanda
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| | - Prem Rajak
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| |
Collapse
|
28
|
Subramanian R, Ponnanikajamideen M, Samuel Rajendran R, Alshehri MA, Alasmari A, Panneerselvam C, Periyasamy S. TiO 2 nanoparticles: green synthesis, characterization, and investigation of antimicrobial properties, and developmental toxicity in zebrafish ( Danio rerio) embryos. Drug Chem Toxicol 2024; 47:90-100. [PMID: 37314742 DOI: 10.1080/01480545.2023.2217697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/09/2023] [Accepted: 03/31/2023] [Indexed: 06/15/2023]
Abstract
The present study was designed to green synthesize titanium dioxide nanoparticles (G-TiO2 NPs) using Salacia reticulata leaf extract as a reducing and capping agent to assess antidiabetic, anti-inflammatory, and antibacterial effects as well as toxicity evaluation in zebrafish. Besides, zebrafish embryos were employed to study the effect of G-TiO2 NPs on embryonic development. Zebrafish embryos were treated with TiO2 as well as G-TiO2 NPs at four different concentrations, i.e., 25, 50, 100, and 200 µg/ml for 24-96-hour post-fertilization (hpf). The SEM analysis of G-TiO2 NPs confirmed that the size was in the range of 32-46 nm and characterized by EDX, X-ray diffraction (XRD), FTIR, UV-vis spectra. During 24-96-hour post-fertilization (hpf), the results showed that 25-100 µg/ml of TiO2 and G-TiO2 NP instigated developmental acute toxicity in these embryos, causing mortality, hatching delay, and malformation. TiO2 and G-TiO2 NPs exposure induced axis bent, tail bent, spinal cord curvature, yolk-sac, and pericardial edema. Exposure of larvae to the highest concentrations of 200 μg/ml TiO2 and G-TiO2 NPs caused maximum mortality at all time points and reached 70% and 50%, respectively, at 96 hpf. Besides, both TiO2 and G-TiO2 NP revealed antidiabetic and anti-inflammatory effects in vitro. In addition, G-TiO2 NPs exhibited antibacterial effects. Taken together, this study provided a valuable insight into the synthesis of TiO2 NPs using green methods and the synthesized G-TiO2 NPs possess moderate toxicity and potent antidiabetic, anti-inflammatory and antibacterial activities.
Collapse
Affiliation(s)
- Rajaduraipandian Subramanian
- Department of Chemistry, Sri Paramakalyani College, Alwarkurichi, India
- Environmental Nanobiotechnology Division, Sri Paramakalyani Centre for Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, India
| | - Mohemedibrahim Ponnanikajamideen
- Environmental Nanobiotechnology Division, Sri Paramakalyani Centre for Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, India
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Rapael Samuel Rajendran
- Environmental Nanobiotechnology Division, Sri Paramakalyani Centre for Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, India
- Biology Institute, Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | | | - Abdulrahman Alasmari
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Chellasamy Panneerselvam
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Selvendiran Periyasamy
- Department of Chemical and Environmental Engineering, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
29
|
Mohtashami M, Rezagholizade-Shirvan A, Bonab ZH, Amiryousefi MR, Darroudi M, Ahmadi Solimani MS, Yaghoobi S, Dolatabadi S, Ghasemi A, Momtazi-Borojeni AA. Green Synthesis of Silver Nanoparticles using Cirsium congestum Extract Modified by Chitosan/Alginate: Bactericidal Activity against Pathogenic Bacteria and Cytotoxicity Analysis in Normal Cell Line. Curr Pharm Des 2024; 30:1610-1623. [PMID: 38661036 DOI: 10.2174/0113816128304460240408085736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 04/26/2024]
Abstract
AIM The study aimed to determine in vitro pharmacological effects of modified Ag nanoparticles (AgNPs). BACKGROUND AgNPs are considered antimicrobial agents. However, the cytotoxicity of chemically synthesized AgNPs (cAgNPs) has raised challenges that limit their use. OBJECTIVE The purpose of the study was to examine the antimicrobial and cytotoxicity effects of AgNPs synthesized using Cirsium congestum extract modified by chitosan/alginate AgNPS (Ch/ALG-gAgNPs). METHODS Nanoparticles were characterized using TEM, DLS, XRD, and FTIR. Resistant strains of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were used for the antimicrobial analysis of Ch/ALG-gAgNPs using disc diffusion and microdilution methods. The effects of NPs on cell viability and apoptosis in L929 normal cells were determined using MTT assay and annexin/PI staining, respectively. RESULTS Physicochemical characterizations confirmed Ch/ALG-gAgNPs to be spherical and uniformly dispersed, and their size ranged from 50 to 500 nm. Ch/ALG-gAgNPs inhibited the growth of microbial strains in a dose-dependent manner. The antibacterial effect of Ch/ALG-gAgNPs was significantly higher than cAgNPs. The Ch/ALG-gAgNPs showed little cytotoxicity against normal cells at concentrations less than 50 μg/ml. Cytotoxicity effects of Ch/ALG-gAgNP were less than cAgNPs. Flow cytometry and real-time PCR results showed a decrease in apoptosis percentage and BAX marker in the presence of Ch/ALG-gAgNPs relative to when the cell was treated with cAgNPs. CONCLUSION Current findings introduce novel gAgNPs modified with chitosan/alginate for use in medicine.
Collapse
Affiliation(s)
- Mahnaz Mohtashami
- Department of Microbiology, School of Basic Science, Islamic Azad University, Neyshabur Branch, Neyshabur, Iran
| | | | - Zahra Hojati Bonab
- Department of Microbiology, School of Basic Science, Islamic Azad University, Bonab Branch, Bonab, Iran
| | - Mohammad Reza Amiryousefi
- Department of Food Science and Technology, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Sajad Yaghoobi
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Samaneh Dolatabadi
- Department of Microbiology, School of Basic Science, Islamic Azad University, Neyshabur Branch, Neyshabur, Iran
| | - Ahmad Ghasemi
- Department of Biochemistry, Nutrition and Food Sciences, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Amir Abbas Momtazi-Borojeni
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Medical Biotechnology, School of Medicine, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
30
|
Seleem AA, Hussein BH. Effects of silver nanoparticles prepared by aqueous extract of Ferula communis on the developing mouse embryo after maternal exposure. Toxicol Ind Health 2023; 39:712-734. [PMID: 37871157 DOI: 10.1177/07482337231209094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Green synthesis of silver nanoparticles (AgNPs) from aqueous silver nitrate has been achieved using an extract of Ferula communis leaf as a capping, reducing, and stabilizing agent. The formation and stability of the green synthesized silver nanoparticles in the colloidal solution were monitored by absorption measurements. Silver nanoparticles were characterized by different analyses such as X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), and FT-IR spectroscopy. The average particle size of silver nanoparticles was determined by high-resolution transmission electron microscopy (HRTEM) and scanning electron microscopy (SEM) analyses. In this experiment, pregnant female mice were divided into four groups (G); G1 was the control and received phosphate-buffered saline, G2 received orally aqueous extract of F. communis leaf, G3 received orally AgNPs chemically prepared by NaBH4, and G4 received orally AgNPs prepared by aqueous extract of F. communis leaf. The diameter of AgNPs was 20 nm. AgNPs exhibited good catalytic reduction ability toward methyl orange in the presence of sodium borohydride with a rate constant of 2.95 x 10-4 s-1. The results revealed the occurrence of resorbed embryos in G2, G3, and G4 with different percentages. The livers of mothers and embryos at E14.5 in G2, G3, and G4 showed different levels of histopathological alteration and increase in GFAP and CTGF expressions compared with the control group. The study concluded that the oral administration of small-sized AgNPs (20 nm) prepared by Ferula extract had less toxicity than those prepared by the chemical method.
Collapse
Affiliation(s)
- Amin A Seleem
- Biology Department, Faculty of Science and Arts, Al Ula, Taibah University, Madinah, Saudi Arabia
- Zoology Department, Faculty of Science, Sohag University, Sohag, Egypt
| | - Belal Hm Hussein
- Chemistry Department, Faculty of Science and Arts, Al Ula, Taibah University, Madinah, Saudi Arabia
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
31
|
P SV, Sundari SK, Jeyachandran S, Nagesh S. Green Synthesis and Characterization of Xanthium strumarium-Mediated Titanium Dioxide Nanoparticles. Cureus 2023; 15:e51012. [PMID: 38264379 PMCID: PMC10804215 DOI: 10.7759/cureus.51012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/23/2023] [Indexed: 01/25/2024] Open
Abstract
Background Green synthesis of nanoparticles is a growing trend. The annual plant Xanthium strumarium L. (X. strumarium) belongs to the Asteraceae family. The herb has traditionally been used to treat a variety of ailments, including leucoderma, dangerous insect bites, epilepsy, salivation, allergic rhinitis, sinusitis, etc. Inorganic, biocompatible, and non-toxic titanium is a substance employed in the pharmaceutical and biomedical industries as well as in fields like bone tissue engineering. The aim of the study is to characterize titanium dioxide nanoparticles (TiO₂NPs), which were synthesized from X.strumarium. Also, this study aims to assess the cytotoxic properties of the synthesized leaf extract and the TiO₂NPs. Materials and methods In this study, the biosynthesis of TiO₂NPs was made from X. strumarium leaf extract. The characterization of the green-synthesized TiO₂NPs was done using the spectral analysis of an ultraviolet (UV)-visible spectrophotometer, scanning electron microscopy (SEM), and Fourier Transform Infrared Spectroscopy (FTIR). The advantage of using TiO₂NPs is that they possess antimicrobial, antibacterial, chemical stability, and catalytic properties. The leaf extract and the biosynthesized nanoparticles were tested against human fibroblast cell lines for biocompatibility using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Results SEM investigation showed that TiO₂NPs were crystalline in nature. FTIR confirms the presence of alkyne and amine functional groups, and the pointed vertices in the X-ray diffraction (XRD) pattern show the crystalline nature of TiO2NPs. The study found that the cell viability of TiO₂NPs was 110%. Conclusion TiO₂NPs were synthesized from X. strumarium leaf extract and characterized using SEM, FTIR, and XRD. The TiO₂NPs were found to be crystalline in nature with various functional groups. MTT assay shows that the synthesized nanoparticles are promising biocompatible agents that can be used in future research in the medical field.
Collapse
Affiliation(s)
- Shravani V P
- Orthodontics and Dentofacial Orthopaedics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Shantha K Sundari
- Orthodontics and Dentofacial Orthopaedics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Sivakamavalli Jeyachandran
- Laboratory in Biotechnology and Biosignal Transduction, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Shweta Nagesh
- Orthodontics and Dentofacial Orthopaedics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
32
|
Makauki E, Mtavangu SG, Basu OD, Rwiza M, Machunda R. Facile biosynthesis of Ag-ZnO nanocomposites using Launaea cornuta leaf extract and their antimicrobial activity. DISCOVER NANO 2023; 18:142. [PMID: 37975945 PMCID: PMC10656379 DOI: 10.1186/s11671-023-03925-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
The quest to synthesize safe, non-hazardous Ag-ZnO nanoomposites (NCs) with improved physical and chemical properties has necessitated green synthesis approaches. In this research, Launaea cornuta leaf extract was proposed for the green synthesis of Ag-ZnO NCs, wherein the leaf extract was used as a reducing and capping agent. The antibacterial activity of the prepared nanoomposites was investigated against Escherichia coli and Staphylococcus aureus through the disc diffusion method. The influence of the synthesis temperature, pH, and precursor concentration on the synthesis of the Ag-ZnO NCs and antimicrobial efficacy were investigated. The nanoparticles were characterized by ATR-FTIR, XRD, UV-Vis, FESEM, and TEM. The FTIR results indicated the presence of secondary metabolites in Launaea cornuta which assisted the green synthesis of the nanoparticles. The XRD results confirmed the successful synthesis of crystalline Ag-ZnO NCs with an average particle size of 21.51 nm. The SEM and TEM images indicated the synthesized nanoparticles to be spherical in shape. The optimum synthesis conditions for Ag-ZnO NCs were at 70 °C, pH of 7, and 8% silver. Antibacterial activity results show Ag-ZnO NCs to have higher microbial inhibition on E. coli than on S. aureus with the zones of inhibition of 21 ± 1.08 and 19.67 ± 0.47 mm, respectively. Therefore, the results suggest that Launaea cornuta leaf extract can be used for the synthesis of Ag-ZnO NCs.
Collapse
Affiliation(s)
- Elizabeth Makauki
- School of Materials Energy Water and Environmental Sciences, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania.
| | - Stanslaus George Mtavangu
- Department of Chemical Engineering, Faculty of Engineering Sciences, KU Leuven, Leuven, Belgium
- Department of Chemistry, Dar es Salaam University College of Education, Dar es Salaam, Tanzania
| | - Onita D Basu
- Department of Civil and Environmental Engineering, Faculty of Engineering and Design, Carleton University, Ottawa, Canada
| | - Mwemezi Rwiza
- School of Materials Energy Water and Environmental Sciences, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - Revocatus Machunda
- School of Materials Energy Water and Environmental Sciences, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| |
Collapse
|
33
|
Zúñiga-Miranda J, Guerra J, Mueller A, Mayorga-Ramos A, Carrera-Pacheco SE, Barba-Ostria C, Heredia-Moya J, Guamán LP. Iron Oxide Nanoparticles: Green Synthesis and Their Antimicrobial Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2919. [PMID: 37999273 PMCID: PMC10674528 DOI: 10.3390/nano13222919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
The rise of antimicrobial resistance caused by inappropriate use of these agents in various settings has become a global health threat. Nanotechnology offers the potential for the synthesis of nanoparticles (NPs) with antimicrobial activity, such as iron oxide nanoparticles (IONPs). The use of IONPs is a promising way to overcome antimicrobial resistance or pathogenicity because of their ability to interact with several biological molecules and to inhibit microbial growth. In this review, we outline the pivotal findings over the past decade concerning methods for the green synthesis of IONPs using bacteria, fungi, plants, and organic waste. Subsequently, we delve into the primary challenges encountered in green synthesis utilizing diverse organisms and organic materials. Furthermore, we compile the most common methods employed for the characterization of these IONPs. To conclude, we highlight the applications of these IONPs as promising antibacterial, antifungal, antiparasitic, and antiviral agents.
Collapse
Affiliation(s)
- Johana Zúñiga-Miranda
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| | - Julio Guerra
- Facultad de Ingeniería en Ciencias Aplicadas, Universidad Técnica del Norte, Ibarra 100107, Ecuador;
| | - Alexander Mueller
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA;
| | - Arianna Mayorga-Ramos
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| | - Saskya E. Carrera-Pacheco
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| | - Carlos Barba-Ostria
- Escuela de Medicina, Colegio de Ciencias de la Salud Quito, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador;
- Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador
| | - Jorge Heredia-Moya
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| | - Linda P. Guamán
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| |
Collapse
|
34
|
Siddiqui SA, Alvi T, Biswas A, Shityakov S, Gusinskaia T, Lavrentev F, Dutta K, Khan MKI, Stephen J, Radhakrishnan M. Food gels: principles, interaction mechanisms and its microstructure. Crit Rev Food Sci Nutr 2023; 63:12530-12551. [PMID: 35916765 DOI: 10.1080/10408398.2022.2103087] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Food hydrogels are important materials having great scientific interest due to biocompatibility, safety and environment-friendly characteristics. In the food industry, hydrogels are widely used due to their three-dimensional crosslinked networks. Furthermore, they have attracted great attention due to their wide range of applications in the food industry, such as fat replacers, encapsulating agents, target delivery vehicles, and many more. In addition to basic and recent knowledge on food hydrogels, this review exclusively focuses on sensorial perceptions, nutritional significance, body interactions, network structures, mechanical properties, and potential hydrogel applications in food and food-based matrices. Additionally, this review highlights the structural design of hydrogels, which provide the forward-looking idea for future applications of food hydrogels (e.g., 3D or 4D printing).
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Tayyaba Alvi
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Abhishek Biswas
- Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Sergey Shityakov
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint-Petersburg, Russia
| | - Tatiana Gusinskaia
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint-Petersburg, Russia
| | - Filipp Lavrentev
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint-Petersburg, Russia
| | - Kunal Dutta
- Department of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | | | - Jaspin Stephen
- Centre of Excellence in Nonthermal Processing, NIFTEM-Thanjavur, Tamil Nadu, India
| | | |
Collapse
|
35
|
Wagay SA, Ali R. Facile synthesis and anion binding studies of fluorescein/benzo-12-crown-4 ether based bis-dipyrromethane (DPM) receptors. RSC Adv 2023; 13:30420-30428. [PMID: 37849701 PMCID: PMC10578460 DOI: 10.1039/d3ra05171d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023] Open
Abstract
Two novel fluorescein as well as benzo-12-crown-4 ether functionalized dipyrromethane receptors (DPM3 and DPM4) have successfully been synthesized. The anion (used as their TBA salts) binding studies of thus prepared DPM3 and DPM4 receptors were evaluated by the UV-visible spectrophotometric titrations. Binding affinities as well as the stoichiometry were determined through the UV-visible titrations data with the involvement of the BindFit (v0.5) package available online at https://supramolecular.org. Moreover, binding events were validated by means of the comparison of the partial 1H-NMR spectrum of the simple host molecule with that of the host-guest complex, and the 1 : 1 stoichiometry were further confirmed by the Job's method of continuous variation. From the results, we observed the binding constant (Ka) values of DPM3/DPM4 with various tested anions in the range of 516.07 M-1 to 63789.81 M-1, depending upon the nature/shape/size of the anions. Moreover, the anion-π interactions were confirmed by the partial 1H-NMR spectral data, and further supported by the literature reported systems. The authors hope that such types of valued receptors will be benefitted in future for the recognizing/binding of a variety of biologically important anions.
Collapse
Affiliation(s)
- Shafieq Ahmad Wagay
- Organic and Supramolecular Functional Materials Research Laboratory, Department of Chemistry Jamia Millia Islamia, Okhla New Delhi 110025 India +91-7011867613
| | - Rashid Ali
- Organic and Supramolecular Functional Materials Research Laboratory, Department of Chemistry Jamia Millia Islamia, Okhla New Delhi 110025 India +91-7011867613
| |
Collapse
|
36
|
Sarkar J, Mridha D, Davoodbasha MA, Banerjee J, Chanda S, Ray K, Roychowdhury T, Acharya K, Sarkar J. A State-of-the-Art Systemic Review on Selenium Nanoparticles: Mechanisms and Factors Influencing Biogenesis and Its Potential Applications. Biol Trace Elem Res 2023; 201:5000-5036. [PMID: 36633786 DOI: 10.1007/s12011-022-03549-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023]
Abstract
Selenium is a trace element required for the active function of numerous enzymes and various physiological processes. In recent years, selenium nanoparticles draw the attention of scientists and researchers because of its multifaceted uses. The process involved in chemically synthesized SeNPs has been found to be hazardous in nature, which has paved the way for safe and ecofriendly SeNPs to be developed in order to achieve sustainability. In comparison to chemical synthesis, SeNPs can be synthesized more safely and with greater flexibility utilizing bacteria, fungi, and plants. This review focused on the synthesis of SeNPs utilizing bacteria, fungi, and plants; the mechanisms involved in SeNP synthesis; and the effect of various abiotic factors on SeNP synthesis and morphological characteristics. This article discusses the synergies of SeNP synthesis via biological routes, which can help future researchers to synthesize SeNPs with more precision and employ them in desired fields.
Collapse
Affiliation(s)
- Jit Sarkar
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, Centre of Advanced Study, University of Calcutta, Kolkata, PIN-700019, India
| | - Deepanjan Mridha
- School of Environmental Studies, Jadavpur University, Kolkata, PIN-700032, India
| | - Mubarak Ali Davoodbasha
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu, PIN-600048, India
| | - Jishnu Banerjee
- Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Rahara, Khardaha, West Bengal, PIN-700118, India
| | - Sumeddha Chanda
- Department of Botany, Scottish Church College, Kolkata, PIN-700006, India
| | - Kasturi Ray
- Department of Botany, North Campus, University of Delhi, University Road, Delhi, PIN-110007, India
| | - Tarit Roychowdhury
- School of Environmental Studies, Jadavpur University, Kolkata, PIN-700032, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, Centre of Advanced Study, University of Calcutta, Kolkata, PIN-700019, India.
| | - Joy Sarkar
- Department of Botany, Dinabandhu Andrews College, Kolkata, PIN-700084, India.
| |
Collapse
|
37
|
Rajagopal S, Sugumaran S. The Antibacterial Effectiveness of Citrullus lanatus-Mediated Stannous Nanoparticles on Streptococcus mutans. Cureus 2023; 15:e45504. [PMID: 37868455 PMCID: PMC10584993 DOI: 10.7759/cureus.45504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/12/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Dental caries is a prevalent oral health issue caused by the colonization of Streptococcus mutans in the oral cavity. Citrullus lanatus, commonly known as watermelon, is rich in bioactive compounds that possess antibacterial potential. In this study, we aimed to synthesize stannous chloride (SnCl2) nanoparticles (NPs) mediated by Citrullus lanatus extract and investigate their antibacterial effectiveness against Streptococcus mutans. Materials and method Stannous nanoparticles (SnNPs) synthesized by the green method were achieved by using the watermelon extract. Dilute stannous chloride solution was obtained by adding 0.45 g of stannous (Sn) chloride (Cl) powder to 60 mL of water, which was subjected to an orbital shaker with the watermelon extract. The nanoparticles obtained were subjected to characterization using antimicrobial testing, Fourier transform infrared (FTIR) spectroscopy, energy-dispersive X-ray (EDAX) analysis, and scanning electron microscopy (SEM). Agar well diffusion method was used against specific strains of S. aureus, S. mutans, and Escherichia coli. Results The novel nanoparticles demonstrated promising antibacterial activity against S. mutans providing 10 mm of inhibitory action. Conclusion Due to its abundance of naturally occurring bioactive chemicals and improved efficacy against S. mutans, watermelon extract can be utilized to create stannous nanoparticles as opposed to the use of toxic chemicals. They can also be employed as oral administration systems.
Collapse
Affiliation(s)
- Shruthi Rajagopal
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Surendar Sugumaran
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
38
|
Shabir S, Sehgal A, Dutta J, Devgon I, Singh SK, Alsanie WF, Alamri AS, Alhomrani M, Alsharif A, Basalamah MAM, Faidah H, Bantun F, Saati AA, Vamanu E, Singh MP. Therapeutic Potential of Green-Engineered ZnO Nanoparticles on Rotenone-Exposed D. melanogaster (Oregon R +): Unveiling Ameliorated Biochemical, Cellular, and Behavioral Parameters. Antioxidants (Basel) 2023; 12:1679. [PMID: 37759981 PMCID: PMC10525955 DOI: 10.3390/antiox12091679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/20/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Nanotechnology holds significant ameliorative potential against neurodegenerative diseases, as it can protect the therapeutic substance and allow for its sustained release. In this study, the reducing and capping agents of Urtica dioica (UD), Matricaria chamomilla (MC), and Murraya koenigii (MK) extracts were used to synthesize bio-mediated zinc oxide nanoparticles (ZnO-NPs) against bacteria (Staphylococcus aureus and Escherichia coli) and against rotenone-induced toxicities in D. melanogaster for the first time. Their optical and structural properties were analyzed via FT-IR, DLS, XRD, EDS, SEM, UV-Vis, and zeta potential. The antioxidant and antimicrobial properties of the fabricated ZnO-NPs were evaluated employing cell-free models (DPPH and ABTS) and the well diffusion method, respectively. Rotenone (500 µM) was administered to Drosophila third instar larvae and freshly emerged flies for 24-120 h, either alone or in combination with plant extracts (UD, MC, an MK) and their biogenic ZnO-NPs. A comparative study on the protective effects of synthesized NPs was undertaken against rotenone-induced neurotoxic, cytotoxic, and behavioral alterations using an acetylcholinesterase inhibition assay, dye exclusion test, and locomotor parameters. The findings revealed that among the plant-derived ZnO-NPs, MK-ZnO NPs exhibit strong antimicrobial and antioxidant activities, followed by UD-ZnO NPs and MC-ZnO NPs. In this regard, ethno-nano medicinal therapeutic uses mimic similar effects in D. melanogaster by suppressing oxidative stress by restoring biochemical parameters (AchE and proteotoxicity activity) and lower cellular toxicity. These findings suggest that green-engineered ZnO-NPs have the potential to significantly enhance outcomes, with the promise of effective therapies for neurodegeneration, and could be used as a great alternative for clinical development.
Collapse
Affiliation(s)
- Shabnam Shabir
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Amit Sehgal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Joydeep Dutta
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Inderpal Devgon
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Sandeep K. Singh
- Indian Scientific Education and Technology Foundation, Lucknow 226002, Uttar Pradesh, India
| | - Walaa F. Alsanie
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif 21944, Saudi Arabia
| | - Abdulhakeem S. Alamri
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif 21944, Saudi Arabia
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif 21944, Saudi Arabia
| | - Abdulaziz Alsharif
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif 21944, Saudi Arabia
| | | | - Hani Faidah
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Farkad Bantun
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Abdullah Ali Saati
- Department of Community Medicine & Pilgrims Healthcare, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 011464 Bucharest, Romania
| | - Mahendra P. Singh
- Department of Zoology and Centre of Genomics and Bioinformatics, DDU Gorakhpur University, Gorakhpur 273009, Uttar Pradesh, India
| |
Collapse
|
39
|
Gupta D, Boora A, Thakur A, Gupta TK. Green and sustainable synthesis of nanomaterials: Recent advancements and limitations. ENVIRONMENTAL RESEARCH 2023; 231:116316. [PMID: 37270084 DOI: 10.1016/j.envres.2023.116316] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/05/2023]
Abstract
Nanomaterials have been widely used in diverse fields of research such as engineering, biomedical science, energy, and environment. At present, chemical and physical methods are the main methods for large-scale synthesis of nanomaterials, but these methods have adverse effects on the environment, and health issues, consume more energy, and are expensive. The green synthesis of nanoparticles is a promising and environmentally friendly approach to producing materials with unique properties. Natural reagents such as herbs, bacteria, fungi, and agricultural waste are used in the green synthesis of nanomaterials instead of hazardous chemicals and reduce the carbon footprint of the synthesis process. Green synthesis of nanomaterials is highly beneficial compared to traditional methods due to its low cost, negligible pollution level, and safety for the environment and human health. Nanoparticles possess enhanced thermal and electrical conductivity, catalytic activity, and biocompatibility, making them highly attractive for a range of applications, including catalysis, energy storage, optics, biological labeling, and cancer therapy. This review article provides a comprehensive overview of recent advancements in the green synthesis routes of different types of nanomaterials, including metal oxide-based, inert metal-based, carbon-based, and composite-based nanoparticles. Moreover, we discuss the various applications of nanoparticles, emphasizing their potential to revolutionize fields such as medicine, electronics energy, and the environment. The factors affecting the green synthesis of nanomaterials, and their limitations are also pointed out to decide the direction of this research field, Overall, this paper highlights the importance of green synthesis in promoting sustainable development in various industries.
Collapse
Affiliation(s)
- Deepshikha Gupta
- Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Sector 125, Pin 201301, India.
| | - Anuj Boora
- Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Sector 125, Pin 201301, India
| | - Amisha Thakur
- Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Sector 125, Pin 201301, India
| | - Tejendra K Gupta
- Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Sector 125, Pin 201301, India
| |
Collapse
|
40
|
Mezher TA, Ali AM, Abd AN. Iron Oxide Nanoparticle Biosynthesis, Characterization, and Antimicrobial Activity Using Nigella sativa Seeds Extract. INTERNATIONAL JOURNAL OF NANOSCIENCE 2023; 22. [DOI: 10.1142/s0219581x23500266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
In the most recent few years, there has been a significant uptick in curiosity regarding the process of manufacturing metal oxide nanoparticles by making use of the extract of various plant components. The generated iron oxide nanoparticles demonstrate validity for use in biomedical applications. In the work that we are presenting here, we use the extract of Nigella sativa seeds to carry out an environmentally friendly iron oxide nanoparticle synthesis (Fe2O3 NPs). Advanced diagnostic tools such as scanning electron microscopy (SEM), Fourier transform infrared (FTIR) analysis, X-ray diffraction (XRD) investigation, and others were utilized in order to perform structural characterization on the generated Fe2O3 NPs. According to the preliminary findings, the particles have a semispherical form with an average particle size that falls between 15[Formula: see text]nm and 20[Formula: see text]nm. Phytochemicals, particularly polyphenols, are extremely important contributors to the production of iron oxide nanoparticles. Since the findings of the antimicrobial investigation were highly encouraging, the antimicrobial activity of the iron oxide particles that were created was investigated to see if they might inhibit the growth of specific bacterial and fungal pathogens.
Collapse
Affiliation(s)
- Thaer A. Mezher
- Department of Physics, College of Education for Pure Science, Tikrit University, Iraq
| | - Abdullah M. Ali
- Department of Physics, College of Education for Pure Science, Tikrit University, Iraq
| | - Ahmed N. Abd
- Department of Physics, College of Science, Mustansiriyah University, Iraq
| |
Collapse
|
41
|
Salaramoli S, Amiri H, Joshaghani HR, Hosseini M, Hashemy SI. Bio-synthesized selenium nanoparticles ameliorate Brain oxidative stress in Parkinson disease rat models. Metab Brain Dis 2023; 38:2055-2064. [PMID: 37133801 DOI: 10.1007/s11011-023-01222-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/20/2023] [Indexed: 05/04/2023]
Abstract
AIM Parkinson disease (PD) is a prevalent central nervous system degenerative condition that impacts elderly people. Recent clinical and experimental study findings have established oxidative stress as one of the main pathogeneses of PD. Selenium, a trace metals with antioxidant effects, might reverse the neurobehavioral impairments and oxidative stress in rats. Thus, the goal of this study was to ascertain if Selenium Nano Particles (SeNPs) are also effective to protect brain cells from oxidative stress or not. MAIN METHODS SeNPs were synthesized utilizing Ascorbic acid and chitosan as a reducing and stabilizing agent. Next, eight groups (N: 6) of male Wistar rats were randomly assigned and injected by different dosage (0.1, 0,2, and 0.3 mg/kg) of Se and SeNP. Finally, to ascertain the protective benefits of SeNP on PD rats, behavioral evaluation, clinical symptoms, antioxidant activity, and oxidant levels were examined. KEY FINDINGS According to the findings, PD rats' motor functions had developed by SeNP injection. Higher MDA levels and inhibited antioxidant activities (SOD, CAT, and GPX) in lesion group are highlighting the significant role of oxidative stress in dopaminergic neuron death and neurobehavioral abnormalities. SeNP also protect against oxidative stress as compared to the lesion group. The levels of MDA had greatly reduced while the activities of enzymes, TAC, and SeNP both had significantly increased. SIGNIFICANCE By enhancing antioxidant activity, administration of SeNP can reduce the hazardous consequences of oxidative stress.
Collapse
Affiliation(s)
- Sanaz Salaramoli
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Amiri
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Joshaghani
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
42
|
Dey S, Nath S, Alam Ansari T, Biswas A, Barman F, Mukherjee S, Gopal G, Bhattacharyya A, Mukherjee A, Kundu R, Paul S. Application of green synthesized bimetallic nZVI-Cu nanoparticle as a sustainable alternative to chemical fertilizers to enhance growth and photosynthetic efficiency of rice seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107837. [PMID: 37331074 DOI: 10.1016/j.plaphy.2023.107837] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/23/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023]
Abstract
Application of nanomaterials in agriculture has been extensively explored over the past decade leading to a wide ambit of nanoparticle-based agrochemicals. Metallic nanoparticles consisting of plant macro- and micro-nutrients have been used as nutritional supplements for plants through soil amendments, foliar sprays, or seed treatment. However, most of these studies emphasize monometallic nanoparticles which limit the range of usage and effectivity of such nanoparticles (NPs). Hence, we have employed a bimetallic nanoparticle (BNP) consisting of two different micro-nutrients (Cu & Fe) in rice plants to test its efficacy in terms of growth and photosynthesis. Several experiments were designed to assess growth (root-shoot length, relative water content) and photosynthetic parameters (pigment content, relative expression of rbcS, rbcL & ChlGetc.). To determine whether the treatment induced any oxidative stress or structural anomalies within the plant cells, histochemical staining, anti-oxidant enzyme activities, FTIR, and SEM micrographs were undertaken. Results indicated that foliar application of 5 mg L-1 BNP increased vigor and photosynthetic efficiency whereas 10 mg L-1 concentration induced oxidative stress to some extent. Furthermore, the BNP treatment did not perturb the structural integrity of the exposed plant parts and also did not induce any cytotoxicity. Application of BNPs in agriculture has not been explored extensively to date and this study is one of the first reports that not only documents the effectivity of Cu-Fe BNP but also critically explores the safety of its usage on rice plants making it a useful lead to design new BNPs and explore their efficacy.
Collapse
Affiliation(s)
- Swarnali Dey
- Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Shreya Nath
- Institute of Health Sciences, Presidency University (2nd Campus), Action Area-ID, New Town, Kolkata, 700156, India
| | - Tauhid Alam Ansari
- Institute of Health Sciences, Presidency University (2nd Campus), Action Area-ID, New Town, Kolkata, 700156, India
| | - Ankita Biswas
- Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Falguni Barman
- Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Saikat Mukherjee
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Geetha Gopal
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, 632014, India
| | - Arindam Bhattacharyya
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, 632014, India
| | - Rita Kundu
- Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Subhabrata Paul
- Institute of Health Sciences, Presidency University (2nd Campus), Action Area-ID, New Town, Kolkata, 700156, India.
| |
Collapse
|
43
|
Flores-Rábago KM, Rivera-Mendoza D, Vilchis-Nestor AR, Juarez-Moreno K, Castro-Longoria E. Antibacterial Activity of Biosynthesized Copper Oxide Nanoparticles (CuONPs) Using Ganoderma sessile. Antibiotics (Basel) 2023; 12:1251. [PMID: 37627671 PMCID: PMC10451715 DOI: 10.3390/antibiotics12081251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Copper oxide nanoparticles (CuONPs) were synthesized using an eco-friendly method and their antimicrobial and biocompatibility properties were determined. The supernatant and extract of the fungus Ganoderma sessile yielded small, quasi-spherical NPs with an average size of 4.5 ± 1.9 nm and 5.2 ± 2.1 nm, respectively. Nanoparticles were characterized by UV-Vis spectroscopy, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), dynamic light scattering (DLS), and zeta potential analysis. CuONPs showed antimicrobial activity against Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and Pseudomonas aeruginosa (P. aeruginosa). The half-maximal inhibitory concentration (IC50) for E. coli was 8.5 µg/mL, for P. aeruginosa was 4.1 µg/mL, and for S. aureus was 10.2 µg/mL. The ultrastructural analysis of bacteria exposed to CuONPs revealed the presence of small CuONPs all through the bacterial cells. Finally, the toxicity of CuONPs was analyzed in three mammalian cell lines: hepatocytes (AML-12), macrophages (RAW 264.7), and kidney (MDCK). Low concentrations (<15 µg/mL) of CuONPs-E were non-toxic to kidney cells and macrophages, and the hepatocytes were the most susceptible to CuONPs-S. The results obtained suggest that the CuONPs synthesized using the extract of the fungus G. sessile could be further evaluated for the treatment of superficial infectious diseases.
Collapse
Affiliation(s)
- Karla M. Flores-Rábago
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ensenada 22860, Mexico; (K.M.F.-R.); (D.R.-M.)
| | - Daniel Rivera-Mendoza
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ensenada 22860, Mexico; (K.M.F.-R.); (D.R.-M.)
| | | | - Karla Juarez-Moreno
- Center for Applied Physics and Advanced Technology, UNAM, Juriquilla 76230, Mexico;
| | - Ernestina Castro-Longoria
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ensenada 22860, Mexico; (K.M.F.-R.); (D.R.-M.)
| |
Collapse
|
44
|
Mahmoodi P, Motavalizadehkakhky A, Darroudi M, Mehrzad J, Zhiani R. Green synthesis of cerium oxide nanoparticles using zucchini peel extract for cytotoxic and photocatalytic properties. Bioprocess Biosyst Eng 2023:10.1007/s00449-023-02888-z. [PMID: 37326639 DOI: 10.1007/s00449-023-02888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/27/2023] [Indexed: 06/17/2023]
Abstract
The aim of this study is the green synthesis of cerium oxide nanoparticles (CeO2-NPs) using a natural capping agent and its application in water and wastewater treatment. This study presents the biosynthesis of CeO2-NPs by the exertion of a green method using zucchini (Cucurbita pepo) extract as a capping agent. Synthesized CeO2-NPs were distinguished through TGA/DTA, FT-IR, XRD, FESEM/TEM and EDX/PSA, and DRS procedures. According to the XRD pattern of NPs, the crystallinity structure was a face-centered cubic (fcc) with an Fm3m space group and the size was estimated at 30 nm. The spherical morphology of NPs was confirmed through FESEM/TEM images. In the following, the photocatalytic property of NPs was investigated by the decolorization of methylene blue (MB) dye within UV-A light. Also, the cytotoxicity of NPs on the CT26 cell line was evaluated through the MTT test, and no toxicity was observed in the results, which indicates their biocompatibility.
Collapse
Affiliation(s)
- Pegah Mahmoodi
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Alireza Motavalizadehkakhky
- Department of Chemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran.
- Advanced Research Center for Chemistry, Biochemistry & Nanomaterial, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran.
| | - Majid Darroudi
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran.
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| | - Jamshid Mehrzad
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
- Advanced Research Center for Chemistry, Biochemistry & Nanomaterial, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Raheleh Zhiani
- Department of Chemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| |
Collapse
|
45
|
Liaqat F, Vosqa UT, Khan F, Haleem A, Shaik MR, Siddiqui MR, Khan M. Light-Driven Catalytic Activity of Green-Synthesized SnO 2/WO 3-x Hetero-nanostructures. ACS OMEGA 2023; 8:20042-20055. [PMID: 37305313 PMCID: PMC10249087 DOI: 10.1021/acsomega.3c02330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023]
Abstract
This work reports an environmentally friendly and economically feasible green synthesis of monometallic oxides (SnO2 and WO3) and their corresponding mixed metal oxide (SnO2/WO3-x) nanostructures from the aqueous Psidium guajava leaf extract for light-driven catalytic degradation of a major industrial contaminant, methylene blue (MB). P. guajava is a rich source of polyphenols that acts as a bio-reductant as well as a capping agent in the synthesis of nanostructures. The chemical composition and redox behavior of the green extract were investigated by liquid chromatography-mass spectrometry and cyclic voltammetry, respectively. Results acquired by X-ray diffraction and Fourier transform infrared spectroscopy confirm the successful formation of crystalline monometallic oxides (SnO2 and WO3) and bimetallic SnO2/WO3-x hetero-nanostructures capped with polyphenols. The structural and morphological aspects of the synthesized nanostructures were analyzed by transmission electron microscopy and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy. Photocatalytic activity of the synthesized monometallic and hetero-nanostructures was investigated for the degradation of MB dye under UV light irradiation. Results indicate a higher photocatalytic degradation efficiency for mixed metal oxide nanostructures (93.5%) as compared to pristine monometallic oxides SnO2 (35.7%) and WO3 (74.5%). The hetero-metal oxide nanostructures prove to be better photocatalysts with reusability up to 3 cycles without any loss in degradation efficiency or stability. The enhanced photocatalytic efficiency is attributed to a synergistic effect in the hetero-nanostructures, efficient charge transportation, extended light absorption, and increased adsorption of dye due to the enlarged specific surface area.
Collapse
Affiliation(s)
- Faroha Liaqat
- Department
of Chemistry, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Urwa tul Vosqa
- Department
of Chemistry, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Fatima Khan
- Department
of Chemistry, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Abdul Haleem
- CAS
Key Laboratory of Soft Matter Chemistry, Department of Polymer Science
and Engineering, University of Science and
Technology of China, Hefei, Anhui 230026, China
| | - Mohammed Rafi Shaik
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | | | - Mujeeb Khan
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
46
|
Patowary R, Devi A, Mukherjee AK. Advanced bioremediation by an amalgamation of nanotechnology and modern artificial intelligence for efficient restoration of crude petroleum oil-contaminated sites: a prospective study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:74459-74484. [PMID: 37219770 PMCID: PMC10204040 DOI: 10.1007/s11356-023-27698-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023]
Abstract
Crude petroleum oil spillage is becoming a global concern for environmental pollution and poses a severe threat to flora and fauna. Bioremediation is considered a clean, eco-friendly, and cost-effective process to achieve success among the several technologies adopted to mitigate fossil fuel pollution. However, due to the hydrophobic and recalcitrant nature of the oily components, they are not readily bioavailable to the biological components for the remediation process. In the last decade, nanoparticle-based restoration of oil-contaminated, owing to several attractive properties, has gained significant momentum. Thus, intertwining nano- and bioremediation can lead to a suitable technology termed 'nanobioremediation' expected to nullify bioremediation's drawbacks. Furthermore, artificial intelligence (AI), an advanced and sophisticated technique that utilizes digital brains or software to perform different tasks, may radically transfer the bioremediation process to develop an efficient, faster, robust, and more accurate method for rehabilitating oil-contaminated systems. The present review outlines the critical issues associated with the conventional bioremediation process. It analyses the significance of the nanobioremediation process in combination with AI to overcome such drawbacks of a traditional approach for efficiently remedying crude petroleum oil-contaminated sites.
Collapse
Affiliation(s)
- Rupshikha Patowary
- Environmental Chemistry Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, 781 035, Assam, India
| | - Arundhuti Devi
- Environmental Chemistry Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, 781 035, Assam, India
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, 781 035, Assam, India.
| |
Collapse
|
47
|
Linima VK, Ragunathan R, Johney J. Biogenic synthesis of RICINUS COMMUNIS mediated iron and silver nanoparticles and its antibacterial and antifungal activity. Heliyon 2023; 9:e15743. [PMID: 37305504 PMCID: PMC10256862 DOI: 10.1016/j.heliyon.2023.e15743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 06/13/2023] Open
Abstract
In recent years, many strategies have been developed for the biological synthesis of different types of metal nanoparticles, which have been successfully synthesized from various plant extracts and analyzed. Recent studies have demonstrated that nanoparticles have highly promising antimicrobial, antiviral, and anti-cancer properties. In the present study, biological synthesis of Ricinuscommunis leaves was performed with iron and silver nanoparticles. The synthesized iron and silver nanoparticles were characterized by UV-Vis spectroscopy, Fourier transform infrared (FT-IR), X-Ray Diffraction (XRD), Scanning electron microscopy (SEM) with Energy dispersive spectroscopy (EDS), and Transmission electron microscopy (TEM). GC-MS analysis of the Ricinus communis revealed the secondary metabolites of total phenolic and flavonoid contents of the extract, which are responsible for the bio-reduction reaction during nanoparticle synthesis. The UV-Vis spectrum shows Plasmon peaks at 340 nm and 440 nm for iron and silver nanoparticles, respectively. XRD results revealed crystalline structure, while TEM, SEM, and EDS identified iron and silver with mostly cuboidal and spherical shapes. Antimicrobial activity was also performed, and it was found that both nanoparticles were active against Salmonella typhi (6 ± 0.073) and (7 ± 0.040), Staphylococcus aureus, and Aspergillus flavus. MIC was also performed, and AgNPs gave a better bactericidal effect against Staphylococcus aureus.
Collapse
Affiliation(s)
- V K Linima
- Department of Biotechnology (Bionanotechnology), Centre for Bioscience and Nanoscience Research, Eachanari, Coimbatore - 21 , Tamilnadu, India
| | - R Ragunathan
- Department of Biotechnology (Bionanotechnology), Centre for Bioscience and Nanoscience Research, Eachanari, Coimbatore - 21 , Tamilnadu, India
| | - Jesteena Johney
- Department of Biotechnology (Bionanotechnology), Centre for Bioscience and Nanoscience Research, Eachanari, Coimbatore - 21 , Tamilnadu, India
| |
Collapse
|
48
|
Liu L, Li Y, Al-Huqail AA, Ali E, Alkhalifah T, Alturise F, Ali HE. Green synthesis of Fe 3O 4 nanoparticles using Alliaceae waste (Allium sativum) for a sustainable landscape enhancement using support vector regression. CHEMOSPHERE 2023; 334:138638. [PMID: 37100254 DOI: 10.1016/j.chemosphere.2023.138638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/28/2023] [Accepted: 04/05/2023] [Indexed: 06/02/2023]
Abstract
The synthesis of metal nanoparticles using green chemistry methods has gained significant attention in the field of landscape enhancement. Researchers have paid close attention to the development of very effective green chemistry approaches for the production of metal nanoparticles (NPs). The primary goal is to create an environmentally sustainable technique for generating NPs. At the nanoscale, ferro- and ferrimagnetic minerals such as magnetite exhibit superparamagnetic properties (Fe3O4). Magnetic nanoparticles (NPs) have received increased interest in nanoscience and nanotechnology due to their physiochemical properties, small particle size (1-100 nm), and low toxicity. Biological resources such as bacteria, algae, fungus, and plants have been used to manufacture affordable, energy-efficient, non-toxic, and ecologically acceptable metallic NPs. Despite the growing demand for Fe3O4 nanoparticles in a variety of applications, typical chemical production processes can produce hazardous byproducts and trash, resulting in significant environmental implications. The purpose of this study is to look at the ability of Allium sativum, a member of the Alliaceae family recognized for its culinary and medicinal benefits, to synthesize Fe3O4 NPs. Extracts of Allium sativum seeds and cloves include reducing sugars like glucose, which may be used as decreasing factors in the production of Fe3O4 NPs to reduce the requirement for hazardous chemicals and increase sustainability. The analytic procedures were carried out utilizing machine learning as support vector regression (SVR). Furthermore, because Allium sativum is widely accessible and biocompatible, it is a safe and cost-effective material for the manufacture of Fe3O4 NPs. Using the regression indices metrics of root mean square error (RMSE) and coefficient of determination (R2), the X-ray diffraction (XRD) study revealed the lighter, smoother spherical forms of NPs in the presence of aqueous garlic extract and 70.223 nm in its absence. The antifungal activity of Fe3O4 NPs against Candida albicans was investigated using a disc diffusion technique but exhibited no impact at doses of 200, 400, and 600 ppm. This characterization of the nanoparticles helps in understanding their physical properties and provides insights into their potential applications in landscape enhancement.
Collapse
Affiliation(s)
- Lisha Liu
- Chongqing Creation Vocational College, Chongqing, 402160, China
| | - Yuanhua Li
- Chongqing Creation Vocational College, Chongqing, 402160, China.
| | - Arwa A Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh, 11671, Saudi Arabia.
| | - Elimam Ali
- Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Tamim Alkhalifah
- Department of Computer, College of Science and Arts in Ar Rass, Qassim University, Ar Rass, Qassim, Saudi Arabia
| | - Fahad Alturise
- Department of Computer, College of Science and Arts in Ar Rass, Qassim University, Ar Rass, Qassim, Saudi Arabia
| | - H Elhosiny Ali
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
49
|
Gomez-Villalba LS, Salcines C, Fort R. Application of Inorganic Nanomaterials in Cultural Heritage Conservation, Risk of Toxicity, and Preventive Measures. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1454. [PMID: 37176999 PMCID: PMC10180185 DOI: 10.3390/nano13091454] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Abstract
Nanotechnology has allowed for significant progress in architectural, artistic, archaeological, or museum heritage conservation for repairing and preventing damages produced by deterioration agents (weathering, contaminants, or biological actions). This review analyzes the current treatments using nanomaterials, including consolidants, biocides, hydrophobic protectives, mechanical resistance improvers, flame-retardants, and multifunctional nanocomposites. Unfortunately, nanomaterials can affect human and animal health, altering the environment. Right now, it is a priority to stop to analyze its advantages and disadvantages. Therefore, the aims are to raise awareness about the nanotoxicity risks during handling and the subsequent environmental exposure to all those directly or indirectly involved in conservation processes. It reports the human-body interaction mechanisms and provides guidelines for preventing or controlling its toxicity, mentioning the current toxicity research of main compounds and emphasizing the need to provide more information about morphological, structural, and specific features that ultimately contribute to understanding their toxicity. It provides information about the current documents of international organizations (European Commission, NIOSH, OECD, Countries Normative) about worker protection, isolation, laboratory ventilation control, and debris management. Furthermore, it reports the qualitative risk assessment methods, management strategies, dose control, and focus/receptor relationship, besides the latest trends of using nanomaterials in masks and gas emissions control devices, discussing their risk of toxicity.
Collapse
Affiliation(s)
- Luz Stella Gomez-Villalba
- Institute of Geosciences, Spanish National Research Council, Complutense University of Madrid (CSIC, UCM), Calle Dr. Severo Ochoa 7, Planta 4, 28040 Madrid, Spain
| | - Ciro Salcines
- Infrastructures Service, Health and Safety Unit, University of Cantabria, Pabellón de Gobierno, Avenida de los Castros 54, 39005 Santander, Spain
| | - Rafael Fort
- Institute of Geosciences, Spanish National Research Council, Complutense University of Madrid (CSIC, UCM), Calle Dr. Severo Ochoa 7, Planta 4, 28040 Madrid, Spain
| |
Collapse
|
50
|
Hanif S, Bilal M, Nasreen S, Latif M, Zia M. Indole-3-acetic acid (IAA) doping on the surface of CuO-NPs reduces the toxic effects of NPs on Lactuca sativa. J Biotechnol 2023; 367:53-61. [PMID: 36990354 DOI: 10.1016/j.jbiotec.2023.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/27/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
CuO Nanoparticles (CuO NPs) retard the plant growth but at appropriate concentration boosts shoot growth and therefore may function as nano-carrier or nano-fertilizer. To overcome the toxic effects, NPs can be capped with plant growth regulators. In this work, CuO-NPs (30 nm) were synthesized as the carrier and capped with indole-3-acetic acid (IAA) to generate CuO-IAA NPs (30.4 nm) as toxicity mitigant molecules. Seedlings of dicots, Lactuca sativa L. (Lettuce) were exposed to 5, 10 mg Kg-1/ of NPs in the soil to analyze shoot length, fresh and dry weight of shoots, phytochemicals, and antioxidant response. Toxicity to shoot length was recorded at higher concentrations of CuO-NPs, however, a reduction in toxicity was observed for CuO-IAA nanocomposite. Concentration-dependent decrease in the biomass of plants was also observed at higher concentrations of CuO-NPs (10 mg/kg). The antioxidative phytochemicals (phenolics and flavonoids) and antioxidative response increased in plants when exposed to CuO-NPs. However, the presence of CuO-IAA NPs combats the toxic response and a significant decrease in non-enzymatic antioxidants and total antioxidative response and total reducing power potential was observed. The results demonstrate that CuO-NPs can be used as a carrier of hormones for the enhancement of plant biomass and IAA on the surface of NPs reduces the toxic effects on NPs.
Collapse
Affiliation(s)
- Saad Hanif
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Bilal
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Syeda Nasreen
- Ibadat International University, Islamabad 44000, Pakistan
| | - Muhammad Latif
- Centre for Genetics and Inherited Diseases (CGID), Taibah University, Madinah, Saudi Arabia; Department of Biochemistry and Molecular Medicine, College of Medicine, Taibah University, Madinah, Saudi Arabia.
| | - Muhammad Zia
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|