1
|
Javed N, Paradkar PN, Bhatti A. An overview of technologies available to monitor behaviours of mosquitoes. Acta Trop 2024; 258:107347. [PMID: 39103110 DOI: 10.1016/j.actatropica.2024.107347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024]
Abstract
Mosquito-borne diseases such as malaria, dengue, Zika, and chikungunya cause significant morbidity and mortality globally, resulting in over 600,000 deaths from malaria and around 36,000 deaths from dengue each year, with millions of people infected annually, leading to substantial economic losses. The existing mosquito control measures, such as long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS), helped to reduce the infections. However, mosquito-borne diseases are still among the deadliest diseases, forcing us to improve the existing control methods and look for alternative methods simultaneously. Advanced monitoring techniques, including remote sensing, and geographic information systems (GIS) have significantly enhanced the efficiency and effectiveness of mosquito control measures. Mosquitoes' behavioural traits, such as locomotion, blood-feeding, and fertility are the key determinants of disease transmission and epidemiology. Technological advancements, such as high-resolution cameras, infrared imaging, and artificial intelligence (AI) driven object detection models, including groundbreaking convolutional neural networks, have provided efficient and precise options to monitor various mosquito behaviours, including locomotion, oviposition, fertility, and host-seeking. However, they are not commonly employed in mosquito-based research. This review highlights the novel and significant advancements in behaviour-monitoring tools, mostly from the last decade, due to cutting-edge video monitoring technology and artificial intelligence. These advancements can offer enhanced accuracy, efficiency, and the ability to quickly process large volumes of data, enabling detailed behavioural analysis over extended periods and large sample sizes, unlike traditional manual methods prone to human error and labour-intensive. The use of behaviour-assaying techniques can support or replace existing monitoring techniques and directly contribute to improving control measures by providing more accurate and real-time data on mosquito activity patterns and responses to interventions. This enhanced understanding can help establish the role of behavioural changes in improving epidemiological models, making them more precise and dynamic. As a result, mosquito management strategies can become more adaptive and responsive, leading to more effective and targeted interventions. Ultimately, this will reduce disease transmission and significantly improve public health outcomes.
Collapse
Affiliation(s)
- Nouman Javed
- Institute for Intelligent Systems Research and Innovation, Deakin University, Geelong, Victoria 3216 Australia.
| | - Prasad N Paradkar
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, Geelong, Victoria 3220 Australia
| | - Asim Bhatti
- Institute for Intelligent Systems Research and Innovation, Deakin University, Geelong, Victoria 3216 Australia
| |
Collapse
|
2
|
Saffer A, Worm T, Takeuchi Y, Meentemeyer R. GIATAR: a Spatio-temporal Dataset of Global Invasive and Alien Species and their Traits. Sci Data 2024; 11:991. [PMID: 39261508 PMCID: PMC11390876 DOI: 10.1038/s41597-024-03824-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 08/23/2024] [Indexed: 09/13/2024] Open
Abstract
Monitoring and managing the global spread of invasive and alien species requires accurate spatiotemporal records of species presence and information about the biological characteristics of species of interest including life cycle information, biotic and abiotic constraints and pathways of spread. The Global Invasive and Alien Traits And Records (GIATAR) dataset provides consolidated dated records of invasive and alien presence at the country-scale combined with a suite of biological information about pests of interest in a standardized, machine-readable format. We provide dated presence records for 46,666 alien taxa in 249 countries constituting 827,300 country-taxon pairs in locations where the taxon's invasive status is either alien, invasive, or unknown, joined with additional biological information for thousands of taxa. GIATAR is designed to be quickly updateable with future data and easy to integrate into ongoing research on global patterns of alien species movement using scripts provided to query and analyze data. GIATAR provides crucial data needed for researchers and policymakers to compare global invasion trends across a wide range of taxa.
Collapse
Affiliation(s)
- Ariel Saffer
- Center for Geospatial Analytics, North Carolina State University, Raleigh, North Carolina, USA.
| | - Thom Worm
- Center for Geospatial Analytics, North Carolina State University, Raleigh, North Carolina, USA.
| | - Yu Takeuchi
- Center for Geospatial Analytics, North Carolina State University, Raleigh, North Carolina, USA
| | - Ross Meentemeyer
- Center for Geospatial Analytics, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
3
|
Nakai M, Masumoto T, Asaeda T, Rahman M. Improving the efficiency of adaptive management methods in multiple fishways using environmental DNA. PLoS One 2024; 19:e0301197. [PMID: 38557776 PMCID: PMC10984549 DOI: 10.1371/journal.pone.0301197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
Dams and weirs impede the continuity of rivers and transit of migratory fish. To overcome this obstacle, fishways are installed worldwide; however, management after installation is important. The Miyanaka Intake Dam has three fish ladders with different flow velocities and discharges and has been under adaptive management since 2012. Fish catch surveys, conducted as an adaptive management strategy, place a heavy burden on fish. Furthermore, a large number of investigators must be mobilized during the 30-day investigation period. Thus, a monitoring method using environmental DNA that exerts no burden on fish and requires only a few surveyors (to obtain water samples) and an in-house analyst was devised; however, its implementation in a fishway away from the point of analysis and with limited flow space and its effective water sampling frequency have not been reported. Therefore, in 2019, we started a trial aiming to evaluate the methods and application conditions of environmental DNA surveys for the continuous and long-term monitoring of various fish fauna upstream and downstream of the Miyanaka Intake Dam. To evaluate the fish fauna, the results of an environmental DNA survey (metabarcoding method) for 2019 to 2022 were compared to those of a catch survey in the fishway from 2012 to 2022. The results confirmed the use of environmental DNA surveys in evaluating the contribution of fishways to biodiversity under certain conditions and introduced a novel method for sample collection.
Collapse
Affiliation(s)
- Masahiko Nakai
- Japan International Consultants for Transportation Co., Ltd, Tokyo, Japan
| | - Taku Masumoto
- Energy Planning Department, East Japan Railway Company, Tokyo, Japan
| | | | | |
Collapse
|
4
|
Guo W, Li S, Zhan A. eDNA-Based Early Detection Illustrates Rapid Spread of the Non-Native Golden Mussel Introduced into Beijing via Water Diversion. Animals (Basel) 2024; 14:399. [PMID: 38338056 PMCID: PMC10854655 DOI: 10.3390/ani14030399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
The world's largest water diversion, the South-to-North Water Transfer Project (SNWTP) in China, has created an "invasion highway" to introduce invasive golden mussels (Limnoperna fortunei) from the Yangtze River basin to Beijing. To examine the spread and colonization patterns of this newly introduced invasive species, we conducted comprehensive environmental DNA (eDNA)-based early detection and conventional field surveys across all water bodies in five river basins in Beijing from 2020 to 2023. Our results indicated a rapid spread over the past four years. Among the 130 tested sites, the number of sites with positive signals from eDNA analysis exhibited an annual increase: Commencing with four infested sites identified through field surveys in 2019, eDNA analysis detected an additional 13, 11, and 10 positive sites in 2020, 2021, and 2022, respectively, and a substantial rise comprising an additional 28 sites in 2023. Conventional field surveys detected mussels 1-3 years later than eDNA-based analysis at 16 sites. Across all 16 sites, we detected a low population density ranging from 1 to 30 individuals/m2. These findings collectively indicate that the invasions by golden mussels in Beijing are still in their early stages. To date, golden mussels have successfully colonized four out of the five investigated river basins, including the Jiyun River (22.2% positive sites), North Canal River (59.6% positive sites), Chaobai River (40% positive sites), and Yongding River (63.6% positive sites), with the North Canal River and Yongding River being the most heavily infested. Currently, only the Daqing River basin remains uninfested. Given the significant number of infested sites and the ongoing transport of large new propagules via SNWTP, further rapid spread and colonization are anticipated across aquatic ecosystems in Beijing and beyond. Consequently, we call for the proper implementation of effective management strategies, encompassing early detection, risk assessment, and the use of appropriate control measures to mitigate the potential ecological and economic damages in invaded ecosystems.
Collapse
Affiliation(s)
- Wei Guo
- Beijing Hydrology Center, Beijing 100089, China;
| | - Shiguo Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Pocock MJ, Adriaens T, Bertolino S, Eschen R, Essl F, Hulme PE, Jeschke JM, Roy HE, Teixeira H, de Groot M. Citizen science is a vital partnership for invasive alien species management and research. iScience 2024; 27:108623. [PMID: 38205243 PMCID: PMC10776933 DOI: 10.1016/j.isci.2023.108623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
Invasive alien species (IAS) adversely impact biodiversity, ecosystem functions, and socio-economics. Citizen science can be an effective tool for IAS surveillance, management, and research, providing large datasets over wide spatial extents and long time periods, with public participants generating knowledge that supports action. We demonstrate how citizen science has contributed knowledge across the biological invasion process, especially for early detection and distribution mapping. However, we recommend that citizen science could be used more for assessing impacts and evaluating the success of IAS management. Citizen science does have limitations, and we explore solutions to two key challenges: ensuring data accuracy and dealing with uneven spatial coverage of potential recorders (which limits the dataset's "fit for purpose"). Greater co-development of citizen science with public stakeholders will help us better realize its potential across the biological invasion process and across ecosystems globally while meeting the needs of participants, local communities, scientists, and decision-makers.
Collapse
Affiliation(s)
| | - Tim Adriaens
- Research Institute for Nature and Forest (INBO), Brussels, Belgium
| | - Sandro Bertolino
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | | | - Franz Essl
- Division of BioInvasions, Global Change & Macroecology, Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Philip E. Hulme
- Bioprotection Aotearoa, Department of Pest Management and Conservation, Lincoln University, PO Box 84850, Christchurch, Lincoln 7648, New Zealand
| | - Jonathan M. Jeschke
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Helen E. Roy
- UK Centre for Ecology & Hydrology, Wallingford, Oxfordshire, UK
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Penryn, United Kingdom
| | - Heliana Teixeira
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus de Santiago, Aveiro, Portugal
| | - Maarten de Groot
- Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
6
|
Baek JW, Kim JI, Kim CB. Deep learning-based image classification of turtles imported into Korea. Sci Rep 2023; 13:21677. [PMID: 38066049 PMCID: PMC10709346 DOI: 10.1038/s41598-023-49022-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/03/2023] [Indexed: 12/18/2023] Open
Abstract
Although turtles play a key role in maintaining healthy and balanced environments, these are endangered due to global trade to meet the high demand for food, medicine, and pets in Asia. In addition, imported non-native turtles have been controlled as alien invasive species in various countries, including Korea. Therefore, a rapid and accurate classification of imported turtles is needed to conserve and detect those in native ecosystems. In this study, eight Single Shot MultiBox Detector (SSD) models using different backbone networks were used to classify 36 imported turtles in Korea. The images of these species were collected from Google and were identified using morphological features. Then, these were divided into 70% for training, 15% for validation, and 15% for test sets. In addition, data augmentation was applied to the training set to prevent overfitting. Among the eight models, the Resnet18 model showed the highest mean Average Precision (mAP) at 88.1% and the fastest inference time at 0.024 s. The average correct classification rate of 36 turtles in this model was 82.8%. The results of this study could help in management of the turtle trade, specifically in improving detection of alien invasive species in the wild.
Collapse
Affiliation(s)
- Jong-Won Baek
- Department of Biotechnology, Sangmyung University, Seoul, 03016, Korea
| | - Jung-Il Kim
- Department of Biotechnology, Sangmyung University, Seoul, 03016, Korea
| | - Chang-Bae Kim
- Department of Biotechnology, Sangmyung University, Seoul, 03016, Korea.
| |
Collapse
|
7
|
Takaya K, Taguchi Y, Ise T. Identification of hybrids between the Japanese giant salamander ( Andrias japonicus) and Chinese giant salamander ( Andrias cf. davidianus) using deep learning and smartphone images. Ecol Evol 2023; 13:e10698. [PMID: 37953985 PMCID: PMC10632944 DOI: 10.1002/ece3.10698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/13/2023] [Accepted: 10/20/2023] [Indexed: 11/14/2023] Open
Abstract
Human-mediated hybridization between native and non-native species is causing biodiversity loss worldwide. Hybridization has contributed to the extinction of many species through direct and indirect processes such as loss of reproductive opportunity and genetic introgression. Therefore, it is essential to manage hybrids to conserve biodiversity. However, specialized knowledge is required to identify the target species based on visual characteristics when two species have similar features. Although image recognition technology can be a powerful tool for identifying hybrids, studies have yet to utilize deep learning approaches. Hence, this study aimed to identify hybrids between the native Japanese giant salamander (Andrias japonicus) and the non-native Chinese giant salamander (Andrias cf. davidianus) using EfficientNetV2 and smartphone images. We used smartphone images of 11 individuals of native A. japonicus (five training and six test images) and 20 individuals of hybrids between A. japonicus and A. cf. davidianus (five training and 15 test images). In our experimental environment, an AI model constructed with EfficientNetV2 exhibited 100% accuracy in identifying hybrids. In addition, gradient-weighted class activation mapping revealed that the AI model was able to classify A. japonicus and hybrids between A. japonicus and A. cf. davidianus on the basis of the dorsal head spot patterning. Our approach thus enables the identification of hybrids against A. japonicus, which was previously considered difficult by non-experts. Furthermore, since this study achieved reliable identification using smartphone images, it is expected to be applied to a wide range of citizen science projects.
Collapse
Affiliation(s)
- Kosuke Takaya
- Graduate School of AgricultureKyoto UniversityKyotoJapan
| | - Yuki Taguchi
- Hiroshima City Asa Zoological ParkHiroshimaJapan
| | - Takeshi Ise
- Field Science Education and Research CenterKyoto UniversityKyotoJapan
| |
Collapse
|
8
|
Sepulveda AJ, Dumoulin CE, Blanchette DL, McPhedran J, Holme C, Whalen N, Hunter ME, Merkes CM, Richter CA, Neilson ME, Daniel WM, Jones DN, Smith DR. When are environmental DNA early detections of invasive species actionable? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 343:118216. [PMID: 37247541 DOI: 10.1016/j.jenvman.2023.118216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/19/2023] [Accepted: 05/19/2023] [Indexed: 05/31/2023]
Abstract
Environmental DNA (eDNA) sampling provides sensitive early detection capabilities for recently introduced taxa. However, natural resource managers struggle with how to integrate eDNA results into an early detection rapid response program because positive eDNA detections are not always indicative of an eventual infestation. We used a structured decision making (SDM) framework to evaluate appropriate response actions to hypothetical eDNA early detections of an introduced aquatic plant in Sebago Lake (Maine, USA). The results were juxtaposed to a recent study that used a similar SDM approach to evaluate response actions to hypothetical eDNA early detections of introduced mussels in Jordanelle Reservoir (Utah, USA). We found that eDNA early detections were not actionable in Sebago Lake because the plant's invasion potential was spatially constrained and the current management activities provided acceptable levels of mitigation. In Jordanelle Reservoir, eDNA detections were actionable due to high invasion potential and analyses supported management actions to contain the invasion. The divergent outcomes of the two case studies are related to the unique attributes of the habitats and species, highlighting the utility of the SDM approach when considering an eDNA monitoring program. We use these two case studies to present a general SDM framework and a set of heuristics that can be efficiently applied to eDNA early detection rapid response scenarios and other instances associated with indeterminant eDNA detections, especially when there is an imperative to make decisions as quickly as possible.
Collapse
Affiliation(s)
- Adam J Sepulveda
- U.S. Geological Survey Northern Rocky Mountain Science Center, Bozeman, MT, 59715, USA.
| | - Christine E Dumoulin
- U.S. Geological Survey, Eastern Ecological Science Center, Leetown, WV, 25430, USA
| | | | - John McPhedran
- Maine Department of Environmental Protection, Augusta, ME, 04333, USA
| | - Colin Holme
- Lakes Environmental Association, Bridgton, ME, 04009, USA
| | | | - Margaret E Hunter
- U.S. Geological Survey, Wetland and Aquatic Research Center, Gainesville, FL, 32653, USA
| | - Christopher M Merkes
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI, 54603, USA
| | - Catherine A Richter
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, 65201, USA
| | - Matthew E Neilson
- U.S. Geological Survey, Wetland and Aquatic Research Center, Gainesville, FL, 32653, USA
| | - Wesley M Daniel
- U.S. Geological Survey, Wetland and Aquatic Research Center, Gainesville, FL, 32653, USA
| | - Devin N Jones
- U.S. Geological Survey Northern Rocky Mountain Science Center, Bozeman, MT, 59715, USA
| | - David R Smith
- U.S. Geological Survey, Eastern Ecological Science Center, Leetown, WV, 25430, USA
| |
Collapse
|
9
|
Crivellaro MS, Candido DV, Silveira TCL, Fonseca AC, Segal B. A tool for a race against time: Dispersal simulations to support ongoing monitoring program of the invasive coral Tubastraea coccinea. MARINE POLLUTION BULLETIN 2022; 185:114354. [PMID: 36401946 DOI: 10.1016/j.marpolbul.2022.114354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Preventing, detecting, and monitoring invasive marine species is a big challenge as it is not possible to visualize all invasion extensions. Their early detection may be the best chance to achieve eradication. The Indo-pacific scleractinian coral Tubastraea coccinea invasion in the Atlantic dates from the late 1930s. Since then, disruptive populations were found along ~8.000 km of west Atlantic, and in the Canarian Islands of Spain (east Atlantic), related to vessel fouling in the oil and gas industry. Their impacts have been noticed from endemic species to ecosystems. In Brazil, initiatives to control Tubastraea spp. have been done mostly by local environmental managers and researchers, but recently a National Plan for Prevention, Control and Monitoring (NPPCM) for Tubastraea spp. was approved. We applied an Individual-based Model within the invasion history of Tubastraea coccinea in its southern distribution limit in the Atlantic, on the rocky shore of the Arvoredo Biological Marine Reserve. We indicated hotspots for the occurrence of possible emerging invasion sites in the region and expect to support ongoing monitoring programs in defining priority areas for their early detection. The model is easily replicated and might be a valuable tool for decision makers.
Collapse
Affiliation(s)
- Marcelo Schuler Crivellaro
- Programa de Pós-graduação em Ecologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | - Davi Volney Candido
- Programa de Pós-graduação em Ecologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Thiago Cesar Lima Silveira
- Programa de Pós-graduação em Ecologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | - Bárbara Segal
- Programa de Pós-graduação em Ecologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
10
|
Javaid M, Khan S, Haleem A, Rab S. Adoption of modern technologies for implementing industry 4.0: an integrated MCDM approach. BENCHMARKING-AN INTERNATIONAL JOURNAL 2022. [DOI: 10.1108/bij-01-2021-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
PurposeModern technologies are seen as an essential component of the fourth industrial revolution (industry 4.0) and their adoption is vital to transform the existing manufacturing system into industry 4.0-based manufacturing system. Therefore, the primary objective of this research explores the barriers of modern technology adoption and their mitigating solutions in order to align with Industry 4.0 objectives.Design/methodology/approachBarriers to adopting modern technologies and respective mitigating solutions are identified from the available literature. Further, these barriers are ranked with the help of expert opinions by using the BWM method appropriately. The identified solutions are ranked using the combined compromise solution (CoCoSo) method.FindingsSeveral modern technologies and their capabilities are recognised to support the industry 4.0-based manufacturing systems. This study identifies 22 barriers to the effective adoption of modern technologies in manufacturing and 14 solutions to overcome these barriers. Change management, the high initial cost of technology and appropriate support infrastructure are the most significant barriers. The most prominent solutions to overcome the most considerable barriers are ‘supportive research, development and commercialisation environment’, ‘updated policy and effective implementation’ and ‘capacity building through training’ that are the top three solutions that need to be addressed.Research limitations/implicationsThe barriers and solutions of modern technology adoption are obtained through a comprehensive literature review, so there is a chance to ignore some significant barriers and their solutions. Furthermore, ranking barriers and solutions is done with expert opinion, which is not free from biases.Practical implicationsThis identification and prioritisation of barriers will help managers to understand the barriers so they can better prepare themselves. Furthermore, the suggested solutions to overcome these barriers are helpful for the managers and could be strategically adopted through optimal resource utilisation.Originality/valueThis study proposes a framework to identify and analyse the significant barriers and solutions to adopting modern technologies in the manufacturing system. It might be helpful for manufacturing organisations that are willing to transform their manufacturing system into industry 4.0.
Collapse
|
11
|
Latombe G, Seebens H, Lenzner B, Courchamp F, Dullinger S, Golivets M, Kühn I, Leung B, Roura-Pascual N, Cebrian E, Dawson W, Diagne C, Jeschke JM, Pérez-Granados C, Moser D, Turbelin A, Visconti P, Essl F. Capacity of countries to reduce biological invasions. SUSTAINABILITY SCIENCE 2022; 18:771-789. [PMID: 37012996 PMCID: PMC10063504 DOI: 10.1007/s11625-022-01166-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/25/2022] [Indexed: 06/19/2023]
Abstract
UNLABELLED The extent and impacts of biological invasions on biodiversity are largely shaped by an array of socio-economic and environmental factors, which exhibit high variation among countries. Yet, a global analysis of how these factors vary across countries is currently lacking. Here, we investigate how five broad, country-specific socio-economic and environmental indices (Governance, Trade, Environmental Performance, Lifestyle and Education, Innovation) explain country-level (1) established alien species (EAS) richness of eight taxonomic groups, and (2) proactive or reactive capacity to prevent and manage biological invasions and their impacts. These indices underpin many aspects of the invasion process, including the introduction, establishment, spread and management of alien species. They are also general enough to enable a global comparison across countries, and are therefore essential for defining future scenarios for biological invasions. Models including Trade, Governance, Lifestyle and Education, or a combination of these, best explained EAS richness across taxonomic groups and national proactive or reactive capacity. Historical (1996 or averaged over 1996-2015) levels of Governance and Trade better explained both EAS richness and the capacity of countries to manage invasions than more recent (2015) levels, revealing a historical legacy with important implications for the future of biological invasions. Using Governance and Trade to define a two-dimensional socio-economic space in which the position of a country captures its capacity to address issues of biological invasions, we identified four main clusters of countries in 2015. Most countries had an increase in Trade over the past 25 years, but trajectories were more geographically heterogeneous for Governance. Declines in levels of Governance are concerning as they may be responsible for larger levels of invasions in the future. By identifying the factors influencing EAS richness and the regions most susceptible to changes in these factors, our results provide novel insights to integrate biological invasions into scenarios of biodiversity change to better inform decision-making for policy and the management of biological invasions. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11625-022-01166-3.
Collapse
Affiliation(s)
- Guillaume Latombe
- BioInvasions, Global Change, Macroecology-Group, Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria
- Institute of Ecology and Evolution, The University of Edinburgh, King’s Buildings, Edinburgh, EH9 3FL UK
| | - Hanno Seebens
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Bernd Lenzner
- BioInvasions, Global Change, Macroecology-Group, Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Franck Courchamp
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91405 Orsay, France
| | - Stefan Dullinger
- BioInvasions, Global Change, Macroecology-Group, Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Marina Golivets
- Helmholtz Centre for Environmental Research-UFZ, Theodor-Lieser-Str. 4, 06120 Halle, Germany
| | - Ingolf Kühn
- Helmholtz Centre for Environmental Research-UFZ, Theodor-Lieser-Str. 4, 06120 Halle, Germany
- Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Brian Leung
- Department of Biology, McGill University, Montreal, QC H3A 1B1 Canada
| | - Núria Roura-Pascual
- Departament de Ciències Ambientals, Facultat de Ciències, Universitat de Girona, 17003 Girona, Catalonia Spain
| | - Emma Cebrian
- Centre d’Estudis Avançats de Blanes-CSIC, 17003 Girona, Spain
- GRMAR, Institute of Aquatic Ecology, University of Girona, 17003 Girona, Spain
| | - Wayne Dawson
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE UK
| | - Christophe Diagne
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91405 Orsay, France
- CBGP, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Jonathan M. Jeschke
- Institute of Biology, Freie Universität Berlin, 14195 Berlin, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 12587 Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany
| | - Cristian Pérez-Granados
- Centre d’Estudis Avançats de Blanes-CSIC, 17003 Girona, Spain
- Ecology Department, Universidad de Alicante, 03080 Alicante, Spain
| | - Dietmar Moser
- BioInvasions, Global Change, Macroecology-Group, Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Anna Turbelin
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91405 Orsay, France
| | - Piero Visconti
- Biodiversity, Ecology and Conservation Group, International Institute for Applied System Analyses, 2361 Laxenburg, Austria
| | - Franz Essl
- BioInvasions, Global Change, Macroecology-Group, Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| |
Collapse
|
12
|
Butterwort V, Dansby H, Zink FA, Tembrock LR, Gilligan TM, Godoy A, Braswell WE, Kawahara AY. A DNA Extraction Method for Insects From Sticky Traps: Targeting a Low Abundance Pest, Phthorimaea absoluta (Lepidoptera: Gelechiidae), in Mixed Species Communities. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:844-851. [PMID: 35391487 DOI: 10.1093/jee/toac046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Invasive insects can cause catastrophic damage to ecosystems and cost billions of dollars each year due to management expenses and lost revenue. Rapid detection is an important step to prevent invasive insects from spreading, but improvements in detection capabilities are needed for bulk collections like those from sticky traps. Here we present a bulk DNA extraction method designed for the detection of Phthorimaea absoluta Meyrick (Lepidoptera: Gelechiidae), an invasive moth that can decimate tomato crops. We test the extraction method for insect specimens on sticky traps, subjected to different temperature and humidity conditions, and among mock insect communities left in the field for up to 21 d. We find that the extraction method yielded high success (>92%) in recovering target DNA across field and lab trials, without a decline in recovery after three weeks, across all treatments. These results may have a large impact on tomato growing regions where P. absoluta is in the early stages of invasion or not yet present. The extraction method can also be used to improve detection capabilities for other bulk insect collections, especially those using sticky traps, to the benefit of pest surveys and biodiversity studies.
Collapse
Affiliation(s)
- V Butterwort
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32511, USA
| | - H Dansby
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32511, USA
| | - F A Zink
- Department of Agricultural Biology, 1177 Campus Delivery, Colorado State University, Fort Collins, CO 80523, USA
| | - L R Tembrock
- Department of Agricultural Biology, 1177 Campus Delivery, Colorado State University, Fort Collins, CO 80523, USA
| | - T M Gilligan
- USDA-APHIS-PPQ-Science & Technology, Identification Technology Program, 2301 Research Boulevard, Suite 108, Fort Collins, CO 80526, USA
| | - A Godoy
- USDA-APHIS-PPQ-Science & Technology, Insect Management and Molecular Diagnostics Laboratory, 22675 N. Moorfield Road, Building 6414, Edinburg, TX 78541, USA
| | - W E Braswell
- USDA-APHIS-PPQ-Science & Technology, Insect Management and Molecular Diagnostics Laboratory, 22675 N. Moorfield Road, Building 6414, Edinburg, TX 78541, USA
| | - A Y Kawahara
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32511, USA
| |
Collapse
|
13
|
van Rees CB, Hand BK, Carter SC, Bargeron C, Cline TJ, Daniel W, Ferrante JA, Gaddis K, Hunter ME, Jarnevich CS, McGeoch MA, Morisette JT, Neilson ME, Roy HE, Rozance MA, Sepulveda A, Wallace RD, Whited D, Wilcox T, Kimball JS, Luikart G. A framework to integrate innovations in invasion science for proactive management. Biol Rev Camb Philos Soc 2022; 97:1712-1735. [PMID: 35451197 DOI: 10.1111/brv.12859] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/26/2022]
Abstract
Invasive alien species (IAS) are a rising threat to biodiversity, national security, and regional economies, with impacts in the hundreds of billions of U.S. dollars annually. Proactive or predictive approaches guided by scientific knowledge are essential to keeping pace with growing impacts of invasions under climate change. Although the rapid development of diverse technologies and approaches has produced tools with the potential to greatly accelerate invasion research and management, innovation has far outpaced implementation and coordination. Technological and methodological syntheses are urgently needed to close the growing implementation gap and facilitate interdisciplinary collaboration and synergy among evolving disciplines. A broad review is necessary to demonstrate the utility and relevance of work in diverse fields to generate actionable science for the ongoing invasion crisis. Here, we review such advances in relevant fields including remote sensing, epidemiology, big data analytics, environmental DNA (eDNA) sampling, genomics, and others, and present a generalized framework for distilling existing and emerging data into products for proactive IAS research and management. This integrated workflow provides a pathway for scientists and practitioners in diverse disciplines to contribute to applied invasion biology in a coordinated, synergistic, and scalable manner.
Collapse
Affiliation(s)
- Charles B van Rees
- Flathead Lake Biological Station, University of Montana, 32125 Bio Station Lane, Polson, MT, 59860, U.S.A
| | - Brian K Hand
- Flathead Lake Biological Station, University of Montana, 32125 Bio Station Lane, Polson, MT, 59860, U.S.A
| | - Sean C Carter
- Numerical Terradynamic Simulation Group, University of Montana, ISB 415, Missoula, MT, 59812, U.S.A
| | - Chuck Bargeron
- Center for Invasive Species and Ecosystem Health, University of Georgia, 4601 Research Way, Tifton, GA, 31793, U.S.A
| | - Timothy J Cline
- U.S. Geological Survey, Northern Rocky Mountain Science Center, 2327 University Way STE 2, Bozeman MT 59717 & 320 Grinnel Drive, West Glacier, MT, 59936, U.S.A
| | - Wesley Daniel
- U.S. Geological Survey, Wetland and Aquatic Research Center, 7920 NW 71st Street, Gainesville, FL, 32653, U.S.A
| | - Jason A Ferrante
- U.S. Geological Survey, Wetland and Aquatic Research Center, 7920 NW 71st Street, Gainesville, FL, 32653, U.S.A
| | - Keith Gaddis
- NASA Biological Diversity and Ecological Forecasting Programs, 300 E St. SW, Washington, DC, 20546, U.S.A
| | - Margaret E Hunter
- U.S. Geological Survey, Wetland and Aquatic Research Center, 7920 NW 71st Street, Gainesville, FL, 32653, U.S.A
| | - Catherine S Jarnevich
- U.S. Geological Survey, Fort Collins Science Center, 2150 Centre Avenue Bldg C, Fort Collins, CO, 80526, U.S.A
| | - Melodie A McGeoch
- Department of Environment and Genetics, La Trobe University, Plenty Road & Kingsbury Drive, Bundoora, Victoria, 3086, Australia
| | - Jeffrey T Morisette
- U.S. Forest Service Rocky Mountain Research Station, 26 Fort Missoula Road, Missoula, 59804, MT, U.S.A
| | - Matthew E Neilson
- U.S. Geological Survey, Wetland and Aquatic Research Center, 7920 NW 71st Street, Gainesville, FL, 32653, U.S.A
| | - Helen E Roy
- UK Centre for Ecology & Hydrology, MacLean Building, Benson Lane, Crowmarsh Gifford, OX10 8BB, U.K
| | - Mary Ann Rozance
- Northwest Climate Adaptation Science Center, University of Washington, Box 355674, Seattle, WA, 98195, U.S.A
| | - Adam Sepulveda
- U.S. Forest Service Rocky Mountain Research Station, 26 Fort Missoula Road, Missoula, 59804, MT, U.S.A
| | - Rebekah D Wallace
- Center for Invasive Species and Ecosystem Health, University of Georgia, 4601 Research Way, Tifton, GA, 31793, U.S.A
| | - Diane Whited
- Flathead Lake Biological Station, University of Montana, 32125 Bio Station Lane, Polson, MT, 59860, U.S.A
| | - Taylor Wilcox
- U.S. Forest Service Rocky Mountain Research Station, 26 Fort Missoula Road, Missoula, 59804, MT, U.S.A
| | - John S Kimball
- Numerical Terradynamic Simulation Group, University of Montana, ISB 415, Missoula, MT, 59812, U.S.A
| | - Gordon Luikart
- Flathead Lake Biological Station, University of Montana, 32125 Bio Station Lane, Polson, MT, 59860, U.S.A
| |
Collapse
|
14
|
Rapid in situ identification of biological specimens via DNA amplicon sequencing using miniaturized laboratory equipment. Nat Protoc 2022; 17:1415-1443. [DOI: 10.1038/s41596-022-00682-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 01/04/2022] [Indexed: 12/24/2022]
|
15
|
Bernos TA, Jeffries KM, Mandrak NE. Aquatic invasive species specialists’ perceptions on the importance of genetic tools and concepts to inform management. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02758-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
16
|
Howard L, van Rees CB, Dahlquist Z, Luikart G, Hand BK. A review of invasive species reporting apps for citizen science and opportunities for innovation. NEOBIOTA 2022. [DOI: 10.3897/neobiota.71.79597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Smartphone apps have enhanced the potential for monitoring of invasive alien species (IAS) through citizen science. They now have the capacity to massively increase the volume and spatiotemporal coverage of IAS occurrence data accrued in centralised databases. While more reporting apps are developed each year, innovation across diverse functionalities and data management in this field are occurring separately and simultaneously amongst numerous research groups with little attention to trends, priorities and opportunities for improvement. This creates the risk of duplication of effort and missed opportunities for implementing new and existing functionalities that would directly benefit IAS research and management. Using a literature search of Early Detection and Rapid Response implementation, smartphone app development and invasive species reporting apps, we developed a rubric for quantitatively assessing the functionality of IAS reporting apps and applied this rubric to 41 free, English-language IAS reporting apps, available via major mobile app stores in North America. The five highest performing apps achieved scores of 61.90% to 66.35% relative to a hypothetical maximum score, indicating that many app features and functionalities, acknowledged to be useful for IAS reporting in literature, are not present in sampled apps. This suggests that current IAS reporting apps do not make use of all available and known functionalities that could maximise their efficacy. Major implementation gaps, highlighted by this rubric analysis, included limited implementation in user engagement (particularly gamification elements and social media compatibility), ancillary information on search effort, detection method, the ability to report absences and local habitat characteristics. The greatest advancement in IAS early detection would likely result from app gamification. This would make IAS reporting more engaging for a growing community of non-professional contributors and encourage frequent and prolonged participation. We discuss these implementation gaps in relation to the increasingly urgent need for Early Detection and Rapid Response frameworks. We also recommend future innovations in IAS reporting app development to help slow the spread of IAS and curb the global economic and biodiversity extinction crises. We also suggest that further funding and investment in this and other implementation gaps could greatly increase the efficacy of current IAS reporting apps and increase their contributions to addressing the contemporary biological invasion threat.
Collapse
|
17
|
Utilizing environmental DNA for wide-range distributions of reproductive area of an invasive terrestrial toad in Ishikari river basin in Japan. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02709-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractUnderstanding the distribution of invasive species and their reproductive area is crucial for their managements after invasion. While catch and observation surveys are still embraced, environmental DNA (eDNA) has been increasingly utilized as an efficient tool for identifying these species in the wild. In this study, we developed a Bufo-specific eDNA assay for detecting an invasive, toxic, and terrestrial toad species Bufo japonicus formosus in Hokkaido, Japan, and applied it to their reproductive area at watershed scale. The eDNA assay was field-validated in ponds where B. japonicus were observed, as well as in rivers downstream of the reproductive ponds. Thus, the assay provided us an opportunity to screen watersheds that include their reproductive area by collecting downstream water samples. Applying it to the Ishikari river basin, the largest river basin in Hokkaido (c.a., 14,330 km2), we detected toad eDNA at 32 out of 73 sampling sites. They are composed of eleven sites with species observation records nearby (all the sites with observation records within a 500 m radius) and 21 sites without such records. And those eDNA detections were from twelve out of 31 river systems in the entire river basin. A Bayesian, multiscale occupancy model supported high eDNA detectability among those sites. These results suggest that the eDNA assay can efficiently estimate the presence of reproductive area of the terrestrial toad even from a distant downstream of the watershed, and that it provides a powerful means of detecting new reproductive area and monitoring further spread of invasive species.
Collapse
|
18
|
Characteristics and Evolution of China’s Industry–University–Research Collaboration to Promote the Sustainable Development: Based on Policy Text Analysis. SUSTAINABILITY 2021. [DOI: 10.3390/su132313105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Collaborative innovation is an effective way to realize national innovation and sustainable development. The Chinese government has issued a series of Industry–University–Research (IUR) policies and regulations in recent decades to effectively promote the development of national scientific and technological innovation. Exploring the characteristics and evolution of IUR collaborative policy is critical for the healthy development of IUR and subsequent policy formulation. In this study, we collected IUR policy texts at the national level of China from 1992 to 2020 as the research object. On the basis of policy tool theory, a three-dimensional analysis framework of “Policy tool–Policy theme–Evolution stage” was constructed and studied using content analysis and social network analysis methods. Through the quantitative statistical analysis, we find that China’s IUR policies have experienced four development stages. Among all policy tools, the supply-side IUR ones are sufficient, whereas demand-side policy tools are insufficient. The service system policy theme is lacking relative to other themes. In addition, the application of information technology (IT) policies is prominent. Therefore, we suggest optimizing the policy structure in combination with social characteristics and strengthening the establishment of service system innovation. Enhancing the role of IT to promote innovation policies is also recommended.
Collapse
|
19
|
Carter S, van Rees CB, Hand BK, Muhlfeld CC, Luikart G, Kimball JS. Testing a Generalizable Machine Learning Workflow for Aquatic Invasive Species on Rainbow Trout ( Oncorhynchus mykiss) in Northwest Montana. Front Big Data 2021; 4:734990. [PMID: 34734177 PMCID: PMC8558495 DOI: 10.3389/fdata.2021.734990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/17/2021] [Indexed: 11/13/2022] Open
Abstract
Biological invasions are accelerating worldwide, causing major ecological and economic impacts in aquatic ecosystems. The urgent decision-making needs of invasive species managers can be better met by the integration of biodiversity big data with large-domain models and data-driven products. Remotely sensed data products can be combined with existing invasive species occurrence data via machine learning models to provide the proactive spatial risk analysis necessary for implementing coordinated and agile management paradigms across large scales. We present a workflow that generates rapid spatial risk assessments on aquatic invasive species using occurrence data, spatially explicit environmental data, and an ensemble approach to species distribution modeling using five machine learning algorithms. For proof of concept and validation, we tested this workflow using extensive spatial and temporal hybridization and occurrence data from a well-studied, ongoing, and climate-driven species invasion in the upper Flathead River system in northwestern Montana, USA. Rainbow Trout (RBT; Oncorhynchus mykiss), an introduced species in the Flathead River basin, compete and readily hybridize with native Westslope Cutthroat Trout (WCT; O. clarkii lewisii), and the spread of RBT individuals and their alleles has been tracked for decades. We used remotely sensed and other geospatial data as key environmental predictors for projecting resultant habitat suitability to geographic space. The ensemble modeling technique yielded high accuracy predictions relative to 30-fold cross-validated datasets (87% 30-fold cross-validated accuracy score). Both top predictors and model performance relative to these predictors matched current understanding of the drivers of RBT invasion and habitat suitability, indicating that temperature is a major factor influencing the spread of invasive RBT and hybridization with native WCT. The congruence between more time-consuming modeling approaches and our rapid machine-learning approach suggest that this workflow could be applied more broadly to provide data-driven management information for early detection of potential invaders.
Collapse
Affiliation(s)
- S Carter
- Numerical Terradynamic Simulation Group, WA Franke College of Forestry and Conservation, University of Montana, Missoula, MT, United States
| | - C B van Rees
- Flathead Lake Biological Station, Division of Biological Sciences, University of Montana, Polson, MT, United States
| | - B K Hand
- Flathead Lake Biological Station, Division of Biological Sciences, University of Montana, Polson, MT, United States
| | - C C Muhlfeld
- Flathead Lake Biological Station, Division of Biological Sciences, University of Montana, Polson, MT, United States.,U.S. Geological Survey, Northern Rocky Mountain Science Center, Glacier National Park, West Glacier, MT, United States.,Department of Ecosystem and Conservation Sciences, WA Franke College of Forestry and Conservation, University of Montana, Missoula, MT, United States
| | - G Luikart
- Flathead Lake Biological Station, Division of Biological Sciences, University of Montana, Polson, MT, United States
| | - J S Kimball
- Numerical Terradynamic Simulation Group, WA Franke College of Forestry and Conservation, University of Montana, Missoula, MT, United States.,Department of Ecosystem and Conservation Sciences, WA Franke College of Forestry and Conservation, University of Montana, Missoula, MT, United States
| |
Collapse
|
20
|
Castro KL, Battini N, Giachetti CB, Trovant B, Abelando M, Basso NG, Schwindt E. Early detection of marine invasive species following the deployment of an artificial reef: Integrating tools to assist the decision-making process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113333. [PMID: 34329910 DOI: 10.1016/j.jenvman.2021.113333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/18/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Early detection and rapid response plans are a set of principles to reduce the establishment, spread and impact of invasive species and it is a critical step in management in marine ecosystems. Two potentially invasive ascidians attached to the hull of a recently sunk fishing vessel were early detected in Patagonia. With the aim of assisting in the management decision-making process during the early steps of a rapid response, we conducted several analyses through different approaches. First, we identified the species through classic taxonomical and genetic analyses. Then, we evaluated the regional and international shipping connectivity to study potential donor regions and finally, we used species distribution models (SDMs) to predict the potential distribution of these species. The potentially invasive ascidians were identified as Styela clava and Styela plicata, and this is the first record for both species in the Nuevo gulf, Patagonia Argentina. Both species have a widespread distribution around the world with strong ecological and economic impacts documented. Shipping traffic analysis suggested that S. plicata could have arrived by secondary spread from regional ports, while the arrival of S. clava was likely to be associated with international shipping traffic. Furthermore, the SDM predicted that S. clava has suitable coastal areas along the entire Southwestern Atlantic shoreline, where it is currently absent. On the contrary, the SDM predicted that further southward spread of S. plicata is unlikely, being limited by the minimum annual temperature. We discussed the different approaches, tools, and expertise integrated in this work in the light of the decision-making process for the early detection of marine invasive species in the Southwestern Atlantic. Moreover, we call attention to the increased creation of artificial habitats through the intentional sinking of ships and the potential consequences of these actions in the conservation of marine ecosystems.
Collapse
Affiliation(s)
- Karen Lidia Castro
- Grupo de Ecología en Ambientes Costeros (GEAC), Argentina; Instituto de Biología de Organismos Marinos (IBIOMAR-CONICET), Blvd. Brown 2915, Puerto Madryn, Chubut, Argentina; Centro Regional Universitario Bariloche, Universidad Nacional Del Comahue (CRUB, UNCo), Quintral 1250, San Carlos de Bariloche, Río Negro, Argentina.
| | - Nicolás Battini
- Grupo de Ecología en Ambientes Costeros (GEAC), Argentina; Instituto de Biología de Organismos Marinos (IBIOMAR-CONICET), Blvd. Brown 2915, Puerto Madryn, Chubut, Argentina
| | - Clara Belen Giachetti
- Grupo de Ecología en Ambientes Costeros (GEAC), Argentina; Instituto de Biología de Organismos Marinos (IBIOMAR-CONICET), Blvd. Brown 2915, Puerto Madryn, Chubut, Argentina
| | - Berenice Trovant
- Instituto de Diversidad y Evolución Austral (IDEAus-CONICET), Blvd. Brown 2915, Puerto Madryn, Chubut, Argentina; Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), 9 de Julio 25, Trelew, Chubut, Argentina
| | - Mariana Abelando
- Dirección de Protección Ambiental, Prefectura Naval Argentina, Av. E. Madero 235, Ciudad Autónoma de Buenos Aires, Argentina; Instituto Universitario de Seguridad Marítima, Prefectura Naval Argentina, Av. Corrientes 345, Ciudad Autónoma de Buenos Aires, Argentina
| | - Néstor Guillermo Basso
- Instituto de Diversidad y Evolución Austral (IDEAus-CONICET), Blvd. Brown 2915, Puerto Madryn, Chubut, Argentina
| | - Evangelina Schwindt
- Grupo de Ecología en Ambientes Costeros (GEAC), Argentina; Instituto de Biología de Organismos Marinos (IBIOMAR-CONICET), Blvd. Brown 2915, Puerto Madryn, Chubut, Argentina
| |
Collapse
|
21
|
Burgess BT, Irvine RL, Howald GR, Russello MA. The Promise of Genetics and Genomics for Improving Invasive Mammal Management on Islands. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.704809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Invasive species are major contributors to global biodiversity decline. Invasive mammalian species (IMS), in particular, have profound negative effects in island systems that contain disproportionally high levels of species richness and endemism. The eradication and control of IMS have become important conservation tools for managing species invasions on islands, yet these management operations are often subject to failure due to knowledge gaps surrounding species- and system-specific characteristics, including invasion pathways and contemporary migration patterns. Here, we synthesize the literature on ways in which genetic and genomic tools have effectively informed IMS management on islands, specifically associated with the development and modification of biosecurity protocols, and the design and implementation of eradication and control programs. In spite of their demonstrated utility, we then explore the challenges that are preventing genetics and genomics from being implemented more frequently in IMS management operations from both academic and non-academic perspectives, and suggest possible solutions for breaking down these barriers. Finally, we discuss the potential application of genome editing to the future management of invasive species on islands, including the current state of the field and why islands may be effective targets for this emerging technology.
Collapse
|
22
|
Wróbel A, Klichowska E, Baiakhmetov E, Nowak A, Nobis M. Invasion of Eragrostis albensis in Central Europe: distribution patterns, taxonomy and phylogenetic insight into the Eragrostis pilosa complex. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02507-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractThe Eragrostis pilosa complex (Poaceae) comprises five widely distributed and regionally invasive species—E. albensis, E. amurensis, E. imberbis, E. multicaulis, and E. pilosa, distinguished by tiny and variable morphological characters and with so far unknown phylogenetic relationships. Recently, some doubts have been raised about the status of an invasive glandular morphotype occurring in Central Europe assigned either to E. amurensis or to E. albensis. Here, we addressed this issue by analysing morphology, internal transcribed spacers of nuclear ribosomal DNA, and five inter-simple sequence repeat markers. The genetic evidence supported closer relationship of this glandular morphotype to eglandular E. albensis, widely established in Central Europe, than to glandular E. amurensis described from Asia. We propose to adopt a new taxonomic treatment that E. albensis includes both eglandular and glandular individuals, and to classify the glandular ones as E. albensis var. scholziana M. Nobis & A. Wróbel var. nova. Currently this new taxon is known from a dozen of localities in Central Europe and is invasive in the lower section of the Oder River valley, whereas Eragrostis albensis var. albensis has already spread widely across Europe in riparian phytocenoses and anthropogenic habitats. Since probably the first registered records in 1940s, it has been observed in European part of Russia, Belarus, Ukraine, Poland, Slovakia, Czech Republic, Germany, Austria, the Netherlands, and its further invasion is likely to proceed. We provided distribution maps concerning spread dynamics of E. albensis in Europe from 1947 to 2020. In total, the species has been observed on over 1300 localities so far, most of which were found after 2000.
Collapse
|
23
|
Development and Validation of a Loop-Mediated Isothermal Amplification Diagnostic Method to Detect the Quarantine Potato Pale Cyst Nematode, Globodera pallida. Pathogens 2021; 10:pathogens10060744. [PMID: 34204749 PMCID: PMC8231653 DOI: 10.3390/pathogens10060744] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022] Open
Abstract
The potato cyst nematode (PCN) Globodera pallida has acquired significant importance throughout Europe due to its nefarious effects on potato production. Rapid and reliable diagnosis of PCN is critical during the surveillance programs and for the implementation of control measures. Molecular DNA-based methods are available, but they require expensive laboratory facilities, equipment and trained technicians. Moreover, there is an additional need of time for sample shipment and testing. In this work, we have developed a new and simple assay which reliably discriminates G. pallida from other cyst nematodes in less than 40 min. This assay may be applied either on cysts or juveniles with the ability to detect a single juvenile of G. pallida in a sample of at least 40 juveniles of the non-target species G. rostochiensis. This test should be a tool to improve the performance of the laboratory and has the potential to be performed on-site.
Collapse
|
24
|
|
25
|
Outreach increases detections of an invasive species in a crowdsourced monitoring program. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02526-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Invasive plants in Brazil: climate change effects and detection of suitable areas within conservation units. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02460-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Tang F, Aldridge DC. Using osmotic shock to control invasive aquatic species. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 279:111604. [PMID: 33168295 DOI: 10.1016/j.jenvman.2020.111604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/26/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
Coastal estuaries are especially vulnerable to the arrival and establishment of invasive aquatic species (IAS) as they are often the receiving locations of ship-based introductions. Rapid response tools, such as mechanical or chemical treatments to capture, remove, and contain of IAS, are needed to prevent subsequent spread into adjacent marine and freshwater systems. Abrupt salinity change, created when infrastructure in estuaries situated at the proximity of river mouths is operated, offers a novel, low-cost and environmentally friendly method for potentially controlling IAS. We investigated the use of osmotic shock to control the invasive brackish water clam Rangia cuneata that is quickly spreading through Europe. Clams were exposed in the laboratory to eight salinity concentrations ranging from 0.5 to 32.0‰ and monitored for 60 days. Saline shock, but not freshwater shock, could control R. cuneata. Salinities >26‰ killed 95% R. cuneata in two weeks. All specimens exposed to full strength seawater (32‰) were killed within 30 days. At lower salinities, clams collected from the most freshwater locality (1.2‰) showed lower mortality than clams from the most saline site (3.1‰). Furthermore, even modest increases in salinity during spawning periods of R. cuneata may prevent recruitment. Given the vulnerability of coastal estuaries to introduction of IAS, saline flushing presents a novel and effective management tool for many species.
Collapse
Affiliation(s)
- Feng Tang
- Department of Zoology, University of Cambridge, The David Attenborough Building, Pembroke Street, Cambridge, CB2 3QY, United Kingdom.
| | - David C Aldridge
- Department of Zoology, University of Cambridge, The David Attenborough Building, Pembroke Street, Cambridge, CB2 3QY, United Kingdom; BioRISC, St. Catharine's College, Cambridge, CB2 1RL, UK
| |
Collapse
|
28
|
Goddard MA, Davies ZG, Guenat S, Ferguson MJ, Fisher JC, Akanni A, Ahjokoski T, Anderson PML, Angeoletto F, Antoniou C, Bates AJ, Barkwith A, Berland A, Bouch CJ, Rega-Brodsky CC, Byrne LB, Cameron D, Canavan R, Chapman T, Connop S, Crossland S, Dade MC, Dawson DA, Dobbs C, Downs CT, Ellis EC, Escobedo FJ, Gobster P, Gulsrud NM, Guneralp B, Hahs AK, Hale JD, Hassall C, Hedblom M, Hochuli DF, Inkinen T, Ioja IC, Kendal D, Knowland T, Kowarik I, Langdale SJ, Lerman SB, MacGregor-Fors I, Manning P, Massini P, McLean S, Mkwambisi DD, Ossola A, Luque GP, Pérez-Urrestarazu L, Perini K, Perry G, Pett TJ, Plummer KE, Radji RA, Roll U, Potts SG, Rumble H, Sadler JP, de Saille S, Sautter S, Scott CE, Shwartz A, Smith T, Snep RPH, Soulsbury CD, Stanley MC, Van de Voorde T, Venn SJ, Warren PH, Washbourne CL, Whitling M, Williams NSG, Yang J, Yeshitela K, Yocom KP, Dallimer M. A global horizon scan of the future impacts of robotics and autonomous systems on urban ecosystems. Nat Ecol Evol 2021; 5:219-230. [PMID: 33398104 DOI: 10.1038/s41559-020-01358-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 10/22/2020] [Indexed: 12/31/2022]
Abstract
Technology is transforming societies worldwide. A major innovation is the emergence of robotics and autonomous systems (RAS), which have the potential to revolutionize cities for both people and nature. Nonetheless, the opportunities and challenges associated with RAS for urban ecosystems have yet to be considered systematically. Here, we report the findings of an online horizon scan involving 170 expert participants from 35 countries. We conclude that RAS are likely to transform land use, transport systems and human-nature interactions. The prioritized opportunities were primarily centred on the deployment of RAS for the monitoring and management of biodiversity and ecosystems. Fewer challenges were prioritized. Those that were emphasized concerns surrounding waste from unrecovered RAS, and the quality and interpretation of RAS-collected data. Although the future impacts of RAS for urban ecosystems are difficult to predict, examining potentially important developments early is essential if we are to avoid detrimental consequences but fully realize the benefits.
Collapse
Affiliation(s)
- Mark A Goddard
- Sustainability Research Institute, School of Earth and Environment, University of Leeds, Leeds, UK
- Department of Geography and Environmental Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Zoe G Davies
- Durrell Institute of Conservation and Ecology (DICE), School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Solène Guenat
- Sustainability Research Institute, School of Earth and Environment, University of Leeds, Leeds, UK
| | - Mark J Ferguson
- European Centre for Environment and Human Health, University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Truro, UK
| | - Jessica C Fisher
- Durrell Institute of Conservation and Ecology (DICE), School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | | | | | - Pippin M L Anderson
- Department of Environmental and Geographical Science, University of Cape Town, Cape Town, South Africa
| | | | - Constantinos Antoniou
- Department of Civil, Geo and Environmental Engineering, Technical University of Munich, Munich, Germany
| | - Adam J Bates
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottingham, UK
| | - Andrew Barkwith
- British Geological Survey, Environmental Science Centre, Keyworth, Nottingham, UK
| | - Adam Berland
- Department of Geography, Ball State University, Muncie, IN, USA
| | | | | | - Loren B Byrne
- Department of Biology, Marine Biology and Environmental Science, Roger Williams University, Bristol, RI, USA
| | - David Cameron
- Information School, University of Sheffield, Sheffield, UK
| | | | | | - Stuart Connop
- Sustainability Research Institute, University of East London, London, UK
| | | | - Marie C Dade
- Department of Geography, McGill University, Montreal, Québec, Canada
| | - David A Dawson
- School of Civil Engineering, University of Leeds, Leeds, UK
| | - Cynnamon Dobbs
- Facultad de Ciencias, Centro de Modelación y Monitoreo de Ecosistemas, Universidad Mayor, Santiago, Chile
| | - Colleen T Downs
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Erle C Ellis
- Geography and Environmental Systems, University of Maryland, Baltimore County, MD, USA
| | | | - Paul Gobster
- US Forest Service Northern Research Station, Madison, WI, USA
| | - Natalie Marie Gulsrud
- Department of Geosciences and Natural Resource Management, Section of Landscape Architecture and Planning, University of Copenhagen, Copenhagen, Denmark
| | - Burak Guneralp
- Department of Geography, Texas A&M University, College Station, TX, USA
| | - Amy K Hahs
- School of Ecosystem and Forest Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - James D Hale
- Division of Conservation Biology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Christopher Hassall
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Marcus Hedblom
- Department of Urban and Rural Development, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Dieter F Hochuli
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Tommi Inkinen
- Brahea Centre, Centre for Maritime Studies, University of Turku, Turku, Finland
| | - Ioan-Cristian Ioja
- Center for Environmental Research and Impact Studies, University of Bucharest, Bucharest, Romania
| | - Dave Kendal
- School of Technology, Environments and Design, University of Tasmania, Hobart, Tasmania, Australia
| | | | - Ingo Kowarik
- Institute of Plant Ecology, Technische Universität Berlin, Berlin, Germany
| | | | | | - Ian MacGregor-Fors
- Red de Ambiente y Sustentabilidad, Instituto de Ecología, A.C. (INECOL), Veracruz, Mexico
| | - Peter Manning
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany
| | | | - Stacey McLean
- The Wildlife Land Fund, Highgate Hill, Queensland, Australia
| | - David D Mkwambisi
- MUST Institute for Industrial Research and Innovation, Malawi University of Science and Technology, Blantyre, Malawi
| | - Alessandro Ossola
- Department of Plant Science, University of California, Davis, Davis, CA, USA
| | - Gabriel Pérez Luque
- Department of Computer Science and Industrial Engineering, University of Lleida, Lleida, Spain
| | - Luis Pérez-Urrestarazu
- Urban Greening and Biosystems Engineering Research Group, Universidad de Sevilla, Seville, Spain
| | - Katia Perini
- Architecture and Design Department, University of Genoa, Genoa, Italy
| | - Gad Perry
- Department of Natural Resource Management, Texas Tech University, Lubbock, TX, USA
| | - Tristan J Pett
- Durrell Institute of Conservation and Ecology (DICE), School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | | | - Raoufou A Radji
- Laboratory of Forestry Research (LRF), University of Lomé, Lomé, Togo
| | - Uri Roll
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Simon G Potts
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - Heather Rumble
- School of the Environment, Geography and Geosciences, University of Portsmouth, Portsmouth, UK
| | - Jon P Sadler
- School of Geography, Earth and Environmental Sciences (GEES), University of Birmingham, Birmingham, UK
| | - Stevienna de Saille
- Institute for the Study of the Human (iHuman), Department of Sociological Studies, University of Sheffield, Sheffield, UK
| | | | - Catherine E Scott
- Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, UK
| | - Assaf Shwartz
- Human and Biodiversity Research Lab, Faculty of Architecture and Town Planning, Technion - Israel Institute of Technology, Haifa, Israel
| | | | - Robbert P H Snep
- Wageningen Environmental Research, Wageningen University, Wageningen, The Netherlands
| | | | - Margaret C Stanley
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | - Stephen J Venn
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Philip H Warren
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Carla-Leanne Washbourne
- Department of Science, Technology, Engineering and Public Policy, University College London, London, UK
| | | | | | - Jun Yang
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China
| | - Kumelachew Yeshitela
- Ecosystem Planning and Management, Ethiopian Institute of Architecture, Building Construction and City Development (EiABC), Addis Ababa University, Addis Ababa, Ethiopia
| | - Ken P Yocom
- Department of Landscape Architecture, University of Washington, Seattle, WA, USA
| | - Martin Dallimer
- Sustainability Research Institute, School of Earth and Environment, University of Leeds, Leeds, UK.
| |
Collapse
|
29
|
Simberloff D. Maintenance management and eradication of established aquatic invaders. HYDROBIOLOGIA 2021; 848:2399-2420. [PMID: 32836349 PMCID: PMC7407435 DOI: 10.1007/s10750-020-04352-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/01/2020] [Accepted: 07/08/2020] [Indexed: 05/04/2023]
Abstract
Although freshwater invasions have not been targeted for maintenance management or eradication as often as terrestrial invasions have, attempts to do so are frequent. Failures as well as successes abound, but several methods have been improved and new approaches are on the horizon. Many freshwater fish and plant invaders have been eliminated, especially by chemical and physical methods for fishes and herbicides for plants. Efforts to maintain invasive freshwater fishes at low levels have sometimes succeeded, although continuing the effort has proven challenging. By contrast, successful maintenance management of invasive freshwater plants is uncommon, although populations of several species have been managed by biological control. Invasive crayfish populations have rarely been controlled for long. Marine invasions have proven far less tractable than those in fresh water, with a few striking eradications of species detected before they had spread widely, and no marine invasions have been substantially managed for long at low levels. The rapid development of technologies based on genetics has engendered excitement about possibly eradicating or controlling terrestrial invaders, and such technologies may also prove useful for certain aquatic invaders. Methods of particular interest, alone or in various combinations, are gene-silencing, RNA-guided gene drives, and the use of transgenes.
Collapse
Affiliation(s)
- Daniel Simberloff
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996 USA
| |
Collapse
|
30
|
Transgenic cotton and sterile insect releases synergize eradication of pink bollworm a century after it invaded the United States. Proc Natl Acad Sci U S A 2020; 118:2019115118. [PMID: 33443170 DOI: 10.1073/pnas.2019115118] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Invasive organisms pose a global threat and are exceptionally difficult to eradicate after they become abundant in their new habitats. We report a successful multitactic strategy for combating the pink bollworm (Pectinophora gossypiella), one of the world's most invasive pests. A coordinated program in the southwestern United States and northern Mexico included releases of billions of sterile pink bollworm moths from airplanes and planting of cotton engineered to produce insecticidal proteins from the bacterium Bacillus thuringiensis (Bt). An analysis of computer simulations and 21 y of field data from Arizona demonstrate that the transgenic Bt cotton and sterile insect releases interacted synergistically to reduce the pest's population size. In Arizona, the program started in 2006 and decreased the pest's estimated statewide population size from over 2 billion in 2005 to zero in 2013. Complementary regional efforts eradicated this pest throughout the cotton-growing areas of the continental United States and northern Mexico a century after it had invaded both countries. The removal of this pest saved farmers in the United States $192 million from 2014 to 2019. It also eliminated the environmental and safety hazards associated with insecticide sprays that had previously targeted the pink bollworm and facilitated an 82% reduction in insecticides used against all cotton pests in Arizona. The economic and social benefits achieved demonstrate the advantages of using agricultural biotechnology in concert with classical pest control tactics.
Collapse
|
31
|
Integrating across knowledge systems to drive action on chronic biological invasions. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02388-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Early warning systems in biosecurity; translating risk into action in predictive systems for invasive alien species. Emerg Top Life Sci 2020; 4:453-462. [DOI: 10.1042/etls20200056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 11/17/2022]
Abstract
Invasive alien species (IAS) are one of the most severe threats to biodiversity and are the subject of varying degrees of surveillance activity. Predictive early warning systems (EWS), incorporating automated surveillance of relevant dataflows, warning generation and dissemination to decision makers are a key target for developing effective management around IAS, alongside more conventional early detection and horizon scanning technologies. Sophisticated modelling frameworks including the definition of the ‘risky’ species pool, and pathway analysis at the macro and micro-scale are increasingly available to support decision making and to help prioritise risks from different regions and/or taxa. The main challenges in constructing such frameworks, to be applied to border inspections, are (i) the lack of standardisation and integration of the associated complex digital data environments and (ii) effective integration into the decision making process, ensuring that risk information is disseminated in an actionable way to frontline surveillance staff and other decision makers. To truly achieve early warning in biosecurity requires close collaboration between developers and end-users to ensure that generated warnings are duly considered by decision makers, reflect best practice, scientific understanding and the working environment facing frontline actors. Progress towards this goal will rely on openness and mutual understanding of the role of EWS in IAS risk management, as much as on developments in the underlying technologies for surveillance and modelling procedures.
Collapse
|
33
|
Pyšek P, Hulme PE, Simberloff D, Bacher S, Blackburn TM, Carlton JT, Dawson W, Essl F, Foxcroft LC, Genovesi P, Jeschke JM, Kühn I, Liebhold AM, Mandrak NE, Meyerson LA, Pauchard A, Pergl J, Roy HE, Seebens H, van Kleunen M, Vilà M, Wingfield MJ, Richardson DM. Scientists' warning on invasive alien species. Biol Rev Camb Philos Soc 2020; 95:1511-1534. [PMID: 32588508 PMCID: PMC7687187 DOI: 10.1111/brv.12627] [Citation(s) in RCA: 521] [Impact Index Per Article: 104.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 05/30/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022]
Abstract
Biological invasions are a global consequence of an increasingly connected world and the rise in human population size. The numbers of invasive alien species – the subset of alien species that spread widely in areas where they are not native, affecting the environment or human livelihoods – are increasing. Synergies with other global changes are exacerbating current invasions and facilitating new ones, thereby escalating the extent and impacts of invaders. Invasions have complex and often immense long‐term direct and indirect impacts. In many cases, such impacts become apparent or problematic only when invaders are well established and have large ranges. Invasive alien species break down biogeographic realms, affect native species richness and abundance, increase the risk of native species extinction, affect the genetic composition of native populations, change native animal behaviour, alter phylogenetic diversity across communities, and modify trophic networks. Many invasive alien species also change ecosystem functioning and the delivery of ecosystem services by altering nutrient and contaminant cycling, hydrology, habitat structure, and disturbance regimes. These biodiversity and ecosystem impacts are accelerating and will increase further in the future. Scientific evidence has identified policy strategies to reduce future invasions, but these strategies are often insufficiently implemented. For some nations, notably Australia and New Zealand, biosecurity has become a national priority. There have been long‐term successes, such as eradication of rats and cats on increasingly large islands and biological control of weeds across continental areas. However, in many countries, invasions receive little attention. Improved international cooperation is crucial to reduce the impacts of invasive alien species on biodiversity, ecosystem services, and human livelihoods. Countries can strengthen their biosecurity regulations to implement and enforce more effective management strategies that should also address other global changes that interact with invasions.
Collapse
Affiliation(s)
- Petr Pyšek
- Czech Academy of Sciences, Institute of Botany, Department of Invasion Ecology, Průhonice, CZ-252 43, Czech Republic.,Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague, CZ-128 44, Czech Republic.,Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Matieland, 7602, South Africa
| | - Philip E Hulme
- Bio-Protection Research Centre, Lincoln University, Canterbury, New Zealand
| | - Dan Simberloff
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, U.S.A
| | - Sven Bacher
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Tim M Blackburn
- Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Matieland, 7602, South Africa.,Centre for Biodiversity and Environment Research, Department of Genetics, Evolution, and Environment, University College London, London, WC1E 6BT, U.K.,Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, U.K
| | - James T Carlton
- Maritime Studies Program, Williams College - Mystic Seaport, 75 Greenmanville, Mystic, CT, 06355, U.S.A
| | - Wayne Dawson
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, U.K
| | - Franz Essl
- Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Matieland, 7602, South Africa.,Division of Conservation Biology, Vegetation and Landscape Ecology, Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Llewellyn C Foxcroft
- Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Matieland, 7602, South Africa.,Conservation Services, South African National Parks, Private Bag X402, Skukuza, 1350, South Africa
| | - Piero Genovesi
- Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Matieland, 7602, South Africa.,ISPRA, Institute for Environmental Protection and Research and Chair IUCN SSC Invasive Species Specialist Group, Rome, Italy
| | - Jonathan M Jeschke
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, Berlin, 12587, Germany.,Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, Berlin, 14195, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Königin-Luise-Str. 2-4, Berlin, 14195, Germany
| | - Ingolf Kühn
- Department Community Ecology, Helmholtz Centre for Environmental Research - UFZ, Theodor-Lieser-Str. 4, Halle, 06120, Germany.,Geobotany & Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, Halle, 06108, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany
| | - Andrew M Liebhold
- US Forest Service Northern Research Station, 180 Canfield St., Morgantown, West Virginia, U.S.A.,Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, CZ-165 00, Czech Republic
| | - Nicholas E Mandrak
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Laura A Meyerson
- Department of Natural Resources Science, The University of Rhode Island, Kingston, Rhode Island, 02881, U.S.A
| | - Aníbal Pauchard
- Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, Chile.,Institute of Ecology and Biodiversity, Santiago, Chile
| | - Jan Pergl
- Czech Academy of Sciences, Institute of Botany, Department of Invasion Ecology, Průhonice, CZ-252 43, Czech Republic
| | - Helen E Roy
- U.K. Centre for Ecology & Hydrology, Wallingford, OX10 8BB, U.K
| | - Hanno Seebens
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, Frankfurt am Main, 60325, Germany
| | - Mark van Kleunen
- Ecology, Department of Biology, University of Konstanz, Universitätsstrasse 10, Constance, 78457, Germany.,Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China
| | - Montserrat Vilà
- Estación Biológica de Doñana (EBD-CSIC), Avd. Américo Vespucio 26, Isla de la Cartuja, Sevilla, 41092, Spain.,Department of Plant Biology and Ecology, University of Sevilla, Sevilla, Spain
| | - Michael J Wingfield
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - David M Richardson
- Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Matieland, 7602, South Africa
| |
Collapse
|
34
|
Putting a federal capacities assessment to work: blueprint for a national program for the early detection of and rapid response to invasive species (EDRR). Biol Invasions 2019. [DOI: 10.1007/s10530-019-02177-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
AbstractThis paper responds to national policy directives intended to improve the US government’s capacity to protect national security from the adverse impacts of invasive species. It is the final, synthesizing contribution to a Special Issue of Biological Invasions comprising 12 papers that collectively inform the development and implementation of a national program for the early detection of and rapid response to invasive species (EDRR). The blueprint sets forth policies, goals, and actions to be taken by relevant Executive Branch agencies and components of the Executive Office of the President to develop a national EDRR program, appropriations permitting. It is designed to function as guidance for advancing federal policy through Presidential, Secretarial, and/or Congressional directives. Those committed to protecting national security, the economy, and the well-being of American people are forewarned that our ability to establish a national EDRR program is undermined by the diminishment of the federal workforce; institutional structures, policies, and programs; and directly applicable leadership mechanisms, including the National Invasive Species Council, Invasive Species Advisory Committee, and their managerial Secretariat.
Collapse
|
35
|
Federal legal authorities: guidance for application to the early detection of and rapid response to invasive species. Biol Invasions 2019. [DOI: 10.1007/s10530-019-02149-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
AbstractFederal agency programs and associated actions are contingent on having the legal authority to act. There is no single authority established to direct the early detection of and rapid response to invasive species (EDRR). Rather, a patchwork of authorities unevenly addresses various aspects of the suite of EDRR measures. To support the development of national EDRR capacity, it is essential to delineate the federal legal statutes, regulations, and policies that enable or limit invasive species EDRR. Here we set forth general principles and a checklist of actions that agencies can refer to when they construct a more comprehensive EDRR legal and policy framework for addressing invasive species. This guidance is intended to complement the review and analysis of federal authorities contained elsewhere in this issue (Burgos-Rodríguez and Burgiel in Biol Invasions. 10.1007/s10530-019-02148-w, 2019, this issue).
Collapse
|
36
|
Burgos-Rodríguez J, Burgiel SW. Federal legal authorities for the early detection of and rapid response to invasive species. Biol Invasions 2019. [DOI: 10.1007/s10530-019-02148-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AbstractThe ability of federal agencies to carry out actions or programs is based on their legal authorities. Efforts to improve federal capacities for the early detection of and rapid response to invasive species (EDRR) require careful delineation of legal authorities, regulations, and policies that would enable or limit EDRR. Building on information provided by federal agencies and an inspection of the US Code and the Code of Federal Regulations, we review and identify relevant authorities to determine federal legal capacities, gaps, and inconsistencies to address EDRR. The EDRR process can be examined in the context of four categories, including (1) explicit invasive species authorities, (2) emergency authorities that could be triggered during a crisis or serve as models for enhanced invasive species EDRR authorities, (3) supporting authorities that could be used under agency discretion, and (4) constraining authorities and legal requirements. Although the Plant Protection Act and the Animal Health Protection Act are comprehensive authorities that address the detection of and response to organisms that threaten plant and livestock health, there is no single authority that encompasses EDRR for all invasive species. Rather, there is a patchwork of authorities that unevenly addresses various aspects of EDRR. In addition to gaps in authority, EDRR efforts could be constrained by environmental compliance, as well as subnational governance and private rights. Although some of these gaps could be closed through legislation, others need to be addressed using the discretionary power of federal agencies and their ability to establish cooperation mechanisms with private and subnational entities.
Collapse
|
37
|
Capacity of United States federal government and its partners to rapidly and accurately report the identity (taxonomy) of non-native organisms intercepted in early detection programs. Biol Invasions 2019. [DOI: 10.1007/s10530-019-02147-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AbstractThe early detection of and rapid response to invasive species (EDRR) depends on accurate and rapid identification of non-native species. The 2016–2018 National Invasive Species Council Management Plan called for an assessment of US government (federal) capacity to report on the identity of non-native organisms intercepted through early detection programs. This paper serves as the response to that action item. Here we summarize survey-based findings and make recommendations for improving the federal government’s capacity to identify non-native species authoritatively in a timely manner. We conclude with recommendations to improve accurate identification within the context of EDRR by increasing coordination, maintaining taxonomic expertise, creating an identification tools clearinghouse, developing and using taxonomic standards for naming and identification protocols, expanding the content of DNA and DNA Barcode libraries, ensuring long-term sustainability of biological collections, and engaging and empowering citizens and citizen science groups.
Collapse
|
38
|
Reaser JK, Burgiel SW, Kirkey J, Brantley KA, Veatch SD, Burgos-Rodríguez J. The early detection of and rapid response (EDRR) to invasive species: a conceptual framework and federal capacities assessment. Biol Invasions 2019. [DOI: 10.1007/s10530-019-02156-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
AbstractGlobalization necessitates that we address the negative externalities of international trade and transport, including biological invasion. The US government defines invasive species to mean, “with regard to a particular ecosystem, a non-native organism whose introduction causes, or is likely to cause, economic or environmental harm, or harm to human, animal, or plant health.” Here we address the role of early detection of and rapid response to invasive species (EDRR) in minimizing the impact of invasive species on US interests. We provide a review of EDRR’s usage as a federal policy and planning term, introduce a new conceptual framework for EDRR, and assess US federal capacities for enacting well-coordinated EDRR. Developing a national EDRR program is a worthwhile goal; our assessment nonetheless indicates that the federal government and its partners need to overcome substantial conceptual, institutional, and operational challenges that include establishing clear and consistent terminology use, strategically identifying and communicating agency functions, improving interagency budgeting, facilitating the application of emerging technologies and other resources to support EDRR, and making information relevant to EDRR preparedness and implementation more readily accessible. This paper is the first in a special issue of Biological Invasions that includes 12 complementary papers intended to inform the development and implementation of a national EDRR program.
Collapse
|
39
|
Marshall Meyers N, Reaser JK, Hoff MH. Instituting a national early detection and rapid response program: needs for building federal risk screening capacity. Biol Invasions 2019. [DOI: 10.1007/s10530-019-02144-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AbstractThe invasive species issue is inherently a matter of risk; what is the risk that an invasive species will adversely impact valued assets? The early detection of and rapid response to invasive species (EDRR) requires that an assessment of risk is conducted as rapidly as possible. We define risk screening as rapid characterization of the types and degree of risks posed by a population of non-native species in a particular spatio-temporal context. Risk screening is used to evaluate the degree to which various response measures are warranted and justifiable. In this paper, we evaluate the US government’s risk screening programs with a view towards advancing national EDRR capacity. Our survey-based findings, consistent with prior analyses, indicate that risk evaluation by federal agencies has largely been a reactive, ad hoc process, and there is a need to improve information sharing, risk evaluation tools, and staff capacity for risk screening. We provide an overview of the US Department of Agriculture’s Tiered Weed Risk Evaluation and US Fish and Wildlife Service’s Ecological Risk Screening Summaries, two relatively new approaches to invasive species risk screening that hold promise as the basis for future work. We emphasize the need for a clearinghouse of risk evaluation protocols, tools, completed assessments and associated information; development of performance metrics and standardized protocols for risk screening; as well as support for complementary, science-based tools to facilitate and validate risk screening.
Collapse
|
40
|
Reaser JK, Simpson A, Guala GF, Morisette JT, Fuller P. Envisioning a national invasive species information framework. Biol Invasions 2019. [DOI: 10.1007/s10530-019-02141-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
AbstractWith a view toward creating a national Early Detection and Rapid Response Program (EDRR) program, the United States National Invasive Species Council Management Plan for 2016–2018 calls for a series of assessments of federal EDRR capacities, including the evaluation of “relevant federal information systems to provide the data and other information necessary for risk analyses/horizon scanning, rapid specimen identification, and rapid response planning.” This paper is a response to that directive. We provide an overview of information management needs for enacting EDRR and discuss challenges to meeting these needs. We then review the history of relevant US policy directives for advancing invasive species information systems and provide an overview of federal invasive species information system capacities, including current gaps and inconsistencies. We conclude with a summary of key principles and needs for establishing a national invasive species information framework. Our findings are consistent with earlier studies and, thus, emphasize the need to act on long-recognized needs. As a supplement to this paper, we have cataloged federal invasive species databases and information tools identified through this work.
Collapse
|
41
|
Right place. Right time. Right tool: guidance for using target analysis to increase the likelihood of invasive species detection. Biol Invasions 2019. [DOI: 10.1007/s10530-019-02145-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
AbstractIn response to the National Invasive Species Council’s 2016–2018 Management Plan, this paper provides guidance on applying target analysis as part of a comprehensive framework for the early detection of and rapid response to invasive species (EDRR). Target analysis is a strategic approach for detecting one or more invasive species at a specific locality and time, using a particular method and/or technology(ies). Target analyses, which are employed across a wide range of disciplines, are intended to increase the likelihood of detection of a known target in order to maximize survey effectiveness and cost-efficiency. Although target analyses are not yet a standard approach to invasive species management, some federal agencies are employing target analyses in principle and/or in part to improve EDRR capacities. These initiatives can provide a foundation for a more standardized and comprehensive approach to target analyses. Guidance is provided for improving computational information. Federal agencies and their partners would benefit from a concerted effort to collect the information necessary to perform rigorous target analyses and make it available through open access platforms.
Collapse
|