1
|
Zhou R, Wang H, Zhang J, Chen Z, Jin P, Hu T, Bian Q, Lin X, Zhao X, Xie Z. Composted maize straw under fungi inoculation reduces soil N 2O emissions and mitigates the microbial N limitation in a wheat upland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175728. [PMID: 39181269 DOI: 10.1016/j.scitotenv.2024.175728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Enhancement of microbial assimilation of inorganic nitrogen (N) by straw addition is believed to be an effective pathway to improve farmland N cycling. However, the effectiveness of differently pretreated straws on soil N2O emissions and soil N-acquiring enzyme activities remains unclear. In this study, a pot experiment with four treatments (I, no addition, CK; II, respective addition of maize straw, S; III, composted maize straw under no fungi inoculation, SC; and IV, composted maize straw under fungi inoculation, SCPA) at the same quantity of carbon (C) input was conducted under the same amount of inorganic N fertilization. Results showed that the seasonal cumulative N2O emissions following the SCPA treatment were the lowest at 4.03 kg N ha-1, representing a significant reduction of 19 % compared with the CK treatment. The S and SC treatments had no significant effects on N2O emissions. The decrease of soil N2O emissions following the SCPA treatment was mainly attributed to the increase of microbial N assimilation and the increased abundance of functional genes related to N2O reductase. The SCPA treatment significantly decreased soil alkaline phosphatase (ALP) activity and increased leucine aminopeptidase (LAP) activity at the basal fertilization, while increased soil ALP and LAP activity, decreased soil N-Acetyl-β-D-Glucosidase (NAG) activity at harvest. Compared with the CK treatment, the S, SC, and SCPA treatment significantly increased soil β-glucosidase (β-GC) activity at harvest. The decrease in the (NAG+LAP)/ALP ratio following the SCPA treatment indicated that the composted maize straw under fungi inoculation alleviated microbial N limitation at harvest. Moreover, PICRUSt analysis also suggested that the SCPA treatment increased the abundance of bacterial genes associated with N assimilation and N2O reduction, whereas the S and SC treatment did not significantly affect the abundance of N2O reduction genes compared with the CK treatment. Our results suggest that the composted maize straw under fungi inoculation would reduce the risk of N2O emissions and effectively mitigate the microbial N limitation in dryland wheat system.
Collapse
Affiliation(s)
- Rong Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingru Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhe Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Penghui Jin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianlong Hu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Bian
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingwu Lin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xueqiang Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zubin Xie
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
2
|
Yu H, Xiao H, Deng H, Frew A, Hossain MA, Tan W, Xi B. Upgrade from aerated static pile to agitated bed systems promotes lignocellulose degradation in large-scale composting through enhanced microbial functional diversity. J Environ Sci (China) 2024; 144:55-66. [PMID: 38802238 DOI: 10.1016/j.jes.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 05/29/2024]
Abstract
Composting presents a viable management solution for lignocellulose-rich municipal solid waste. However, our understanding about the microbial metabolic mechanisms involved in the biodegradation of lignocellulose, particularly in industrial-scale composting plants, remains limited. This study employed metaproteomics to compare the impact of upgrading from aerated static pile (ASP) to agitated bed (AB) systems on physicochemical parameters, lignocellulose biodegradation, and microbial metabolic pathways during large-scale biowaste composting process, marking the first investigation of its kind. The degradation rates of lignocellulose including cellulose, hemicellulose, and lignin were significantly higher in AB (8.21%-32.54%, 10.21%-39.41%, and 6.21%-26.78%) than those (5.72%-23.15%, 7.01%-33.26%, and 4.79%-19.76%) in ASP at three thermal stages, respectively. The AB system in comparison to ASP increased the carbohydrate-active enzymes (CAZymes) abundance and production of the three essential enzymes required for lignocellulose decomposition involving a mixture of bacteria and fungi (i.e., Actinobacteria, Bacilli, Sordariomycetes and Eurotiomycetes). Conversely, ASP primarily produced exoglucanase and β-glucosidase via fungi (i.e., Ascomycota). Moreover, AB effectively mitigated microbial stress caused by acetic acid accumulation by regulating the key enzymes involved in acetate conversion, including acetyl-coenzyme A synthetase and acetate kinase. Overall, the AB upgraded from ASP facilitated the lignocellulose degradation and fostered more diverse functional microbial communities in large-scale composting. Our findings offer a valuable scientific basis to guide the engineering feasibility and environmental sustainability for large-scale industrial composting plants for treating lignocellulose-rich waste. These findings have important implications for establishing green sustainable development models (e.g., a circular economy based on material recovery) and for achieving sustainable development goals.
Collapse
Affiliation(s)
- Hanxia Yu
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China; Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Haoyan Xiao
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China; Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Huiyu Deng
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Adam Frew
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Md Akhter Hossain
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
3
|
Al-Saidi SMK, Al-Kharousi ZSN, Rahman MS, Sivakumar N, Suleria HAR, Ashokkumar M, Hussain M, Al-Habsi N. Thermal and structural characteristics of date-pits as digested by Trichoderma reesei. Heliyon 2024; 10:e28313. [PMID: 38560674 PMCID: PMC10979217 DOI: 10.1016/j.heliyon.2024.e28313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
The objective of this study was to develop functional date-pits by mold digestion for the potential use in food products. Whole date-pits (WDP) and defatted date-pits (DDP) were digested by mold Trichoderma reesei at 20 °C. T. reesei consumed date-pits as nutrients for their growth, and DDP showed higher growth of molds as compared to the WDP. The mold digested WDP and DDP samples showed an increased water solubility and hygroscopicity as compared to the samples prepared by autoclaved. This indicated that the mold digestion transformed date-pits to hydrophilic characteristics. Thermal analysis indicated a structural change at -3.2 °C for the untreated WDP and it was followed by a glass transition shift (i.e. onset: 138 °C and a specific heat change: 295 J/kg oC), and an endothermic peak at 196 °C with enthalpy of 68 J/g for the solids melting-decomposition. Similar characteristics were also observed for treated samples with the two glass transitions. The total specific heat changes for WDP, autoclaved-WDP, and digested-WDP were observed as 295, 367, and 328 J/kg oC, respectively. The total specific heat changes for DDP, autoclaved-DDP, and digested-DDP were observed as 778, 1329, and 1877 J/kg oC, respectively. This indicated that mold digestion transformed more amorphous fraction in the DDP. The energy absorption intensities of the Fourier Transform Infrared (FTIR) spectra for the selected functional groups decreased by the mold digestion.
Collapse
Affiliation(s)
- Samar Mohammed Khalaf Al-Saidi
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, P. O. Box 34-123, Al-Khod 123, Oman
| | - Zahra Sulaiman Nasser Al-Kharousi
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, P. O. Box 34-123, Al-Khod 123, Oman
| | - Mohammad Shafiur Rahman
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, P. O. Box 34-123, Al-Khod 123, Oman
| | - Nallusamy Sivakumar
- Department of Biology, College of Science, Sultan Qaboos University, P. O. Box 34-123, Al-Khod 123, Oman
| | - Hafiz Ansar Rasul Suleria
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Malik Hussain
- School of Science, Western Sydney University, Australia
| | - Nasser Al-Habsi
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, P. O. Box 34-123, Al-Khod 123, Oman
| |
Collapse
|
4
|
Dong S, Wei Y, Yu Q, Gao Y, Chen H, Zhou K, Cheng M, Wang B, Wei Y, Hu X. Inoculating functional bacteria improved the humification process by regulating microbial networks and key genera in straw composting by adding different nitrogen sources. BIORESOURCE TECHNOLOGY 2024; 393:130022. [PMID: 37979883 DOI: 10.1016/j.biortech.2023.130022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/04/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
The aim of this study was to compare the effect of functional inoculant and different nitrogen sources on the relationship among lignocellulose, precursors, and humus as well as their interactions with bacterial genera in straw composting. Results showed that inoculation improved the heating process and retained more nitrate compared to control. Inoculation increased the degradation of lignocellulosic components by 26.9%-81.6% and the formation of humus by 15.7%-23.0%. Bioinformatics analysis showed that inoculation enriched key genera Chryseolinea in complex nitrogen source (pig manure) compost and Pusillimas, Luteimonas, and Flavobacteria in single nitrogen source (urea) compost, which were related to humus formation. Network analysis found that inoculation and urea addition improved the microbial synergistic effect and inoculation combined with pig manure had more complex modularity and interactions. Combining the functional bacterial inoculant with urea helped to enhance the degradation of lignocellulose and humification process during straw composting especially with single nitrogen source.
Collapse
Affiliation(s)
| | - Yiyang Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Qi Yu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yunfei Gao
- Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Heshu Chen
- Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Kaiyun Zhou
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Meidi Cheng
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Bo Wang
- Institute of Animal Nutrition and Feed, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
| | - Yuquan Wei
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Xiaomei Hu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
5
|
Cai C, Xu Z, Li J, Zhou H, Jin M. Developing
Rhodococcus opacus
and
Sphingobium
sp. co‐culture systems for valorization of lignin‐derived dimers. Biotechnol Bioeng 2022; 119:3162-3177. [DOI: 10.1002/bit.28215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Chenggu Cai
- School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjing210094China
| | - Zhaoxian Xu
- School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjing210094China
| | - Jie Li
- School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjing210094China
| | - Huarong Zhou
- School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjing210094China
| | - Mingjie Jin
- School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjing210094China
| |
Collapse
|
6
|
Lu M, Schneider D, Daniel R. Metagenomic Screening for Lipolytic Genes Reveals an Ecology-Clustered Distribution Pattern. Front Microbiol 2022; 13:851969. [PMID: 35756004 PMCID: PMC9226776 DOI: 10.3389/fmicb.2022.851969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/28/2022] [Indexed: 12/02/2022] Open
Abstract
Lipolytic enzymes are one of the most important enzyme types for application in various industrial processes. Despite the continuously increasing demand, only a small portion of the so far encountered lipolytic enzymes exhibit adequate stability and activities for biotechnological applications. To explore novel and/or extremophilic lipolytic enzymes, microbial consortia in two composts at thermophilic stage were analyzed using function-driven and sequence-based metagenomic approaches. Analysis of community composition by amplicon-based 16S rRNA genes and transcripts, and direct metagenome sequencing revealed that the communities of the compost samples were dominated by members of the phyla Actinobacteria, Proteobacteria, Firmicutes, Bacteroidetes, and Chloroflexi. Function-driven screening of the metagenomic libraries constructed from the two samples yielded 115 unique lipolytic enzymes. The family assignment of these enzymes was conducted by analyzing the phylogenetic relationship and generation of a protein sequence similarity network according to an integrated classification system. The sequence-based screening was performed by using a newly developed database, containing a set of profile Hidden Markov models, highly sensitive and specific for detection of lipolytic enzymes. By comparing the lipolytic enzymes identified through both approaches, we demonstrated that the activity-directed complements sequence-based detection, and vice versa. The sequence-based comparative analysis of lipolytic genes regarding diversity, function and taxonomic origin derived from 175 metagenomes indicated significant differences between habitats. Analysis of the prevalent and distinct microbial groups providing the lipolytic genes revealed characteristic patterns and groups driven by ecological factors. The here presented data suggests that the diversity and distribution of lipolytic genes in metagenomes of various habitats are largely constrained by ecological factors.
Collapse
Affiliation(s)
| | | | - Rolf Daniel
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg August University of Göttingen, Göttingen, Germany
| |
Collapse
|
7
|
Suwannarach N, Kumla J, Zhao Y, Kakumyan P. Impact of Cultivation Substrate and Microbial Community on Improving Mushroom Productivity: A Review. BIOLOGY 2022; 11:biology11040569. [PMID: 35453768 PMCID: PMC9027886 DOI: 10.3390/biology11040569] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Lignocellulosic material and substrate formulations affect mushroom productivity. The microbial community in cultivation substrates affects the quality of the substrates and the efficiency of mushroom production. The elucidation of the key microbes and their biochemical function can serve as a useful guide in the development of a more effective system for mushroom cultivation. Abstract Lignocellulosic materials commonly serve as base substrates for mushroom production. Cellulose, hemicellulose, and lignin are the major components of lignocellulose materials. The composition of these components depends upon the plant species. Currently, composted and non-composted lignocellulosic materials are used as substrates in mushroom cultivation depending on the mushroom species. Different substrate compositions can directly affect the quality and quantity of mushroom production yields. Consequently, the microbial dynamics and communities of the composting substrates can significantly affect mushroom production. Therefore, changes in both substrate composition and microbial diversity during the cultivation process can impact the production of high-quality substrates and result in a high degree of biological efficiency. A brief review of the current findings on substrate composition and microbial diversity for mushroom cultivation is provided in this paper. We also summarize the advantages and disadvantages of various methods of mushroom cultivation by analyzing the microbial diversity of the composting substrates during mushroom cultivation. The resulting information will serve as a useful guide for future researchers in their attempts to increase mushroom productivity through the selection of suitable substrate compositions and their relation to the microbial community.
Collapse
Affiliation(s)
- Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (J.K.)
| | - Jaturong Kumla
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (J.K.)
| | - Yan Zhao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Correspondence: (Y.Z.); (P.K.)
| | - Pattana Kakumyan
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Correspondence: (Y.Z.); (P.K.)
| |
Collapse
|
8
|
Greff B, Szigeti J, Nagy Á, Lakatos E, Varga L. Influence of microbial inoculants on co-composting of lignocellulosic crop residues with farm animal manure: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:114088. [PMID: 34798585 DOI: 10.1016/j.jenvman.2021.114088] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/27/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
The rapidly developing agro-industry generates huge amounts of lignocellulosic crop residues and animal manure worldwide. Although co-composting represents a promising and cost-effective method to treat various agricultural wastes simultaneously, poor composting efficiency prolongs total completion time and deteriorates the quality of the final product. However, supplementation of the feedstock with beneficial microorganisms can mitigate these negative effects by facilitating the decomposition of recalcitrant materials, enhancing microbial enzyme activity, and promoting maturation and humus formation during the composting process. Nevertheless, the influence of microbial inoculation may vary greatly depending on certain factors, such as start-up parameters, structure of the feedstock, time of inoculation, and composition of the microbial cultures used. The purpose of this contribution is to review recent developments in co-composting procedures involving different lignocellulosic crop residues and farm animal manure combined with microbial inoculation strategies. To evaluate the effectiveness of microbial additives, the results reported in a large number of peer-reviewed articles were compared in terms of composting process parameters (i.e., temperature, microbial activity, total organic carbon and nitrogen contents, decomposition rate of lignocellulose fractions, etc.) and compost characteristics (humification, C/N ratio, macronutrient content, and germination index). Most studies confirmed that the use of microbial amendments in the co-composting process is an efficient way to facilitate biodegradation and improve the sustainable management of agricultural wastes. Overall, this review paper provides insights into various inoculation techniques, identifies the limitations and current challenges of co-composting, especially with microbial inoculation, and recommends areas for further research in this field.
Collapse
Affiliation(s)
- Babett Greff
- Department of Food Science, Faculty of Agricultural and Food Sciences, Széchenyi István University, 15-17 Lucsony Street, 9200, Mosonmagyaróvár, Hungary.
| | - Jenő Szigeti
- Department of Food Science, Faculty of Agricultural and Food Sciences, Széchenyi István University, 15-17 Lucsony Street, 9200, Mosonmagyaróvár, Hungary
| | - Ágnes Nagy
- Department of Food Science, Faculty of Agricultural and Food Sciences, Széchenyi István University, 15-17 Lucsony Street, 9200, Mosonmagyaróvár, Hungary
| | - Erika Lakatos
- Department of Food Science, Faculty of Agricultural and Food Sciences, Széchenyi István University, 15-17 Lucsony Street, 9200, Mosonmagyaróvár, Hungary
| | - László Varga
- Department of Food Science, Faculty of Agricultural and Food Sciences, Széchenyi István University, 15-17 Lucsony Street, 9200, Mosonmagyaróvár, Hungary
| |
Collapse
|
9
|
Genetic and Chemical Diversity of Edible Mushroom Pleurotus Species. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6068185. [PMID: 35075427 PMCID: PMC8783721 DOI: 10.1155/2022/6068185] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/20/2021] [Indexed: 12/03/2022]
Abstract
The genus Pleurotus is one of the most widely cultivated and edible mushrooms with various cultivators. Three molecular characteristics were used to evaluate the genetic diversity of 132 tested samples. Phylogenetic analysis showed five clades for tested samples of the genus Pleurotus by the combined ITS and LSU sequences with strong bootstraps and Bayesian posterior probability supports. A total of 94 polymorphic fragments ranging from 10 to 100 bp were observed by using an intersimple sequence repeat (ISSR) marker. The DNA fragment pattern showed that P. ostreatus cultivator (strain P9) was clearly distinguished from wild strain based on their clear banding profiles produced. DNA GC content of the genus Pleurotus varied from 55.6 mol% to 43.3 mol%. Their chemical composition was also determined, including sugar, amino acid, polar lipid, mycolic acid, quinone, and fatty acid, which presented some high homogeneity. Most of the tested samples contained mycolic acid; glucose and arabinose as the main sugars; aspartic acid, arginine, lysine, tyrosine, and alanine as the main amino acids; and C16:0, C18:0, C18:2cis-9,12, anteiso-C14:0, and summed feature 8 as the main fatty acids. In addition, their polar lipid profiles were investigated for the first time, which significantly varied among Pleurotus species. The genus Pleurotus contained menaquinone-6 as the sole respiratory quinone, which showed a significant difference with that of its closely related genera. These results of this study demonstrated that the combined method above could efficiently differentiate each Pleurotus species and thus be considered an efficient tool for surveying the genetic diversity of the genus Pleurotus.
Collapse
|
10
|
Effects of C/N Ratio on Lignocellulose Degradation and Enzyme Activities in Aerobic Composting. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7110482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lignocellulosic materials have a complex physicochemical composition and structure that reduces their decomposition rate and hinders the formation of humic substances during composting. Therefore, a composting experiment was conducted to evaluate the effects of different C/N ratios on lignocellulose (cellulose, hemicellulose and lignin) degradation and the activities of corresponding enzymes during aerobic composting. The study had five C/N ratios, namely, T1 (C/N ratio of 15), T2 (C/N ratio of 20), T3 (C/N ratio of 25), T4 (C/N ratio of 30) and T5 (C/N ratio of 35). The results showed that treatments T3 and T4 had the highest rate of degradation of cellulose and hemicellulose, while treatment T3 had the highest rate of degradation of lignin. Among the five treatments, treatment T3 enhanced the degradation of the lignocellulose constituents, indicating a degradation rate of 6.86–35.17%, 15.63–44.08% and 31.69–165.60% for cellulose, hemicellulose and lignin, respectively. The degradation of cellulose and lignin occurred mainly at the thermophilic and late mesophilic phases of composting, while hemicellulose degradation occurred at the maturation phase. Treatment T3 was the best C/N ratio to stimulate the activities of manganese peroxidase, lignin peroxidase, polyphenol oxidase and peroxidase, which in turn promoted lignocellulose degradation.
Collapse
|
11
|
de França Bettencourt GM, Degenhardt J, Dos Santos GD, Vicente VA, Soccol CR. Metagenomic analyses, isolation and characterization of endophytic bacteria associated with Eucalyptus urophylla BRS07-01 in vitro plants. World J Microbiol Biotechnol 2021; 37:164. [PMID: 34458956 DOI: 10.1007/s11274-021-03127-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 08/12/2021] [Indexed: 11/28/2022]
Abstract
Eucalyptus is the main species for the forestry industry in Brazil. Biotechnology and, more recently, gene editing offer significant opportunities for rapid improvements in Eucalyptus breeding programs. However, the recalcitrance of Eucalyptus species to in vitro culture is also a major limitation for commercial deployment of biotechnology techniques in Eucalyptus improvement. We evaluated various clones of Eucalyptus urophylla for their in vitro regeneration potential identified a clone, BRS07-01, with considerably higher regeneration rate (85%) in organogenesis, and significantly higher than most works described in literature. Endophytic bacteria are widely reported to improve in vitro plant growth and development. Hence, we believe that inclusion of endophytic plant growth promoting bacteria enhanced was responsible for the improved plantlets growth and development of this clone under in vitro culture. Metagenomic analysis was performed to isolate and characterize the prominent endophytic bacteria on BRS07-01 leaf tissue in vitro micro-cultures, and evaluate their impact on plant growth promotion. The analysis revealed the presence of the phyla Firmicutes (35%), Proteobacteria (30%) and much smaller quantities of Actinobacteria, Bacteroidetes, Gemmatimonadetes, Crenarchaeota, Euryarchaeota and Acidobacteria. Of the thirty endophytic bacterial strains isolated, eleven produced indole-3-acetic acid. Two of the isolates were identified as Enterobacter sp. and Paenibacillus polymyxa, which are nitrogen-fixing and capable of phosphate and produce ammonium. These isolates also showed similar positive effects on the germination of common beans (Phaseolus spp.). The isolates will now be tested as a growth promoter in Eucalyptus in vitro cultures. Graphical abstract for the methodology using cultivation independent and dependent methodologies to investigate the endophytic bacteria community from in vitro Eucalyptus urophylla BRS07-01.
Collapse
Affiliation(s)
- Gisela Manuela de França Bettencourt
- Department of Bioprocess and Biotechnology Engineering, Federal University of Paraná, Avenida Cel. Francisco Heráclito dos Santos, 210, Curitiba, Paraná, Brazil.
| | | | - Germana Davila Dos Santos
- Department of Patology, Federal University of Paraná, Avenida Cel. Francisco Heráclito dos Santos, 210, Curitiba, Paraná, Brazil
| | - Vânia Aparecida Vicente
- Department of Patology, Federal University of Paraná, Avenida Cel. Francisco Heráclito dos Santos, 210, Curitiba, Paraná, Brazil
| | - Carlos Ricardo Soccol
- Department of Bioprocess and Biotechnology Engineering, Federal University of Paraná, Avenida Cel. Francisco Heráclito dos Santos, 210, Curitiba, Paraná, Brazil
| |
Collapse
|
12
|
Evaluation of Compost and Biochar to Mitigate Chlorpyrifos Pollution in Soil and Their Effect on Soil Enzyme Dynamics. SUSTAINABILITY 2021. [DOI: 10.3390/su13179695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The widespread environmental contamination of chlorpyrifos (CP) has raised human health concerns and necessitated cost-effective methods for its remediation. The current study evaluated the degradation behavior of CP in compost and biochar amended and unamended (original and sterilized) soils in an incubation trial. Two levels of CP (100 and 200 mg kg−1), compost and biochar (0.50%) were applied, and soil was collected at different time intervals. At the higher CP level (200 mg kg−1), CP a showed lower degradation rate (ƙ = 0.0102 mg kg−1 d−1) compared with a low CP level (ƙ = 0.0173 mg kg−1 d−1). The half-lives of CP were 40 and 68 days for CP at 100 and 200 mg kg−1 in original soil, respectively, and increased to 94 and 141 days in sterilized soils. CP degradation was accelerated in compost amended soils, while suppressed in biochar amended soils. Lower half lives of 20 and 37 days were observed with compost application at CP 100 and 200 mg kg−1 doses, respectively. The activities of soil enzymes were considerably affected by the CP contamination and significantly recovered in compost and biochar amended soils. In conclusion, the application of organic amendments especially compost is an important strategy for the remediation of CP contaminated soil.
Collapse
|
13
|
Liu C, Yao H, Wang C. Black Soldier Fly Larvae Can Effectively Degrade Oxytetracycline Bacterial Residue by Means of the Gut Bacterial Community. Front Microbiol 2021; 12:663972. [PMID: 34211443 PMCID: PMC8239407 DOI: 10.3389/fmicb.2021.663972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
Antibiotic bacterial residue is a unique hazardous waste, and its safe and effective disposal has always been a concern of pharmaceutical enterprises. This report presents the effective treatment of hazardous waste-antibiotic bacterial residue-by black soldier fly larvae (larvae), oxytetracycline bacterial residue (OBR), and soya meal with mass ratios of 0:1 (soya), 1:20 (OBRlow), and 1:2 (OBRhigh), which were used as substrates for larval bioconversion. Degradation of OBR and oxytetracycline, the bacterial community, the incidence of antibiotic resistance genes (ARGs) and the bacterial function in the gut were examined. When the larvae were harvested, 70.8, 59.3, and 54.5% of the substrates had been consumed for soya, OBRlow and OBRhigh; 65.9 and 63.3% of the oxytetracycline was degraded effectively in OBRlow and OBRhigh, respectively. The larval bacterial communities were affected by OBR, abundant and various ARGs were discovered in the gut, and metabolism was the major predicted function of the gut. These findings show that OBR can be digested and converted by larvae with gut bacteria, and the larvae can be used as a bioremediation tool for the treatment of hazardous waste. Finally, the abundant ARGs in the gut deserve further attention and consideration in environmental health risk assessments.
Collapse
Affiliation(s)
- Cuncheng Liu
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China.,Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China.,Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, China.,Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Cunwen Wang
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
| |
Collapse
|
14
|
Jin X, Ai W, Li C, Zhang L, Yu Q, Tang Y, Dong W. Operation overview of a biological waste treatment system during the 4-crew 180-day integrated experiment in the controlled ecological life support system (CELSS). LIFE SCIENCES IN SPACE RESEARCH 2021; 29:15-21. [PMID: 33888283 DOI: 10.1016/j.lssr.2021.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/13/2021] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Waste management and treatment is vital to health care and material circulation, especially in the Controlled Ecological Life Support System (CELSS) with finite resources for long-duration manned space missions. A closed ecological-cycle integrated 4-crew 180-day experiment platform was established to investigate the key technologies such as effective cultivation of higher plant, water treatment and recycling, waste management and treatment. In this study, generated waste during the integrated experiment was classified as renewable and non-renewable waste. The renewable waste including all crew feces and part of inedible plant biomass were treated in a biological system where the aerobic composting technology was utilized. The performance in relation to degradation effect, phytotoxicity and nutrient evaluation was examined during the continuous 180 days. The long-term operation results displayed that 96.26 kg feces and 74.4 kg wheat straw were treated, and 90.6 kg compost product was discharged in nine batches. The microbial community variation was analyzed and Firmicutes, Actinobacteria and Proteobacteria enriched in the compost. The phytotoxicity of compost was examined by seed germination index (GI) and GI of Chinese cabbage ranged from 88% to 132% for all batches. Compared to grown in vermiculite only, the lettuce yield increased 19% when grown in a mixture of vermiculite and processed compost. The summary of this work will be helpful to facilitate future applications of aerobic composting technology as the bio-based waste treatment technology in CELSS.
Collapse
Affiliation(s)
- Xiangdan Jin
- Space Science and Technology Institute (Shenzhen), Shenzhen 518117, China; School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Weidang Ai
- Space Science and Technology Institute (Shenzhen), Shenzhen 518117, China; National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training center, Beijing 100094, China.
| | - Chengxian Li
- Space Science and Technology Institute (Shenzhen), Shenzhen 518117, China
| | - Liangchang Zhang
- Space Science and Technology Institute (Shenzhen), Shenzhen 518117, China; National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training center, Beijing 100094, China
| | - Qingni Yu
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training center, Beijing 100094, China
| | - Yongkang Tang
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training center, Beijing 100094, China
| | - Wenyi Dong
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
15
|
Enhancing the compost maturation of swine manure and rice straw by applying bioaugmentation. Sci Rep 2021; 11:6103. [PMID: 33731751 PMCID: PMC7971061 DOI: 10.1038/s41598-021-85615-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/03/2021] [Indexed: 11/22/2022] Open
Abstract
Microorganisms capable of decomposing cellulose, xylan, starch and protein were individually isolated from swine manure compost and soil in this study. The correlations with pH, carbon source concentration, C/N ratio and enzyme activity among these isolated microorganisms were also investigated. Furthermore, the effect of additional inoculation in the compost was studied by measuring variations in the C/N ratio, enzyme activity and compost maturation rate. The inoculated microorganisms used in this study included four bacterial isolates and one commercial microorganism Phanerochaete chrysosporium. The results indicated that the isolated Kitasatospora phosalacinea strain C1, which is a cellulose-degraded microorganism, presented the highest enzyme activity at 31 ℃ and pH 5.5, while the C/N ratio was 0.8%. The isolated xylan-degraded microorganism Paenibacillus glycanilyticus X1 had the highest enzyme activity at 45 ℃ and pH 7.5, while the C/N ratio was 0.5%. The starch-degraded microorganism was identified as Bacillus licheniformis S3, and its highest enzyme activities were estimated to be 31 ℃ and pH 7.5 while the C/N ratio was 0.8%. The highest enzyme activity of the protein-degraded microorganism Brevinacillus agri E4 was obtained at 45 ℃ and pH 8.5, while the C/N ratio was 1.0%. The rate of temperature increase in the compost inoculated with P. chrysosporium was only higher than that of the compost without inoculation, and its compost maturation level was also lower than that of other composts with additional inoculation. The optimal initial C/N ratio of the compost was 27.5 and the final C/N ratio was 18.9. The composting results also indicated that the secondary inoculation would benefit compost maturation, and the lowest final C/N ratio of 17.0 was obtained.
Collapse
|
16
|
Papale M, Romano I, Finore I, Lo Giudice A, Piccolo A, Cangemi S, Di Meo V, Nicolaus B, Poli A. Prokaryotic Diversity of the Composting Thermophilic Phase: The Case of Ground Coffee Compost. Microorganisms 2021; 9:microorganisms9020218. [PMID: 33494462 PMCID: PMC7911569 DOI: 10.3390/microorganisms9020218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 01/22/2023] Open
Abstract
Waste biomass coming from a local coffee company, which supplied burnt ground coffee after an incorrect roasting process, was employed as a starting material in the composting plant of the Experimental Station of the University of Naples Federico II at Castel Volturno (CE). The direct molecular characterization of compost using 13C-NMR spectra, which was acquired through cross-polarization magic-angle spinning, showed a hydrophobicity index of 2.7% and an alkyl/hydroxyalkyl index of 0.7%. Compost samples that were collected during the early "active thermophilic phase" (when the composting temperature was 63 °C) were analyzed for the prokaryotic community composition and activities. Two complementary approaches, i.e., genomic and predictive metabolic analysis of the 16S rRNA V3-V4 amplicon and culture-dependent analysis, were combined to identify the main microbial factors that characterized the composting process. The whole microbial community was dominated by Firmicutes. The predictive analysis of the metabolic functionality of the community highlighted the potential degradation of peptidoglycan and the ability of metal chelation, with both functions being extremely useful for the revitalization and fertilization of agricultural soils. Finally, three biotechnologically relevant Firmicutes members, i.e., Geobacillus thermodenitrificans subsp. calidus, Aeribacillus pallidus, and Ureibacillus terrenus (strains CAF1, CAF2, and CAF5, respectively) were isolated from the "active thermophilic phase" of the coffee composting. All strains were thermophiles growing at the optimal temperature of 60 °C. Our findings contribute to the current knowledge on thermophilic composting microbiology and valorize burnt ground coffee as waste material with biotechnological potentialities.
Collapse
Affiliation(s)
- Maria Papale
- Institute of Polar Sciences, National Research Council of Italy, Spianata San Raineri 86, 98122 Messina, Sicilia, Italy; (M.P.); (A.L.G.)
| | - Ida Romano
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy; (I.R.); (I.F.); (B.N.)
| | - Ilaria Finore
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy; (I.R.); (I.F.); (B.N.)
| | - Angelina Lo Giudice
- Institute of Polar Sciences, National Research Council of Italy, Spianata San Raineri 86, 98122 Messina, Sicilia, Italy; (M.P.); (A.L.G.)
| | - Alessandro Piccolo
- Centro Interdipartimentale di Ricerca sulla Risonanza Magnetica Nucleare per l’Ambiente, l’Agro-alimentare ed i Nuovi Materiali (CERMANU), Università di Napoli Federico II, Via Università 100, 80055 Portici, Naples, Italy; (A.P.); (S.C.)
| | - Silvana Cangemi
- Centro Interdipartimentale di Ricerca sulla Risonanza Magnetica Nucleare per l’Ambiente, l’Agro-alimentare ed i Nuovi Materiali (CERMANU), Università di Napoli Federico II, Via Università 100, 80055 Portici, Naples, Italy; (A.P.); (S.C.)
| | - Vincenzo Di Meo
- Dipartimento di Agraria, Università Federico II, Via Università 100, 80055 Portici, Naples, Italy;
| | - Barbara Nicolaus
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy; (I.R.); (I.F.); (B.N.)
| | - Annarita Poli
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy; (I.R.); (I.F.); (B.N.)
- Correspondence: ; Tel.: +39-081-867-5311
| |
Collapse
|
17
|
Hemati A, Aliasgharzad N, Khakvar R, Khoshmanzar E, Asgari Lajayer B, van Hullebusch ED. Role of lignin and thermophilic lignocellulolytic bacteria in the evolution of humification indices and enzymatic activities during compost production. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 119:122-134. [PMID: 33059162 DOI: 10.1016/j.wasman.2020.09.042] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to evaluate the effect of lignin content and thermophilic lignocellulolytic bacteria bioaugmentation on composting process. Treatments including bioaugmentation with thermophilic lignocellulolytic bacteria isolates such as Paenibacillus validus, Paenibacillus koreensis, Bacillus nealsonii, a mixture of the three mentioned bacterial isolates and control were compared at two level of organic media (high lignin content and low lignin content) in the form of nested factorial design. Several indices such as humification and enzymatic activities were monitored to evaluate the composting rate. The results revealed that high lignin treatments displayed higher ligninase, xylanase, protease and urease enzymatic activities compared to low lignin treatments. On the other hand, low lignin treatments showed higher level of humification indices, cellulase, beta-glucosidase and alkaline phosphomonoesterase enzymatic activities in comparison with high lignin treatments. Also, all measured enzymatic activities are at their highest between the second and the tenth weeks; however, this trend decreased to reach a steady point from the 18th weeks to the 24th weeks, but for urease enzymatic activity, a totally different trend in high and low lignin treatments was observed. Moreover, the highest humification indices as well as the cellulase and β-glucosidase enzymatic activities were associated to the Bacillus nealsonii isolate and the full consortium. They also displayed the highest ligninase, xylanase, protease, and urease and phosphatase activities. The efficient isolates shortened the time required for completing the composting process for about 2 to 4 weeks compared to the control treatments. For all measured indices, the control treatment had the lowest values.
Collapse
Affiliation(s)
- Arash Hemati
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Nasser Aliasgharzad
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Reza Khakvar
- Department of Plant Pathology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Elaheh Khoshmanzar
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Behnam Asgari Lajayer
- Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Eric D van Hullebusch
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, F-75005 Paris, France.
| |
Collapse
|
18
|
Qin R, Su C, Mo T, Liao L, Zhu F, Chen Y, Chen M. Effect of excess sludge and food waste feeding ratio on the nutrient fractions, and bacterial and fungal community during aerobic co-composting. BIORESOURCE TECHNOLOGY 2021; 320:124339. [PMID: 33161314 DOI: 10.1016/j.biortech.2020.124339] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 06/11/2023]
Abstract
The effect of excess sludge and food waste feeding ratio on the co-composting process was explored using 5% bagasse biochar as an additive and conditioner. Results showed that when the mass ratio was 1:1, nitrogen fixation ability was the strongest and ammonia nitrogen increment in the pile reached 2.31 mg/g. The increase in excess sludge content/food waste ratio during composting was conducive to the accumulation of H2O-P, BD-P, HCl-P, NaOH-P and NaOH85-P. When the ratio of excess sludge to food waste mass was 1:1, the relative abundance of Firmicutes was the largest in the compost, which corresponded to 72.77% at the phylum level. Food waste mass was more beneficial to the growth and reproduction of microorganisms and to the metabolic activities related to membrane transport. Considering the fungal content, Ascomycota and Basidiomycota were maximum, with relative abundance of 69.53% and 20.91%, respectively, at the mass ratio of 1:1.
Collapse
Affiliation(s)
- Ronghua Qin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Chengyuan Su
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China; University Key Laboratory of Karst Ecology and Environmental Change of Guangxi Province (Guangxi Normal University), 15 Yucai Road, Guilin 541004, PR China.
| | - Tianhao Mo
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Liming Liao
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Fenghua Zhu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Yu Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Menglin Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| |
Collapse
|
19
|
B Henry A, Maung CEH, Kim KY. Metagenomic analysis reveals enhanced biodiversity and composting efficiency of lignocellulosic waste by thermoacidophilic effective microorganism (tEM). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 276:111252. [PMID: 32927192 DOI: 10.1016/j.jenvman.2020.111252] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/13/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
Composting is a microbiological process that converts organic waste into organic soil amendment. We reveal enhanced biodiversity and microbial population with subsequent enhancement of composting efficiency of lignocellulosic waste using thermoacidophilic effective microorganisms (tEM). Composting with tEM + shading (tEMA) or tEM without shading (tEMB) increased the average microbial population by 12.0% or 6.7%, respectively compared to non-tEM composting without shading/control (C). The biodiversity in tEMA or tEMB treated groups was increased by 34.7% or 43.7%, respectively, compared to C. The highest increase in population (31.7% and 9.4%) and diversity (91.2% and 91.6%) were observed in tEMA and tEMB at 30 d, respectively. Regarding microbial structure, the most dominant phylum shifted from Proteobacteria to Bacteroidetes during composting. From 60 to 120 d, tEM notably improved the average abundance of Firmicutes (mainly Bacillus) by 166.7% and 75.8% in tEMA and tEMB groups, respectively. The overall gradation rate of large compost granules (<2 mm) increased by 36.4% and 24.7%, following tEMA and tEMB treatment, respectively. The average rate of increase in bulk density was 42.6% or 33.3% by tEMA or tEMB, respectively, compared to C. We reveal the major differences in microbial structure, including a higher abundance of beneficial microbes like Bacillus in tEM treated composts. The study revealed that tEM could improve biodiversity and population of microbes, especially during thermophilic phase (above 45 °C), with a subsequent increase in composting rate, mineralization, and product quality. The results of this study are particularly invaluable in the areas of environmental conservation and organic agriculture.
Collapse
Affiliation(s)
- Ajuna B Henry
- Department of Agriculture Chemistry, College of Agriculture and Life Science, Chonnam National University, 77 Yongbong-ro, Buk-Ku Gwangju, 61186, Republic of Korea.
| | - Chaw Ei Htwe Maung
- Department of Agriculture Chemistry, College of Agriculture and Life Science, Chonnam National University, 77 Yongbong-ro, Buk-Ku Gwangju, 61186, Republic of Korea.
| | - Kil Yong Kim
- Department of Agriculture Chemistry, College of Agriculture and Life Science, Chonnam National University, 77 Yongbong-ro, Buk-Ku Gwangju, 61186, Republic of Korea.
| |
Collapse
|
20
|
Liu C, Yao H, Chapman SJ, Su J, Wang C. Changes in gut bacterial communities and the incidence of antibiotic resistance genes during degradation of antibiotics by black soldier fly larvae. ENVIRONMENT INTERNATIONAL 2020; 142:105834. [PMID: 32540627 DOI: 10.1016/j.envint.2020.105834] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/19/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
As a saprophytic insect, the black soldier fly can digest organic waste efficiently in an environmentally friendly way. However, the ability and efficiency of this insect, and the microbial mechanisms involved, in the degradation of antibiotics are largely uncharacterized. To obtain further details during the degradation of OTC (oxytetracycline) by black soldier fly larvae (larvae), the changes in intestinal bacterial communities were examined. Both ARGs (antibiotic resistance genes) and MGEs (mobile genetic elements) were found within the larval guts. At the end of the degradation period, 82.7%, 77.6% and 69.3% of OTC was degraded by larvae when the initial concentrations were 100, 1000 and 2000 mg kg-1 (dry weight), respectively, which was much higher than the degradation efficiencies (19.3-22.2%) without larvae. There was no obvious effect of OTC on the development of the larvae. Although the larval gut microorganisms were affected by OTC, they adapted to the altered environment. Enterococcus, Ignatzschineria, Providencia, Morganella, Paenalcaligenes and Actinomyces in the gut responded strongly to antibiotic exposure. Interestingly, numerous ARGs (specifically, 180 ARGs and 10 MGEs) were discovered, and significantly correlated with those of both integron-integrase gene and transposases in the larval gut. Of all the detected ARGs, tetracycline resistance genes expressed at relatively high levels and accounted for up to 67% of the total ARGs. In particular, Enterococcus, Ignatzschineria, Bordetella, Providencia and Proteus were all hosts of enzymatic modification genes of tetracycline in the guts that enabled effective degradation of OTC. These findings demonstrate that OTC can be degraded effectively and prove that the bioremediation of antibiotic contamination is enhanced by larvae. In addition, the abundance of ARGs and MGEs formed should receive attention and be considered in environmental health risk assessment systems.
Collapse
Affiliation(s)
- Cuncheng Liu
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China; Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo 315800, People's Republic of China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China.
| | - Stephen J Chapman
- The James Hutton Research Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| | - Jianqiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| | - Cunwen Wang
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China.
| |
Collapse
|
21
|
Voběrková S, Maxianová A, Schlosserová N, Adamcová D, Vršanská M, Richtera L, Gagić M, Zloch J, Vaverková MD. Food waste composting - Is it really so simple as stated in scientific literature? - A case study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:138202. [PMID: 32224413 DOI: 10.1016/j.scitotenv.2020.138202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 06/10/2023]
Abstract
Food waste has recently gained much worldwide interest due to its influence on the environment, economy and society. Gathering and recycling of food waste is the essential issue in the waste management and the interest in processing food waste arises mainly out of influence of the processes of food putrefaction on the environment. Composting of food waste encounters a number of technical challenges, arising weak physical structure of food waste with weak porosity, high content of water, low carbon-to-nitrogen relation and fast hydrolysis and accumulation of organic acids during composting. Therefore, the aim of this study was to investigate the challenges facing installations intended for food waste composting, with the purpose to their optimization with use of appropriate additives. Physico-chemical, biochemical characteristics and phytotoxicity of the produced compost has been measured. Two additives (20% biochar and 20% sawdust) were chosen from experimental variants I-XII containing different additives (biochar, Devonian sand, sawdust) in diverse concentration. The use of selected additives seems to slightly increase potential of hydrogen value and carbon-to-nitrogen ratio, while decreasing electrical conductivity in comparison with control sample. The results obtained also show that the addition of biochar leads to an increase dehydrogenase, phosphatase and arylsulphatase activities and addition of sawdust has a positive effect on beta-D-glucosidase, protease, phosphatase and arylsulphatase activities. The phytotoxicity test shows that the compost made of food waste (control sample) and with addition of biochar is toxic to plants. By contrast, the addition of sawdust shows that the compost was not phytotoxic. In conclusion, the addition of additives does not provide unambiguous results in terms of the quality of the final product in all monitored parameters. Therefore, we can state that food waste was reduced and hygienized, and that the final product does not meet conditions for mature compost.
Collapse
Affiliation(s)
- Stanislava Voběrková
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic; Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, 61300 Brno, Czech Republic
| | - Alžbeta Maxianová
- Department of Applied and Landscape Ecology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Nikola Schlosserová
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Dana Adamcová
- Department of Applied and Landscape Ecology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Martina Vršanská
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic; Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, 61300 Brno, Czech Republic
| | - Lukáš Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic; Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, 61300 Brno, Czech Republic
| | - Milica Gagić
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic; Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, 61300 Brno, Czech Republic
| | - Jan Zloch
- Department of Applied and Landscape Ecology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Magdalena Daria Vaverková
- Department of Applied and Landscape Ecology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic; Institute of Civil Engineering, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02 776 Warsaw, Poland.
| |
Collapse
|
22
|
Soil bacterial diversity correlates with precipitation and soil pH in long-term maize cropping systems. Sci Rep 2020; 10:6012. [PMID: 32265458 PMCID: PMC7138807 DOI: 10.1038/s41598-020-62919-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 03/09/2020] [Indexed: 11/25/2022] Open
Abstract
Unraveling the key drivers of bacterial community assembly in agricultural soils is pivotal for soil nutrient management and crop productivity. Presently, the drivers of microbial community structure remain unexplored in maize cropping systems under complex and variable environmental scenarios across large spatial scales. In this study, we conducted high-throughput 16S rRNA gene sequencing and network analysis to identify the major environmental factors driving bacterial community diversity and co-occurrence patterns in 21 maize field soils across China. The results show that mean annual precipitation and soil pH are the major environmental factors that shape soil bacterial communities in maize soils. The similarities of bacterial communities significantly decreased with increasing geographic distance between different sites. The differences in spatial turnover rates across bacterial phyla indicate the distinct dispersal capabilities of bacterial groups, and some abundant phyla exhibited high dispersal capabilities. Aeromicrobium, Friedmanniella, Saccharothrix, Lamia, Rhodococcus, Skermanella, and Pedobacter were identified as keystone taxa. Based on the node-level and network-level topological features, members of the core microbiome were more frequently found in the center of the ecosystem network compared with other taxa. This study highlights the major environmental factors driving bacterial community assembly in agro-ecosystems and the central ecological role of the core microbiome in maintaining the web of complex bacterial interactions.
Collapse
|
23
|
Optimizing Food Waste Composting Parameters and Evaluating Heat Generation. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072284] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The optimal initial moisture content and seeding proportion with mature compost (microbial inoculant) during food waste composting were investigated. This involved six different moisture contents (42%, 55%, 61%, 66%, 70%, and 78%) and four different mature compost seeding amounts (0%, 10%, 20%, and 30% w/w). The temperature variation of these different setups during the first four days of composting was used to determine the most effective one. Our findings showed that the initial moisture contents of 55–70% and the 20% w/w of mature compost were optimal for effective food waste composting. A 400 kg compost pile with the optimal compost mixture ratio was then used to study the evolution and spatial distribution of the temperature during a 30-day composting period. Finally, the heat produced during the 30-day composting process was estimated to be 2.99 MJ/kg. Further investigations, including a cost–benefit analysis from a pilot facility, would be required to comprehensively conclude the feasibility of food waste composting as a bioenergy source.
Collapse
|
24
|
Wang J, Liu Z, Xia J, Chen Y. Effect of microbial inoculation on physicochemical properties and bacterial community structure of citrus peel composting. BIORESOURCE TECHNOLOGY 2019; 291:121843. [PMID: 31357046 DOI: 10.1016/j.biortech.2019.121843] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
In this study, microorganisms were inoculated during citrus peel composting for citrus waste recycling and valorisation. The physicochemical properties and the bacterial community structure of citrus peel composting inoculated microorganism were studied. The thermophilic stage of pilot-scale composting (T2) was 20 days longer than lab-scale composting (T1). C/N, organic matter, moisture, pectin and cellulose content decreased along with composing process, but the pH, soluble protein and total nutrient showed an opposite trend. The inoculation improved the richness and diversity of the bacterial community and the diversity index reached maximum on 21 days. As composting progress, Bacillus, Sphingobacterium and Saccharomonospora in inoculum became the dominant genus. Redundancy analysis showed that C/N, pectin degradation rate and temperature could explain 30.1%, 24.9% and 15.6% of the variation in bacterial genera, respectively.
Collapse
Affiliation(s)
- Jiaqin Wang
- School of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Chongqing University, Chongqing 400045, China
| | - Zhiping Liu
- School of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Chongqing University, Chongqing 400045, China.
| | - Jiashuai Xia
- School of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Chongqing University, Chongqing 400045, China
| | - Youpeng Chen
- School of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Chongqing University, Chongqing 400045, China
| |
Collapse
|
25
|
Domínguez J, Aira M, Kolbe AR, Gómez-Brandón M, Pérez-Losada M. Changes in the composition and function of bacterial communities during vermicomposting may explain beneficial properties of vermicompost. Sci Rep 2019; 9:9657. [PMID: 31273255 PMCID: PMC6609614 DOI: 10.1038/s41598-019-46018-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/20/2019] [Indexed: 12/16/2022] Open
Abstract
Vermicomposting is the process by which organic waste is broken down through the synergistic actions of earthworms and microbial communities. Although vermicomposting has been shown to effectively reduce organic biomass and generate high-quality fertilizer for plants, little is known about the bacterial communities that are involved in this decomposition process. Since optimization of vermicomposting for commercial use necessitates additional knowledge of the underlying biological processes, this study sought to characterize the bacterial succession involved in the vermicomposting of Scotch broom (Cytisus scoparius), a leguminous shrub that has become invasive around the world with consequences for the dynamics and productivity of the ecosystems they occupy. Scotch broom was processed in a pilot-scale vermireactor for 91 days with the earthworm species Eisenia andrei. Samples were taken at the initiation of vermicomposting, and days 14, 42 and 91, representing both active and mature stages of vermicomposting. Significant changes (P < 0.0001) in the bacterial community composition (richness and evenness) were observed throughout the process. Increases in taxonomic diversity were accompanied by increases in functional diversity of the bacterial community, including metabolic capacity, streptomycin and salicylic acid synthesis, and nitrification. These results highlight the role of bacterial succession during the vermicomposting process and provide evidence of microbial functions that may explain the beneficial effects of vermicompost on soil and plants.
Collapse
Affiliation(s)
- Jorge Domínguez
- Grupo de Ecoloxía Animal (GEA), Universidade de Vigo, E-36310, Vigo, Pontevedra, Spain
| | - Manuel Aira
- Grupo de Ecoloxía Animal (GEA), Universidade de Vigo, E-36310, Vigo, Pontevedra, Spain
| | - Allison R Kolbe
- Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Ashburn, VA, 20147, USA
| | - María Gómez-Brandón
- Grupo de Ecoloxía Animal (GEA), Universidade de Vigo, E-36310, Vigo, Pontevedra, Spain.
| | - Marcos Pérez-Losada
- Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Ashburn, VA, 20147, USA.,CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal.,Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, George Washington University, Washington, DC, 20052, USA
| |
Collapse
|
26
|
Yang X, Song Z, Zhou S, Guo H, Geng B, Peng X, Zhao G, Xie Y. Insights into functional microbial succession during nitrogen transformation in an ectopic fermentation system. BIORESOURCE TECHNOLOGY 2019; 284:266-275. [PMID: 30952054 DOI: 10.1016/j.biortech.2019.03.135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
The ectopic fermentation system (EFS) is an advanced technology for treating farm wastewater, and it reduces ammonia nitrogen emission and nitrogen loss of fermentation products. This study observed the functional bacteria succession related to nitrogen metabolism in EFS by high throughput sequencing, and evaluated their associations with environmental factors. Results revealed that with the changes of temperature, pH, moisture content, and nitrogen content during fermentation, the species richness and diversity of ammonia oxidizing bacteria (AOB) with amoA increased, but those of denitrifying bacteria carrying nirK and nosZ decreased. During the fermentation process, the dominant bacterial populations of AOB and denitrifying bacteria changed significantly, and different bacterial populations showed different positive/negative correlations with the environmental factors. This study revealed the role of functional bacteria in ammonia removal and nitrogen conservation of EFS, and provided a theoretical basis for the improvement of microbial agents and EFS application.
Collapse
Affiliation(s)
- Xiaotong Yang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Zhen Song
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences (IEDA, CAAS), Beijing, China
| | - Sihan Zhou
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hui Guo
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
| | - Bing Geng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences (IEDA, CAAS), Beijing, China
| | - Xiawei Peng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Guozhu Zhao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yijia Xie
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
27
|
Kumar A, Vyas P, Malla MA, Dubey A. Taxonomic and Functional Annotation of Termite Degraded Butea monosperma (Lam.) Kuntze (Flame of the Forest). Open Microbiol J 2019. [DOI: 10.2174/1874285801913010154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
Butea monosperma is an economically and medicinally important plant that grows all over India, however, the plant is highly susceptible to termite attack. The present study unravelled the bacterial community composition and their functional attributions from the termite degraded Butea.
Methods:
Total genomic DNA from termite degraded Butea monosperma samples was extracted and subjected to sequencing on Illumina's Miseq. The raw and unassembled reads obtained from high-throughput sequencing were used for taxonomic and functional profiling using different online and stand-alone softwares. Moreover, to ascertain the effect of different geographical locations and environmental factors, comparative analysis was performed using four other publically available metagenomes.
Results:
The higher abundance of Actinobacteria (21.27%), Proteobacteria (14.18%), Firmicutes (10.46%), and Bacteroidetes (4.11%) was found at the phylum level. The genus level was dominated by Bacillus (4.33%), Gemmatimonas (3.13%), Mycobacterium (1.82%), Acidimicrobium (1.69%), Thermoleophilum (1.23%), Nocardioides (1.44%), Terrimonas and Acidithermus (1.09%) and Clostridium (1.05%). Functional annotation of the termite degraded B. monosperma metagenome revealed a high abundance of ammonia oxidizers, sulfate reducers, dehalogenators, nitrate reducers, sulfide oxidizers, xylan degraders, nitrogen fixers and chitin degraders.
Conclusion:
The present study highlights the significance of the inherent microbiome of the degraded Butea shaping the microbial communities for effective degradation of biomass and different environmental toxicants. The unknown bacterial communities present in the sample can serve as enzyme sources for lignocelluloses degradation for biofuel production.
Collapse
|
28
|
Li Q, Zhi S, Yu X, Li Y, Guo H, Yang Z, Zhang S. Biodegradation of volatile solids and water mass balance of bio-drying sewage sludge after electro-dewatering pretreatment. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 91:9-19. [PMID: 31203947 DOI: 10.1016/j.wasman.2019.04.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/11/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
Using pressurized electro-osmotic dewatering (PEOD) as the pretreatment process for sewage sludge (SS) bio-drying can improve the dewatering performance, but the kinetics of volatile solids biodegradation and the water mass balance are still unknown. These processes were first investigated in this study. Experiments were conducted with three different initial materials, which were composed of SS, bio-dried product and SS dewatered by PEOD (EDSS) as different mass ratios. Six kinetic models and a nonlinear regression method were used to estimate the kinetic parameters, and the models were analyzed using four statistical indicators. Satisfactory fitting of the proposed kinetic model to the experimental data was achieved. Through the water mass balance, the results showed that EDSS had the best dewatering performance for bio-drying. EDSS provided the most appropriate conditions for the bio-drying process; the highest correlation coefficient was 0.9291 and the total water removal rate was 51.13% in the bio-drying of all EDSS.
Collapse
Affiliation(s)
- Qian Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Suli Zhi
- Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, China
| | - Xiaoyan Yu
- School of Energy and Chemical Engineering, Liaoning Technical University, Hu Ludao 125105, China
| | - Yingte Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Haigang Guo
- Hebei University of Engineering, Handan 056038, China
| | - Zengjun Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Shuting Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China.
| |
Collapse
|
29
|
Ganguly RK, Chakraborty SK. Assessment of microbial roles in the bioconversion of paper mill sludge through vermicomposting. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2018; 16:205-212. [PMID: 30728992 PMCID: PMC6277328 DOI: 10.1007/s40201-018-0308-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 07/22/2018] [Indexed: 06/09/2023]
Abstract
PURPOSE Main thrust of the present study is to determine the role of microbes in changing the proportion and turnover of nutrients such as carbon and nitrogen during vermicomposting of paper mill sludge through the assessment of β-glucosidase and Leucine arylamidase activities. METHODS The change in the ratio of Total Organic Carbon (TOC) and Total Kjeldahl Nitrogen (TKN) during sludge composting using paper mill sludge, cow dung, straw in the ratio of 5:4:1 have been determined alongside observing β-glucosidase and Leucine arylamidase activities in different phases (0th, 30th and 60th days) of vermicomposting. The present study also assessed the bacterial assemblages in order to predict their role as major producers of these enzymes as estimated by Vitek 2 system. RESULTS A declining trend of C/N ratio was observed which exhibited significant negative and positive correlations with the activity of β-glucosidase and Leucine arylamidase respectively. Twenty-four strains were isolated under two genus Bacillus spp. and Lysinibacillus spp. which revealed differential sensitivity towards major carbon and nitrogen turnover mediating enzymes. CONCLUSION Change in the activities of carbon and nitrogen turnover enzymes due to microbial growth and proliferation are the mediator for the change in C/N ratio.
Collapse
Affiliation(s)
- Ram Kumar Ganguly
- Department of Zoology, Vidyasagar University, Midnapore, West Bengal 721102 India
| | | |
Collapse
|
30
|
Wang K, Chu C, Li X, Wang W, Ren N. Succession of bacterial community function in cow manure composing. BIORESOURCE TECHNOLOGY 2018; 267:63-70. [PMID: 30014999 DOI: 10.1016/j.biortech.2018.06.028] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/10/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
Succession of bacterial community, metabolism function and substrate utilization capacity in 60 days composting of cow manure were analyzed by 16S rRNA pyrosequencing, PICRUSt and Biolog method, respectively. The results showed that the number of bacterial OTUs increased from 176 in raw cow manure to 203 on Day-10, 220 on Day-30 and 313 on Day-60 of the composting, respectively. The PICRUSt analysis showed that the relative abundances of genes involved in lipid and carbohydrate metabolism increased by 28.5% and 22.4% during the incubation, respectively, but the abundances of the genes involved in nucleotide and amino acid metabolism decreased by 21.6% and 2.1%. Furthermore, the average well color development (AWCD) of carboxylic acids (0.99-0.48) and amino acids (1.61-0.89) in Biolog Eco-microplate displayed a steady downtrend through the composting process. Redundancy analysis showed that ORP, moisture and temperature could explain 68.1%, 17.6% and 14.2% of the variation in bacterial genera, respectively.
Collapse
Affiliation(s)
- Ke Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, Heilongjiang 150090, China
| | - Chu Chu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, Heilongjiang 150090, China
| | - Xiangkun Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, Heilongjiang 150090, China.
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, Heilongjiang 150090, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, Heilongjiang 150090, China
| |
Collapse
|
31
|
Xiao X, Mazza L, Yu Y, Cai M, Zheng L, Tomberlin JK, Yu J, van Huis A, Yu Z, Fasulo S, Zhang J. Efficient co-conversion process of chicken manure into protein feed and organic fertilizer by Hermetia illucens L. (Diptera: Stratiomyidae) larvae and functional bacteria. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 217:668-676. [PMID: 29654970 DOI: 10.1016/j.jenvman.2018.03.122] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/17/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
A chicken manure management process was carried out through co-conversion of Hermetia illucens L. larvae (BSFL) with functional bacteria for producing larvae as feed stuff and organic fertilizer. Thirteen days co-conversion of 1000 kg of chicken manure inoculated with one million 6-day-old BSFL and 109 CFU Bacillus subtilis BSF-CL produced aging larvae, followed by eleven days of aerobic fermentation inoculated with the decomposing agent to maturity. 93.2 kg of fresh larvae were harvested from the B. subtilis BSF-CL-inoculated group, while the control group only harvested 80.4 kg of fresh larvae. Chicken manure reduction rate of the B. subtilis BSF-CL-inoculated group was 40.5%, while chicken manure reduction rate of the control group was 35.8%. The weight of BSFL increased by 15.9%, BSFL conversion rate increased by 12.7%, and chicken manure reduction rate increased by 13.4% compared to the control (no B. subtilis BSF-CL). The residue inoculated with decomposing agent had higher maturity (germination index >92%), compared with the no decomposing agent group (germination index ∼86%). The activity patterns of different enzymes further indicated that its production was more mature and stable than that of the no decomposing agent group. Physical and chemical production parameters showed that the residue inoculated with the decomposing agent was more suitable for organic fertilizer than the no decomposing agent group. Both, the co-conversion of chicken manure by BSFL with its synergistic bacteria and the aerobic fermentation with the decomposing agent required only 24 days. The results demonstrate that co-conversion process could shorten the processing time of chicken manure compared to traditional compost process. Gut bacteria could enhance manure conversion and manure reduction. We established efficient manure co-conversion process by black soldier fly and bacteria and harvest high value-added larvae mass and biofertilizer.
Collapse
Affiliation(s)
- Xiaopeng Xiao
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Lorenzo Mazza
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China; University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Via F. Stagno D'Alcontres n.31, 98166 Messina, Italy
| | - Yongqiang Yu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Minmin Cai
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Longyu Zheng
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | | | - Jeffrey Yu
- Texas Academy of Mathematics and Science, University of North Texas 1155 Union Circle #311070, Denton, TX 76203-5017, USA
| | - Arnold van Huis
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| | - Ziniu Yu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Salvatore Fasulo
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Via F. Stagno D'Alcontres n.31, 98166 Messina, Italy
| | - Jibin Zhang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
32
|
Fang X, Li Q, Lin Y, Lin X, Dai Y, Guo Z, Pan D. Screening of a microbial consortium for selective degradation of lignin from tree trimmings. BIORESOURCE TECHNOLOGY 2018; 254:247-255. [PMID: 29413930 DOI: 10.1016/j.biortech.2018.01.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 05/27/2023]
Abstract
To acquire microbial consortia with effectively precedent degradation of lignin, samples obtained from rotten trunks, rotten stumps and soil near it were screened and isolated after generations of subculture. The dynamic change illustrated that their community structures were affected by pH and tended to be stable after 6 days' cultivation. The desired one, named DM-1, was gained through successive cultivation for over 5 generations, whose high selectivity in lignin degradation was observed within 16 days' cultivation (SV = 2.78). Meanwhile, a remarkable reduction in the fiber crystallinity of tree trimmings (10.35%) resulted from the bio-degradation of DM-1, displayed a greater exposure of cellulose by selective removal of lignin. The diversity analysis of DM-1 was investigated by PCR amplification and 16S rDNA sequencing, indicated that mesorhizobium, cellulosimicrobium, pandoraea, achromobacter and stenotrophomones were the predominant genera. Furthermore, fungi (3 strains), bacteria (4 strains) and actinomycetes (5 strains) constituted 12 strains in total were gained by plate isolation from DM-1.
Collapse
Affiliation(s)
- Xiuxiu Fang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Qiumin Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; School of Agriculture and Food Science, Belfield Campus, University College Dublin, Dublin 4, Ireland
| | - Yunqin Lin
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Integrate Microbiology Research Center, South China Agricultural University, Guangzhou, Guangdong 510642, PR China.
| | - Xinlei Lin
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Yiqi Dai
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Zexiang Guo
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Dezhao Pan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| |
Collapse
|
33
|
Awasthi SK, Wong JWC, Li J, Wang Q, Zhang Z, Kumar S, Awasthi MK. Evaluation of microbial dynamics during post-consumption food waste composting. BIORESOURCE TECHNOLOGY 2018; 251:181-188. [PMID: 29274858 DOI: 10.1016/j.biortech.2017.12.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 06/07/2023]
Abstract
The objective of present study was to evaluate the efficacy of bacterial consortium to boost the microbial population and enzyme activities during post-consumption food waste (PCFWs) composting. Three treatments of PCFWs mixed with saw dust and 10% zeolite (dry weight basis) was design, where treatments T-2 and T-3 were applied with two distinctive bacterial consortium, respectively, while T-1 was served as control. The results showed that total aerobic proteolytic, amylolytic, cellulolytic, oil degrading and total aerobic bacteria populations were significantly higher in treatment T2 and T3 than T1. Consequently, the selected hydrolytic enzymes were also higher in T2 and T3 than T1, whose apparently gave the interesting information about rate of decomposition and end product stability. Furthermore, T2 and T3 showed significant correlations between the enzymatic activities and microbial population with other physico-chemical parameters. Based on germination assays and CO2-C evolution rate, T2 and T3 were considered phytotoxic free and highly stable final compost on day 56.
Collapse
Affiliation(s)
- Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Jonathan W C Wong
- Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Jiao Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Quan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Sunil Kumar
- Solid and Hazardous Waste Management Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur 440 020, Maharashtra, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Department of Biotechnology, Amicable Knowledge Solution University, Satna, India.
| |
Collapse
|
34
|
Wang K, Mao H, Li X. Functional characteristics and influence factors of microbial community in sewage sludge composting with inorganic bulking agent. BIORESOURCE TECHNOLOGY 2018; 249:527-535. [PMID: 29080516 DOI: 10.1016/j.biortech.2017.10.034] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/01/2017] [Accepted: 10/07/2017] [Indexed: 05/25/2023]
Abstract
The metabolic function of microbial community dominated organics and nutrients transformation in aerobic composting process. In this study, the metabolic characteristics of bacterial and fungal communities were evaluated in 60 days composting of sludge and pumice by using FUNGuild and PICRUSt, respectively. The results showed that microbial community structure and metabolic characteristics were distinctively different at four composting periods. Bacterial genes related to carbohydrate metabolisms decreased during the first 30 days, but bacterial sequences associated with oxidative phosphorylation and fatty acids synthesis were enhanced in curing phase. Most of fungal animal pathogen and plant pathogen disappeared after treatment, and the abundance of saprotroph fungi increased from 44.3% to 97.8%. Oxidation reduction potential (ORP) significantly increased from -28 to 175 mV through incubation. RDA analysis showed that ORP was a crucial factor on the succession of both bacterial and fungal communities in sludge composting system.
Collapse
Affiliation(s)
- Ke Wang
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, 73 Huanghe Road, Harbin, Heilongjiang 150090, China
| | - Hailong Mao
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, 73 Huanghe Road, Harbin, Heilongjiang 150090, China
| | - Xiangkun Li
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, 73 Huanghe Road, Harbin, Heilongjiang 150090, China.
| |
Collapse
|
35
|
Vieira FR, Pecchia JA. An Exploration into the Bacterial Community under Different Pasteurization Conditions during Substrate Preparation (Composting-Phase II) for Agaricus bisporus Cultivation. MICROBIAL ECOLOGY 2018; 75:318-330. [PMID: 28730353 DOI: 10.1007/s00248-017-1026-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/27/2017] [Indexed: 06/07/2023]
Abstract
Substrate preparation (i.e., composting) for Agaricus bisporus cultivation is the most critical point of mushroom production. Among many factors involved in the composting process, the microbial ecology of the system is the underlying drive of composting and can be influenced by composting management techniques. Pasteurization temperature at the beginning of phase II, in theory, may influence the bacterial community and subsequently the "selectivity" and nutrition of the final substrate. Therefore, this hypothesis was tested by simulation in bioreactors under different pasteurization conditions (57 °C/6 h, 60 °C/2 h, and 68 °C/2 h), simulating conditions adopted by many producers. Bacterial diversity, based on 16S ribosomal RNA obtained by high-throughput sequencing and classified in operational taxonomic units (OTUs), was greater than previously reported using culture-dependent methods. Alpha diversity estimators show a lower diversity of OTUs under a high-temperature pasteurization condition. Bacillales order shows a relatively higher OTU abundance under a high-pasteurization temperature, which also was related to high ammonia emission measurements. On the other hand, beta diversity analysis showed no significantly changes in the bacterial community structure under different conditions. Agaricus bisporus mycelium growth during a standard spawn run period was significantly slower in the compost pasteurized at high temperature. Since the bacterial community structure was not greatly affected by different pasteurization conditions but by-products left (e.g., ammonia) at the end of compost conditioning varied, further studies need to be conducted to determine the functional role of the microbial communities found during substrate preparation for Agaricus bisporus cultivation.
Collapse
Affiliation(s)
- Fabricio Rocha Vieira
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, USA
- Departamento de Engenharia Rural, Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, São Paulo, Brazil
| | - John Andrew Pecchia
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
36
|
Lewin GR, Carlos C, Chevrette MG, Horn HA, McDonald BR, Stankey RJ, Fox BG, Currie CR. Evolution and Ecology of Actinobacteria and Their Bioenergy Applications. Annu Rev Microbiol 2017; 70:235-54. [PMID: 27607553 DOI: 10.1146/annurev-micro-102215-095748] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ancient phylum Actinobacteria is composed of phylogenetically and physiologically diverse bacteria that help Earth's ecosystems function. As free-living organisms and symbionts of herbivorous animals, Actinobacteria contribute to the global carbon cycle through the breakdown of plant biomass. In addition, they mediate community dynamics as producers of small molecules with diverse biological activities. Together, the evolution of high cellulolytic ability and diverse chemistry, shaped by their ecological roles in nature, make Actinobacteria a promising group for the bioenergy industry. Specifically, their enzymes can contribute to industrial-scale breakdown of cellulosic plant biomass into simple sugars that can then be converted into biofuels. Furthermore, harnessing their ability to biosynthesize a range of small molecules has potential for the production of specialty biofuels.
Collapse
Affiliation(s)
- Gina R Lewin
- Department of Bacteriology, University of Wisconsin-Madison, Wisconsin 53706; .,Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Wisconsin 53726
| | - Camila Carlos
- Department of Bacteriology, University of Wisconsin-Madison, Wisconsin 53706; .,Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Wisconsin 53726
| | - Marc G Chevrette
- Department of Bacteriology, University of Wisconsin-Madison, Wisconsin 53706; .,Department of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Heidi A Horn
- Department of Bacteriology, University of Wisconsin-Madison, Wisconsin 53706;
| | - Bradon R McDonald
- Department of Bacteriology, University of Wisconsin-Madison, Wisconsin 53706; .,Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Wisconsin 53726
| | - Robert J Stankey
- Department of Bacteriology, University of Wisconsin-Madison, Wisconsin 53706; .,Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Wisconsin 53726
| | - Brian G Fox
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Wisconsin 53726.,Department of Biochemistry, University of Wisconsin-Madison, Wisconsin 53706
| | - Cameron R Currie
- Department of Bacteriology, University of Wisconsin-Madison, Wisconsin 53706; .,Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Wisconsin 53726
| |
Collapse
|
37
|
Li S, Li J, Yuan J, Li G, Zang B, Li Y. The influences of inoculants from municipal sludge and solid waste on compost stability, maturity and enzyme activities during chicken manure composting. ENVIRONMENTAL TECHNOLOGY 2017; 38:1770-1778. [PMID: 28278782 DOI: 10.1080/09593330.2017.1291755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 01/31/2017] [Indexed: 06/06/2023]
Abstract
The aim of this study was to investigate the influence of inoculants on compost stability, maturity and enzyme activities during composting of chicken manure and cornstalk. Two microbial inoculants (originated from aerobic municipal sludge and municipal solid waste, respectively) were used in composting at the rate of 0.3% of initial raw materials (wet weight). No microbial inoculums were added to the control. The experiment was conducted under aerobic conditions for 53 days. The results show that enzyme activity is an important index to comprehensively evaluate the composting stability and maturity. Microbes originated from sludge works best in terms of composting stability and maturity (C:N ratio decreased from 15.5 to 10, and germination index increased to 109%). Microbial inoculums originated from sludge and municipal solid waste extended the time of thermophilic phase for 11 and 7 days, respectively. Microbial inoculums originated from sludge and MSW significantly increased the average of catalase activity (by 15.0% and 12.1%, respectively), urease activity (by 21.5% and 12.2%, respectively) and cellulase activity (by 32.1% and 26.1%, respectively) during composting.
Collapse
Affiliation(s)
- Shuyan Li
- a College of Resources and Environmental Sciences , China Agricultural University , Beijing , People's Republic of China
| | - Jijin Li
- b Institute of Plant Nutrition and Resources , Beijing Academy of Agriculture and Forestry Sciences , Beijing , People's Republic of China
| | - Jing Yuan
- a College of Resources and Environmental Sciences , China Agricultural University , Beijing , People's Republic of China
| | - Guoxue Li
- a College of Resources and Environmental Sciences , China Agricultural University , Beijing , People's Republic of China
| | - Bing Zang
- a College of Resources and Environmental Sciences , China Agricultural University , Beijing , People's Republic of China
| | - Yangyang Li
- a College of Resources and Environmental Sciences , China Agricultural University , Beijing , People's Republic of China
| |
Collapse
|
38
|
Zhang L, Zeng G, Dong H, Chen Y, Zhang J, Yan M, Zhu Y, Yuan Y, Xie Y, Huang Z. The impact of silver nanoparticles on the co-composting of sewage sludge and agricultural waste: Evolutions of organic matter and nitrogen. BIORESOURCE TECHNOLOGY 2017; 230:132-139. [PMID: 28189966 DOI: 10.1016/j.biortech.2017.01.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/11/2017] [Accepted: 01/15/2017] [Indexed: 06/06/2023]
Abstract
This study evaluated the influence of silver nanoparticles (AgNPs) on evolutions of organic matter and nitrogen during co-composting of sewage sludge and agricultural waste. Two co-composting piles were conducted, one was treated without AgNPs (pile 1) and the other with AgNPs (pile 2). Results showed that the AgNPs affected the quality of final composts. Less organic matter (OM) losses were determined in pile 2 (57.96%) than pile 1 (61.66%). 27.22% and 30.1% of the initial total organic matter (TOC) was decomposed in pile 1 and pile 2, respectively. The final water soluble carbon (WSC) concentration in pile 2 was 23559.27mg/kg DW compost which was significantly lower than pile 1 (25642.75mg/kg DW compost). Changes of different forms of nitrogen in the two piles showed that AgNPs could reduce the losses of TN but increase the losses of mineral N.
Collapse
Affiliation(s)
- Lihua Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Haoran Dong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yaoning Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410082, PR China
| | - Ming Yan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yuan Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yujie Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yankai Xie
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Zhenzhen Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
39
|
Bohacz J. Lignocellulose-degrading enzymes, free-radical transformations during composting of lignocellulosic waste and biothermal phases in small-scale reactors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 580:744-754. [PMID: 27986311 DOI: 10.1016/j.scitotenv.2016.12.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/16/2016] [Accepted: 12/03/2016] [Indexed: 05/23/2023]
Abstract
Environmentally friendly strategies of waste management are both part of legal solutions currently in place and a focus of interest worldwide. Large-scale composting plants are set up across various regions while home composting is becoming increasingly popular. A variety of microbial groups are successively at work during composting and enzymatic activities detected in the composting mass fluctuate accordingly. Changes in the activities of oxidoreductases and hydrolases, i.e. glucose oxidase, horseradish peroxidase, lignin peroxidase, laccase, xylanase, superoxide dismutase and keratinase, low-molecular weight compounds, i.e. methoxyphenolic and hydroxyphenolic compounds, and the relative level of superoxide radicals and glucose were determined periodically in water extracts of composts to investigate the process of biochemical transformations of ligninocellulose in relation to biothermal phases and to identify a potential priming effect in two composts containing different ratios of lignocellulosic waste and chicken feathers. Composting was conducted for 30weeks. An important aim of the study was to demonstrate that a positive priming effect was induced during composting of a variety of lignocellulosic waste types using native keratin (chicken feathers) as a source of N. The effect was more evident in compost containing grass, which was related to a more rapid depletion of easily available sources of C and energy (glucose) during composting. Ligninolytic enzymes known to biodegrade recalcitrant organic matter were induced in subsequent biothermal phases of composting. Compost I enriched with grass (pine bark, grass, sawdust and chicken feathers) exhibited a higher enzymatic activity than compost II which did not contain any grass but which had a greater number of hardly-degradable components (pine bark, wheat straw, sawdust, chicken feathers). Similar observations were made for the concentrations of low-molecular weight compounds. The enzymes activities and concentration of low-molecular weight compounds listed above can be used to estimate the biodegradation of lignocellulose during composting.
Collapse
Affiliation(s)
- Justyna Bohacz
- University of Life Sciences, Faculty of Agrobioengineering, Department of Environmental Microbiology, Laboratory of Mycology, 7 Leszczyńskiego Street, 20-069 Lublin, Poland.
| |
Collapse
|
40
|
Limaye L, Patil R, Ranadive P, Kamath G. Application of Potent Actinomycete Strains for Bio-Degradation of Domestic Agro-Waste by Composting and Treatment of Pulp-Paper Mill Effluent. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/aim.2017.71008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Optimization of Cellulase and Xylanase Production by Micrococcus Species under Submerged Fermentation. SUSTAINABILITY 2016. [DOI: 10.3390/su8111168] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
A Novel Manno-Oligosaccharide Binding Protein Identified in Alkaliphilic Bacillus sp. N16-5 Is Involved in Mannan Utilization. PLoS One 2016; 11:e0150059. [PMID: 26978267 PMCID: PMC4792470 DOI: 10.1371/journal.pone.0150059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/09/2016] [Indexed: 11/19/2022] Open
Abstract
ManH, a novel substrate-binding protein of an ABC transporter, was identified from the mannan utilization gene cluster of Bacillus sp. N16-5. We cloned, overexpressed, and purified ManH and measured its binding affinity to different substrates by isothermal titration calorimetry. ManH binds to mannotriose, mannotetraose, mannopentose, and galactosyl-mannotriose with dissociation constants in the micromolar range. Deletion of manH led to decreased growth ability of the strain when cultivated in medium with manno-oligosaccharides or mannan as the carbon source. ManH belongs to a manno-oligosaccharide transporter and plays an important role in mannan utilization by Bacillus sp. N16-5.
Collapse
|
43
|
Wang HB, Han LR, Feng JT, Zhang X. Evaluation of microbially enhanced composting of sophora flavescens residues. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2016; 51:63-70. [PMID: 26578168 DOI: 10.1080/03601234.2015.1080503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The effects of inoculants on the composting of Sophora flavescens residues were evaluated based on several physical, chemical and biological parameters, as well as the infrared spectra. Compared to the control compost without inoculants, the treatment compost with inoculants (Bacillus subtilis strain G-13 and Chaetomium thermophilum strain GF-1) had a significantly longer thermophilic duration, higher cellulase activity and a higher degradation rate of cellulose, hemicellulose and lignin (P < 0.05). Thus, a higher maturity degree of compost with apparently lower C:N ratio (15.88 vs. 17.77) and NH4-N:NO3-N ratio (0.16 vs. 0.20) was obtained with the inoculation comparing with the control (P < 0.05). Besides, the inoculants could markedly accelerate the composting process and increase the maturity degree of compost as indicated by the germination index (GI) in which the treatment reached the highest GI of 133.2% at day 15 while the control achieved the highest GI of 125.7% at day 30 of the composting. Inoculation with B. subtilis and C. thermophilum is a useful method to enhance the S. flavescens residues composting according to this study.
Collapse
Affiliation(s)
- Hai B Wang
- a Research and Development Center of Biorational Pesticides, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Northwest A & F University , Yangling , P. R. China
| | - Li R Han
- a Research and Development Center of Biorational Pesticides, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Northwest A & F University , Yangling , P. R. China
| | - Jun T Feng
- a Research and Development Center of Biorational Pesticides, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Northwest A & F University , Yangling , P. R. China
| | - Xing Zhang
- a Research and Development Center of Biorational Pesticides, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Northwest A & F University , Yangling , P. R. China
| |
Collapse
|
44
|
Ventorino V, Parillo R, Testa A, Viscardi S, Espresso F, Pepe O. Chestnut green waste composting for sustainable forest management: Microbiota dynamics and impact on plant disease control. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 166:168-77. [PMID: 26496847 DOI: 10.1016/j.jenvman.2015.10.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 09/25/2015] [Accepted: 10/11/2015] [Indexed: 05/03/2023]
Abstract
Making compost from chestnut lignocellulosic waste is a possible sustainable management strategy for forests that employs a high-quality renewable organic resource. Characterization of the microbiota involved in composting is essential to better understand the entire process as well as the properties of the final product. Therefore, this study investigated the microbial communities involved in the composting of chestnut residues obtained from tree cleaning and pruning. The culture-independent approach taken highlighted the fact that the microbiota varied only slightly during the process, with the exception of those of the starting substrate and mature compost. The statistical analysis indicated that most of the bacterial and fungal species in the chestnut compost persisted during composting. The dominant microbial population detected during the process belonged to genera known to degrade recalcitrant lignocellulosic materials. Specifically, we identified fungal genera, such as Penicillium, Fusarium, Cladosporium, Aspergillus and Mucor, and prokaryotic species affiliated with Bacilli, Actinobacteria, Flavobacteria and γ-Proteobacteria. The suppressive properties of compost supplements for the biocontrol of Sclerotinia minor and Rhizoctonia solani were also investigated. Compared to pure substrate, the addition of compost to the peat-based growth substrates resulted in a significant reduction of disease in tomato plants of up to 70 % or 51 % in the presence of Sclerotinia minor or Rhizoctonia solani, respectively. The obtained results were related to the presence of putative bio-control agents and plant growth-promoting rhizobacteria belonging to the genera Azotobacter, Pseudomonas, Stenotrophomonas, Bacillus, Flavobacterium, Streptomyces and Actinomyces in the chestnut compost. The composting of chestnut waste may represent a sustainable agricultural practice for disposing of lignocellulosic waste by transforming it into green waste compost that can be used to improve the fitness of agricultural plants.
Collapse
Affiliation(s)
- Valeria Ventorino
- Department of Agriculture, Division of Microbiology, University of Naples Federico II, Via Università, 100, 80055, Portici, NA, Italy
| | - Rita Parillo
- Department of Agriculture, Division of Biology and Protection of Agricultural and Forest Systems, University of Naples Federico II, Via Università, 100, 80055, Portici, NA, Italy
| | - Antonino Testa
- Department of Agriculture, Division of Biology and Protection of Agricultural and Forest Systems, University of Naples Federico II, Via Università, 100, 80055, Portici, NA, Italy
| | - Sharon Viscardi
- Department of Agriculture, Division of Microbiology, University of Naples Federico II, Via Università, 100, 80055, Portici, NA, Italy
| | - Francesco Espresso
- Department of Agriculture, Division of Microbiology, University of Naples Federico II, Via Università, 100, 80055, Portici, NA, Italy
| | - Olimpia Pepe
- Department of Agriculture, Division of Microbiology, University of Naples Federico II, Via Università, 100, 80055, Portici, NA, Italy.
| |
Collapse
|
45
|
Shi S, Zou D, Wang Q, Xia X, Zheng T, Wu C, Gao M. Responses of ammonia-oxidizing bacteria community composition to temporal changes in physicochemical parameters during food waste composting. RSC Adv 2016. [DOI: 10.1039/c5ra22067j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This paper aimed to identify and prioritize some environmental parameters that affect AOB community composition during food waste composting.
Collapse
Affiliation(s)
- Shanshan Shi
- Department of Environmental Engineering
- University of Science and Technology Beijing
- Beijing 100083
- P. R. China
| | - Dexun Zou
- Centre for Resource and Environmental Research
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Qunhui Wang
- Department of Environmental Engineering
- University of Science and Technology Beijing
- Beijing 100083
- P. R. China
- Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants
| | - Xunfeng Xia
- Laboratory of Water Environmental System Engineering
- Chinese Research Academy of Environmental Science
- Beijing 100012
- P. R. China
| | - Tianlong Zheng
- Department of Environmental Engineering
- University of Science and Technology Beijing
- Beijing 100083
- P. R. China
| | - Chuanfu Wu
- Department of Environmental Engineering
- University of Science and Technology Beijing
- Beijing 100083
- P. R. China
| | - Ming Gao
- Laboratory of Microbial Technology
- Division of Systems Bioengineering
- Department of Bioscience and Biotechnology
- Faculty of Agriculture
- Graduate School
| |
Collapse
|
46
|
Juliasih NLGR, Yuan LC, Atsuta Y, Daimon H. Development of coupled supercritical fluid extraction-high performance liquid chromatography for quinone analysis in activated sludge. SEP SCI TECHNOL 2015. [DOI: 10.1080/01496395.2015.1086803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
47
|
phoD Alkaline Phosphatase Gene Diversity in Soil. Appl Environ Microbiol 2015; 81:7281-9. [PMID: 26253682 DOI: 10.1128/aem.01823-15] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/01/2015] [Indexed: 11/20/2022] Open
Abstract
Phosphatase enzymes are responsible for much of the recycling of organic phosphorus in soils. The PhoD alkaline phosphatase takes part in this process by hydrolyzing a range of organic phosphoesters. We analyzed the taxonomic and environmental distribution of phoD genes using whole-genome and metagenome databases. phoD alkaline phosphatase was found to be spread across 20 bacterial phyla and was ubiquitous in the environment, with the greatest abundance in soil. To study the great diversity of phoD, we developed a new set of primers which targets phoD genes in soil. The primer set was validated by 454 sequencing of six soils collected from two continents with different climates and soil properties and was compared to previously published primers. Up to 685 different phoD operational taxonomic units were found in each soil, which was 7 times higher than with previously published primers. The new primers amplified sequences belonging to 13 phyla, including 71 families. The most prevalent phoD genes identified in these soils were affiliated with the orders Actinomycetales (13 to 35%), Bacillales (1 to 29%), Gloeobacterales (1 to 18%), Rhizobiales (18 to 27%), and Pseudomonadales (0 to 22%). The primers also amplified phoD genes from additional orders, including Burkholderiales, Caulobacterales, Deinococcales, Planctomycetales, and Xanthomonadales, which represented the major differences in phoD composition between samples, highlighting the singularity of each community. Additionally, the phoD bacterial community structure was strongly related to soil pH, which varied between 4.2 and 6.8. These primers reveal the diversity of phoD in soil and represent a valuable tool for the study of phoD alkaline phosphatase in environmental samples.
Collapse
|
48
|
Xue C, Ryan Penton C, Shen Z, Zhang R, Huang Q, Li R, Ruan Y, Shen Q. Manipulating the banana rhizosphere microbiome for biological control of Panama disease. Sci Rep 2015; 5:11124. [PMID: 26242751 PMCID: PMC4525139 DOI: 10.1038/srep11124] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/29/2015] [Indexed: 12/03/2022] Open
Abstract
Panama disease caused by Fusarium oxysporum f. sp. cubense infection on banana is devastating banana plantations worldwide. Biological control has been proposed to suppress Panama disease, though the stability and survival of bio-control microorganisms in field setting is largely unknown. In order to develop a bio-control strategy for this disease, 16S rRNA gene sequencing was used to assess the microbial community of a disease-suppressive soil. Bacillus was identified as the dominant bacterial group in the suppressive soil. For this reason, B. amyloliquefaciens NJN-6 isolated from the suppressive soil was selected as a potential bio-control agent. A bioorganic fertilizer (BIO), formulated by combining this isolate with compost, was applied in nursery pots to assess the bio-control of Panama disease. Results showed that BIO significantly decreased disease incidence by 68.5%, resulting in a doubled yield. Moreover, bacterial community structure was significantly correlated to disease incidence and yield and Bacillus colonization was negatively correlated with pathogen abundance and disease incidence, but positively correlated to yield. In total, the application of BIO altered the rhizo-bacterial community by establishing beneficial strains that dominated the microbial community and decreased pathogen colonization in the banana rhizosphere, which plays an important role in the management of Panama disease.
Collapse
Affiliation(s)
- Chao Xue
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Utilization and National Engineering Research Center for Organic-based Fertilizers, Department of Plant Nutrition, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - C. Ryan Penton
- College of Letters and Sciences, Faculty of Science and Mathematics, Arizona State University, Mesa, AZ, 85212, USA
| | - Zongzhuan Shen
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Utilization and National Engineering Research Center for Organic-based Fertilizers, Department of Plant Nutrition, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Ruifu Zhang
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Utilization and National Engineering Research Center for Organic-based Fertilizers, Department of Plant Nutrition, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Qiwei Huang
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Utilization and National Engineering Research Center for Organic-based Fertilizers, Department of Plant Nutrition, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Rong Li
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Utilization and National Engineering Research Center for Organic-based Fertilizers, Department of Plant Nutrition, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yunze Ruan
- Hainan Key Lab for Banana Planting, College of Agriculture, Hainan University, Haikou, Hainan, 570228, PR China
| | - Qirong Shen
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Utilization and National Engineering Research Center for Organic-based Fertilizers, Department of Plant Nutrition, Nanjing Agricultural University, Nanjing, 210095, PR China
| |
Collapse
|
49
|
Supercritical Fluid Extraction of Quinones from Compost for Microbial Community Analysis. J CHEM-NY 2015. [DOI: 10.1155/2015/717616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Supercritical fluid extraction (SFE) was used to extract quinones from compost to monitor the microbial community dynamics during composting. The 0.3 g of dried compost was extracted using 3 mL min−1of carbon dioxide (90%) and methanol (10%) at 45°C and 25 MPa for a 30 min extraction time. The extracted quinones were analysed using ultra performance liquid chromatography (UPLC) with 0.3 mL min−1of methanol mobile phase for a 50 min chromatographic run time. A comparable detected amount of quinones was obtained using the developed method and an organic solvent extraction method, being 36.06 μmol kg−1and 34.54 μmol kg−1, respectively. Significantly low value of dissimilarity index (D) between the two methods (0.05) indicated that the quinone profile obtained by both methods was considered identical. The developed method was then applied to determine the maturity of the compost by monitoring the change of quinone during composting. The UQ-9 and MK-7 were predominant quinones in the initial stage of composting. The diversity of quinone became more complex during the cooling and maturation stages. This study showed that SFE had successfully extracted quinones from a complex matrix with simplification and rapidity of the analysis that is beneficial for routine analysis.
Collapse
|
50
|
Awasthi MK, Pandey AK, Khan J, Bundela PS, Wong JWC, Selvam A. Evaluation of thermophilic fungal consortium for organic municipal solid waste composting. BIORESOURCE TECHNOLOGY 2014; 168:214-221. [PMID: 24507579 DOI: 10.1016/j.biortech.2014.01.048] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/10/2014] [Accepted: 01/14/2014] [Indexed: 06/03/2023]
Abstract
Influence of fungal consortium and different turning frequency on composting of organic fraction of municipal solid waste (OFMSW) was investigated to produce compost with higher agronomic value. Four piles of OFMSW were prepared: three piles were inoculated with fungal consortium containing 5l each spore suspensions of Trichoderma viride, Aspergillus niger and Aspergillus flavus and with a turning frequency of weekly (Pile 1), twice a week (Pile 2) and daily (Pile 3), while Pile 4 with weekly turning and without fungal inoculation served as control. The fungal consortium with weekly (Pile 1) turning frequency significantly affected temperature, pH, TOC, TKN, C/N ratio and germination index. High degradation of organic matter and early maturity was observed in Pile 1. Results indicate that fungal consortium with weekly turning frequency of open windrows were more cost-effective in comparison with other technologies for efficient composting and yield safe end products.
Collapse
Affiliation(s)
- Mukesh Kumar Awasthi
- Regional Office, Madhya Pradesh Pollution Control Board, Jabalpur, India; Department of Biotechnology, Amicable Knowledge Solution University, Satna, India; Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | | | - Jamaluddin Khan
- Mycological Research Laboratory, Department of Biological Sciences, Rani Durgavati University, Jabalpur, India
| | | | - Jonathan W C Wong
- Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Ammaiyappan Selvam
- Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| |
Collapse
|