1
|
Joly FX, Cotrufo MF, Garnett MH, Johnson D, Lavallee JM, Mueller CW, Perks MP, Subke JA. Temperate grassland conversion to conifer forest destabilises mineral soil carbon stocks. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:124149. [PMID: 39837144 DOI: 10.1016/j.jenvman.2025.124149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/06/2025] [Accepted: 01/13/2025] [Indexed: 01/23/2025]
Abstract
Tree-planting is increasingly presented as a cost-effective strategy to maximise ecosystem carbon (C) storage and thus mitigate climate change. Its success largely depends on the associated response of soil C stocks, where most terrestrial C is stored. Yet, we lack a precise understanding of how soil C stocks develop following tree planting, and particularly how it affects the form in which soil C is stored and its associated stability and resistance to climate change. Here, we present changes in C and nitrogen (N) stored as mineral-associated organic matter (OM), occluded particulate OM, free particulate OM and dissolved OM, from four regional chronosequences of Scots pine (Pinus sylvestris L.) forests planted on former grasslands across Scotland. We found that c. 58-68 years after the plantation, bulk soil C and N stocks in the organic layer and the top 20 cm of mineral soil decreased by half relative to unforested grasslands - a decrease roughly equivalent to a third of the simultaneous C gain in the tree biomass. This pattern was driven predominantly by a decrease in the amount of C and N stored as mineral-associated OM, an OM fraction considered as relatively long-lived. Our findings demonstrate the need to estimate C storage in response to tree planting based both on soil C stocks and tree biomass, as the use of the latter alone may significantly over-estimate net C benefits of tree planting on permanent grasslands.
Collapse
Affiliation(s)
- François-Xavier Joly
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom; Eco&Sols, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France.
| | - M Francesca Cotrufo
- Department of Soil and Crop Sciences, Colorado State University, 200 W. Lake St., Fort Collins, CO, 80523, USA
| | - Mark H Garnett
- NEIF Radiocarbon Laboratory, Rankine Avenue, East Kilbride, Glasgow, G75 0QF, United Kingdom
| | - David Johnson
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Jocelyn M Lavallee
- Department of Soil and Crop Sciences, Colorado State University, 200 W. Lake St., Fort Collins, CO, 80523, USA; Environmental Defense Fund, 257 Park Ave S, New York, NY, 10010, USA
| | - Carsten W Mueller
- Institute of Ecology, Technische Universitaet Berlin, Ernst-Reuter-Platz 1, 10587, Berlin, Germany; University of Copenhagen, Øster Voldgade 10, 1350, Copenhagen K., Denmark
| | - Mike P Perks
- Forest Research, Bush Estate, Roslin, EH25 9SY, United Kingdom
| | - Jens-Arne Subke
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
| |
Collapse
|
2
|
Reed K, Dang C, Walkup J, Purcell A, Hungate B, Morrissey E. Comparing field and lab quantitative stable isotope probing for nitrogen assimilation in soil microbes. Appl Environ Microbiol 2025:e0184924. [PMID: 39817737 DOI: 10.1128/aem.01849-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/15/2024] [Indexed: 01/18/2025] Open
Abstract
Soil microbial communities play crucial roles in nutrient cycling and can help retain nitrogen in agricultural soils. Quantitative stable isotope probing (qSIP) is a useful method for investigating taxon-specific microbial growth and utilization of specific nutrients, such as nitrogen (N). Typically, qSIP is performed in a highly controlled lab setting, so the field relevance of lab qSIP studies remains unknown. We conducted and compared tandem lab and field qSIP to quantify the assimilation of 15N by maize-associated soil prokaryotic communities at two agricultural sites. Here, we show that field qSIP with 15N can be used to measure taxon-specific microbial N assimilation. Relative 15N assimilation rates were generally lower in the field, and the magnitude of this difference varied by site. Rates differed by method (lab vs field) for 19% of the top N assimilating genera. The field and lab measures were more comparable when relative assimilation rates were weighted by relative abundance to estimate the proportion of N assimilated by each genus with only ~10% of taxa differing by method. Of those that differed, the taxa consistently higher in the lab were inclined to have opportunistic lifestyle strategies, whereas those higher in the field had niches reliant on plant roots or in-tact soil structure (biofilms, mycelia). This study demonstrates that 15N-qSIP can be successfully performed using field-incubated soils to identify microbial allies in N retention and highlights the strengths and limitations of field and lab qSIP approaches. IMPORTANCE Soil microbes are responsible for critical biogeochemical processes in natural and agricultural ecosystems. Despite their importance, the functional traits of most soil organisms remain woefully under-characterized, limiting our ability to understand how microbial populations influence the transformation of elements such as nitrogen (N) in soil. Quantitative stable isotope probing (qSIP) is a powerful tool to measure the traits of individual taxa. This method has rarely been applied in the field or with 15N to measure nitrogen assimilation. In this study, we measured genus-specific microbial nitrogen assimilation in two agricultural soils and compared field and lab 15N qSIP methods. Our results identify taxa important for nitrogen assimilation in agricultural soils, shed light on the field relevance of lab qSIP studies, and provide guidance for the future application of qSIP to measure microbial traits in the field.
Collapse
Affiliation(s)
- Kinsey Reed
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Chansotheary Dang
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Jeth Walkup
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Alicia Purcell
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
| | - Bruce Hungate
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Ember Morrissey
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
3
|
Jamoteau F, Kansiz M, Unger M, Keiluweit M. Probing Mineral-Organic Interfaces in Soils and Sediments Using Optical Photothermal Infrared Microscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:501-512. [PMID: 39704552 DOI: 10.1021/acs.est.4c09258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Interactions among microbes, minerals, and organic matter are key controls on carbon, nutrient, and contaminant dynamics in soils and sediments. However, probing these interactions at relevant scales and through time remains an analytical challenge due to both their complex nature and the need for tools permitting nondestructive and real-time analysis at sufficient spatial resolution. Here, we demonstrate the ability and provide analytical recommendations for the submicron-scale characterization of complex mineral-organic microstructures using optical photothermal infrared (O-PTIR) microscopy. Compared to conventional infrared techniques, O-PTIR spectra collected at submicron resolution of environmentally relevant mineral and organic reference compounds demonstrated similar spectral quality and sensitivity. O-PTIR detection sensitivity was greatest for highly crystalline minerals and potentially for low molecular weight organic compounds. Due to photothermal effects, O-PTIR was more sensitive toward organics than minerals compared to conventional IR approaches, even when organics were mineral-bound. Moreover, O-PTIR resolved mineral-bound and unbound organics in a complex mixture at submicron (<500 nm) resolution. Finally, we provide best practices for artifact-free analysis of organic and mineral samples by determining the appropriate laser power using damage thresholds. Our results highlight the potential of O-PTIR microscopy for nondestructive and time-resolved analysis of dynamic microbe-mineral-organic matter interactions in soils and sediments.
Collapse
Affiliation(s)
- Floriane Jamoteau
- Institute of Earth Surface Dynamics, University of Lausanne, Lausanne 1015 CH, Switzerland
| | - Mustafa Kansiz
- Photothermal Spectroscopy Corporation, Santa Barbara, California 93101, United States
| | - Miriam Unger
- Photothermal Spectroscopy Corporation, Santa Barbara, California 93101, United States
| | - Marco Keiluweit
- Institute of Earth Surface Dynamics, University of Lausanne, Lausanne 1015 CH, Switzerland
| |
Collapse
|
4
|
Dunn PJ, Gilbertson LM. A mechanistic model for determining factors that influence inorganic nitrogen fate in corn cultivation. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025. [PMID: 39782020 DOI: 10.1039/d4em00566j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Conventional practices for inorganic nitrogen fertilizer are highly inefficient leading to excess nitrogen in the environment. Excess environmental nitrogen induces ecological (e.g., hypoxia, eutrophication) and public health (e.g., nitrate contaminated drinking water) consequences, motivating adoption of management strategies to improve fertilizer use efficiency. Yet, how to limit the environmental impacts from inorganic nitrogen fertilizer while maintaining crop yields is a persistent challenge. The lack of empirical data on the fate and transport of nitrogen in an agriculture soil-crop system and how transport changes under varying conditions limits our ability to address this challenge. To this end, we developed a mechanistic model to assess how various parameters within a soil-crop system affect where nitrogen goes and inform how we can perturb the system to improve crop nitrogen content while reducing nitrogen emissions to the environment. The model evaluates nitrogen transport and distribution in the soil-corn plant system on a conventional Iowa corn farm. Simulations determine the amount of applied nitrogen fertilizer acquired by the crop root system, leached to groundwater, lost to tile drainage, and denitrified. Through scenario modeling, it was found that reducing application rates from 200 kg ha-1 to 160 kg ha-1 had limited impact on plant nitrogen content, while decreasing wasted nitrogen fertilizer by 25%. Delayed application until June significantly increased the f-NUE and denitrification while reducing the amount of fertilizer leached and exported through tile drainage. The value in a model like the one presented herein, is the ability to perturb the system through manipulation of variables representative of a specific scenario of interest to inform how one can improve crop-based nitrogen management.
Collapse
Affiliation(s)
- Patrick J Dunn
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Leanne M Gilbertson
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
5
|
Su J, Ma Y, Xu Z, Liu Y, Zhao Y, Li X, Hu Y. Cumulative effects of experimental nitrogen deposition on soil chemistry in a desert steppe: A 12-year field study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175388. [PMID: 39122050 DOI: 10.1016/j.scitotenv.2024.175388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/10/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Although the effects of human-enhanced atmospheric nitrogen (N) deposition are well documented, the response of dryland soils to N deposition remains unclear owing to the divergence in hydrological outputs and soil heterogeneity. We selected a typical desert steppe in western China to simulate the effects of long-term N deposition by applying 0 (CK), 3.5, 7, and 14 g N m-2 yr-1 for 12 consecutive years. We found that, compared with the CK plots, the total N content of the upper (0-10 cm) and lower (10-20 cm) soil layers in fertilized plots increased by 8.3-14.6 % and 2.4-8.2 %, respectively. Correspondingly, the available, NH4+-, and NO3--N contents in the upper soil significantly increased by 25.5-68.3 %. However, in the lower soil, available and NO3--N contents were significantly lower than those in the CK plots, and their variation trend was opposite to that of NH4+-N, implying N turnover and leaching. As a result, the upper and lower soil pH in fertilized plots significantly decreased by 0.36-0.53 and 0.31-0.37 units; however, their CaCO3 content significantly increased by 9.8-22.8 % and 7.2-30.3 %, respectively. The total phosphorus (P) content in the upper and lower soil layers in fertilized plots significantly increased and decreased by 3.6-51.3 % and 16.7-62.5 %, respectively, however, both significantly decreased along the N fertilization gradient. Furthermore, the upper and lower soil organic carbon (SOC) content in the fertilized plots significantly increased by 57.7-78.1 % and 19.2-27.4 %, respectively. Pearson's correlation analysis revealed that available soil P was significantly negatively correlated with plant shoot Mn content (a proxy for rhizosphere carboxylates), whereas dissolved OC, SOC, and CaCO3 were significantly positively correlated, suggesting that Ca cycling is involved in P cycling and SOC sequestration. Our study suggests that long-term N input exacerbates P limitation in desert steppes, however, enhances SOC sequestration.
Collapse
Affiliation(s)
- Jieqiong Su
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands and Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Ying Ma
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Zhihao Xu
- MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yinzhu Liu
- MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yang Zhao
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands and Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xinrong Li
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands and Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yahu Hu
- MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
6
|
L’Espérance E, Bouyoucef LS, Dozois JA, Yergeau E. Tipping the plant-microbe competition for nitrogen in agricultural soils. iScience 2024; 27:110973. [PMID: 39391734 PMCID: PMC11466649 DOI: 10.1016/j.isci.2024.110973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
Nitrogen (N) is the most limiting nutrient in agroecosystems, and its indiscriminate application is at the center of the environmental challenges facing agriculture. To solve this dilemma, crops' nitrogen use efficiency (NUE) needs to increase - in other words, more of the applied nitrogen needs to reach humans. Microbes are the key to cracking this problem. Microbes use nitrogen as an energy source, an electron acceptor, or incorporate it in their biomass. These activities change the form and availability of nitrogen for crops' uptake, impacting its NUE, yields and produce quality. Plants (and microbes) have, however, evolved many mechanisms to compete for soil nitrogen. Understanding and harnessing these competitive mechanisms would enable us to tip the nitrogen balance to the advantage of crops. We will review these competitive mechanisms and highlight some approaches that were applied to reduce microbial competition for N in an agricultural context.
Collapse
Affiliation(s)
- Emmy L’Espérance
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec H7V1B7, Canada
| | - Lilia Sabrina Bouyoucef
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec H7V1B7, Canada
| | - Jessica A. Dozois
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec H7V1B7, Canada
| | - Etienne Yergeau
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec H7V1B7, Canada
| |
Collapse
|
7
|
Tang Q, Moeskjær S, Cotton A, Dai W, Wang X, Yan X, Daniell TJ. Organic fertilization reduces nitrous oxide emission by altering nitrogen cycling microbial guilds favouring complete denitrification at soil aggregate scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174178. [PMID: 38917905 DOI: 10.1016/j.scitotenv.2024.174178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
Agricultural management practices can induce changes in soil aggregation structure that alter the microbial nitrous oxide (N2O) production and reduction processes occurring at the microscale, leading to large-scale consequences for N2O emissions. However, the mechanistic understanding of how organic fertilization affects these context-dependent small-scale N2O emissions and associated key nitrogen (N) cycling microbial communities is lacking. Here, denitrification gas (N2O, N2) and potential denitrification capacity N2O/(N2O + N2) were assessed by automated gas chromatography in different soil aggregates (>2 mm, 2-0.25 and <0.25 mm), while associated microbial communities were assessed by sequencing and qPCR of N2O-producing (nirK and nirS) and reducing (nosZ clade I and II) genes. The results indicated that organic fertilization reduced N2O emissions by enhancing the conversion of N2O to N2 in all aggregate sizes. Moreover, potential N2O production and reduction hotspots occurred in smaller soil aggregates, with the degree depending on organic fertilizer type and application rate. Further, significantly higher abundance and diversity of nosZ clades relative to nirK and nirS revealed complete denitrification promoted through selection of denitrifying communities at microscales favouring N2O reduction. Communities associated with high and low emission treatments form modules with specific sequence types which may be diagnostic of emission levels. Taken together, these findings suggest that organic fertilizers reduced N2O emissions through influencing soil factors and patterns of niche partitioning between N2O-producing and reducing communities within soil aggregates, and selection for communities that overall are more likely to consume than emit N2O. These findings are helpful in strengthening the ability to predict N2O emissions from agricultural soils under organic fertilization as well as contributing to the development of net-zero carbon strategies for sustainable agriculture.
Collapse
Affiliation(s)
- Quan Tang
- Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
| | - Sara Moeskjær
- Microbiology to Molecular Microbiology: Biochemistry to Disease, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Anne Cotton
- Microbiology to Molecular Microbiology: Biochemistry to Disease, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK; Department of Earth and Environmental Sciences, The University of Manchester, Williamson Building, Manchester M13 9PY, UK; Manchester Institute of Biotechnology, The University of Manchester, John Garside Building, 131 Princess Street, Manchester M1 7DN, UK
| | - Wenxia Dai
- Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
| | - Xiaozhi Wang
- Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyuan Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Tim J Daniell
- Microbiology to Molecular Microbiology: Biochemistry to Disease, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK.
| |
Collapse
|
8
|
Feng B, Ma J, Liu Y, Wang L, Zhang X, Zhang Y, Zhao J, He W, Chen Y, Weng L. Application of machine learning approaches to predict ammonium nitrogen transport in different soil types and evaluate the contribution of control factors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116867. [PMID: 39154501 DOI: 10.1016/j.ecoenv.2024.116867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/16/2024] [Accepted: 08/09/2024] [Indexed: 08/20/2024]
Abstract
The loss of nitrogen in soil damages the environment. Clarifying the mechanism of ammonium nitrogen (NH4+-N) transport in soil and increasing the fixation of NH4+-N after N application are effective methods for improving N use efficiency. However, the main factors are not easily identified because of the complicated transport and retardation factors in different soils. This study employed machine learning (ML) to identify the main influencing factors that contribute to the retardation factor (Rf) of NH4+-N in soil. First, NH4+-N transport in the soil was investigated using column experiments and a transport model. The Rf (1.29 - 17.42) was calculated and used as a proxy for the efficacy of NH4+-N transport. Second, the physicochemical parameters of the soil were determined and screened using lasso and ridge regressions as inputs for the ML model. Third, six machine learning models were evaluated: Adaptive Boosting, Extreme Gradient Boosting (XGB), Random Forest, Gradient Boosting Regression, Multilayer Perceptron, and Support Vector Regression. The optimal ML model of the XGB model with a low mean absolute error (0.81), mean squared error (0.50), and high test r2 (0.97) was obtained by random sampling and five-fold cross-validation. Finally, SHapely Additive exPlanations, entropy-based feature importance, and permutation characteristic importance were used for global interpretation. The cation exchange capacity (CEC), total organic carbon (TOC), and Kaolin had the greatest effects on NH4+-N transport in the soil. The accumulated local effect offered a fundamental insight: When CEC > 6 cmol+ kg-1, and TOC > 40 g kg-1, the maximum resistance to NH4+-N transport within the soil was observed. This study provides a novel approach for predicting the impact of the soil environment on NH4+-N transport and guiding the establishment of an early-warning system of nutrient loss.
Collapse
Affiliation(s)
- Bingcong Feng
- College of Natural Resources and Environment, Northwest Agriculture & Forestry University, Yangling 712100, China; Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Jie Ma
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Yong Liu
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Long Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Xiaoyu Zhang
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yanning Zhang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Junying Zhao
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Wenxiang He
- College of Natural Resources and Environment, Northwest Agriculture & Forestry University, Yangling 712100, China.
| | - Yali Chen
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Liping Weng
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Department of Soil Quality, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
9
|
Shi C, Wang X, Jiang S, Xu J, Luo J. Investigating the impact of long-term bristlegrass coverage on rhizosphere microbiota, soil metabolites, and carbon-nitrogen dynamics for pear agronomic traits in orchards. Front Microbiol 2024; 15:1461254. [PMID: 39301192 PMCID: PMC11411186 DOI: 10.3389/fmicb.2024.1461254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/13/2024] [Indexed: 09/22/2024] Open
Abstract
Background Grass coverage (GC) under no-tillage systems in orchards signifcantly infuences underground carbon (C) and nitrogen (N) sequestration, primarily through promoting mineral nutrient utilization by rhizospheric microorganisms. However, the comprehensive impact of GC on microbial communities and plant responses using soil metabolomics remains inadequately recognized. Methods We investigated two rhizosphere types established since 2002: bristlegrass (Setaria viridis (L.) P. Beauv.) coverage (SC) and clean cultivation (CC) to assess their efects on soil parameters, enzyme activities, and key pear agronomic traits, including yield (single fruit weight (SFW)) and qualities (soluble solids content (SSC), and total soluble sugar (TSS)). We combined microbiological analysis (16S rRNA sequencing) and non-targeted metabolomics (UPLC-MS/MS and GC-MS) to explore how microbial communities infuence fruit agronomic traits and soil nutrient dynamics in pear orchards under SC conditions. Results Our fndings indicate that SC signifcantly enhances soil organic carbon (SOC), soil organic nitrogen (SON), the C:N ratio, and available nitrogen (AN). Moreover, SC leads to pronounced increases in soil enzyme activities involved in the C cycle and storage, including soil sucrase, β-glucosidase, polyphenol oxidase and cellulase. Microbiome analysis revealed substantial diferences in microbial community composition and diversity indices between SC and CC rhizosphere soils within the 0-40 cm depth. Metabolomic analysis demonstrated significant alterations in metabolite profiles across both the 0-20 cm and 20-40 cm layers under SC conditions. The identifed metabolites primarily involve sugar and amino acid-related metabolic pathways, refecting perturbations in C and N metabolism consistent with shifts in bacterial community structure. Several plant growth-promoting rhizobacteria (PGPRs) taxa (e.g., Haliangium, Bacteroides, mle1-7, Subgroup_22, Ellin6067, MND1, Flavobacterium, and Cellvibrio) were enriched under SC, associated with metabolites such as sucrose, N-acetyl-D-glucosamine, N-acetyl-L-glutamic acid, rhamnose, UDP-GlcNAc and D-maltose. These fndings suggest their roles in promoting C and N sequestration processes through sucrose synthesis and glycolytic pathways in the soil, which was signifcantly correlated with the formation of agronomic traits such as fruit yield, SFW SSC and TSS (p<0.05), and SC treatments signifcantly increased yields by 35.40-62.72% and sucrose content in TSS by 2.43-3.96 times than CC treatments. Conclusion This study provides valuable insights into the efects of SC on soil microbial communities and plant physiology, enhancing our understanding of their implications for sustainable orchard management.
Collapse
Affiliation(s)
- Chunhui Shi
- Forest & Fruit Tree Research Institute, Shanghai Academy of Agriculture Sciences, Shanghai, China
- Shanghai Key Laboratory of Facility Horticulture Technology, Shanghai Academy of Agriculture Sciences, Shanghai, China
| | - Xiaoqing Wang
- Forest & Fruit Tree Research Institute, Shanghai Academy of Agriculture Sciences, Shanghai, China
- Shanghai Key Laboratory of Facility Horticulture Technology, Shanghai Academy of Agriculture Sciences, Shanghai, China
| | - Shuang Jiang
- Forest & Fruit Tree Research Institute, Shanghai Academy of Agriculture Sciences, Shanghai, China
- Shanghai Key Laboratory of Facility Horticulture Technology, Shanghai Academy of Agriculture Sciences, Shanghai, China
| | - Jianfeng Xu
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Jun Luo
- Forest & Fruit Tree Research Institute, Shanghai Academy of Agriculture Sciences, Shanghai, China
- Shanghai Key Laboratory of Facility Horticulture Technology, Shanghai Academy of Agriculture Sciences, Shanghai, China
| |
Collapse
|
10
|
Zentgraf I, Hoffmann M, Augustin J, Buchen-Tschiskale C, Hoferer S, Holz M. Effect of mineral and organic fertilizer on N dynamics upon erosion-induced topsoil dilution. Heliyon 2024; 10:e34822. [PMID: 39144998 PMCID: PMC11320320 DOI: 10.1016/j.heliyon.2024.e34822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/26/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
Erosion-induced topsoil dilution strongly affects cropland biogeochemistry and is associated with a negative effect on soil health and crop productivity. While its impact on soil C cycling has been widely recognized, there is little information about its impact on soil N cycling and N fertilizer dynamics. Here, we studied three factors potentially influencing N cycling and N fertilizer dynamics in cropping systems, namely: 1.) soil type, 2.) erosion-induced topsoil dilution and 3.) N fertilizer form, in a full-factorial pot experiment using canola plants. We studied three erosion affected soil types (Luvisol, eroded Luvisol, calcaric Regosol) and performed topsoil dilution in all three soils by admixing 20 % of the respective subsoil into its topsoil. N fertilizer dynamics were investigated using either mineral (calcium ammonium nitrate) or organic (biogas digestate) fertilizer, labeled with 15N. The fertilizer 15N recovery and the distribution of the fertilizer N in different soil fractions was quantified after plant maturity. Fertilizer N dynamics and utilization were influenced by all three factors investigated. 15N recovery in the plant-soil system was higher and fertilizer N utilization was lower in the treatments with diluted topsoil than in the non-diluted controls. Similarly, plants of the organic fertilizer N treatments took up significantly less fertilizer N in comparison to mineral fertilizer treatments. Both topsoil dilution and organic fertilizer application promoted 15N recovery and N accumulation in the soil fractions, with strong differences between soil types. Our study reveals an innovative insight: topsoil dilution due to soil erosion has a negligible impact on N cycling and dynamics in the plant-soil system. The crucial factors influencing these processes are found to be the choice of fertilizer form and the specific soil type. Recognizing these aspects is essential for a precise and comprehensive assessment of the environmental continuum, emphasizing the novelty of our findings.
Collapse
Affiliation(s)
- Isabel Zentgraf
- Leibniz Center for Agricultural Landscape Research (ZALF) e.V., Group of Isotope Biogeochemistry and Gas Fluxes, Eberswalder Str. 84, 15374, Müncheberg, Germany
- Humboldt-Universität zu Berlin, Thaer-Institute of Agricultural and Horticultural Sciences, Invalidenstraße 42, 10099, Berlin, Germany
| | - Mathias Hoffmann
- Leibniz Center for Agricultural Landscape Research (ZALF) e.V., Group of Isotope Biogeochemistry and Gas Fluxes, Eberswalder Str. 84, 15374, Müncheberg, Germany
| | - Jürgen Augustin
- Leibniz Center for Agricultural Landscape Research (ZALF) e.V., Group of Isotope Biogeochemistry and Gas Fluxes, Eberswalder Str. 84, 15374, Müncheberg, Germany
| | - Caroline Buchen-Tschiskale
- Thünen Institute of Climate-Smart Agriculture, Federal Research Institute for Rural Areas, Forestry and Fisheries, Bundesallee 65, 38116, Braunschweig, Germany
| | - Sara Hoferer
- Leibniz Center for Agricultural Landscape Research (ZALF) e.V., Group of Isotope Biogeochemistry and Gas Fluxes, Eberswalder Str. 84, 15374, Müncheberg, Germany
| | - Maire Holz
- Leibniz Center for Agricultural Landscape Research (ZALF) e.V., Group of Isotope Biogeochemistry and Gas Fluxes, Eberswalder Str. 84, 15374, Müncheberg, Germany
| |
Collapse
|
11
|
Pausch J, Holz M, Zhu B, Cheng W. Rhizosphere priming promotes plant nitrogen acquisition by microbial necromass recycling. PLANT, CELL & ENVIRONMENT 2024; 47:1987-1996. [PMID: 38369964 DOI: 10.1111/pce.14858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/20/2024]
Abstract
Nitrogen availability in the rhizosphere relies on root-microorganism interactions, where root exudates trigger soil organic matter (SOM) decomposition through the rhizosphere priming effect (RPE). Though microbial necromass contribute significantly to organically bound soil nitrogen (N), the role of RPEs in regulating necromass recycling and plant nitrogen acquisition has received limited attention. We used 15N natural abundance as a proxy for necromass-N since necromass is enriched in 15N compared to other soil-N forms. We combined studies using the same experimental design for continuous 13CO2 labelling of various plant species and the same soil type, but considering top- and subsoil. RPE were quantified as difference in SOM-decomposition between planted and unplanted soils. Results showed higher plant N uptake as RPEs increased. The positive relationship between 15N-enrichment of shoots and roots and RPEs indicated an enhanced necromass-N turnover by RPE. Moreover, our data revealed that RPEs were saturated with increasing carbon (C) input via rhizodeposition in topsoil. In subsoil, RPEs increased linearly within a small range of C input indicating a strong effect of root-released C on decomposition rates in deeper soil horizons. Overall, this study confirmed the functional importance of rhizosphere C input for plant N acquisition through enhanced necromass turnover by RPEs.
Collapse
Affiliation(s)
- Johanna Pausch
- Agroecology, BayCEER, University of Bayreuth, Bayreuth, Bayern, Germany
| | - Maire Holz
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Biao Zhu
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Weixin Cheng
- Department of Environmental Studies, University of California, Santa Cruz, California, USA
| |
Collapse
|
12
|
Han R, Zhang Q, Xu Z. Soil organic nitrogen variation shaped by diverse agroecosystems in a typical karst area: evidence from isotopic geochemistry. PeerJ 2024; 12:e17221. [PMID: 38638157 PMCID: PMC11025543 DOI: 10.7717/peerj.17221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/20/2024] [Indexed: 04/20/2024] Open
Abstract
Background Soil organic nitrogen (SON) levels can respond effectively to crop metabolism and are directly related to soil productivity. However, simultaneous comparisons of SON dynamics using isotopic tracing in diverse agroecosystems are lacking, especially in karst areas with fragile ecology. Methods To better understand the response of SON dynamics to environmental changes under the coupling of natural and anthropogenic disturbances, SON contents and their stable N isotope (δ15NSON) compositions were determined in abandoned cropland (AC, n = 16), grazing shrubland (GS, n = 11), and secondary forest land (SF, n = 20) from a typical karst area in southwest China. Results The SON contents in the SF (mean: 0.09%) and AC (mean: 0.10%) profiles were obviously lower than those in the GS profile (mean: 0.31%). The δ15NSON values ranged from 4.35‰-7.59‰, 3.79‰-7.23‰, and 1.87‰-7.08‰ for the SF, AC, and GS profiles, respectively. Decomposition of organic matter controlled the SON variations in the secondary forest land by the covered vegetation, and that in the grazing shrubland by goat excreta. δ15NSON ranges were controlled by the covered vegetation, and the δ15NSON fractionations during SON transformation were influenced by microorganisms in all surface soil. Conclusions The excreta of goats that contained 15N-enriched SON induced a heavier δ15NSON composition in the grazed shrubland. Long-term cultivation consumes SON, whereas moderate grazing increases SON content to reduce the risk of soil degradation. This study suggests that optimized crop-livestock production may benefit the sustainable development of agroecosystems in karst regions.
Collapse
Affiliation(s)
- Ruiyin Han
- Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qian Zhang
- Institute of Geographic Sciences and Natural Resources Research, Beijing, China
| | - Zhifang Xu
- Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing, China
| |
Collapse
|
13
|
Wang Y, Cai J, Chen X, Guo B, Liu J, Qiu G, Li H. The connection between the antibiotic resistome and nitrogen-cycling microorganisms in paddy soil is enhanced by application of chemical and plant-derived organic fertilizers. ENVIRONMENTAL RESEARCH 2024; 243:117880. [PMID: 38070858 DOI: 10.1016/j.envres.2023.117880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/23/2023] [Accepted: 12/04/2023] [Indexed: 02/06/2024]
Abstract
Antibiotic resistant genes (ARGs) present significant risks to environments and public health. In particular, there is increasing awareness of the role of soil nitrogen in ARG dissemination. Here, we investigated the connections between antibiotic resistome and nitrogen-cycling microbes in paddy soil by performing five-year field experiments with the treatments of no nitrogen fertilization (CK), reduced chemical nitrogen fertilization (LN), conventional chemical nitrogen fertilization (CN) and plant-derived organic nitrogen fertilization (ON). Compared with CK treatment, CN and ON treatments significantly increased soil NH4+ and TN concentrations by 25.4%-56.5% and 10.4%-20.1%, respectively. Redundancy analysis revealed significantly positive correlation of NH4+ with most ARGs, including tetA, macB and barA. Correspondingly, CN and ON treatments enhanced ARG abundances by 21.9%-23.2%. Moreover, CN and ON treatments promoted nitrate/nitrite-reducing bacteria and linked the corresponding N-cycling functional genes (narG, narH, nirK and nrfA) with most ARGs. Metagenomic binning was performed and identified Gemmatimonadaceae, Caulobacteraceae, Ilumatobacteraceae and Anaerolineaceae as hosts for both ARGs and nitrate/nitrite reduction genes that were enriched by CN and ON treatments. Soil resistome risk score analysis indicated that, although there was increased relation of ARG to nitrogen-cycling microorganisms with nitrogen fertilizer application, the environmental risk of ARGs was not increased due to the lower distribution of ARGs in pathogens. This study contributed to a deeper understanding of the role of soil nitrogen in shaping ARG profiles and controlling soil resistome risk.
Collapse
Affiliation(s)
- Yuan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jingjing Cai
- Zhejiang Sino-Geo Clean-Soil Company Limited, Zhuji, 311800, China
| | - Xiaodong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Bin Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Junli Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Gaoyang Qiu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Hua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
14
|
Novak V, Andeer PF, Bowen BP, Ding Y, Zhalnina K, Hofmockel KS, Tomaka C, Harwood TV, van Winden MCM, Golini AN, Kosina SM, Northen TR. Reproducible growth of Brachypodium in EcoFAB 2.0 reveals that nitrogen form and starvation modulate root exudation. SCIENCE ADVANCES 2024; 10:eadg7888. [PMID: 38170767 PMCID: PMC10776018 DOI: 10.1126/sciadv.adg7888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024]
Abstract
Understanding plant-microbe interactions requires examination of root exudation under nutrient stress using standardized and reproducible experimental systems. We grew Brachypodium distachyon hydroponically in fabricated ecosystem devices (EcoFAB 2.0) under three inorganic nitrogen forms (nitrate, ammonium, and ammonium nitrate), followed by nitrogen starvation. Analyses of exudates with liquid chromatography-tandem mass spectrometry, biomass, medium pH, and nitrogen uptake showed EcoFAB 2.0's low intratreatment data variability. Furthermore, the three inorganic nitrogen forms caused differential exudation, generalized by abundant amino acids-peptides and alkaloids. Comparatively, nitrogen deficiency decreased nitrogen-containing compounds but increased shikimates-phenylpropanoids. Subsequent bioassays with two shikimates-phenylpropanoids (shikimic and p-coumaric acids) on soil bacteria or Brachypodium seedlings revealed their distinct capacity to regulate both bacterial and plant growth. Our results suggest that (i) Brachypodium alters exudation in response to nitrogen status, which can affect rhizobacterial growth, and (ii) EcoFAB 2.0 is a valuable standardized plant research tool.
Collapse
Affiliation(s)
- Vlastimil Novak
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Peter F. Andeer
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Benjamin P. Bowen
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- The DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yezhang Ding
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kateryna Zhalnina
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kirsten S. Hofmockel
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| | - Connor Tomaka
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Thomas V. Harwood
- The DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Amber N. Golini
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Suzanne M. Kosina
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Trent R. Northen
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- The DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
15
|
Zhou H, Zhang M, Yang J, Wang J, Chen Y, Ye X. Returning ryegrass to continuous cropping soil improves soil nutrients and soil microbiome, producing good-quality flue-cured tobacco. Front Microbiol 2023; 14:1257924. [PMID: 37876786 PMCID: PMC10591219 DOI: 10.3389/fmicb.2023.1257924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/18/2023] [Indexed: 10/26/2023] Open
Abstract
The widespread and continuous cultivation of tobacco has led to soil degradation and reduced crop yields and quality. Green manure is an essential organic fertilizer that alleviates obstacles to continuous cultivation. However, the plant-soil microecological effects of green manure on flue-cured tobacco cultivation remain unclear. Thus, a positioning trail including two treatments, chemical fertilizer application only (treatment NPK) and chemical fertilizer application with turning ryegrass (treatment NPKG) was conducted, and the effect of ryegrass returning on the soil physicochemical properties, soil microbiome, crop yield, and quality of flue-cured tobacco in continuous cropping soil were investigated. Results showed that returning ryegrass to the field increased the thickness of soil humus layer from 13 cm to 15 cm, reduced the humus layer soil bulk density to 1.29 cm3/g. Ryegrass tilled and returned to the field increased soil organic matter content by 6.89-7.92%, increased rhizosphere soil available phosphorus content by 2.22-17.96%, and converted the soil non-exchangeable potassium into potassium that was available for plant absorption and utilization. Ryegrass tilling and returning to the field increased the potassium content of middle leaves of flue-cured tobacco by 7.69-10.07%, the increased potassium content in flue-cured tobacco was accompanied by increased total sugar, reducing sugar, and the ratio of reducing sugar to nicotine, which facilitated the harmonization of the chemical composition of cured tobacco leaves. Moreover, the increased number of markedly improved operational taxonomic units enhanced the complexity of the soil bacterial community and its compactness after ryegrass tillage and their return to the field. The available potassium, available phosphorus, total potassium content, pH, and sampling period of the rhizosphere soil had considerable effects on the rhizosphere microbial. Ryegrass tilling and returning to the field changed the soil microbiome, which increased the abundance of bulk soil Proteobacteria, rhizosphere soil Fibrobacterota, and microbes with anti-pathogen activity (Lysobacteria, Sphingomonas, Chaetomium, and Minimedusa); and reduced the abundance of pathogenic fungi Neocosmospore genus in the soil. In brief, ryegrass returned to the field, improved soil microecology and restored soil nutrients, and established a new dynamic balance of soil ecology, thereby improving the quality of cultivated land and the quality of flue-cured tobacco.
Collapse
Affiliation(s)
- Hanjun Zhou
- Key Laboratory of Tobacco Cultivation of Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, Tobacco Science College of Henan Agricultural University, Zhengzhou, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Mingjie Zhang
- Key Laboratory of Tobacco Cultivation of Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, Tobacco Science College of Henan Agricultural University, Zhengzhou, China
| | - Jiahao Yang
- Key Laboratory of Tobacco Cultivation of Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, Tobacco Science College of Henan Agricultural University, Zhengzhou, China
| | - Jing Wang
- Key Laboratory of Tobacco Cultivation of Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, Tobacco Science College of Henan Agricultural University, Zhengzhou, China
| | - Yulu Chen
- Key Laboratory of Tobacco Cultivation of Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, Tobacco Science College of Henan Agricultural University, Zhengzhou, China
| | - Xiefeng Ye
- Key Laboratory of Tobacco Cultivation of Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, Tobacco Science College of Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
16
|
Nawaz A, Qamar ZU, Marghoob MU, Imtiaz M, Imran A, Mubeen F. Contribution of potassium solubilizing bacteria in improved potassium assimilation and cytosolic K +/Na + ratio in rice ( Oryza sativa L.) under saline-sodic conditions. Front Microbiol 2023; 14:1196024. [PMID: 37711698 PMCID: PMC10497963 DOI: 10.3389/fmicb.2023.1196024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/24/2023] [Indexed: 09/16/2023] Open
Abstract
Sodium-induced potassium (K+) deficiency is more prevalent in salt-affected soils. Plants experience K+ starvation thus cytosolic K+/Na+ ratio is lowered, which is a prerequisite for their survival. K+ enrichment in crops can be acquired via K-solubilizing bacteria as a sustainable green agriculture approach. This study was conducted to explore potent K-solubilizing bacteria from the rhizosphere of wheat, rice, and native flora grown in salt-affected soils in two distinct regions of Pakistan. The aim of this work was to evaluate the contribution of microbial consortiums to the improvement of K+ assimilation and cytosolic K+/Na+ ratios in rice crops under saline-sodic conditions. Among 250 bacterial isolates, 9 were selected based on their salt (11% NaCl) and alkali (9) tolerance and K-solubilization indices (1.57-5.67). These bacterial strains were characterized for their plant growth-promoting traits and identified based on 16S rRNA gene sequencing. A consortium of five strains, namely, Enterobacter hormaechei, Citrobacter braakii, Pseudomonas putida, Erwinia iniecta, and Pantoea agglomerans, was used as a bio-inoculant to evaluate its role in K+ assimilation, cytosolic K+/Na+ ratio, and subsequent yield enhancement in rice grown under saline-sodic conditions. The impact of applied consortium on rice was assessed under variable salt levels (Control, 40, 80, and 120 mM) in a pot experiment and under natural saline-sodic conditions in the field. Plant agronomical parameters were significantly higher in the bacterial consortium-treated plants, with a concomitant increase in K+-uptake in root and shoot (0.56 and 0.35 mg g-1 dry wt.) of the salt-tolerant rice variety Shaheen. The root K+/Na+ ratio was significantly improved (200% in 40 mM and 126% in 80 mM NaCl) and in the shoot (99% in 40 mM and 131% in 80 mM) too. A similar significant increase was also observed in the salt-susceptible variety Kainat. Moreover, grain yield (30.39 g/1,000 grains wt.) and biomass (8.75 g) of the rice variety Shaheen, grown in field conditions, were also improved. It can be concluded that K-solubilizing bacteria can be used as bio-inoculants, contributing to growth and yield increment via enhanced K-assimilation and cytosolic K+/Na+ ratio in rice crops under salt stress.
Collapse
Affiliation(s)
- Aniqa Nawaz
- Microbial Physiology Laboratory, Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Zia Ul Qamar
- Rice Lab, Plant Breeding and Genetics Division, Nuclear Institute of Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Muhammad Usama Marghoob
- Microbial Physiology Laboratory, Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Muhammad Imtiaz
- Microbial Physiology Laboratory, Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Asma Imran
- Microbial Physiology Laboratory, Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Fathia Mubeen
- Microbial Physiology Laboratory, Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| |
Collapse
|
17
|
Bai T, Wang P, Qiu Y, Zhang Y, Hu S. Nitrogen availability mediates soil carbon cycling response to climate warming: A meta-analysis. GLOBAL CHANGE BIOLOGY 2023; 29:2608-2626. [PMID: 36744998 DOI: 10.1111/gcb.16627] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/10/2023] [Indexed: 05/31/2023]
Abstract
Global climate warming may induce a positive feedback through increasing soil carbon (C) release to the atmosphere. Although warming can affect both C input to and output from soil, direct and convincing evidence illustrating that warming induces a net change in soil C is still lacking. We synthesized the results from field warming experiments at 165 sites across the globe and found that climate warming had no significant effect on soil C stock. On average, warming significantly increased root biomass and soil respiration, but warming effects on root biomass and soil respiration strongly depended on soil nitrogen (N) availability. Under high N availability (soil C:N ratio < 15), warming had no significant effect on root biomass, but promoted the coupling between effect sizes of root biomass and soil C stock. Under relative N limitation (soil C:N ratio > 15), warming significantly enhanced root biomass. However, the enhancement of root biomass did not induce a corresponding C accumulation in soil, possibly because warming promoted microbial CO2 release that offset the increased root C input. Also, reactive N input alleviated warming-induced C loss from soil, but elevated atmospheric CO2 or precipitation increase/reduction did not. Together, our findings indicate that the relative availability of soil C to N (i.e., soil C:N ratio) critically mediates warming effects on soil C dynamics, suggesting that its incorporation into C-climate models may improve the prediction of soil C cycling under future global warming scenarios.
Collapse
Affiliation(s)
- Tongshuo Bai
- Ecosystem Ecology Laboratory, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Peng Wang
- Ecosystem Ecology Laboratory, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yunpeng Qiu
- Ecosystem Ecology Laboratory, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yi Zhang
- Ecosystem Ecology Laboratory, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shuijin Hu
- Ecosystem Ecology Laboratory, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
18
|
Sieradzki ET, Nuccio EE, Pett-Ridge J, Firestone MK. Expression of macromolecular organic nitrogen degrading enzymes identifies potential mediators of soil organic N availability to an annual grass. THE ISME JOURNAL 2023:10.1038/s41396-023-01402-3. [PMID: 37059820 DOI: 10.1038/s41396-023-01402-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/09/2023] [Accepted: 03/20/2023] [Indexed: 04/16/2023]
Abstract
Nitrogen (N) is frequently limiting to plant growth, in part because most soil N is present as polymeric organic compounds that are not readily taken up by plants. Microbial depolymerization of these large macromolecular N-substrates gradually releases available inorganic N. While many studies have researched and modeled controls on soil organic matter formation and bulk N mineralization, the ecological-spatial, temporal and phylogenetic-patterns underlying organic N degradation remain unclear. We analyzed 48 time-resolved metatranscriptomes and quantified N-depolymerization gene expression to resolve differential expression by soil habitat and time in specific taxonomic groups and gene-based guilds. We observed much higher expression of extracellular serine-type proteases than other extracellular N-degrading enzymes, with protease expression of predatory bacteria declining with time and other taxonomic patterns driven by the presence (Gammaproteobacteria) or absence (Thermoproteota) of live roots and root detritus (Deltaproteobacteria and Fungi). The primary chitinase chit1 gene was more highly expressed by eukaryotes near root detritus, suggesting predation of fungi. In some lineages, increased gene expression over time suggests increased competitiveness with rhizosphere age (Chloroflexi). Phylotypes from some genera had protease expression patterns that could benefit plant N nutrition, for example, we identified a Janthinobacterium phylotype and two Burkholderiales that depolymerize organic N near young roots and a Rhizobacter with elevated protease levels near mature roots. These taxon-resolved gene expression results provide an ecological read-out of microbial interactions and controls on N dynamics in specific soil microhabitats and could be used to target potential plant N bioaugmentation strategies.
Collapse
Affiliation(s)
- Ella T Sieradzki
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA.
- Laboratoire Ampère, École Centrale de Lyon, Lyon, France.
| | - Erin E Nuccio
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
- Life & Environmental Sciences Department, University of California Merced, Merced, CA, USA
| | - Mary K Firestone
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA.
| |
Collapse
|
19
|
Wagner MR, Mitchell-Olds T. Soil variation among natural habitats alters glucosinolate content in a wild perennial mustard. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:1723-1740. [PMID: 36583734 PMCID: PMC10010606 DOI: 10.1093/jxb/erac520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Baseline levels of glucosinolates-important defensive phytochemicals in brassicaceous plants-are determined by both genotype and environment. However, the ecological causes of glucosinolate plasticity are not well characterized. Fertilization is known to alter glucosinolate content of Brassica crops, but the effect of naturally occurring soil variation on glucosinolate content of wild plants is unknown. Here, we conducted greenhouse experiments using Boechera stricta to ask (i) whether soil variation among natural habitats shapes leaf and root glucosinolate profiles; (ii) whether such changes are caused by abiotic soil properties, soil microbes, or both; and (iii) whether soil-induced glucosinolate plasticity is genetically variable. Total glucosinolate quantity differed up to 2-fold between soils from different natural habitats, while the relative amounts of different compounds were less responsive. This effect was due to physico-chemical soil properties rather than microbial communities. We detected modest genetic variation for glucosinolate plasticity in response to soil. In addition, glucosinolate composition, but not quantity, of field-grown plants could be accurately predicted from measurements from greenhouse-grown plants. In summary, soil alone is sufficient to cause plasticity of baseline glucosinolate levels in natural plant populations, which may have implications for the evolution of this important trait across complex landscapes.
Collapse
Affiliation(s)
- Maggie R Wagner
- Department of Ecology and Evolutionary Biology, Kansas Biological Survey and Center for Ecological Research, University of Kansas, Lawrence, KS 66045, USA
| | - Thomas Mitchell-Olds
- Program in Genetics and Genomics, Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
20
|
Waithaisong K, Robin A, Mareschal L, Bouillet JP, Harmand JM, Bordron B, Laclau JP, Gonçalves JLM, Plassard C. Potential of Bioassays to Assess Consequences of Cultivation of Acacia mangium Trees on Nitrogen Bioavailability to Eucalyptus Trees: Two Case-Studies in Contrasting Tropical Soils. PLANTS (BASEL, SWITZERLAND) 2023; 12:802. [PMID: 36840150 PMCID: PMC9963636 DOI: 10.3390/plants12040802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
We hypothesized that the nitrogen-fixing tree Acacia mangium could improve the growth and nitrogen nutrition of non-fixing tree species such as Eucalyptus. We measured the N-mineralization and respiration rates of soils sampled from plots covered with Acacia, Eucalyptus or native vegetation at two tropical sites (Itatinga in Brazil and Kissoko in the Congo) in the laboratory. We used a bioassay to assess N bioavailability to eucalypt seedlings grown with and without chemical fertilization for at least 6 months. At each site, Eucalyptus seedling growth and N bioavailability followed the same trends as the N-mineralization rates in soil samples. However, despite lower soil N-mineralization rates under Acacia in the Congo than in Brazil, Eucalyptus seedling growth and N bioavailability were much greater in the Congo, indicating that bioassays in pots are more accurate than N-mineralization rates when predicting the growth of eucalypt seedlings. Hence, in the Congo, planting Acacia mangium could be an attractive option to maintain the growth and N bioavailability of the non-fixing species Eucalyptus while decreasing chemical fertilization. Plant bioassays could help determine if the introduction of N2-fixing trees will improve the growth and mineral nutrition of non-fixing tree species in tropical planted forests.
Collapse
Affiliation(s)
- Kittima Waithaisong
- Eco&Sols, Institut Agro, Univ Montpellier, CIRAD, INRAe, IRD, 34060 Montpellier, France
| | - Agnès Robin
- Eco&Sols, Institut Agro, Univ Montpellier, CIRAD, INRAe, IRD, 34060 Montpellier, France
- CIRAD, UMR Eco&Sols, F-34398, 34000 Montpellier, France
- ESALQ, University São Paulo, Piracicaba 13418-900, SP, Brazil
| | - Louis Mareschal
- Eco&Sols, Institut Agro, Univ Montpellier, CIRAD, INRAe, IRD, 34060 Montpellier, France
- CIRAD, UMR Eco&Sols, F-34398, 34000 Montpellier, France
- CRDPI, Pointe Noire 1291, Congo
| | - Jean-Pierre Bouillet
- Eco&Sols, Institut Agro, Univ Montpellier, CIRAD, INRAe, IRD, 34060 Montpellier, France
- CIRAD, UMR Eco&Sols, F-34398, 34000 Montpellier, France
- ESALQ, University São Paulo, Piracicaba 13418-900, SP, Brazil
| | - Jean-Michel Harmand
- Eco&Sols, Institut Agro, Univ Montpellier, CIRAD, INRAe, IRD, 34060 Montpellier, France
- CIRAD, UMR Eco&Sols, F-34398, 34000 Montpellier, France
| | - Bruno Bordron
- Eco&Sols, Institut Agro, Univ Montpellier, CIRAD, INRAe, IRD, 34060 Montpellier, France
- CIRAD, UMR Eco&Sols, F-34398, 34000 Montpellier, France
- ESALQ, University São Paulo, Piracicaba 13418-900, SP, Brazil
| | - Jean-Paul Laclau
- Eco&Sols, Institut Agro, Univ Montpellier, CIRAD, INRAe, IRD, 34060 Montpellier, France
- CIRAD, UMR Eco&Sols, F-34398, 34000 Montpellier, France
- School of Agricultural Sciences, UNESP-São Paulo State University, Botucatu 18610-307, SP, Brazil
| | | | - Claude Plassard
- Eco&Sols, Institut Agro, Univ Montpellier, CIRAD, INRAe, IRD, 34060 Montpellier, France
- Ecologie Fonctionnelle et Biogéochimie des Sols, 2 Place Pierre Viala, CEDEX 01, 34060 Montpellier, France
| |
Collapse
|
21
|
Qin S, Yuan H, Hu C, Li X, Wang Y, Zhang Y, Dong W, Clough T, Luo J, Zhou S, Wrage-Mönnig N, Ma L, Oenema O. Anthropogenic N input increases global warming potential by awakening the "sleeping" ancient C in deep critical zones. SCIENCE ADVANCES 2023; 9:eadd0041. [PMID: 36753554 PMCID: PMC9908017 DOI: 10.1126/sciadv.add0041] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Even a small net increase in soil organic carbon (SOC) mineralization will cause a substantial increase in the atmospheric CO2 concentration. It is widely recognized that the SOC mineralization within deep critical zones (2 to 12 m depth) is slower and much less influenced by anthropogenic disturbance when compared to that of surface soil. Here, we showed that 20 years of nitrogen (N) fertilization enriched a deep critical zone with nitrate, almost doubling the SOC mineralization rate. This result was supported by corresponding increases in the expressions of functional genes typical of recalcitrant SOC degradation and enzyme activities. The CO2 released and the SOC had a similar 14C age (6000 to 10,000 years before the present). Our results indicate that N fertilization of crops may enhance CO2 emissions from deep critical zones to the atmosphere through a previously disregarded mechanism. This provides another reason for markedly improving N management in fertilized agricultural soils.
Collapse
Affiliation(s)
- Shuping Qin
- Hebei Provincial Key Laboratory of Soil Ecology, Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, The Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, Hebei, China
| | - Haijing Yuan
- Hebei Provincial Key Laboratory of Soil Ecology, Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, The Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, Hebei, China
| | - Chunsheng Hu
- Hebei Provincial Key Laboratory of Soil Ecology, Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, The Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, Hebei, China
| | - Xiaoxin Li
- Hebei Provincial Key Laboratory of Soil Ecology, Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, The Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, Hebei, China
| | - Yuying Wang
- Hebei Provincial Key Laboratory of Soil Ecology, Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, The Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, Hebei, China
| | - Yuming Zhang
- Hebei Provincial Key Laboratory of Soil Ecology, Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, The Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, Hebei, China
| | - Wenxu Dong
- Hebei Provincial Key Laboratory of Soil Ecology, Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, The Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, Hebei, China
| | - Timothy Clough
- Department of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Jiafa Luo
- Land and Environment, AgResearch, Hamilton 3240, New Zealand
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Nicole Wrage-Mönnig
- Department of Agriculture and the Environment, Grassland, and Fodder Sciences, University of Rostock, Rostock, Germany
| | - Lin Ma
- Hebei Provincial Key Laboratory of Soil Ecology, Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, The Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, Hebei, China
| | - Oene Oenema
- Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
22
|
The Effects of Differentiated Organic Fertilization on Tomato Production and Phenolic Content in Traditional and High-Yielding Varieties. Antioxidants (Basel) 2022; 11:antiox11112127. [DOI: 10.3390/antiox11112127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
The challenge of sustainable agriculture is to increase yields and obtain higher quality products. Increased antioxidant compounds such as polyphenols in harvest products may be an added value for sustainable agriculture. The aim of the present study was to investigate whether three organic fertilization treatments with different levels of carbon and nitrogen, i.e., N-rich, N-rich+C, and N-poor+C, affected the phenolic content of different tomato varieties. The examined parameters were productivity, plant nutritional status, δ13C, and tomato phenolic content as an indication of the antioxidant capacity. The best production was obtained with ‘Cornabel’, a high-yielding Pebroter variety. The total phenolic content was highest in the traditional ‘Cuban Pepper’ variety regardless of treatment, while naringenin levels were high in all the Pebroter varieties. In N-poor+C fertilized plants, a lower N-NO3 content in leaves was correlated with higher levels of total polyphenols in the fruit. The high-water stress suffered by Montserrat varieties coincided with a low total phenolic content in the tomatoes. In conclusion, organic fertilization with reduced N did not influence the tomato yield but positively affected phenolic compound levels in varieties less sensitive to water stress.
Collapse
|
23
|
Reed CC, Berhe AA, Moreland KC, Wilcox J, Sullivan BW. Restoring function: Positive responses of carbon and nitrogen to 20 years of hydrologic restoration in montane meadows. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2677. [PMID: 35587656 DOI: 10.1002/eap.2677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
Montane meadows are highly productive ecosystems that contain high densities of soil carbon (C) and nitrogen (N). However, anthropogenic disturbances that have led to channel incision and disconnected floodplain hydrology have altered the C balance of many meadows, converting them from net C sinks to net sources of C to the atmosphere. Restoration efforts designed to reconnect floodplain hydrology may slow rates of soil C loss from degraded meadows and restore the conditions for C sequestration and N immobilization, yet questions remain about the long-term impact of such efforts. Here, we used a 22-year meadow restoration chronosequence to measure the decadal impact of hydrologic restoration on aboveground and belowground C and N stocks and concentrations. Increases in herbaceous vegetation biomass preceded changes in soil C stocks, with the largest gains occurring belowground. Root biomass (0-15 cm) increased at a rate of 270.3 g m-2 year-1 and soil C stocks (0-15 cm) increased by 232.9 g C m-2 year-1 across the chronosequence. Increases in soil C concentration (2.99 g C kg-1 year-1 ) were tightly coupled with increases in soil N concentration (0.21 g N kg-1 year-1 ) and soil C:N did not vary with time since restoration. Fourier transform infrared spectroscopy results showed that the fraction of labile aliphatic C-H and carboxylate C-O (COO) compounds in the soil increased with the age of restoration and were positively correlated with soil C and N concentrations. Our results demonstrate that restoration of floodplain hydrology in montane meadows has significant impacts on belowground C and N stocks, soil C and N concentration, and soil C chemistry within the first two decades following restoration.
Collapse
Affiliation(s)
- Cody C Reed
- Department of Natural Resources and Environmental Science, The University of Nevada, Reno, Reno, Nevada, USA
| | - Asmeret A Berhe
- Department of Life and Environmental Sciences, University of California Merced, Merced, California, USA
| | - Kimber C Moreland
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Jim Wilcox
- Plumas Corporation, Quincy, California, USA
| | - Benjamin W Sullivan
- Department of Natural Resources and Environmental Science, The University of Nevada, Reno, Reno, Nevada, USA
- The Global Water Center, The University of Nevada, Reno, Reno, Nevada, USA
| |
Collapse
|
24
|
Drinkwater LE, Snapp SS. Advancing the science and practice of ecological nutrient management for smallholder farmers. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.921216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Soil degradation is widespread in smallholder agrarian communities across the globe where limited resource farmers struggle to overcome poverty and malnutrition. This review lays out the scientific basis and practical management options for an ecologically based approach to sustainably managing soil fertility, with particular attention to smallholder subsistence systems. We seek to change the trajectory of development programs that continue to promote inorganic fertilizers and other high input strategies to resource constrained smallholders, despite ample evidence that this approach is falling short of food security goals and contributing to resource degradation. Ecological nutrient management (ENM) is an agroecological approach to managing the biogeochemical cycles that govern soil ecosystem services and soil fertility. The portfolio of ENM strategies extends beyond reliance on inorganic fertilizers and is guided by the following five principles: (1) Build soil organic matter and other nutrient reserves. (2) Minimize the size of N and P pools that are the most susceptible to loss. (3) Maximize agroecosystem capacity to use soluble, inorganic N and P. (4) Use functional and phylogenetic biodiversity to minimize bare fallows and maximize presence of growing plants. (5) Construct agroecosystem and field scale mass balances to track net nutrient flows over multiple growing seasons. Strategic increases in spatial and temporal plant species diversity is a core ENM tactic that expands agroecosystem multifunctionality to meet smallholder priorities beyond soil restoration and crop yields. Examples of ENM practices include the use of functionally designed polycultures, diversified rotations, reduced fallow periods, increased reliance on legumes, integrated crop-livestock production, and use of variety of soil amendments. These practices foster soil organic matter accrual and restoration of soil function, both of which underpin agroecosystem resilience. When ENM is first implemented, short-term yield outcomes are variable; however, over the long-term, management systems that employ ENM can increase yields, yield stability, profitability and food security. ENM rests on a solid foundation of ecosystem and biogeochemical science, and despite the many barriers imposed by current agricultural policies, successful ENM systems are being promoted by some development actors and used by smallholder farmers, with promising results.
Collapse
|
25
|
Nano-Restoration for Sustaining Soil Fertility: A Pictorial and Diagrammatic Review Article. PLANTS 2022; 11:plants11182392. [PMID: 36145792 PMCID: PMC9504293 DOI: 10.3390/plants11182392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/22/2022]
Abstract
Soil is a real treasure that humans cannot live without. Therefore, it is very important to sustain and conserve soils to guarantee food, fiber, fuel, and other human necessities. Healthy or high-quality soils that include adequate fertility, diverse ecosystems, and good physical properties are important to allow soil to produce healthy food in support of human health. When a soil suffers from degradation, the soil’s productivity decreases. Soil restoration refers to the reversal of degradational processes. This study is a pictorial review on the nano-restoration of soil to return its fertility. Restoring soil fertility for zero hunger and restoration of degraded soils are also discussed. Sustainable production of nanoparticles using plants and microbes is part of the process of soil nano-restoration. The nexus of nanoparticle–plant–microbe (NPM) is a crucial issue for soil fertility. This nexus itself has several internal interactions or relationships, which control the bioavailability of nutrients, agrochemicals, or pollutants for cultivated plants. The NPM nexus is also controlled by many factors that are related to soil fertility and its restoration. This is the first photographic review on nano-restoration to return and sustain soil fertility. However, several additional open questions need to be answered and will be discussed in this work.
Collapse
|
26
|
Fast-decaying plant litter enhances soil carbon in temperate forests but not through microbial physiological traits. Nat Commun 2022; 13:1229. [PMID: 35264580 PMCID: PMC8907208 DOI: 10.1038/s41467-022-28715-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 01/28/2022] [Indexed: 01/13/2023] Open
Abstract
Conceptual and empirical advances in soil biogeochemistry have challenged long-held assumptions about the role of soil micro-organisms in soil organic carbon (SOC) dynamics; yet, rigorous tests of emerging concepts remain sparse. Recent hypotheses suggest that microbial necromass production links plant inputs to SOC accumulation, with high-quality (i.e., rapidly decomposing) plant litter promoting microbial carbon use efficiency, growth, and turnover leading to more mineral stabilization of necromass. We test this hypothesis experimentally and with observations across six eastern US forests, using stable isotopes to measure microbial traits and SOC dynamics. Here we show, in both studies, that microbial growth, efficiency, and turnover are negatively (not positively) related to mineral-associated SOC. In the experiment, stimulation of microbial growth by high-quality litter enhances SOC decomposition, offsetting the positive effect of litter quality on SOC stabilization. We suggest that microbial necromass production is not the primary driver of SOC persistence in temperate forests. Factors such as microbial necromass origin, alternative SOC formation pathways, priming effects, and soil abiotic properties can strongly decouple microbial growth, efficiency, and turnover from mineral-associated SOC. Mineral-associated soil carbon buildup is poorly explained by microbial necromass production (a common hypothesis). During litter decomposition, these processes are decoupled by priming effects and alternate soil carbon formation pathways
Collapse
|
27
|
Persistent soil carbon enhanced in Mollisols by well-managed grasslands but not annual grain or dairy forage cropping systems. Proc Natl Acad Sci U S A 2022; 119:2118931119. [PMID: 35145033 PMCID: PMC8851490 DOI: 10.1073/pnas.2118931119] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2022] [Indexed: 12/21/2022] Open
Abstract
Soil organic carbon (C) responses to agricultural management are highly uncertain, hindering our ability to assess the C sequestration potential of croplands and develop sound policies to mitigate climate change while enhancing other ecosystem services. Combining experimental evidence from a long-term field experiment and a meta-analysis of published literature, we show that the accrual of mineral-associated soil C in intensively managed Mollisols was only achieved by managing ruminant grazing on perennial grasslands. Although modifying dominant grain-based systems with reduced tillage, diversified rotations, and legumes and manure additions improve soil health metrics—which is critical to soil, nutrient, and water conservation—they are unlikely to enhance persistent forms of soil C in Mollisols to help drawdown atmospheric C and stabilize climate. Intensive crop production on grassland-derived Mollisols has liberated massive amounts of carbon (C) to the atmosphere. Whether minimizing soil disturbance, diversifying crop rotations, or re-establishing perennial grasslands and integrating livestock can slow or reverse this trend remains highly uncertain. We investigated how these management practices affected soil organic carbon (SOC) accrual and distribution between particulate (POM) and mineral-associated (MAOM) organic matter in a 29-y-old field experiment in the North Central United States and assessed how soil microbial traits were related to these changes. Compared to conventional continuous maize monocropping with annual tillage, systems with reduced tillage, diversified crop rotations with cover crops and legumes, or manure addition did not increase total SOC storage or MAOM-C, whereas perennial pastures managed with rotational grazing accumulated more SOC and MAOM-C (18 to 29% higher) than all annual cropping systems after 29 y of management. These results align with a meta-analysis of data from published studies comparing the efficacy of soil health management practices in annual cropping systems on Mollisols worldwide. Incorporating legumes and manure into annual cropping systems enhanced POM-C, microbial biomass, and microbial C-use efficiency but did not significantly increase microbial necromass accumulation, MAOM-C, or total SOC storage. Diverse, rotationally grazed pasture management has the potential to increase persistent soil C on Mollisols, highlighting the key role of well-managed grasslands in climate-smart agriculture.
Collapse
|
28
|
Di H, Wang R, Ren X, Deng J, Deng X, Bu G. Co-composting of fresh tobacco leaves and soil: an exploration on the utilization of fresh tobacco waste in farmland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:8191-8204. [PMID: 34482470 DOI: 10.1007/s11356-021-16189-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
A large amount of fresh tobacco waste with high water content are produced in farmland, and it may cause environmental pollution if it is not properly treated. The fresh tobacco waste is not easily collected and transported, resulting in its centralized treatment is expensive. This study is to clarify whether it is feasible to treat fresh tobacco wastes by co-composting of them and soil in farmland and applied the obtained compost product into the soil instead of a part of tobacco-specific fertilizer. The results showed that, compared with that in original soil, the relative abundance of Pseudomonas, Azotobacter, and Coprinus of the co-composted products increased by roughly 244%, 323%, and 675%, respectively, and effective nitrogen and available potassium increased by roughly 157% and 132%, respectively. In addition, the nicotine content in co-composted products decreased dramatically compared with the discarded tobacco leaves. The application of the co-composted products and 20% fertilizer amount (15 g/plant) (YD5) exhibited the highest relative abundance of beneficial microbial communities in the soil and the best growth of tobacco plants. The co-composting of fresh tobacco waste and soil in farmland is an effective measure to treat the fresh tobacco waste, and its products increased beneficial microorganisms and stimulate the growth of tobacco plants by replacing an amount of the fertilizer.
Collapse
Affiliation(s)
- Huihui Di
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- Enshi Tobacco Company of Hubei Province Corporation, Enshi, 445000, China
| | - Rui Wang
- Enshi Tobacco Company of Hubei Province Corporation, Enshi, 445000, China
| | - Xiaohong Ren
- Enshi Tobacco Company of Hubei Province Corporation, Enshi, 445000, China
| | - Jianqiang Deng
- Enshi Tobacco Company of Hubei Province Corporation, Enshi, 445000, China
| | - Xiaohua Deng
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China.
| | - Guijun Bu
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, 445000, China
| |
Collapse
|