1
|
Feng Y, Gao C, Xie D, Liu L, Chen B, Liu S, Yang H, Gao Z, Wilson DA, Tu Y, Peng F. Directed Neural Stem Cells Differentiation via Signal Communication with Ni-Zn Micromotors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301736. [PMID: 37402480 DOI: 10.1002/adma.202301736] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/06/2023] [Accepted: 07/02/2023] [Indexed: 07/06/2023]
Abstract
Neural stem cells (NSCs), with the capability of self-renewal, differentiation, and environment modulation, are considered promising for stroke, brain injury therapy, and neuron regeneration. Activation of endogenous NSCs, is attracting increasing research enthusiasm, which avoids immune rejection and ethical issues of exogenous cell transplantation. Yet, how to induce directed growth and differentiation in situ remain a major challenge. In this study, a pure water-driven Ni-Zn micromotor via a self-established electric-chemical field is proposed. The micromotors can be magnetically guided and precisely approach target NSCs. Through the electric-chemical field, bioelectrical signal exchange and communication with endogenous NSCs are allowed, thus allowing for regulated proliferation and directed neuron differentiation in vivo. Therefore, the Ni-Zn micromotor provides a platform for controlling cell fate via a self-established electrochemical field and targeted activation of endogenous NSCs.
Collapse
Affiliation(s)
- Ye Feng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Chao Gao
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Dazhi Xie
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Lu Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Bin Chen
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Suyi Liu
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Haihong Yang
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Zhan Gao
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Daniela A Wilson
- Institute for Molecules and Materials, Radboud University, Nijmegen, 6525 AJ, The Netherlands
| | - Yingfeng Tu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Fei Peng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
2
|
Bender PTR, McCollum M, Boyd-Pratt H, Mendelson BZ, Anderson CT. Synaptic zinc potentiates AMPA receptor function in mouse auditory cortex. Cell Rep 2023; 42:112932. [PMID: 37585291 PMCID: PMC10514716 DOI: 10.1016/j.celrep.2023.112932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/23/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023] Open
Abstract
Synaptic zinc signaling modulates synaptic activity and is present in specific populations of cortical neurons, suggesting that synaptic zinc contributes to the diversity of intracortical synaptic microcircuits and their functional specificity. To understand the role of zinc signaling in the cortex, we performed whole-cell patch-clamp recordings from intratelencephalic (IT)-type neurons and pyramidal tract (PT)-type neurons in layer 5 of the mouse auditory cortex during optogenetic stimulation of specific classes of presynaptic neurons. Our results show that synaptic zinc potentiates AMPA receptor (AMPAR) function in a synapse-specific manner. We performed in vivo 2-photon calcium imaging of the same classes of neurons in awake mice and found that changes in synaptic zinc can widen or sharpen the sound-frequency tuning bandwidth of IT-type neurons but only widen the tuning bandwidth of PT-type neurons. These results provide evidence for synapse- and cell-type-specific actions of synaptic zinc in the cortex.
Collapse
Affiliation(s)
- Philip T R Bender
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Mason McCollum
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Helen Boyd-Pratt
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Benjamin Z Mendelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Charles T Anderson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA.
| |
Collapse
|
3
|
Górska A, Markiewicz-Gospodarek A, Markiewicz R, Chilimoniuk Z, Borowski B, Trubalski M, Czarnek K. Distribution of Iron, Copper, Zinc and Cadmium in Glia, Their Influence on Glial Cells and Relationship with Neurodegenerative Diseases. Brain Sci 2023; 13:911. [PMID: 37371389 DOI: 10.3390/brainsci13060911] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/30/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Recent data on the distribution and influence of copper, zinc and cadmium in glial cells are summarized. This review also examines the relationship between those metals and their role in neurodegenerative diseases like Alzheimer disease, multiple sclerosis, Parkinson disease and Amyotrophic lateral sclerosis, which have become a great challenge for today's physicians. The studies suggest that among glial cells, iron has the highest concentration in oligodendrocytes, copper in astrocytes and zinc in the glia of hippocampus and cortex. Previous studies have shown neurotoxic effects of copper, iron and manganese, while zinc can have a bidirectional effect, i.e., neurotoxic but also neuroprotective effects depending on the dose and disease state. Recent data point to the association of metals with neurodegeneration through their role in the modulation of protein aggregation. Metals can accumulate in the brain with aging and may be associated with age-related diseases.
Collapse
Affiliation(s)
- Aleksandra Górska
- Department of Human Anatomy, Medical University of Lublin, 4 Jaczewskiego St., 20-090 Lublin, Poland
| | | | - Renata Markiewicz
- Department of Psychiatric Nursing, Medical University of Lublin, 18 Szkolna St., 20-124 Lublin, Poland
| | - Zuzanna Chilimoniuk
- Student Scientific Group at the Department of Family Medicine, 6a (SPSK1) Langiewicza St., 20-032 Lublin, Poland
| | - Bartosz Borowski
- Students Scientific Association at the Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Mateusz Trubalski
- Students Scientific Association at the Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Katarzyna Czarnek
- Institute of Health Sciences, The John Paul II Catholic University of Lublin, Konstantynów 1 H, 20-708 Lublin, Poland
| |
Collapse
|
4
|
Santos-Díaz AI, Solís-López J, Díaz-Torres E, Guadarrama-Olmos JC, Osorio B, Kroll T, Webb SM, Hiriart M, Jiménez-Estrada I, Missirlis F. Metal ion content of internal organs in the calorically restricted Wistar rat. J Trace Elem Med Biol 2023; 78:127182. [PMID: 37130496 DOI: 10.1016/j.jtemb.2023.127182] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/09/2023] [Accepted: 04/26/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND Despite the agreed principle that access to food is a human right, undernourishment and metal ion deficiencies are public health problems worldwide, exacerbated in impoverished or war-affected areas. It is known that maternal malnutrition causes growth retardation and affects behavioral and cognitive development of the newborn. Here we ask whether severe caloric restriction leads per se to disrupted metal accumulation in different organs of the Wistar rat. METHODS Inductively coupled plasma optical emission spectroscopy was used to determine the concentration of multiple elements in the small and large intestine, heart, lung, liver, kidney, pancreas, spleen, brain, spinal cord, and three skeletal muscles from control and calorically restricted Wistar rats. The caloric restriction protocol was initiated from the mothers prior to mating and continued throughout gestation, lactation, and post-weaning up to sixty days of age. RESULTS Both sexes were analyzed but dimorphism was rare. The pancreas was the most affected organ presenting a higher concentration of all the elements analyzed. Copper concentration decreased in the kidney and increased in the liver. Each skeletal muscle responded to the treatment differentially: Extensor Digitorum Longus accumulated calcium and manganese, gastrocnemius decreased copper and manganese, whereas soleus decreased iron concentrations. Differences were also observed in the concentration of elements between organs independently of treatment: The soleus muscle presents a higher concentration of Zn compared to the other muscles and the rest of the organs. Notably, the spinal cord showed large accumulations of calcium and half the concentration of zinc compared to brain. X-ray fluorescence imaging suggests that the extra calcium is attributable to the presence of ossifications whereas the latter finding is attributable to the low abundance of zinc synapses in the spinal cord. CONCLUSION Severe caloric restriction did not lead to systemic metal deficiencies but caused instead specific metal responses in few organs.
Collapse
Affiliation(s)
- Alma I Santos-Díaz
- Department of Physiology, Biophysics and Neuroscience, Cinvestav, 07360 Mexico City, Mexico
| | | | - Elizabeth Díaz-Torres
- Department of Physiology, Biophysics and Neuroscience, Cinvestav, 07360 Mexico City, Mexico
| | | | - Beatriz Osorio
- Department of Physiology, Biophysics and Neuroscience, Cinvestav, 07360 Mexico City, Mexico
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Samuel M Webb
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Marcia Hiriart
- Institute of Cellular Physiology, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Ismael Jiménez-Estrada
- Department of Physiology, Biophysics and Neuroscience, Cinvestav, 07360 Mexico City, Mexico
| | - Fanis Missirlis
- Department of Physiology, Biophysics and Neuroscience, Cinvestav, 07360 Mexico City, Mexico.
| |
Collapse
|
5
|
Takeda A. [Brain Function and Pathophysiology Focused on Zn 2+ Dynamics]. YAKUGAKU ZASSHI 2022; 142:855-866. [PMID: 35908946 DOI: 10.1248/yakushi.22-00074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The basal levels of intracellular Zn2+ and extracellular Zn2+ are in the range of ~100 pM and ~10 nM, respectively, in the brain. Extracellular Zn2+ dynamics is involved in both cognitive performance and neurodegeneration. The bidirectional actions are linked with extracellular glutamate and amyloid-β1-42 (Aβ1-42). Intracellular Zn2+ signaling via extracellular glutamate is required for learning and memory, while intracellular Zn2+ dysregulation induces cognitive decline. Furthermore, human Aβ1-42, a causative peptide in Alzheimer's disease pathogenesis captures extracellular Zn2+ and readily taken up into hippocampal neurons followed by intracellular Zn2+ dysregulation. Aβ1-42-mediated intracellular Zn2+ dysregulation is accelerated with aging, because extracellular Zn2+ is age-relatedly increased, resulting in Aβ1-42-induced cognitive decline and neurodegeneration with aging. On the other hand, metallothioneins, zinc-binding proteins can capture Zn2+ released from intracellular Zn-Aβ1-42 complexes and serve for intracellular Zn2+-buffering to maintain intracellular Zn2+ homeostasis. This review summarizes Zn2+ function and its neurotoxicity in the brain, and also the potential defense strategy via metallothioneins against Aβ1-42-induced pathogenesis.
Collapse
Affiliation(s)
- Atsushi Takeda
- School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
6
|
Prediction of Metal Ion Binding Sites of Transmembrane Proteins. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:2327832. [PMID: 34721655 PMCID: PMC8556105 DOI: 10.1155/2021/2327832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/01/2021] [Indexed: 12/22/2022]
Abstract
The metal ion binding of transmembrane proteins (TMPs) plays a fundamental role in biological processes, pharmaceutics, and medicine, but it is hard to extract enough TMP structures in experimental techniques to discover their binding mechanism comprehensively. To predict the metal ion binding sites for TMPs on a large scale, we present a simple and effective two-stage prediction method TMP-MIBS, to identify the corresponding binding residues using TMP sequences. At present, there is no specific research on the metal ion binding prediction of TMPs. Thereby, we compared our model with the published tools which do not distinguish TMPs from water-soluble proteins. The results in the independent verification dataset show that TMP-MIBS has superior performance. This paper explores the interaction mechanism between TMPs and metal ions, which is helpful to understand the structure and function of TMPs and is of great significance to further construct transport mechanisms and identify potential drug targets.
Collapse
|
7
|
Madireddy S, Madireddy S. Most Effective Combination of Nutraceuticals for Improved Memory and Cognitive Performance in the House Cricket, Acheta domesticus. Nutrients 2021; 13:nu13020362. [PMID: 33504066 PMCID: PMC7911739 DOI: 10.3390/nu13020362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 12/22/2022] Open
Abstract
Background: Dietary intake of multivitamins, zinc, polyphenols, omega fatty acids, and probiotics have all shown benefits in learning, spatial memory, and cognitive function. It is important to determine the most effective combination of antioxidants and/or probiotics because regular ingestion of all nutraceuticals may not be practical. This study examined various combinations of nutrients to determine which may best enhance spatial memory and cognitive performance in the house cricket (Acheta domesticus (L.)). Methods: Based on the 31 possible combinations of multivitamins, zinc, polyphenols, omega-3 polyunsaturated fatty acids (PUFAs), and probiotics, 128 house crickets were divided into one control group and 31 experimental groups with four house crickets in each group. Over eight weeks, crickets were fed their respective nutrients, and an Alternation Test and Recognition Memory Test were conducted every week using a Y-maze to test spatial working memory. Results: The highest-scoring diets shared by both tests were the combination of multivitamins, zinc, and omega-3 fatty acids (VitZncPuf; Alternation: slope = 0.07226, Recognition Memory: slope = 0.07001), the combination of probiotics, polyphenols, multivitamins, zinc, and omega-3 PUFAs (ProPolVitZncPuf; Alternation: slope = 0.07182, Recognition Memory: slope = 0.07001), the combination of probiotics, multivitamins, zinc, and omega-3 PUFAs (ProVitZncPuf; Alternation: slope = 0.06999, Recognition Memory: slope = 0.07001), and the combination of polyphenols, multivitamins, zinc, and omega-3 PUFAs (PolVitZncPuf; Alternation: slope = 0.06873, Recognition Memory: slope = 0.06956). Conclusion: All of the nutrient combinations demonstrated a benefit over the control diet, but the most significant improvement compared to the control was found in the VitZncPuf, ProVitZncPuf, PolVitZncPuf, and ProPolVitZncPuf. Since this study found no significant difference between the performance and improvement of subjects within these four groups, the combination of multivitamins, zinc, and omega-3 fatty acids (VitZncPuf) was concluded to be the most effective option for improving memory and cognitive performance.
Collapse
Affiliation(s)
- Samskruthi Madireddy
- Independent Researcher, 1353 Tanaka Drive, San Jose, CA 95131, USA
- Correspondence:
| | | |
Collapse
|
8
|
Krall RF, Tzounopoulos T, Aizenman E. The Function and Regulation of Zinc in the Brain. Neuroscience 2021; 457:235-258. [PMID: 33460731 DOI: 10.1016/j.neuroscience.2021.01.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 12/31/2022]
Abstract
Nearly sixty years ago Fredrich Timm developed a histochemical technique that revealed a rich reserve of free zinc in distinct regions of the brain. Subsequent electron microscopy studies in Timm- stained brain tissue found that this "labile" pool of cellular zinc was highly concentrated at synaptic boutons, hinting a possible role for the metal in synaptic transmission. Although evidence for activity-dependent synaptic release of zinc would not be reported for another twenty years, these initial findings spurred decades of research into zinc's role in neuronal function and revealed a diverse array of signaling cascades triggered or regulated by the metal. Here, we delve into our current understanding of the many roles zinc plays in the brain, from influencing neurotransmission and sensory processing, to activating both pro-survival and pro-death neuronal signaling pathways. Moreover, we detail the many mechanisms that tightly regulate cellular zinc levels, including metal binding proteins and a large array of zinc transporters.
Collapse
Affiliation(s)
- Rebecca F Krall
- Department of Neurobiology, University of Pittsburgh School of Medicine, USA; Department of Otolaryngology, University of Pittsburgh School of Medicine, USA; Pittsburgh Hearing Research Center, University of Pittsburgh School of Medicine, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, USA
| | - Thanos Tzounopoulos
- Department of Otolaryngology, University of Pittsburgh School of Medicine, USA; Pittsburgh Hearing Research Center, University of Pittsburgh School of Medicine, USA.
| | - Elias Aizenman
- Department of Neurobiology, University of Pittsburgh School of Medicine, USA; Pittsburgh Hearing Research Center, University of Pittsburgh School of Medicine, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, USA.
| |
Collapse
|
9
|
Krzywoszyńska K, Witkowska D, Świątek-Kozłowska J, Szebesczyk A, Kozłowski H. General Aspects of Metal Ions as Signaling Agents in Health and Disease. Biomolecules 2020; 10:biom10101417. [PMID: 33036384 PMCID: PMC7600656 DOI: 10.3390/biom10101417] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023] Open
Abstract
This review focuses on the current knowledge on the involvement of metal ions in signaling processes within the cell, in both physiological and pathological conditions. The first section is devoted to the recent discoveries on magnesium and calcium-dependent signal transduction-the most recognized signaling agents among metals. The following sections then describe signaling pathways where zinc, copper, and iron play a key role. There are many systems in which changes in intra- and extra-cellular zinc and copper concentrations have been linked to important downstream events, especially in nervous signal transduction. Iron signaling is mostly related with its homeostasis. However, it is also involved in a recently discovered type of programmed cell death, ferroptosis. The important differences in metal ion signaling, and its disease-leading alterations, are also discussed.
Collapse
Affiliation(s)
- Karolina Krzywoszyńska
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland; (J.Ś.-K.); (A.S.); (H.K.)
- Correspondence: (K.K.); (D.W.); Tel.: +48-77-44-23-549 (K.K); +48-77-44-23-548 (D.W.)
| | - Danuta Witkowska
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland; (J.Ś.-K.); (A.S.); (H.K.)
- Correspondence: (K.K.); (D.W.); Tel.: +48-77-44-23-549 (K.K); +48-77-44-23-548 (D.W.)
| | - Jolanta Świątek-Kozłowska
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland; (J.Ś.-K.); (A.S.); (H.K.)
| | - Agnieszka Szebesczyk
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland; (J.Ś.-K.); (A.S.); (H.K.)
| | - Henryk Kozłowski
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland; (J.Ś.-K.); (A.S.); (H.K.)
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50-383 Wrocław, Poland
| |
Collapse
|
10
|
Pan CY, Lin FY, Kao LS, Huang CC, Liu PS. Zinc oxide nanoparticles modulate the gene expression of ZnT1 and ZIP8 to manipulate zinc homeostasis and stress-induced cytotoxicity in human neuroblastoma SH-SY5Y cells. PLoS One 2020; 15:e0232729. [PMID: 32915786 PMCID: PMC7485861 DOI: 10.1371/journal.pone.0232729] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/27/2020] [Indexed: 11/19/2022] Open
Abstract
Zinc ions (Zn2+) are important messenger molecules involved in various physiological functions. To maintain the homeostasis of cytosolic Zn2+ concentration ([Zn2+]c), Zrt/Irt-related proteins (ZIPs) and Zn2+ transporters (ZnTs) are the two families of proteins responsible for decreasing and increasing the [Zn2+]c, respectively, by fluxing Zn2+ across the membranes of the cell and intracellular compartments in opposite directions. Most studies focus on the cytotoxicity incurred by a high concentration of [Zn2+]c and less investigate the [Zn2+]c at physiological levels. Zinc oxide-nanoparticle (ZnO-NP) is blood brain barrier-permeable and elevates the [Zn2+]c to different levels according to the concentrations of ZnO-NP applied. In this study, we mildly elevated the [Zn2+]c by ZnO-NP at concentrations below 1 μg/ml, which had little cytotoxicity, in cultured human neuroblastoma SH-SY5Y cells and characterized the importance of Zn2+ transporters in 6-hydroxy dopamine (6-OHDA)-induced cell death. The results show that ZnO-NP at low concentrations elevated the [Zn2+]c transiently in 6 hr, then declined gradually to a basal level in 24 hr. Knocking down the expression levels of ZnT1 (located mostly at the plasma membrane) and ZIP8 (present in endosomes and lysosomes) increased and decreased the ZnO-NP-induced elevation of [Zn2+]c, respectively. ZnO-NP treatment reduced the basal levels of reactive oxygen species and Bax/Bcl-2 mRNA ratios; in addition, ZnO-NP decreased the 6-OHDA-induced ROS production, p53 expression, and cell death. These results show that ZnO-NP-induced mild elevation in [Zn2+]c activates beneficial effects in reducing the 6-OHDA-induced cytotoxic effects. Therefore, brain-delivery of ZnO-NP can be regarded as a potential therapy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Chien-Yuan Pan
- Department of Life Science and Institute of Zoology, National Taiwan University, Taipei, Taiwan
| | - Fang-Yu Lin
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Lung-Sen Kao
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chien-Chang Huang
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Pei-Shan Liu
- Department of Microbiology, Soochow University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
11
|
Disruption of zinc transporter ZnT3 transcriptional activity and synaptic vesicular zinc in the brain of Huntington's disease transgenic mouse. Cell Biosci 2020; 10:106. [PMID: 32944220 PMCID: PMC7488477 DOI: 10.1186/s13578-020-00459-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/05/2020] [Indexed: 12/27/2022] Open
Abstract
Background Huntington’s disease (HD) is a neurodegenerative disease that involves a complex combination of psychiatric, cognitive and motor impairments. Synaptic dysfunction has been implicated in HD pathogenesis. However, the mechanisms have not been clearly delineated. Synaptic vesicular zinc is closely linked to modulating synaptic transmission and maintaining cognitive ability. It is significant to assess zinc homeostasis for further revealing the pathogenesis of synaptic dysfunction and cognitive impairment in HD. Results Histochemical staining by autometallography indicated that synaptic vesicular zinc was decreased in the hippocampus, cortex and striatum of N171-82Q HD transgenic mice. Analyses by immunohistochemistry, Western blot and RT-PCR found that the expression of zinc transporter 3 (ZnT3) required for transport of zinc into synaptic vesicles was obviously reduced in these three brain regions of the HD mice aged from 14 to 20 weeks and BHK cells expressing mutant huntingtin. Significantly, dual-luciferase reporter gene and chromatin immunoprecipitation assays demonstrated that transcription factor Sp1 could activate ZnT3 transcription via its binding to the GC boxes in ZnT3 promoter. Moreover, mutant huntingtin was found to inhibit the binding of Sp1 to the promoter of ZnT3 and down-regulate ZnT3 expression, and the decline in ZnT3 expression could be ameliorated through overexpression of Sp1. Conclusions This is first study to reveal a significant loss of synaptic vesicular zinc and a decline in ZnT3 transcriptional activity in the HD transgenic mice. Our work sheds a novel mechanistic insight into pathogenesis of HD that mutant huntingtin down-regulates expression of ZnT3 through inhibiting binding of Sp1 to the promoter of ZnT3 gene, causing disruption of synaptic vesicular zinc homeostasis. Disrupted vesicular zinc ultimately leads to early synaptic dysfunction and cognitive deficits in HD. It is also suggested that maintaining normal synaptic vesicular zinc concentration is a potential therapeutic strategy for HD.
Collapse
|
12
|
Ishihara Y, Fukuda T, Sato F. Internal structure of the rat subiculum characterized by diverse immunoreactivities and septotemporal differences. Neurosci Res 2020; 150:17-28. [DOI: 10.1016/j.neures.2019.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/30/2018] [Accepted: 02/04/2019] [Indexed: 01/07/2023]
|
13
|
Coverdale JPC, Khazaipoul S, Arya S, Stewart AJ, Blindauer CA. Crosstalk between zinc and free fatty acids in plasma. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:532-542. [PMID: 30266430 PMCID: PMC6372834 DOI: 10.1016/j.bbalip.2018.09.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/23/2018] [Accepted: 09/23/2018] [Indexed: 12/13/2022]
Abstract
In mammalian blood plasma, serum albumin acts as a transport protein for free fatty acids, other lipids and hydrophobic molecules including neurodegenerative peptides, and essential metal ions such as zinc to allow their systemic distribution. Importantly, binding of these chemically extremely diverse entities is not independent, but linked allosterically. One particularly intriguing allosteric link exists between free fatty acid and zinc binding. Albumin thus mediates crosstalk between energy status/metabolism and organismal zinc handling. In recognition of the fact that even small changes in extracellular zinc concentration and speciation modulate the function of many cell types, the albumin-mediated impact of free fatty acid concentration on zinc distribution may be significant for both normal physiological processes including energy metabolism, insulin activity, heparin neutralisation, blood coagulation, and zinc signalling, and a range of disease states, including metabolic syndrome, cardiovascular disease, myocardial ischemia, diabetes, and thrombosis. Serum albumin binds and transports both free fatty acids and Zn2+ ions Elevated plasma free fatty acids impair Zn2+ binding by albumin through an allosteric mechanism The resulting changes in plasma zinc speciation are thought to impact blood coagulation and may promote thrombosis Increased free Zn2+ may lead to enhanced zinc export from plasma and dysregulation of zinc homeostasis in multiple tissues
Collapse
Affiliation(s)
| | | | - Swati Arya
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK
| | - Alan J Stewart
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK
| | | |
Collapse
|
14
|
How cellular Zn 2+ signaling drives physiological functions. Cell Calcium 2018; 75:53-63. [PMID: 30145429 DOI: 10.1016/j.ceca.2018.08.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 01/10/2023]
Abstract
Zinc is an essential micronutrient affecting many aspects of human health. Cellular Zn2+ homeostasis is critical for cell function and survival. Zn2+, acting as a first or second messenger, triggers signaling pathways that mediate the physiological roles of Zn2+. Transient changes in Zn2+ concentrations within the cell or in the extracellular region occur following its release from Zn2+ binding metallothioneins, its transport across membranes by the ZnT or ZIP transporters, or release of vesicular Zn2+. These transients activate a distinct Zn2+ sensing receptor, ZnR/GPR39, or modulate numerous proteins and signaling pathways. Importantly, Zn2+ signaling regulates cellular physiological functions such as: proliferation, differentiation, ion transport and secretion. Indeed, novel therapeutic approaches aimed to maintain Zn2+ homeostasis and signaling are evolving. This review focuses on recent findings describing roles of Zn2+ and its transporters in regulating physiological or pathological processes.
Collapse
|
15
|
Magrì A, La Mendola D. Copper Binding Features of Tropomyosin-Receptor-Kinase-A Fragment: Clue for Neurotrophic Factors and Metals Link. Int J Mol Sci 2018; 19:ijms19082374. [PMID: 30103559 PMCID: PMC6121459 DOI: 10.3390/ijms19082374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/01/2018] [Accepted: 08/07/2018] [Indexed: 12/31/2022] Open
Abstract
The nerve growth factor (NGF) is a neurotrophin essential for the development and maintenance of neurons, whose activity is influenced by copper ions. The NGF protein exerts its action by binding to its specific receptor, TrkA. In this study, a specific domain of the TrkA receptor, region 58⁻64, was synthesized and its copper(II) complexes characterized by means of potentiometric and spectroscopic studies. The two vicinal histidine residues provide excellent metal anchoring sites and, at physiological pH, a complex with the involvement of the peptide backbone amide nitrogen is the predominant species. The TrkA peptide is competitive for metal binding with analogous peptides due to the N-terminal domain of NGF. These data provide cues for future exploration of the effect of metal ions on the activity of the NGF and its specific cellular receptor.
Collapse
Affiliation(s)
- Antonio Magrì
- Institute of Biostructures and Bioimages, National Council of Research (CNR), Via Paolo Gaifami 18, 95126 Catania, Italy.
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), via Celso Ulpiani, 27, 70125 Bari, Italy.
| | - Diego La Mendola
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), via Celso Ulpiani, 27, 70125 Bari, Italy.
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy.
| |
Collapse
|
16
|
Zhang T, Pauly T, Nagel-Steger L. Stoichiometric Zn2+ interferes with the self-association of Aβ42: Insights from size distribution analysis. Int J Biol Macromol 2018; 113:631-639. [DOI: 10.1016/j.ijbiomac.2018.02.123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/16/2018] [Accepted: 02/19/2018] [Indexed: 12/17/2022]
|
17
|
Pietropaolo A, Magrì A, Greco V, Losasso V, La Mendola D, Sciuto S, Carloni P, Rizzarelli E. Binding of Zn(II) to Tropomyosin Receptor Kinase A in Complex with Its Cognate Nerve Growth Factor: Insights from Molecular Simulation and in Vitro Essays. ACS Chem Neurosci 2018; 9:1095-1103. [PMID: 29281262 DOI: 10.1021/acschemneuro.7b00470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The binding of the human nerve growth factor (NGF) protein to tropomyosin receptor kinase A (TrkA) is associated with Alzhemeir's development. Owing to the large presence of zinc(II) ions in the synaptic compartments, the zinc ions might be bound to the complex in vivo. Here, we have identified a putative zinc binding site using a combination of computations and experiments. First, we have predicted structural features of the NGF/TrkA complex in an aqueous solution by molecular simulation. Metadynamics free energy calculations suggest that these are very similar to those in the X-ray structure. Here, the "crab" structure of the NGF shape binds tightly to two TrkA "pincers". Transient conformations of the complex include both more extended and more closed conformations. Interestingly, the latter features facial histidines (His60 and His61) among the N-terminal D1-D3 domains, each of which is a potential binding region for biometals. This suggests the presence of a four-His Zn binding site connecting the two chains. To address this issue, we investigated the binding of a D1-D3 domains' peptide mimic by stability constant and nuclear magnetic resonance measurements, complemented by density functional theory-based calculations. Taken together, these establish unambiguously a four-His coordination of the metal ion in the model systems, supporting the presence of our postulated binding site in the NGF/TrkA complex.
Collapse
Affiliation(s)
- Adriana Pietropaolo
- Dipartimento di Scienze della Salute, Università di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Antonio Magrì
- IBB-CNR, UOS Catania, via Paolo Gaifami 18, 95126 Catania, Italy
| | - Valentina Greco
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Valeria Losasso
- Institute for Computational Biomedicine (IAS-5/INM-9/INM-9) Forschungszentrum Jülich, 52425 Jülich, Germany
- Department of Physics, RWTH Aachen University, 52056 Aachen, Germany
| | - Diego La Mendola
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Sebastiano Sciuto
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Paolo Carloni
- Institute for Computational Biomedicine (IAS-5/INM-9/INM-9) Forschungszentrum Jülich, 52425 Jülich, Germany
- Department of Physics, RWTH Aachen University, 52056 Aachen, Germany
| | - Enrico Rizzarelli
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| |
Collapse
|
18
|
Takeda A, Tamano H, Hashimoto W, Kobuchi S, Suzuki H, Murakami T, Tempaku M, Koike Y, Adlard PA, Bush AI. Novel Defense by Metallothionein Induction Against Cognitive Decline: From Amyloid β 1-42-Induced Excess Zn 2+ to Functional Zn 2+ Deficiency. Mol Neurobiol 2018; 55:7775-7788. [PMID: 29460269 DOI: 10.1007/s12035-018-0948-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/31/2018] [Indexed: 02/07/2023]
Abstract
The role of metallothioneins (MTs) in cognitive decline associated with intracellular Zn2+ dysregulation remains unclear. Here, we report that hippocampal MT induction defends cognitive decline, which was induced by amyloid β1-42 (Aβ1-42)-mediated excess Zn2+ and functional Zn2+ deficiency. Excess increase in intracellular Zn2+, which was induced by local injection of Aβ1-42 into the dentate granule cell layer, attenuated in vivo perforant pathway LTP, while the attenuation was rescued by preinjection of MT inducers into the same region. Intraperitoneal injection of dexamethasone, which increased hippocampal MT proteins and blocked Aβ1-42-mediated Zn2+ uptake, but not Aβ1-42 uptake, into dentate granule cells, also rescued Aβ1-42-induced impairment of memory via attenuated LTP. The present study indicates that hippocampal MT induction blocks rapid excess increase in intracellular Zn2+ in dentate granule cells, which originates in Zn2+ released from Aβ1-42, followed by rescuing Aβ1-42-induced cognitive decline. Furthermore, LTP was vulnerable to Aβ1-42 in the aged dentate gyrus, consistent with enhanced Aβ1-42-mediated Zn2+ uptake into aged dentate granule cells, suggesting that Aβ1-42-induced cognitive decline, which is caused by excess intracellular Zn2+, can more frequently occur along with aging. On the other hand, attenuated LTP under functional Zn2+ deficiency in dentate granule cells was also rescued by MT induction. Hippocampal MT induction may rescue cognitive decline under lack of cellular transient changes in functional Zn2+ concentration, while its induction is an attractive defense strategy against Aβ1-42-induced cognitive decline.
Collapse
Affiliation(s)
- Atsushi Takeda
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| | - Haruna Tamano
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Wakana Hashimoto
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Shuhei Kobuchi
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Hiroki Suzuki
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Taku Murakami
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Munekazu Tempaku
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Yuta Koike
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Paul A Adlard
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Ashley I Bush
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
| |
Collapse
|
19
|
Takeda A, Tamano H. The Impact of Synaptic Zn 2+ Dynamics on Cognition and Its Decline. Int J Mol Sci 2017; 18:ijms18112411. [PMID: 29135924 PMCID: PMC5713379 DOI: 10.3390/ijms18112411] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/31/2017] [Accepted: 11/09/2017] [Indexed: 11/16/2022] Open
Abstract
The basal levels of extracellular Zn2+ are in the range of low nanomolar concentrations and less attention has been paid to Zn2+, compared to Ca2+, for synaptic activity. However, extracellular Zn2+ is necessary for synaptic activity. The basal levels of extracellular zinc are age-dependently increased in the rat hippocampus, implying that the basal levels of extracellular Zn2+ are also increased age-dependently and that extracellular Zn2+ dynamics are linked with age-related cognitive function and dysfunction. In the hippocampus, the influx of extracellular Zn2+ into postsynaptic neurons, which is often linked with Zn2+ release from neuron terminals, is critical for cognitive activity via long-term potentiation (LTP). In contrast, the excess influx of extracellular Zn2+ into postsynaptic neurons induces cognitive decline. Interestingly, the excess influx of extracellular Zn2+ more readily occurs in aged dentate granule cells and intracellular Zn2+-buffering, which is assessed with ZnAF-2DA, is weakened in the aged dentate granule cells. Characteristics (easiness) of extracellular Zn2+ influx seem to be linked with the weakened intracellular Zn2+-buffering in the aged dentate gyrus. This paper deals with the impact of synaptic Zn2+ signaling on cognition and its decline in comparison with synaptic Ca2+ signaling.
Collapse
Affiliation(s)
- Atsushi Takeda
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Hanuna Tamano
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| |
Collapse
|
20
|
Carpenè E, Andreani G, Isani G. Trace elements in unconventional animals: A 40-year experience. J Trace Elem Med Biol 2017; 43:169-179. [PMID: 28215718 DOI: 10.1016/j.jtemb.2017.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/22/2016] [Accepted: 02/04/2017] [Indexed: 12/13/2022]
Abstract
The role of trace elements in animal health has attracted increasing interest in recent years. The essentiality and toxicity of these elements have been extensively investigated in humans, laboratory animal models and partially in domestic animals, whereas little is known about trace element metabolism in most living organisms. Forty years ago our research started on Cd metabolism in molluscs, thereafter expanding to Zn, Cu, and Fe metabolism in many unconventional animal species of veterinary interest. This review summarizes the main results obtained over this long period of time: some of the findings are original and have not been published to date. They are discussed in more detail and compared with data obtained in conventional animals, including man.
Collapse
Affiliation(s)
- Emilio Carpenè
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Bologna, Italy
| | - Giulia Andreani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Bologna, Italy
| | - Gloria Isani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Bologna, Italy.
| |
Collapse
|
21
|
Metal Binding Properties of the N-Terminus of the Functional Amyloid Orb2. Biomolecules 2017; 7:biom7030057. [PMID: 28763009 PMCID: PMC5618238 DOI: 10.3390/biom7030057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 07/14/2017] [Accepted: 07/21/2017] [Indexed: 12/18/2022] Open
Abstract
The cytoplasmic polyadenylation element binding protein (CPEB) homologue Orb2 is a functional amyloid that plays a key regulatory role for long-term memory in Drosophila. Orb2 has a glutamine, histidine-rich (Q/H-rich) domain that resembles the Q/H-rich, metal binding domain of the Hpn-like protein (Hpnl) found in Helicobacter pylori. In the present study, we used chromatography and isothermal titration calorimetry (ITC) to show that the Q/H-rich domain of Orb2 binds Ni2+ and other transition metals ions with μM affinity. Using site directed mutagenesis, we show that several histidine residues are important for binding. In particular, the H61Y mutation, which was previously shown to affect the aggregation of Orb2 in cell culture, completely inhibited metal binding of Orb2. Finally, we used thioflavin T fluorescence and electron microscopy images to show that Ni2+ binding induces the aggregating of Orb2 into structures that are distinct from the amyloid fibrils formed in the absence of Ni2+. These data suggest that transition metal binding might be important for the function of Orb2 and potentially long-term memory in Drosophila.
Collapse
|
22
|
Takeda A, Tamano H, Murakami T, Nakada H, Minamino T, Koike Y. Weakened Intracellular Zn 2+-Buffering in the Aged Dentate Gyrus and Its Involvement in Erasure of Maintained LTP. Mol Neurobiol 2017; 55:3856-3865. [PMID: 28547527 DOI: 10.1007/s12035-017-0615-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/11/2017] [Indexed: 11/24/2022]
Abstract
Memory is lost by the increased influx of extracellular Zn2+ into neurons. It is possible that intracellular Zn2+ dynamics is modified even at non-zincergic medial perforant pathway-dentate granule cell synapses along with aging and that vulnerability to the modification is linked to age-related cognitive decline. To examine these possibilities, vulnerability of long-term potentiation (LTP) maintenance, which underlies memory retention, to modification of synaptic Zn2+ dynamics was compared between young and aged rats. The influx of extracellular Zn2+ into dentate granule cells was increased in aged rats after injection of high K+ into the dentate gyrus, but not in young rats. This increase impaired maintained LTP in aged rats. However, the impairment was rescued by co-injection of CaEDTA, an extracellular Zn2+ chelator, or CNQX, an AMPA receptor antagonist, which suppressed the Zn2+ influx. Maintained LTP was also impaired in aged rats after injection of ZnAF-2DA into the dentate gyrus that chelates intracellular Zn2+, but not in young rats. Interestingly, the capacity of chelating intracellular Zn2+ with intracellular ZnAF-2 was almost lost in the aged dentate gyrus 2 h after injection of ZnAF-2DA into the dentate gyrus, suggesting that intracellular Zn2+-buffering is weakened in the aged dentate gyrus, compared to the young dentate gyrus. In the dentate gyrus of aged rats, maintained LTP is more vulnerable to modification of intracellular Zn2+ dynamics than in young rats, probably due to weakened intracellular Zn2+-buffering.
Collapse
Affiliation(s)
- Atsushi Takeda
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| | - Haruna Tamano
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Taku Murakami
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Hiroyuki Nakada
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Tatsuya Minamino
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Yuta Koike
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| |
Collapse
|
23
|
Abstract
Vitamins and minerals have essential functions in the body, from signal transduction to acting as cofactors for numerous enzymatic processes. Nutritional deficiencies and excess of certain vitamins and minerals can have profound effects on the central and peripheral nervous systems from early development into adulthood. This article summarizes the role of various nutritional factors in the nervous system and the neurological symptoms that can arise from deficiency or excess.
Collapse
Affiliation(s)
- Aparna Polavarapu
- From the Section of Neurology, St. Christopher's Hospital for Children, Department of Pediatrics, Drexel University College of Medicine, Phiadelphia, PA
| | - Daphne Hasbani
- From the Section of Neurology, St. Christopher's Hospital for Children, Department of Pediatrics, Drexel University College of Medicine, Phiadelphia, PA.
| |
Collapse
|
24
|
Feng E, Tu Y, Fan C, Liu G, Pu S. A highly selective and sensitive fluorescent chemosensor for Zn2+based on a diarylethene derivative. RSC Adv 2017. [DOI: 10.1039/c7ra09966e] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A promising photochromic fluorescent chemosensor1olinked with Schiff base unit was synthesized and the sensitivity test of1otoward Zn2+has been performed with detection limit up to 8.10 × 10−8M without any interference from Cd2+.
Collapse
Affiliation(s)
- Erting Feng
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- P. R. China
| | - Yayi Tu
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- P. R. China
| | - Congbin Fan
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- P. R. China
| | - Gang Liu
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- P. R. China
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- P. R. China
| |
Collapse
|
25
|
Takeda A, Tamano H. Insight into cognitive decline from Zn 2+ dynamics through extracellular signaling of glutamate and glucocorticoids. Arch Biochem Biophys 2016; 611:93-99. [DOI: 10.1016/j.abb.2016.06.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/23/2016] [Accepted: 06/30/2016] [Indexed: 02/06/2023]
|
26
|
Tamano H, Koike Y, Nakada H, Shakushi Y, Takeda A. Significance of synaptic Zn 2+ signaling in zincergic and non-zincergic synapses in the hippocampus in cognition. J Trace Elem Med Biol 2016; 38:93-98. [PMID: 26995290 DOI: 10.1016/j.jtemb.2016.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/07/2016] [Accepted: 03/07/2016] [Indexed: 11/24/2022]
Abstract
A portion of zinc concentrates in the synaptic vesicles in the brain and is released from glutamatergic (zincergic) neuron terminals. It serves as a signaling factor (in a form of free Zn2+). Both extracellular Zn2+ signaling, which predominantly originates in Zn2+ release from zincergic neuron terminals, and intracellular Zn2+ signaling, which is often linked to extracellular Zn2+ signaling, are involved in hippocampus-dependent memory. At mossy fiber-CA3 pyramidal cell synapses and Schaffer collateral-CA1 pyramidal cell synapses, which are zincergic, extracellular Zn2+ signaling leads to intracellular Zn2+ signaling and is involved in learning and memory. At medial perforant pathway-dentate granule cell synapses, which are non-zincergic, intracellular Zn2+ signaling, which originates in the internal stores containing Zn2+, is involved in learning and memory. The blockade of Zn2+ signaling with Zn2+ chelators induces memory deficit, while the optimal amount range of Zn2+ signaling is unknown. It is possible that the degree and frequency of Zn2+ signaling, which determine the increased Zn2+ levels, modulates learning and memory as well as intracellular Ca2+ signaling. To understand the precise role of synaptic Zn2+ signaling in the hippocampus, the present paper summarizes the current knowledge on Zn2+ signaling at zincergic and non-zincergic synapses in the hippocampus in cognition and involvement of zinc transporters and zinc-binding proteins in synaptic Zn2+ signaling.
Collapse
Affiliation(s)
- Hanuna Tamano
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yuta Koike
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hiroyuki Nakada
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yukina Shakushi
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Atsushi Takeda
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| |
Collapse
|
27
|
Petering DH. Reactions of the Zn Proteome with Cd2+ and Other Xenobiotics: Trafficking and Toxicity. Chem Res Toxicol 2016; 30:189-202. [DOI: 10.1021/acs.chemrestox.6b00328] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- David H. Petering
- Department of Chemistry and
Biochemistry, University of Wisconsin−Milwaukee, Milwaukee, Wisconsin 53201, United States
| |
Collapse
|
28
|
Immunohistochemical investigation of the internal structure of the mouse subiculum. Neuroscience 2016; 337:242-266. [PMID: 27664459 DOI: 10.1016/j.neuroscience.2016.09.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 12/27/2022]
Abstract
The subiculum is the output component of the hippocampal formation and holds a key position in the neural circuitry of memory. Previous studies have demonstrated the subiculum's connectivity to other brain areas in detail; however, little is known regarding its internal structure. We investigated the cytoarchitecture of the temporal and mid-septotemporal parts of the subiculum using immunohistochemistry. The border between the CA1 region and subiculum was determined by both cytoarchitecture and zinc transporter 3 (ZnT3)-immunoreactivity (IR), whereas the border between the subiculum and presubiculum (PreS) was partially indicated by glutamate receptor 1 (GluR1)-IR. The subiculum was divided into proximal and distal subfields based on cytoarchitecture and immunohistochemistry for calbindin (CB), nitric oxide synthase (NOS) and Purkinje cell protein 4 (PCP4). The proximal subiculum (defined here as subiculum 2) was composed of five layers: the molecular layer (layer 1), the medium-sized pyramidal cell layer (layer 2) that contained NOS- and PCP4-positive neurons, the large pyramidal cell layer (layer 3) characterized by the accumulation of ZnT3- (more proximally) and vesicular glutamate transporter 2-positive (more distally) boutons, layer 4 containing polymorphic cells, and the deepest layer 5 composed of PCP4-positive cells with long apical dendrites that reached layer 1. The distal subiculum (subiculum 1) consisting of smaller neurons did not show these features. Quantitative analyses of the size and numerical density of somata substantiated this delineation. Both the proximal-distal division and five-layered structure in the subiculum 2 were confirmed throughout the temporal two-thirds of the subiculum. These findings will provide a new structural basis for hippocampal investigations.
Collapse
|