1
|
Ben-Ami Bartal I. The complex affective and cognitive capacities of rats. Science 2024; 385:1298-1305. [PMID: 39298607 DOI: 10.1126/science.adq6217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024]
Abstract
For several decades, although studies of rat physiology and behavior have abounded, research on rat emotions has been limited in scope to fear, anxiety, and pain. Converging evidence for the capacity of many species to share others' affective states has emerged, sparking interest in the empathic capacities of rats. Recent research has demonstrated that rats are a highly cooperative species and are motivated by others' distress to prosocial actions, such as opening a door or pulling a chain to release trapped conspecifics. Studies of rat affect, cognition, and neural function provide compelling evidence that rats have some capacity to represent others' needs, to instrumentally act to improve their well-being, and are thus capable of forms of targeted helping. Rats' complex abilities raise the importance of integrating new measures of rat well-being into scientific research.
Collapse
Affiliation(s)
- Inbal Ben-Ami Bartal
- School of School of Psychological Sciences, Tel-Aviv University, Tel Aviv, 6997801, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
2
|
Jaeger J, Riedl A, Djedovic A, Vervaeke J, Walsh D. Naturalizing relevance realization: why agency and cognition are fundamentally not computational. Front Psychol 2024; 15:1362658. [PMID: 38984275 PMCID: PMC11231436 DOI: 10.3389/fpsyg.2024.1362658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/15/2024] [Indexed: 07/11/2024] Open
Abstract
The way organismic agents come to know the world, and the way algorithms solve problems, are fundamentally different. The most sensible course of action for an organism does not simply follow from logical rules of inference. Before it can even use such rules, the organism must tackle the problem of relevance. It must turn ill-defined problems into well-defined ones, turn semantics into syntax. This ability to realize relevance is present in all organisms, from bacteria to humans. It lies at the root of organismic agency, cognition, and consciousness, arising from the particular autopoietic, anticipatory, and adaptive organization of living beings. In this article, we show that the process of relevance realization is beyond formalization. It cannot be captured completely by algorithmic approaches. This implies that organismic agency (and hence cognition as well as consciousness) are at heart not computational in nature. Instead, we show how the process of relevance is realized by an adaptive and emergent triadic dialectic (a trialectic), which manifests as a metabolic and ecological-evolutionary co-constructive dynamic. This results in a meliorative process that enables an agent to continuously keep a grip on its arena, its reality. To be alive means to make sense of one's world. This kind of embodied ecological rationality is a fundamental aspect of life, and a key characteristic that sets it apart from non-living matter.
Collapse
Affiliation(s)
- Johannes Jaeger
- Department of Philosophy, University of Vienna, Vienna, Austria
- Complexity Science Hub (CSH) Vienna, Vienna, Austria
- Ronin Institute, Essex, NJ, United States
| | - Anna Riedl
- Middle European Interdisciplinary Master's Program in Cognitive Science, University of Vienna, Vienna, Austria
| | - Alex Djedovic
- Cognitive Science Program, University of Toronto, Toronto, ON, Canada
- Institute for the History and Philosophy of Science and Technology, University of Toronto, Toronto, ON, Canada
| | - John Vervaeke
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Denis Walsh
- Institute for the History and Philosophy of Science and Technology, University of Toronto, Toronto, ON, Canada
- Department of Philosophy, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Bayne T, Seth AK, Massimini M, Shepherd J, Cleeremans A, Fleming SM, Malach R, Mattingley JB, Menon DK, Owen AM, Peters MAK, Razi A, Mudrik L. Tests for consciousness in humans and beyond. Trends Cogn Sci 2024; 28:454-466. [PMID: 38485576 DOI: 10.1016/j.tics.2024.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 05/12/2024]
Abstract
Which systems/organisms are conscious? New tests for consciousness ('C-tests') are urgently needed. There is persisting uncertainty about when consciousness arises in human development, when it is lost due to neurological disorders and brain injury, and how it is distributed in nonhuman species. This need is amplified by recent and rapid developments in artificial intelligence (AI), neural organoids, and xenobot technology. Although a number of C-tests have been proposed in recent years, most are of limited use, and currently we have no C-tests for many of the populations for which they are most critical. Here, we identify challenges facing any attempt to develop C-tests, propose a multidimensional classification of such tests, and identify strategies that might be used to validate them.
Collapse
Affiliation(s)
- Tim Bayne
- Department of Philosophy, Monash University, Melbourne, VIC, Australia; Canadian Institute for Advanced Research (CIFAR), Brain, Mind, and Consciousness Program, Toronto, ON, Canada.
| | - Anil K Seth
- Canadian Institute for Advanced Research (CIFAR), Brain, Mind, and Consciousness Program, Toronto, ON, Canada; Sussex Centre for Consciousness Science and School of Engineering and Informatics, University of Sussex, Brighton, UK
| | - Marcello Massimini
- Canadian Institute for Advanced Research (CIFAR), Brain, Mind, and Consciousness Program, Toronto, ON, Canada; Department of Biomedical and Clinical Science, University of Milan, Milan, Italy; IRCCS Fondazione Don Gnocchi
| | - Joshua Shepherd
- Canadian Institute for Advanced Research (CIFAR), Brain, Mind, and Consciousness Program, Toronto, ON, Canada; Universitat Autònoma de Barcelona, Belleterra, Spain; ICREA, Barcelona, Spain
| | - Axel Cleeremans
- Canadian Institute for Advanced Research (CIFAR), Brain, Mind, and Consciousness Program, Toronto, ON, Canada; Center for Research in Cognition and Neuroscience, ULB Institute of Neuroscience, Université libre de Bruxelles, Brussels, Belgium
| | - Stephen M Fleming
- Canadian Institute for Advanced Research (CIFAR), Brain, Mind, and Consciousness Program, Toronto, ON, Canada; Department of Experimental Psychology, University College London, London, UK; Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Rafael Malach
- Canadian Institute for Advanced Research (CIFAR), Brain, Mind, and Consciousness Program, Toronto, ON, Canada; The Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Jason B Mattingley
- Canadian Institute for Advanced Research (CIFAR), Brain, Mind, and Consciousness Program, Toronto, ON, Canada; Queensland Brain Institute and School of Psychology, The University of Queensland, Brisbane, QLD, Australia
| | - David K Menon
- Canadian Institute for Advanced Research (CIFAR), Brain, Mind, and Consciousness Program, Toronto, ON, Canada; University of Cambridge, Cambridge, UK
| | - Adrian M Owen
- Canadian Institute for Advanced Research (CIFAR), Brain, Mind, and Consciousness Program, Toronto, ON, Canada; University of Western Ontario, London, ON, Canada
| | - Megan A K Peters
- Canadian Institute for Advanced Research (CIFAR), Brain, Mind, and Consciousness Program, Toronto, ON, Canada; University of California, Irvine, Irvine, CA, USA
| | - Adeel Razi
- Canadian Institute for Advanced Research (CIFAR), Brain, Mind, and Consciousness Program, Toronto, ON, Canada; Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia; Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Liad Mudrik
- Canadian Institute for Advanced Research (CIFAR), Brain, Mind, and Consciousness Program, Toronto, ON, Canada; School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Lacalli T. Mental causation: an evolutionary perspective. Front Psychol 2024; 15:1394669. [PMID: 38741757 PMCID: PMC11089241 DOI: 10.3389/fpsyg.2024.1394669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
The relationship between consciousness and individual agency is examined from a bottom-up evolutionary perspective, an approach somewhat different from other ways of dealing with the issue, but one relevant to the question of animal consciousness. Two ways are identified that would decouple the two, allowing consciousness of a limited kind to exist without agency: (1) reflex pathways that incorporate conscious sensations as an intrinsic component (InCs), and (2) reflexes that are consciously conditioned and dependent on synaptic plasticity but not memory (CCRs). Whether InCs and CCRs exist as more than hypothetical constructs is not clear, and InCs are in any case limited to theories where consciousness depends directly on EM field-based effects. Consciousness with agency, as we experience it, then belongs in a third category that allows for deliberate choice of alternative actions (DCs), where the key difference between this and CCR-level pathways is that DCs require access to explicit memory systems whereas CCRs do not. CCRs are nevertheless useful from a heuristic standpoint as a conceptual model for how conscious inputs could act to refine routine behaviors while allowing evolution to optimize phenomenal experience (i.e., qualia) in the absence of individual agency, a somewhat counterintuitive result. However, so long as CCRs are not a required precondition for the evolution of memory-dependent DC-level processes, the later could have evolved first. If so, the adaptive benefit of consciousness when it first evolved may be linked as much to the role it plays in encoding memories as to any other function. The possibility that CCRs are more than a theoretical construct, and have played a role in the evolution of consciousness, argues against theories of consciousness focussed exclusively on higher-order functions as the appropriate way to deal with consciousness as it first evolved, as it develops in the early postnatal period of life, or with the conscious experiences of animals other than ourselves. An evolutionary perspective also resolves the problem of free will, that it is best treated as a property of a species rather than the individuals belonging to that species whereas, in contrast, agency is an attribute of individuals.
Collapse
Affiliation(s)
- Thurston Lacalli
- Department of Biology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
5
|
Baetu TM. Extrapolating animal consciousness. STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE 2024; 104:150-159. [PMID: 38520882 DOI: 10.1016/j.shpsa.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/25/2024]
Abstract
I argue that the question of animal consciousness is an extrapolation problem and, as such, is best tackled by deploying currently accepted methodology for validating experimental models of a phenomenon of interest. This methodology relies on an assessment of similarities and dissimilarities between experimental models, the partial replication of findings across complementary models, and evidence from the successes and failures of explanations, technologies and medical applications developed by extrapolating and aggregating findings from multiple models. Crucially important, this methodology does not require a commitment to any particular theory or construct of consciousness, thus avoiding theory-biased reinterpretations of empirical findings rampant in the literature.
Collapse
Affiliation(s)
- Tudor M Baetu
- Université du Québec à Trois-Rivières, Département de philosophie et des arts, 3351, boul. des Forges, Trois-Rivières, Québec, G8Z 4M3, Canada.
| |
Collapse
|
6
|
Skora LI, Scott RB, Jocham G. Stimulus awareness is necessary for both instrumental learning and instrumental responding to previously learned stimuli. Cognition 2024; 244:105716. [PMID: 38184894 DOI: 10.1016/j.cognition.2024.105716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/24/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Instrumental conditioning is a crucial part of adaptive behaviour, allowing agents to selectively interact with stimuli in their environment. Recent evidence suggests that instrumental conditioning cannot proceed without stimulus awareness. However, whether accurate unconscious instrumental responding can emerge from consciously acquired knowledge of the stimulus-action-outcome contingencies is unknown. We studied this question using instrumental trace conditioning, where participants learned to make approach/avoid decisions in two within-subject modes: conscious (stimuli in plain view) and unconscious (visually masked). Both tasks were followed by an unconscious-only instrumental performance task. We show that even when the contingencies are reliably learned in the conscious mode, participants fail to act upon them in the unconscious responding task. We also replicate the previous results that no instrumental learning occurs in the unconscious mode. Consequently, the absence of stimulus awareness not only precludes instrumental conditioning, but also precludes any kind of instrumental responding to already known stimuli. This suggests that instrumental behaviour is entirely supported by conscious awareness of the world, and corroborates the proposals that consciousness may be necessary for adaptive behaviours requiring selective action.
Collapse
Affiliation(s)
- Lina I Skora
- Biological Psychology of Decision Making, Institute of Experimental Psychology, Heinrich Heine University, 40225 Düsseldorf, Germany; School of Psychology, University of Sussex, Brighton BN1 9RH, UK.
| | - Ryan B Scott
- School of Psychology, University of Sussex, Brighton BN1 9RH, UK; Sussex Centre for Consciousness Science, University of Sussex, Brighton BN1 9RH, UK
| | - Gerhard Jocham
- Biological Psychology of Decision Making, Institute of Experimental Psychology, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
7
|
Houston AI, Fromhage L, McNamara JM. A general framework for modelling trade-offs in adaptive behaviour. Biol Rev Camb Philos Soc 2024; 99:56-69. [PMID: 37609707 DOI: 10.1111/brv.13011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023]
Abstract
An animal's behaviour can influence many variables, such as its energy reserves, its risk of injury or mortality, and its rate of reproduction. To identify the optimal action in a given situation, these various effects can be compared in the common currency of reproductive value. While this idea has been widely used to study trade-offs between pairs of variables, e.g. between energy gain versus survival, here we present a unified framework that makes explicit how these various trade-offs fit together. This unification covers a wide range of biological phenomena, highlighting similarities in their logical structure and helping to identify knowledge gaps. To fill one such gap, we present a new model of foraging under the risk of predation and damage accumulation. We conclude by discussing the use and limitations of state-dependent optimisation theory in predicting biological observations.
Collapse
Affiliation(s)
- Alasdair I Houston
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Lutz Fromhage
- University of Jyväskylä, PO Box 35, Jyväskylä, 40014, Finland
| | - John M McNamara
- School of Mathematics, University of Bristol, Fry Building, Woodland Road, Bristol, BS8 1UG, UK
| |
Collapse
|
8
|
Esteban FJ, Ibáñez-Molina A, Iglesias-Parro S, Ruiz de Miras J, Soler-Toscano F. Editorial: Complex network dynamics in consciousness. Front Comput Neurosci 2023; 17:1310392. [PMID: 38024447 PMCID: PMC10648109 DOI: 10.3389/fncom.2023.1310392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Affiliation(s)
| | | | | | - Juan Ruiz de Miras
- Software Engineering Department, Research Center for Information and Communication Technologies (CITIC-UGR), University of Granada, Granada, Spain
| | - Fernando Soler-Toscano
- Philosophy, Logic and Philosophy of Science Department, Sevilla University, Sevilla, Spain
| |
Collapse
|
9
|
Zacks O, Jablonka E. The evolutionary origins of the Global Neuronal Workspace in vertebrates. Neurosci Conscious 2023; 2023:niad020. [PMID: 37711313 PMCID: PMC10499063 DOI: 10.1093/nc/niad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/01/2023] [Accepted: 08/24/2023] [Indexed: 09/16/2023] Open
Abstract
The Global Neuronal Workspace theory of consciousness offers an explicit functional architecture that relates consciousness to cognitive abilities such as perception, attention, memory, and evaluation. We show that the functional architecture of the Global Neuronal Workspace, which is based mainly on human studies, corresponds to the cognitive-affective architecture proposed by the Unlimited Associative Learning theory that describes minimal consciousness. However, we suggest that when applied to basal vertebrates, both models require important modifications to accommodate what has been learned about the evolution of the vertebrate brain. Most importantly, comparative studies suggest that in basal vertebrates, the Global Neuronal Workspace is instantiated by the event memory system found in the hippocampal homolog. This proposal has testable predictions and implications for understanding hippocampal and cortical functions, the evolutionary relations between memory and consciousness, and the evolution of unified perception.
Collapse
Affiliation(s)
- Oryan Zacks
- The Cohn Institute for the History and Philosophy of Science and Ideas, Tel Aviv University, Ramat Aviv 6934525, Israel
| | - Eva Jablonka
- The Cohn Institute for the History and Philosophy of Science and Ideas, Tel Aviv University, Ramat Aviv 6934525, Israel
- CPNSS, London School of Economics, Houghton St., London WC2A 2AE, United Kingdom
| |
Collapse
|
10
|
Baranzke H, Ingensiep HW. Review: Sentientism - for whose sake? Ethics, sciences, and crypto-teleological fact-value bridges, illustrated by the research about sentience in invertebrates. Animal 2023; 17 Suppl 4:100875. [PMID: 37793711 DOI: 10.1016/j.animal.2023.100875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 10/06/2023] Open
Abstract
Sentientism is the most influential position in animal ethics. It presents sentience as decisive for integrating animals in ethics. Nevertheless, its significance for animal ethical argumentation is not quite clear. Does it mean (a) that sentience is a valuable state, which awards sentient individuals the moral prize of something like 'intrinsic value'? (b) Or is sentience an empirical fact that informs how animal welfare can be adequately realised in samples of certain species? (c) Or does sentience explain psychologically why humans identify emotionally with singular animals? Additionally, the questions show how different animals are addressed, namely (a) as individual units of sentience (individuality), (b) as representatives of certain species (exemplarity), and (c) as unique relata in distinguished human-animal relationships (singularity). Every suggestion of the use of sentientism faces specific challenges: (a) Sentience used as a foundational value premise is philosophically confronted with the fact-value-fallacy. Taken as an absolute value, sentientism may even threaten the status of the sentient individual for the sake of the ideological status of a world without suffering. (b) Sentience in the animal ethical welfare application perspective asks for an evidence-based (neuro-)biopsychological terminology to operationalise the boundary of sentience in animal welfare research, and is confronted with the other-minds problem. For the sake of the individual animal, it has to refer to the specific characteristics of its species. (c) Human-animal relationships have to face the risk of emotional abuse and sentimental anthropomorphism. We must therefore carefully examine the question: For whose sake are not only companion animals regarded as unique - for the sake of the animal or for the sake of human emotional needs? - The range of challenges signals a loss of comprehensive value orientation in modern times. In view of a deeper understanding of the value crisis, the paper starts with a historical reconstruction of the philosophical implications of the transition from natural teleology to modern science. Initially, the ancient conceptual origin of sentientism - the anima sensitiva and its position in a natural philosophical teleological order - reveals sentientism as an isolated fragment from the broken Aristotelean scala naturae. Understanding Aristotle's highly influential natural teleological metaphysics and its destruction by the rise of modern science can explain how a common crypto-teleological language generates argumentation patterns that are problematic today. A consideration of Kant's epistemological critique of natural teleology, and his inclusion of animals as sentient beings in a self-reflective modern ethics, may help to clarify the roles of ethics, (bio)sciences, and teleology in enlightened animal ethical argumentations concerning sentience and animal welfare.
Collapse
Affiliation(s)
- H Baranzke
- School of Humanities, Catholic Theology, University of Wuppertal, Gaußstr. 20, D-42119 Wuppertal, Germany.
| | - H W Ingensiep
- Institute of Philosophy, University of Duisburg-Essen, Universitaetsstr. 12, D-45117 Essen, Germany
| |
Collapse
|
11
|
Becerra D, Calixto A, Orio P. The Conscious Nematode: Exploring Hallmarks of Minimal Phenomenal Consciousness in Caenorhabditis Elegans. Int J Psychol Res (Medellin) 2023; 16:87-104. [PMID: 38106963 PMCID: PMC10723751 DOI: 10.21500/20112084.6487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/21/2022] [Accepted: 03/13/2023] [Indexed: 12/19/2023] Open
Abstract
While subcellular components of cognition and affectivity that involve the interaction between experience, environment, and physiology -such as learning, trauma, or emotion- are being identified, the physical mechanisms of phenomenal consciousness remain more elusive. We are interested in exploring whether ancient, simpler organisms such as nematodes have minimal consciousness. Is there something that feels like to be a worm? Or are worms blind machines? 'Simpler' models allow us to simultaneously extract data from multiple levels such as slow and fast neural dynamics, structural connectivity, molecular dynamics, behavior, decision making, etc., and thus, to test predictions of the current frameworks in dispute. In the present critical review, we summarize the current models of consciousness in order to reassess in light of the new evidence whether Caenorhabditis elegans, a nematode with a nervous system composed of 302 neurons, has minimal consciousness. We also suggest empirical paths to further advance consciousness research using C. elegans.
Collapse
Affiliation(s)
- Diego Becerra
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.Universidad de ValparaísoUniversidad de ValparaísoValparaísoChile
- Doctorado en Ciencias, mención Biofísica y Biología Computacional, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.Universidad de ValparaísoUniversidad de ValparaísoValparaísoChile
| | - Andrea Calixto
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.Universidad de ValparaísoUniversidad de ValparaísoValparaísoChile
- Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.Universidad de ValparaísoUniversidad de ValparaísoValparaísoChile
| | - Patricio Orio
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.Universidad de ValparaísoUniversidad de ValparaísoValparaísoChile
- Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.Universidad de ValparaísoUniversidad de ValparaísoValparaísoChile
| |
Collapse
|
12
|
Wright JJ, Bourke PD. The mesoanatomy of the cortex, minimization of free energy, and generative cognition. Front Comput Neurosci 2023; 17:1169772. [PMID: 37251599 PMCID: PMC10213520 DOI: 10.3389/fncom.2023.1169772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/10/2023] [Indexed: 05/31/2023] Open
Abstract
Capacity for generativity and unlimited association is the defining characteristic of sentience, and this capacity somehow arises from neuronal self-organization in the cortex. We have previously argued that, consistent with the free energy principle, cortical development is driven by synaptic and cellular selection maximizing synchrony, with effects manifesting in a wide range of features of mesoscopic cortical anatomy. Here, we further argue that in the postnatal stage, as more structured inputs reach the cortex, the same principles of self-organization continue to operate at multitudes of local cortical sites. The unitary ultra-small world structures that emerged antenatally can represent sequences of spatiotemporal images. Local shifts of presynapses from excitatory to inhibitory cells result in the local coupling of spatial eigenmodes and the development of Markov blankets, minimizing prediction errors in each unit's interactions with surrounding neurons. In response to the superposition of inputs exchanged between cortical areas, more complicated, potentially cognitive structures are competitively selected by the merging of units and the elimination of redundant connections that result from the minimization of variational free energy and the elimination of redundant degrees of freedom. The trajectory along which free energy is minimized is shaped by interaction with sensorimotor, limbic, and brainstem mechanisms, providing a basis for creative and unlimited associative learning.
Collapse
Affiliation(s)
- James Joseph Wright
- Centre for Brain Research, and Department of Psychological Medicine, School of Medicine, University of Auckland, Auckland, New Zealand
| | - Paul David Bourke
- School of Social Sciences, Faculty of Arts, Business, Law and Education, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
13
|
Farnsworth KD, Elwood RW. Why it hurts: with freedom comes the biological need for pain. Anim Cogn 2023:10.1007/s10071-023-01773-2. [PMID: 37029847 DOI: 10.1007/s10071-023-01773-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/23/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023]
Abstract
We argue that pain is not needed to protect the body from damage unless the organism is able to make free choices in action selection. Then pain (including its affective and evaluative aspects) provides a necessary prioritising motivation to select actions expected to avoid it, whilst leaving the possibility of alternative actions to serve potentially higher priorities. Thus, on adaptive grounds, only organisms having free choice over action selection should experience pain. Free choice implies actions must be selected following appraisal of their effects, requiring a predictive model generating estimates of action outcomes. These features give organisms anticipatory behavioural autonomy (ABA), for which we propose a plausible system using an internal predictive model, integrated into a system able to produce the qualitative and affective aspects of pain. Our hypothesis can be tested using behavioural experiments designed to elicit trade-off responses to novel experiences for which algorithmic (automaton) responses might be inappropriate. We discuss the empirical evidence for our hypothesis among taxonomic groups, showing how testing for ABA guides thinking on which groups might experience pain. It is likely that all vertebrates do and plausible that some invertebrates do (decapods, cephalopods and at least some insects).
Collapse
Affiliation(s)
- Keith D Farnsworth
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT95DL, UK.
| | - Robert W Elwood
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT95DL, UK
| |
Collapse
|
14
|
Feasibility of unconscious instrumental conditioning: A registered replication. Cortex 2023; 159:101-117. [PMID: 36621202 DOI: 10.1016/j.cortex.2022.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
The extent to which high-level, complex functions can proceed unconsciously has been a topic of considerable debate. While unconscious processing has been demonstrated for a range of low-level processes, from feature integration to simple forms of conditioning and learning, theoretical contributions suggest that increasing complexity requires conscious access. Here, we focus our attention on instrumental conditioning, which has been previously shown to proceed without stimulus awareness. Yet, instrumental conditioning also involves integrating information over a large temporal scale and distinct modalities in order to deploy selective action, constituting a process of substantial complexity. With this in mind, we revisit the question of feasibility of instrumental conditioning in the unconscious domain. Firstly, we address the theoretical and practical considerations relevant to unconscious learning in general. Secondly, we aim to replicate the first study to show instrumental conditioning in the absence of stimulus awareness (Pessiglione et al., 2008), following the original design and supplementing the original crucial analyses with a Bayesian approach (Experiment 1). We found that apparent unconscious learning took place when replicating the original methods directly and according to the tests of awareness used. However, we could not establish that the full sample was unaware in a separate awareness check. We therefore attempted to replicate the effect yet again with improved methods to address the issues related to sensitivity and immediacy (Experiment 2), including an individual threshold-setting task and a trial-by-trial awareness check permitting exclusion of individual aware trials. Here, we found evidence for absence of unconscious learning. This result provides evidence that instrumental conditioning did not occur without stimulus awareness in this paradigm, supporting the view that complex forms of learning may rely on conscious access. Our results provides support for the proposal that perceptual consciousness may be necessary for complex, flexible processes, especially where selective action and behavioural adaptation are required.
Collapse
|
15
|
St. Clair R, Coward LA, Schneider S. Leveraging conscious and nonconscious learning for efficient AI. Front Comput Neurosci 2023; 17:1090126. [PMID: 37034440 PMCID: PMC10076654 DOI: 10.3389/fncom.2023.1090126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Various interpretations of the literature detailing the neural basis of learning have in part led to disagreements concerning how consciousness arises. Further, artificial learning model design has suffered in replicating intelligence as it occurs in the human brain. Here, we present a novel learning model, which we term the "Recommendation Architecture (RA) Model" from prior theoretical works proposed by Coward, using a dual-learning approach featuring both consequence feedback and non-consequence feedback. The RA model is tested on a categorical learning task where no two inputs are the same throughout training and/or testing. We compare this to three consequence feedback only models based on backpropagation and reinforcement learning. Results indicate that the RA model learns novelty more efficiently and can accurately return to prior learning after new learning with less computational resources expenditure. The final results of the study show that consequence feedback as interpretation, not creation, of cortical activity creates a learning style more similar to human learning in terms of resource efficiency. Stable information meanings underlie conscious experiences. The work provided here attempts to link the neural basis of nonconscious and conscious learning while providing early results for a learning protocol more similar to human brains than is currently available.
Collapse
Affiliation(s)
- Rachel St. Clair
- Simuli Inc., Delray Beach, FL, United States
- *Correspondence: Rachel St. Clair
| | - L. Andrew Coward
- College of Engineering and Computer Science, Australian National University, Canberra, ACT, Australia
| | - Susan Schneider
- Center for Future Mind, College of Arts and Letters, Florida Atlantic University, Boca Raton, FL, United States
| |
Collapse
|
16
|
Safron A, Çatal O, Verbelen T. Generalized Simultaneous Localization and Mapping (G-SLAM) as unification framework for natural and artificial intelligences: towards reverse engineering the hippocampal/entorhinal system and principles of high-level cognition. Front Syst Neurosci 2022; 16:787659. [PMID: 36246500 PMCID: PMC9563348 DOI: 10.3389/fnsys.2022.787659] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 09/02/2022] [Indexed: 11/24/2022] Open
Abstract
Simultaneous localization and mapping (SLAM) represents a fundamental problem for autonomous embodied systems, for which the hippocampal/entorhinal system (H/E-S) has been optimized over the course of evolution. We have developed a biologically-inspired SLAM architecture based on latent variable generative modeling within the Free Energy Principle and Active Inference (FEP-AI) framework, which affords flexible navigation and planning in mobile robots. We have primarily focused on attempting to reverse engineer H/E-S "design" properties, but here we consider ways in which SLAM principles from robotics may help us better understand nervous systems and emergent minds. After reviewing LatentSLAM and notable features of this control architecture, we consider how the H/E-S may realize these functional properties not only for physical navigation, but also with respect to high-level cognition understood as generalized simultaneous localization and mapping (G-SLAM). We focus on loop-closure, graph-relaxation, and node duplication as particularly impactful architectural features, suggesting these computational phenomena may contribute to understanding cognitive insight (as proto-causal-inference), accommodation (as integration into existing schemas), and assimilation (as category formation). All these operations can similarly be describable in terms of structure/category learning on multiple levels of abstraction. However, here we adopt an ecological rationality perspective, framing H/E-S functions as orchestrating SLAM processes within both concrete and abstract hypothesis spaces. In this navigation/search process, adaptive cognitive equilibration between assimilation and accommodation involves balancing tradeoffs between exploration and exploitation; this dynamic equilibrium may be near optimally realized in FEP-AI, wherein control systems governed by expected free energy objective functions naturally balance model simplicity and accuracy. With respect to structure learning, such a balance would involve constructing models and categories that are neither too inclusive nor exclusive. We propose these (generalized) SLAM phenomena may represent some of the most impactful sources of variation in cognition both within and between individuals, suggesting that modulators of H/E-S functioning may potentially illuminate their adaptive significances as fundamental cybernetic control parameters. Finally, we discuss how understanding H/E-S contributions to G-SLAM may provide a unifying framework for high-level cognition and its potential realization in artificial intelligences.
Collapse
Affiliation(s)
- Adam Safron
- Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Cognitive Science Program, Indiana University, Bloomington, IN, United States
- Institute for Advanced Consciousness Studies, Santa Monica, CA, United States
| | - Ozan Çatal
- IDLab, Department of Information Technology, Ghent University—imec, Ghent, Belgium
| | - Tim Verbelen
- IDLab, Department of Information Technology, Ghent University—imec, Ghent, Belgium
| |
Collapse
|
17
|
Mazor M, Brown S, Ciaunica A, Demertzi A, Fahrenfort J, Faivre N, Francken JC, Lamy D, Lenggenhager B, Moutoussis M, Nizzi MC, Salomon R, Soto D, Stein T, Lubianiker N. The Scientific Study of Consciousness Cannot and Should Not Be Morally Neutral. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2022; 18:535-543. [PMID: 36170496 DOI: 10.1177/17456916221110222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A target question for the scientific study of consciousness is how dimensions of consciousness, such as the ability to feel pain and pleasure or reflect on one's own experience, vary in different states and animal species. Considering the tight link between consciousness and moral status, answers to these questions have implications for law and ethics. Here we point out that given this link, the scientific community studying consciousness may face implicit pressure to carry out certain research programs or interpret results in ways that justify current norms rather than challenge them. We show that because consciousness largely determines moral status, the use of nonhuman animals in the scientific study of consciousness introduces a direct conflict between scientific relevance and ethics-the more scientifically valuable an animal model is for studying consciousness, the more difficult it becomes to ethically justify compromises to its well-being for consciousness research. Finally, in light of these considerations, we call for a discussion of the immediate ethical corollaries of the body of knowledge that has accumulated and for a more explicit consideration of the role of ideology and ethics in the scientific study of consciousness.
Collapse
Affiliation(s)
- Matan Mazor
- Department of Psychological Sciences, Birkbeck, University of London.,Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London
| | - Simon Brown
- Department of Philosophy, Johns Hopkins University
| | - Anna Ciaunica
- Centre for Philosophy of Science, University of Lisbon
| | - Athena Demertzi
- Physiology of Cognition, GIGA Consciousness Research Unit, Université de Liège.,Fund for Scientific Research, Bruxelles, Belgium
| | - Johannes Fahrenfort
- Department of Psychology, University of Amsterdam.,Department of Experimental and Applied Psychology, Vrije Universiteit
| | - Nathan Faivre
- Centre for Neuroprosthetics and Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology.,University Grenoble Alpes, University Savoie Mont Blanc, CNRS, LPNC
| | - Jolien C Francken
- Faculty of Philosophy, Theology and Religious Studies, Radboud University
| | - Dominique Lamy
- Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv, Israel.,School of Psychological Sciences, Tel Aviv University
| | | | - Michael Moutoussis
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London.,Max Planck-University College London Centre for Computational Psychiatry and Ageing Research, University College London
| | - Marie-Christine Nizzi
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles.,Cognitive Science Program, Dartmouth College.,Institute for Interdisciplinary Brain and Behavioral Sciences, Chapman University
| | - Roy Salomon
- Gonda Multidisciplinary Brain Research Centre, Bar-Ilan University
| | - David Soto
- Basque Centre on Cognition, Brain and Language, San Sebastian, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Timo Stein
- Department of Psychology, University of Amsterdam
| | - Nitzan Lubianiker
- School of Psychological Sciences, Tel Aviv University.,Sagol Brain Institute, Tel-Aviv Medical Centre, Tel Aviv, Israel
| |
Collapse
|
18
|
Nieder A. In search for consciousness in animals: Using working memory and voluntary attention as behavioral indicators. Neurosci Biobehav Rev 2022; 142:104865. [PMID: 36096205 DOI: 10.1016/j.neubiorev.2022.104865] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/17/2022] [Accepted: 09/05/2022] [Indexed: 10/31/2022]
Abstract
Whether animals have subjective experiences about the content of their sensory input, i.e., whether they are aware of stimuli, is a notoriously difficult question to answer. If consciousness is present in animals, it must share fundamental characteristics with human awareness. Working memory and voluntary/endogenous attention are suggested as diagnostic features of conscious awareness. Behavioral evidence shows clear signatures of both working memory and voluntary attention as minimal criterium for sensory consciousness in mammals and birds. In contrast, reptiles and amphibians show no sign of either working memory or volitional attention. Surprisingly, some species of teleost fishes exhibit elementary working memory and voluntary attention effects suggestive of possibly rudimentary forms of subjective experience. With the potential exception of honeybees, evidence for conscious processing is lacking in invertebrates. These findings suggest that consciousness is not ubiquitous in the animal kingdom but also not exclusive to humans. The phylogenetic gap between animal taxa argues that evolution does not rely on specific neural substrates to endow distantly related species with basic forms of consciousness.
Collapse
Affiliation(s)
- Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| |
Collapse
|
19
|
Ehret G, Romand R. Awareness and consciousness in humans and animals - neural and behavioral correlates in an evolutionary perspective. Front Syst Neurosci 2022; 16:941534. [PMID: 35910003 PMCID: PMC9331465 DOI: 10.3389/fnsys.2022.941534] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
Abstract
Awareness or consciousness in the context of stimulus perception can directly be assessed in well controlled test situations with humans via the persons' reports about their subjective experiences with the stimuli. Since we have no direct access to subjective experiences in animals, their possible awareness or consciousness in stimulus perception tasks has often been inferred from behavior and cognitive abilities previously observed in aware and conscious humans. Here, we analyze published human data primarily on event-related potentials and brain-wave generation during perception and responding to sensory stimuli and extract neural markers (mainly latencies of evoked-potential peaks and of gamma-wave occurrence) indicating that a person became aware or conscious of the perceived stimulus. These neural correlates of consciousness were then applied to sets of corresponding data from various animals including several species of mammals, and one species each of birds, fish, cephalopods, and insects. We found that the neural markers from studies in humans could also successfully be applied to the mammal and bird data suggesting that species in these animal groups can become subjectively aware of and conscious about perceived stimuli. Fish, cephalopod and insect data remained inconclusive. In an evolutionary perspective we have to consider that both awareness of and consciousness about perceived stimuli appear as evolved, attention-dependent options added to the ongoing neural activities of stimulus processing and action generation. Since gamma-wave generation for functional coupling of brain areas in aware/conscious states is energetically highly cost-intensive, it remains to be shown which animal species under which conditions of lifestyle and ecological niche may achieve significant advantages in reproductive fitness by drawing upon these options. Hence, we started our discussion about awareness and consciousness in animals with the question in how far these expressions of brain activity are necessary attributes for perceiving stimuli and responding in an adaptive way.
Collapse
Affiliation(s)
- Günter Ehret
- Institute of Neurobiology, University of Ulm, Ulm, Germany
| | - Raymond Romand
- Faculty of Medicine, Institute de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), University of Strasbourg and Centre National de la Recherche Scientifique (CNRS), Strasbourg, France
| |
Collapse
|
20
|
Birch J, Crump A. The lights and shadows of consciousness. Curr Biol 2022. [DOI: 10.1016/j.cub.2022.06.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Mather J. The Case for Octopus Consciousness: Temporality. NEUROSCI 2022; 3:245-261. [PMID: 39483366 PMCID: PMC11523685 DOI: 10.3390/neurosci3020018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/26/2022] [Indexed: 11/03/2024] Open
Abstract
Temporality is one of the criteria that Birch has advanced for areas of cognitive ability that may underlie animal sentience. An ability to integrate and use information across time must be more than simply learning pieces of information and retrieving them. This paper looks at such wider use of information by octopuses across time. It evaluates accumulation of information about one's place in space, as used across immediate egocentric localization by cuttlefish and medium distance navigation in octopuses. Information about useful items in the environment can be incorporated for future use by octopuses, including for shelter in antipredator situations. Finding prey is not random but can be predicted by environmental cues, especially by cuttlefish about future contingencies. Finally, the paper examines unlimited associative learning and constraints on learning, and the ability of cephalopods to explore and seek out information, even by play, for future use.
Collapse
Affiliation(s)
- Jennifer Mather
- Department of Psychology, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada;
| |
Collapse
|
22
|
Browning H, Birch J. Animal sentience. PHILOSOPHY COMPASS 2022; 17:e12822. [PMID: 35859762 PMCID: PMC9285591 DOI: 10.1111/phc3.12822] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 10/01/2021] [Accepted: 02/14/2022] [Indexed: 06/01/2023]
Abstract
'Sentience' sometimes refers to the capacity for any type of subjective experience, and sometimes to the capacity to have subjective experiences with a positive or negative valence, such as pain or pleasure. We review recent controversies regarding sentience in fish and invertebrates and consider the deep methodological challenge posed by these cases. We then present two ways of responding to the challenge. In a policy-making context, precautionary thinking can help us treat animals appropriately despite continuing uncertainty about their sentience. In a scientific context, we can draw inspiration from the science of human consciousness to disentangle conscious and unconscious perception (especially vision) in animals. Developing better ways to disentangle conscious and unconscious affect is a key priority for future research.
Collapse
Affiliation(s)
- Heather Browning
- Centre for Philosophy of Natural and Social ScienceLondon School of Economics and Political ScienceLondonUK
| | - Jonathan Birch
- Centre for Philosophy of Natural and Social ScienceLondon School of Economics and Political ScienceLondonUK
| |
Collapse
|
23
|
Niikawa T, Miyahara K, Hamada HT, Nishida S. Functions of consciousness: conceptual clarification. Neurosci Conscious 2022; 2022:niac006. [PMID: 35356269 PMCID: PMC8963277 DOI: 10.1093/nc/niac006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 02/07/2022] [Accepted: 02/25/2022] [Indexed: 11/22/2022] Open
Abstract
There are many theories of the functions of consciousness. How these theories relate to each other, how we should assess them, and whether any integration of them is possible are all issues that remain unclear. To contribute to a solution, this paper offers a conceptual framework to clarify the theories of the functions of consciousness. This framework consists of three dimensions: (i) target, (ii) explanatory order, and (iii) necessity/sufficiency. The first dimension, target, clarifies each theory in terms of the kind of consciousness it targets. The second dimension, explanatory order, clarifies each theory in terms of how it conceives of the explanatory relation between consciousness and function. The third dimension, necessity/sufficiency, clarifies each theory in terms of the necessity/sufficiency relation posited between consciousness and function. We demonstrate the usefulness of this framework by applying it to some existing scientific and philosophical theories of the functions of consciousness.
Collapse
Affiliation(s)
| | - Katsunori Miyahara
- Center for Human Nature, Artificial Intelligence, and Neuroscience (CHAIN), Hokkaido University, Kita 12 Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Hiro Taiyo Hamada
- Neurotechnology R&D Unit, Araya Inc., 1-12-32 Akasaka, Minato-ku, Tokyo 107-6024, Japan
| | - Satoshi Nishida
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
24
|
Levin M. Technological Approach to Mind Everywhere: An Experimentally-Grounded Framework for Understanding Diverse Bodies and Minds. Front Syst Neurosci 2022; 16:768201. [PMID: 35401131 PMCID: PMC8988303 DOI: 10.3389/fnsys.2022.768201] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Synthetic biology and bioengineering provide the opportunity to create novel embodied cognitive systems (otherwise known as minds) in a very wide variety of chimeric architectures combining evolved and designed material and software. These advances are disrupting familiar concepts in the philosophy of mind, and require new ways of thinking about and comparing truly diverse intelligences, whose composition and origin are not like any of the available natural model species. In this Perspective, I introduce TAME-Technological Approach to Mind Everywhere-a framework for understanding and manipulating cognition in unconventional substrates. TAME formalizes a non-binary (continuous), empirically-based approach to strongly embodied agency. TAME provides a natural way to think about animal sentience as an instance of collective intelligence of cell groups, arising from dynamics that manifest in similar ways in numerous other substrates. When applied to regenerating/developmental systems, TAME suggests a perspective on morphogenesis as an example of basal cognition. The deep symmetry between problem-solving in anatomical, physiological, transcriptional, and 3D (traditional behavioral) spaces drives specific hypotheses by which cognitive capacities can increase during evolution. An important medium exploited by evolution for joining active subunits into greater agents is developmental bioelectricity, implemented by pre-neural use of ion channels and gap junctions to scale up cell-level feedback loops into anatomical homeostasis. This architecture of multi-scale competency of biological systems has important implications for plasticity of bodies and minds, greatly potentiating evolvability. Considering classical and recent data from the perspectives of computational science, evolutionary biology, and basal cognition, reveals a rich research program with many implications for cognitive science, evolutionary biology, regenerative medicine, and artificial intelligence.
Collapse
Affiliation(s)
- Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA, United States
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Cambridge, MA, United States
| |
Collapse
|
25
|
Fitch WT. Why evolve consciousness? Neural credit and blame allocation as a core function of consciousness. Behav Brain Sci 2022; 45:e49. [PMID: 35319432 DOI: 10.1017/s0140525x21001953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
I concur with Merker and colleague's critiques, suggesting that hypotheses about the evolutionary function of consciousness can help address them. Brains are parallel systems that function to compute possible actions and predict outcomes. I hypothesize that a core function of consciousness per se is the global feedback of information about those actions actually executed, supporting local learning via neuronal updating.
Collapse
Affiliation(s)
- W Tecumseh Fitch
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Vienna1030, Austria.
| |
Collapse
|
26
|
Droege P, Schwob N, Weiss DJ. Fishnition: Developing Models From Cognition Toward Consciousness. Front Vet Sci 2021; 8:785256. [PMID: 34977218 PMCID: PMC8714737 DOI: 10.3389/fvets.2021.785256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/24/2021] [Indexed: 01/02/2023] Open
Abstract
A challenge to developing a model for testing animal consciousness is the pull of opposite intuitions. On one extreme, the anthropocentric view holds that consciousness is a highly sophisticated capacity involving self-reflection and conceptual categorization that is almost certainly exclusive to humans. At the opposite extreme, an anthropomorphic view attributes consciousness broadly to any behavior that involves sensory responsiveness. Yet human experience and observation of diverse species suggest that the most plausible case is that consciousness functions between these poles. In exploring the middle ground, we discuss the pros and cons of "high level" approaches such as the dual systems approach. According to this model, System 1 can be thought of as unconscious; processing is fast, automatic, associative, heuristic, parallel, contextual, and likely to be conserved across species. Consciousness is associated with System 2 processing that is slow, effortful, rule-based, serial, abstract, and exclusively human. An advantage of this model is the clear contrast between heuristic and decision-based responses, but it fails to include contextual decision-making in novel conditions which falls in between these two categories. We also review a "low level" model involving trace conditioning, which is a trained response to the first of two paired stimuli separated by an interval. This model highlights the role of consciousness in maintaining a stimulus representation over a temporal span, though it overlooks the importance of attention in subserving and also disrupting trace conditioning in humans. Through a critical analysis of these two extremes, we will develop the case for flexible behavioral response to the stimulus environment as the best model for demonstrating animal consciousness. We discuss a methodology for gauging flexibility across a wide variety of species and offer a case study in spatial navigation to illustrate our proposal. Flexibility serves the evolutionary function of enabling the complex evaluation of changing conditions, where motivation is the basis for goal valuation, and attention selects task-relevant stimuli to aid decision-making processes. We situate this evolutionary function within the Temporal Representation Theory of consciousness, which proposes that consciousness represents the present moment in order to facilitate flexible action.
Collapse
Affiliation(s)
- Paula Droege
- Department of Philosophy, The Pennsylvania State University, University Park, PA, United States
| | - Natalie Schwob
- Department of Psychology, The Pennsylvania State University, University Park, PA, United States
| | - Daniel J. Weiss
- Department of Psychology and Program in Linguistics, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
27
|
Birch J. The hatching of consciousness. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2021; 43:121. [PMID: 34807317 PMCID: PMC8608763 DOI: 10.1007/s40656-021-00472-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Peter Godfrey-Smith's Metazoa and Joseph LeDoux's The Deep History of Ourselves present radically different big pictures regarding the nature, evolution and distribution of consciousness in animals. In this essay review, I discuss the motivations behind these big pictures and try to steer a course between them.
Collapse
Affiliation(s)
- Jonathan Birch
- Centre for Philosophy of Natural and Social Science, London School of Economics and Political Science, Houghton Street, London, WC2A 2AE, UK.
| |
Collapse
|
28
|
Suzuki DG. Consciousness in Jawless Fishes. Front Syst Neurosci 2021; 15:751876. [PMID: 34630051 PMCID: PMC8497754 DOI: 10.3389/fnsys.2021.751876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Jawless fishes were the first vertebrates to evolve. It is thus important to investigate them to determine whether consciousness was acquired in the common ancestor of all vertebrates. Most jawless fish lineages are extinct, and cyclostomes (lampreys and hagfish) are the sole survivors. Here, I review the empirical knowledge on the neurobiology of cyclostomes with special reference to recently proposed "markers" of primary, minimal consciousness. The adult lamprey appears to meet the neuroanatomical criteria but there is a practical limitation to behavioral examination of its learning ability. In addition, the consciousness-related neuroarchitecture of larvae and its reconstruction during metamorphosis remain largely uninvestigated. Even less is known of hagfish neurobiology. The hagfish forebrain forms the central prosencephalic complex, and the homology of its components to the brain regions of other vertebrates needs to be confirmed using modern techniques. Nevertheless, as behavioral responses to olfactory stimuli in aquariums have been reported, it is easier to investigate the learning ability of the hagfish than that of the lamprey. Based on these facts, I finally discuss the potential future directions of empirical studies for examining the existence of consciousness in jawless fishes.
Collapse
Affiliation(s)
- Daichi G Suzuki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.,Center for Human Nature, Artificial Intelligence, and Neuroscience (CHAIN), Hokkaido University, Sapporo, Japan
| |
Collapse
|
29
|
Deane G. Consciousness in active inference: Deep self-models, other minds, and the challenge of psychedelic-induced ego-dissolution. Neurosci Conscious 2021; 2021:niab024. [PMID: 34484808 PMCID: PMC8408766 DOI: 10.1093/nc/niab024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 11/16/2022] Open
Abstract
Predictive processing approaches to brain function are increasingly delivering promise for illuminating the computational underpinnings of a wide range of phenomenological states. It remains unclear, however, whether predictive processing is equipped to accommodate a theory of consciousness itself. Furthermore, objectors have argued that without specification of the core computational mechanisms of consciousness, predictive processing is unable to inform the attribution of consciousness to other non-human (biological and artificial) systems. In this paper, I argue that an account of consciousness in the predictive brain is within reach via recent accounts of phenomenal self-modelling in the active inference framework. The central claim here is that phenomenal consciousness is underpinned by 'subjective valuation'-a deep inference about the precision or 'predictability' of the self-evidencing ('fitness-promoting') outcomes of action. Based on this account, I argue that this approach can critically inform the distribution of experience in other systems, paying particular attention to the complex sensory attenuation mechanisms associated with deep self-models. I then consider an objection to the account: several recent papers argue that theories of consciousness that invoke self-consciousness as constitutive or necessary for consciousness are undermined by states (or traits) of 'selflessness'; in particular the 'totally selfless' states of ego-dissolution occasioned by psychedelic drugs. Drawing on existing work that accounts for psychedelic-induced ego-dissolution in the active inference framework, I argue that these states do not threaten to undermine an active inference theory of consciousness. Instead, these accounts corroborate the view that subjective valuation is the constitutive facet of experience, and they highlight the potential of psychedelic research to inform consciousness science, computational psychiatry and computational phenomenology.
Collapse
Affiliation(s)
- George Deane
- School of Philosophy, Psychology and Language Sciences, The University of Edinburgh, 3 Charles Street, Edinburgh EH8 9AD, UK
| |
Collapse
|
30
|
Hunter P. The emergence of consciousness: Research on animals yields insights into how, when and why consciousness evolved. EMBO Rep 2021; 22:e53199. [PMID: 34031966 DOI: 10.15252/embr.202153199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Whether some animal species possess consciousness is no longer the question; rather how their environment and evolution shaped species-specific forms of self-awareness.
Collapse
|
31
|
Mallatt J. A Traditional Scientific Perspective on the Integrated Information Theory of Consciousness. ENTROPY (BASEL, SWITZERLAND) 2021; 23:650. [PMID: 34067413 PMCID: PMC8224652 DOI: 10.3390/e23060650] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 02/05/2023]
Abstract
This paper assesses two different theories for explaining consciousness, a phenomenon that is widely considered amenable to scientific investigation despite its puzzling subjective aspects. I focus on Integrated Information Theory (IIT), which says that consciousness is integrated information (as ϕMax) and says even simple systems with interacting parts possess some consciousness. First, I evaluate IIT on its own merits. Second, I compare it to a more traditionally derived theory called Neurobiological Naturalism (NN), which says consciousness is an evolved, emergent feature of complex brains. Comparing these theories is informative because it reveals strengths and weaknesses of each, thereby suggesting better ways to study consciousness in the future. IIT's strengths are the reasonable axioms at its core; its strong logic and mathematical formalism; its creative "experience-first" approach to studying consciousness; the way it avoids the mind-body ("hard") problem; its consistency with evolutionary theory; and its many scientifically testable predictions. The potential weakness of IIT is that it contains stretches of logic-based reasoning that were not checked against hard evidence when the theory was being constructed, whereas scientific arguments require such supporting evidence to keep the reasoning on course. This is less of a concern for the other theory, NN, because it incorporated evidence much earlier in its construction process. NN is a less mature theory than IIT, less formalized and quantitative, and less well tested. However, it has identified its own neural correlates of consciousness (NCC) and offers a roadmap through which these NNCs may answer the questions of consciousness using the hypothesize-test-hypothesize-test steps of the scientific method.
Collapse
Affiliation(s)
- Jon Mallatt
- The University of Washington WWAMI Medical Education Program at The University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
32
|
Key B, Zalucki O, Brown DJ. Neural Design Principles for Subjective Experience: Implications for Insects. Front Behav Neurosci 2021; 15:658037. [PMID: 34025371 PMCID: PMC8131515 DOI: 10.3389/fnbeh.2021.658037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/07/2021] [Indexed: 02/04/2023] Open
Abstract
How subjective experience is realized in nervous systems remains one of the great challenges in the natural sciences. An answer to this question should resolve debate about which animals are capable of subjective experience. We contend that subjective experience of sensory stimuli is dependent on the brain's awareness of its internal neural processing of these stimuli. This premise is supported by empirical evidence demonstrating that disruption to either processing streams or awareness states perturb subjective experience. Given that the brain must predict the nature of sensory stimuli, we reason that conscious awareness is itself dependent on predictions generated by hierarchically organized forward models of the organism's internal sensory processing. The operation of these forward models requires a specialized neural architecture and hence any nervous system lacking this architecture is unable to subjectively experience sensory stimuli. This approach removes difficulties associated with extrapolations from behavioral and brain homologies typically employed in addressing whether an animal can feel. Using nociception as a model sensation, we show here that the Drosophila brain lacks the required internal neural connectivity to implement the computations required of hierarchical forward models. Consequently, we conclude that Drosophila, and those insects with similar neuroanatomy, do not subjectively experience noxious stimuli and therefore cannot feel pain.
Collapse
Affiliation(s)
- Brian Key
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Oressia Zalucki
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Deborah J. Brown
- School of Historical and Philosophical Inquiry, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|