1
|
Kundu S. ReDirection: an R-package to compute the probable dissociation constant for every reaction of a user-defined biochemical network. Front Mol Biosci 2023; 10:1206502. [PMID: 37942290 PMCID: PMC10628733 DOI: 10.3389/fmolb.2023.1206502] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/14/2023] [Indexed: 11/10/2023] Open
Abstract
Biochemical networks integrate enzyme-mediated substrate conversions with non-enzymatic complex formation and disassembly to accomplish complex biochemical and physiological functions. The choice of parameters and constraints used in most of these studies is numerically motivated and network-specific. Although sound in theory, the outcomes that result depart significantly from the intracellular milieu and are less likely to retain relevance in a clinical setting. There is a need for a computational tool which is biochemically relevant, mathematically rigorous, and unbiased, and can ascribe functionality to and generate potentially testable hypotheses for a user-defined biochemical network. Here, we present "ReDirection," an R-package which computes the probable dissociation constant for every reaction of a biochemical network directly from a null space-generated subspace of the stoichiometry number matrix of the modeled network. "ReDirection" delineates this subspace by excluding all trivial and redundant or duplicate occurrences of non-trivial vectors, combinatorially summing the vectors that remain and verifying that the upper or lower bounds of the sequence of terms formed by each row of this subspace belong to the open real-valued intervals - ∞ , - 1 or 1 , ∞ or whether the number of terms that are differently signed are almost equal. "ReDirection" iterates these steps until these bounds are consistent and unambiguous for all reactions of the modeled biochemical network. Thereafter, "ReDirection" filters the terms from each row of this subspace, bins them to outcome-specific subsets, sums and maps this to an outcome-specific reaction vector, and computes the p1-norm, which is the probable dissociation constant for a reaction. "ReDirection" works on first principles, does not discriminate between enzymatic and non-enzymatic reactions, offers a biochemically relevant and mathematically rigorous environment to explore user-defined biochemical networks under baseline and perturbed conditions, and can be used to address empirically intractable biochemical problems. The utility and relevance of "ReDirection" are highlighted by numerical studies on stoichiometric number models of biochemical networks of galactose metabolism and heme and cholesterol biosynthesis. "ReDirection" is freely available and accessible from the comprehensive R archive network (CRAN) with the URL (https://cran.r-project.org/package=ReDirection).
Collapse
Affiliation(s)
- Siddhartha Kundu
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
2
|
Ballout RA, Livinski A, Fu YP, Steiner RD, Remaley AT. Statins for Smith-Lemli-Opitz syndrome. Cochrane Database Syst Rev 2022; 11:CD013521. [PMID: 36373961 PMCID: PMC9661876 DOI: 10.1002/14651858.cd013521.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Smith-Lemli-Opitz syndrome (SLOS) is a multiple congenital malformations syndrome caused by defective cholesterol biosynthesis. Affected individuals show cholesterol deficiency and accumulation of various precursor molecules, mainly 7-dehydrocholesterol and 8-dehydrocholesterol. There is currently no cure for SLOS, with cholesterol supplementation being primarily a biochemical therapy of limited evidence. However, several anecdotal reports and preclinical studies have highlighted statins as a potential therapy for SLOS. OBJECTIVES To evaluate the effects of statins, either alone or in combination with other non-statin therapies (e.g. cholesterol, bile acid, or vitamin co-supplementation), compared to cholesterol supplementation alone or in combination with other non-statin therapies (e.g. bile acid or vitamin supplementation) on several important outcomes including overall survival, neurobehavioral features, and adverse effects in individuals with SLOS. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase, five other databases and three trials registers on 15 February 2022, together with reference checking, citation searching and contact with study authors to identify additional studies. SELECTION CRITERIA Randomized controlled trials (RCTs) and quasi-RCTs with parallel or cross-over designs, and non-randomized studies of interventions (NRSIs) including non-randomized trials, cohort studies, and controlled before-and-after studies, were eligible for inclusion in this review if they met our prespecified inclusion criteria, i.e. involved human participants with biochemically or genetically diagnosed SLOS receiving statin therapy or cholesterol supplementation, or both. DATA COLLECTION AND ANALYSIS Two authors screened titles and abstracts and subsequently full-texts for all potentially-relevant references. Both authors independently extracted relevant data from included studies and assessed the risks of bias. We analyzed the data extracted from the included NRSIs and cohort studies separately from the data extracted from the single included RCT. We used a random-effects model to account for the inherent heterogeneity and methodological variation between these different study designs. We used GRADE to assess the certainty of evidence. MAIN RESULTS We included six studies (61 participants with SLOS); one RCT (N = 18), three prospective NRSIs (N = 20), and two retrospective NRSIs (N = 22). Five studies included only children, and two limited their participant inclusion by disease severity. Overall, there were nearly twice as many males as females. All six studies compared add-on statin therapy to cholesterol supplementation alone. However, the dosages, formulations, and durations of treatment were highly variable across studies. We judged the RCT as having a high risk of bias due to missing data and selective reporting. All included NRSIs had a serious or critical overall risk of bias assessed by the Risk Of Bias In Non-randomized Studies of Interventions tool (ROBINS-I). None of the included studies evaluated survival or reported quality of life (QoL). Only the included RCT formally assessed changes in the neurobehavioral manifestations of SLOS, and we are uncertain whether statin therapy improves this outcome (very low-certainty evidence). We are also uncertain whether the adverse events reported in the RCT were statin-related (very low-certainty evidence). In contrast, the adverse events reported in the NRSIs seem to be possibly due to statin therapy (risk ratio 13.00, 95% confidence interval 1.85 to 91.49; P = 0.01; low-certainty evidence), with only one of the NRSIs retrospectively mentioning changes in the irritability of two of their participants. We are uncertain whether statins affect growth based on the RCT or NRSI results (very low-certainty evidence). The RCT showed that statins may make little or no difference to plasma biomarker levels (low-certainty evidence), while we are uncertain of their effects on such parameters in the NRSIs (very low-certainty evidence). AUTHORS' CONCLUSIONS Currently, there is no evidence on the potential effects of statin therapy in people with SLOS regarding survival or QoL, and very limited evidence on the effects on neurobehavioral manifestations. Likewise, current evidence is insufficient and of very low certainty regarding the effects of statins on growth parameters in children with SLOS and plasma or cerebrospinal fluid (CSF) levels of various disease biomarkers. Despite these limitations, current evidence seemingly suggests that statins may increase the risk of adverse reactions in individuals with SLOS receiving statins compared to those who are not. Given the insufficient evidence on potential benefits of statins in individuals with SLOS, and their potential for causing adverse reactions, anyone considering this therapy should take these findings into consideration. Future studies should address the highlighted gaps in evidence on the use of statins in individuals with SLOS by collecting prospective data on survival and performing serial standardized assessments of neurobehavioral features, QoL, anthropometric measures, and plasma and CSF biomarker levels after statin introduction. Future studies should also attempt to use consistent dosages, formulations and durations of cholesterol and statin therapy.
Collapse
Affiliation(s)
- Rami A Ballout
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
- Department of Pediatrics, University of Texas Southwestern (UTSW) Medical Center and Children's Health, Dallas, TX, USA
| | - Alicia Livinski
- Division of Library Services, National Institutes of Health Library, Office of Research Services, Bethesda, Maryland, USA
| | - Yi-Ping Fu
- Office of Biostatistics Research, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Robert D Steiner
- Marshfield Clinic Research Foundation, Marshfield, Wisconsin, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
3
|
Barth syndrome: cardiolipin, cellular pathophysiology, management, and novel therapeutic targets. Mol Cell Biochem 2021; 476:1605-1629. [PMID: 33415565 DOI: 10.1007/s11010-020-04021-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022]
Abstract
Barth syndrome is a rare X-linked genetic disease classically characterized by cardiomyopathy, skeletal myopathy, growth retardation, neutropenia, and 3-methylglutaconic aciduria. It is caused by mutations in the tafazzin gene localized to chromosome Xq28.12. Mutations in tafazzin may result in alterations in the level and molecular composition of the mitochondrial phospholipid cardiolipin and result in large elevations in the lysophospholipid monolysocardiolipin. The increased monolysocardiolipin:cardiolipin ratio in blood is diagnostic for the disease, and it leads to disruption in mitochondrial bioenergetics. In this review, we discuss cardiolipin structure, synthesis, and function and provide an overview of the clinical and cellular pathophysiology of Barth Syndrome. We highlight known pharmacological management for treatment of the major pathological features associated with the disease. In addition, we discuss non-pharmacological management. Finally, we highlight the most recent promising therapeutic options for this rare mitochondrial disease including lipid replacement therapy, peroxisome proliferator-activated receptor agonists, tafazzin gene replacement therapy, induced pluripotent stem cells, mitochondria-targeted antioxidants and peptides, and the polyphenolic compound resveratrol.
Collapse
|
4
|
Vamecq J, Papegay B, Nuyens V, Boogaerts J, Leo O, Kruys V. Mitochondrial dysfunction, AMPK activation and peroxisomal metabolism: A coherent scenario for non-canonical 3-methylglutaconic acidurias. Biochimie 2019; 168:53-82. [PMID: 31626852 DOI: 10.1016/j.biochi.2019.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022]
Abstract
The occurrence of 3-methylglutaconic aciduria (3-MGA) is a well understood phenomenon in leucine oxidation and ketogenesis disorders (primary 3-MGAs). In contrast, its genesis in non-canonical (secondary) 3-MGAs, a growing-up group of disorders encompassing more than a dozen of inherited metabolic diseases, is a mystery still remaining unresolved for three decades. To puzzle out this anthologic problem of metabolism, three clues were considered: (i) the variety of disorders suggests a common cellular target at the cross-road of metabolic and signaling pathways, (ii) the response to leucine loading test only discriminative for primary but not secondary 3-MGAs suggests these latter are disorders of extramitochondrial HMG-CoA metabolism as also attested by their failure to increase 3-hydroxyisovalerate, a mitochondrial metabolite accumulating only in primary 3-MGAs, (iii) the peroxisome is an extramitochondrial site possessing its own pool and displaying metabolism of HMG-CoA, suggesting its possible involvement in producing extramitochondrial 3-methylglutaconate (3-MG). Following these clues provides a unifying common basis to non-canonical 3-MGAs: constitutive mitochondrial dysfunction induces AMPK activation which, by inhibiting early steps in cholesterol and fatty acid syntheses, pipelines cytoplasmic acetyl-CoA to peroxisomes where a rise in HMG-CoA followed by local dehydration and hydrolysis may lead to 3-MGA yield. Additional contributors are considered, notably for 3-MGAs associated with hyperammonemia, and to a lesser extent in CLPB deficiency. Metabolic and signaling itineraries followed by the proposed scenario are essentially sketched, being provided with compelling evidence from the literature coming in their support.
Collapse
Affiliation(s)
- Joseph Vamecq
- Inserm, CHU Lille, Univ Lille, Department of Biochemistry and Molecular Biology, Laboratory of Hormonology, Metabolism-Nutrition & Oncology (HMNO), Center of Biology and Pathology (CBP) Pierre-Marie Degand, CHRU Lille, EA 7364 RADEME, University of North France, Lille, France.
| | - Bérengère Papegay
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Vincent Nuyens
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Jean Boogaerts
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Oberdan Leo
- Laboratory of Immunobiology, Department of Molecular Biology, ULB Immunology Research Center (UIRC), Free University of Brussels (ULB), Gosselies, Belgium
| | - Véronique Kruys
- Laboratory of Molecular Biology of the Gene, Department of Molecular Biology, ULB Immunology Research Center (UIRC), Free University of Brussels (ULB), Gosselies, Belgium
| |
Collapse
|
5
|
Ikon N, Ryan RO. On the origin of 3-methylglutaconic acid in disorders of mitochondrial energy metabolism. J Inherit Metab Dis 2016; 39:749-756. [PMID: 27091556 PMCID: PMC4988875 DOI: 10.1007/s10545-016-9933-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/17/2016] [Accepted: 03/31/2016] [Indexed: 01/06/2023]
Abstract
3-methylglutaconic acid (3MGA)-uria occurs in numerous inborn errors of metabolism (IEM) associated with compromised mitochondrial energy metabolism. This organic acid arises from thioester cleavage of 3-methylglutaconyl CoA (3MG CoA), an intermediate in leucine catabolism. In individuals harboring mutations in 3MG CoA hydratase (i.e., primary 3MGA-uria), dietary leucine is the source of 3MGA. In secondary 3MGA-uria, however, no leucine metabolism defects have been reported. While others have suggested 3MGA arises from aberrant isoprenoid shunting from cytosol to mitochondria, an alternative route posits that 3MG CoA arises in three steps from mitochondrial acetyl CoA. Support for this biosynthetic route in IEMs is seen by its regulated occurrence in microorganisms. The fungus, Ustilago maydis, the myxobacterium, Myxococcus xanthus and the marine cyanobacterium, Lyngbya majuscule, generate 3MG CoA (or acyl carrier protein derivative) in the biosynthesis of iron chelating siderophores, iso-odd chain fatty acids and polyketide/nonribosomal peptide products, respectively. The existence of this biosynthetic machinery in these organisms supports a model wherein, under conditions of mitochondrial dysfunction, accumulation of acetyl CoA in the inner mitochondrial space as a result of inefficient fuel utilization drives de novo synthesis of 3MG CoA. Since humans lack the downstream biosynthetic capability of the organisms mentioned above, as 3MG CoA levels rise, thioester hydrolysis yields 3MGA, which is excreted in urine as unspent fuel. Understanding the metabolic origins of 3MGA may increase its utility as a biomarker.
Collapse
Affiliation(s)
- Nikita Ikon
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA, 94609, USA
| | - Robert O Ryan
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA, 94609, USA.
| |
Collapse
|
6
|
A placebo-controlled trial of simvastatin therapy in Smith-Lemli-Opitz syndrome. Genet Med 2016; 19:297-305. [PMID: 27513191 PMCID: PMC5303568 DOI: 10.1038/gim.2016.102] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/14/2016] [Indexed: 11/26/2022] Open
Abstract
Background Smith-Lemli-Opitz syndrome (SLOS) is a multiple malformation/cognitive impairment syndrome characterized by the accumulation of 7-dehydrocholesterol (7DHC), a precursor sterol of cholesterol. Simvastatin, an HMG-CoA reductase inhibitor that crosses the blood-brain-barrier, has been proposed for treatment of SLOS based on in vitro and in vivo studies suggesting that simvastatin increases expression of hypomorphic DHCR7 alleles. Methods Safety and efficacy of simvastatin therapy in 23 mild to typical SLOS patients was evaluated in a randomized, double-blind, placebo-controlled trial. The cross-over trial consisted of two 12 month treatment phases separated by a 2 month wash-out period. Results No safety issues were identified in this study. Plasma dehydrocholesterol levels decreased significantly 8.9 ± 8.4% on placebo to 6.1 ± 5.5% on simvastatin (p<0.005) and we observed a trend toward decreased cerebral spinal fluid dehydrocholesterol levels. A significant improvement (p=0.017, paired t-test) was observed in the Aberrant Behavior Checklist-C Irritability when subjects were on simvastatin. Conclusions This paper reports the first randomized, placebo-controlled trial designed to test the safety and efficacy of simvastatin therapy in SLOS. Simvastatin appears to be relatively safe in SLOS patients, improves the serum dehydrocholesterol/total sterol ratio, and significantly improves irritability symptoms in mild to classical SLOS patients.
Collapse
|
7
|
A Pilot Study of the Association of Markers of Cholesterol Synthesis with Disturbed Sleep in Smith-Lemli-Opitz Syndrome. J Dev Behav Pediatr 2016; 37:424-30. [PMID: 27244299 PMCID: PMC4890614 DOI: 10.1097/dbp.0000000000000317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Smith-Lemli-Opitz syndrome (SLOS) is a rare genetic disorder characterized by cholesterol synthesis impairment. A host of physical, developmental, and behavioral presentations are associated with SLOS, many of which have been related with disorder severity. Sleep disturbance is commonly reported in SLOS. This study is the first to examine the association between sleep disturbance and biomarkers of cholesterol synthesis defect. METHOD Twenty youth with SLOS participated. Biomarkers of cholesterol synthesis were obtained, including plasma sterols (i.e., 7-dehydrocholesterol, 8-dehydrocholesterol, and cholesterol), mevalonic acid, and 24-S hydroxycholsterol. A ratio of plasma cholesterol precursors to cholesterol levels was used as a measure of biochemical severity. Parents reported their children's sleep problems using the Children's Sleep Habits Questionnaire. RESULTS Most markers of cholesterol synthesis disruption were associated with overall sleep disturbance. Biochemical severity of SLOS was also associated with specific sleep problems (e.g., decreased sleep duration and increased sleep onset delay) and was identified as a significant predictor of these factors. CONCLUSION This study is the first to demonstrate associative relationships between cholesterol levels and sleep disturbance in youth with SLOS. These results add to the current understanding of how cholesterol levels may contribute to the behavioral phenotype of SLOS. These findings may inform future studies related to the role cholesterol synthesis defects play in the behavioral phenotype of SLOS and, subsequently, modalities of intervention for behavioral symptoms.
Collapse
|
8
|
Smith–Lemli–Opitz Syndrome (SLOS) and the Fetus. JOURNAL OF FETAL MEDICINE 2016. [DOI: 10.1007/s40556-016-0089-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Witsch-Baumgartner M, Lanthaler B. Birthday of a syndrome: 50 years anniversary of Smith-Lemli-Opitz Syndrome. Eur J Hum Genet 2014; 23:277-8. [PMID: 24824134 DOI: 10.1038/ejhg.2014.87] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Martina Witsch-Baumgartner
- Department of Medical Genetics, Molecular and Clinical Pharmacology, Division of Human Genetics, Innsbruck, Austria
| | - Barbara Lanthaler
- Department of Medical Genetics, Molecular and Clinical Pharmacology, Division of Human Genetics, Innsbruck, Austria
| |
Collapse
|
10
|
Su B, Ryan RO. Metabolic biology of 3-methylglutaconic acid-uria: a new perspective. J Inherit Metab Dis 2014; 37:359-68. [PMID: 24407466 PMCID: PMC4016128 DOI: 10.1007/s10545-013-9669-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 11/20/2013] [Accepted: 11/26/2013] [Indexed: 10/25/2022]
Abstract
Over the past 25 years a growing number of distinct syndromes/mutations associated with compromised mitochondrial function have been identified that share a common feature: urinary excretion of 3-methylglutaconic acid (3MGA). In the leucine degradation pathway, carboxylation of 3-methylcrotonyl CoA leads to formation of 3-methylglutaconyl CoA while 3-methylglutaconyl CoA hydratase converts this metabolite to 3-hydroxy-3-methylglutaryl CoA (HMG CoA). In "primary" 3MGA-uria, mutations in the hydratase are directly responsible for the accumulation of 3MGA. On the other hand, in all "secondary" 3MGA-urias, no defect in leucine catabolism exists and the metabolic origin of 3MGA is unknown. Herein, a path to 3MGA from mitochondrial acetyl CoA is proposed. The pathway is initiated when syndrome-associated mutations/DNA deletions result in decreased Krebs cycle flux. When this occurs, acetoacetyl CoA thiolase condenses two acetyl CoA into acetoacetyl CoA plus CoASH. Subsequently, HMG CoA synthase 2 converts acetoacetyl CoA and acetyl CoA to HMG CoA. Under syndrome-specific metabolic conditions, 3-methylglutaconyl CoA hydratase converts HMG CoA into 3-methylglutaconyl CoA in a reverse reaction of the leucine degradation pathway. This metabolite fails to proceed further up the leucine degradation pathway owing to the kinetic properties of 3-methylcrotonyl CoA carboxylase. Instead, hydrolysis of the CoA moiety of 3-methylglutaconyl CoA generates 3MGA, which appears in urine. If experimentally confirmed, this pathway provides an explanation for the occurrence of 3MGA in multiple disorders associated with compromised mitochondrial function.
Collapse
Affiliation(s)
- Betty Su
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA, 94609, USA
| | | |
Collapse
|
11
|
Wortmann SB, Kluijtmans LAJ, Sequeira S, Wevers RA, Morava E. Leucine Loading Test is Only Discriminative for 3-Methylglutaconic Aciduria Due to AUH Defect. JIMD Rep 2014; 16:1-6. [PMID: 24757000 DOI: 10.1007/8904_2014_309] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 03/07/2014] [Accepted: 03/11/2014] [Indexed: 12/03/2022] Open
Abstract
Currently, six inborn errors of metabolism with 3-methylglutaconic aciduria as discriminative feature are known. The "Primary 3-methylglutaconic aciduria," 3-methylglutaconyl-CoA hydratase deficiency or AUH defect, is a disorder of leucine catabolism. For all other subtypes, also denoted "Secondary 3-methylglutaconic acidurias" (TAZ defect or Barth syndrome, SERAC1 defect or MEGDEL syndrome, OPA3 defect or Costeff syndrome, DNAJC19 defect or DCMA syndrome, TMEM70 defect, "not otherwise specified (NOS) 3-MGA-uria"), the origin of 3-methylglutaconic aciduria remains enigmatic but is hypothesized to be independent from leucine catabolism. Here we show the results of leucine loading test in 21 patients with different inborn errors of metabolism who present with 3-methylglutaconic aciduria. After leucine loading urinary 3-methylglutaconic acid levels increased only in the patients with an AUH defect. This strongly supports the hypothesis that 3-methylglutaconic aciduria is independent from leucine breakdown in other inborn errors of metabolism with 3-methylglutaconic aciduria and also provides a simple test to discriminate between primary and secondary 3-methylglutaconic aciduria in regular patient care.
Collapse
Affiliation(s)
- Saskia B Wortmann
- Department of Pediatrics, Nijmegen Centre for Mitochondrial Disorders (NCMD), Amalia Children's Hospital, Radboud University Medical Centre, 9101, 6500 HB, Nijmegen, The Netherlands,
| | | | | | | | | |
Collapse
|
12
|
Keller RK, Mitchell DA, Goulah CC, Fliesler SJ. Hepatic isoprenoid metabolism in a rat model of Smith-Lemli-Opitz Syndrome. Lipids 2013; 48:219-29. [PMID: 23361583 DOI: 10.1007/s11745-013-3762-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/08/2013] [Indexed: 02/06/2023]
Abstract
Elevated (4 to 7-fold) levels of urinary dolichol and coenzyme Q and substantially longer chain lengths for urinary dolichols have been reported in Smith-Lemli-Opitz Syndrome (SLOS) patients, compared to normal subjects. We investigated the possibility of similar alterations in hepatic, nonsterol isoprenoids in a well-established rat model of SLOS. In this model, the ratio of 7-dehydrocholesterol (7DHC) to cholesterol (Chol) in serum approached 15:1; however, total sterol mass in serum decreased by >80 %. Livers from treated rats had 7DHC/Chol ratios of ~32:1, but the steady-state levels of total sterols were >40 % those of livers from age-matched (3-month-old) control animals. No significant differences in the levels of LDL receptor or HMG-CoA reductase were observed. The levels of dolichol and coenzyme Q were elevated only modestly (by 64 and 31 %, respectively; p < 0.05, N = 6) in the livers of the SLOS rat model compared to controls; moreover, the chain lengths of these isoprenoids were not different in the two groups. We conclude that hepatic isoprenoid synthesis is marginally elevated in this animal model of SLOS, but without preferential shunting to the nonsterol branches (dolichol and coenzyme Q) of the pathway and without alteration of normal dolichol chain lengths.
Collapse
Affiliation(s)
- R Kennedy Keller
- Department of Molecular Medicine, University of South Florida, College of Medicine, Tampa, FL 33612, USA
| | | | | | | |
Collapse
|