1
|
Skogvold HB, Sand ES, Elgstøen KBP. Global Metabolomics Using LC-MS for Clinical Applications. Methods Mol Biol 2025; 2855:23-39. [PMID: 39354299 DOI: 10.1007/978-1-0716-4116-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Metabolomics can be used for a multitude of purposes, including monitoring of treatment effects and for increasing the knowledge of the pathophysiology of a wide range of diseases. Global (commonly referred to as "untargeted") metabolomics is hypothesis-generating and provides the opportunity to discover new biomarkers. Being versatile and having a high degree of selectivity and sensitivity, liquid chromatography-mass spectrometry (LC-MS) is the most common technique applied for metabolomics. We here present our global metabolomics LC-electrospray ionization-MS/MS method. The sample preparation procedures for plasma, serum, dried blood spots, urine, and cerebrospinal fluid are simple and nonspecific to reduce the risk of analyte loss. The method is based on reversed-phase chromatography using a diphenyl column. The high-resolution Q Exactive Orbitrap MS with data-dependent acquisition provides MS/MS spectra of a wide range of analytes. Our method covers a large part of the metabolome regarding hydrophobicity and compound class.
Collapse
Affiliation(s)
| | - Elise Sandås Sand
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
2
|
Engelke UFH, Zammit A, Gerritsen A, Michels MAHM, Coene KLM, Kluijtmans LAJ, Kulkarni P. Application of a Computational Metabolomics Workflow for the Diagnosis of Inborn Errors of Metabolism in a Laboratory Setting. Methods Mol Biol 2025; 2855:555-571. [PMID: 39354327 DOI: 10.1007/978-1-0716-4116-3_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Inborn errors of metabolism constitute a set of hereditary diseases that impose severe medical and physical challenges in the affected individual, in particular, for the pediatric patient population. Timely diagnosis is crucial for these patients, as any delay could result in irreversible health damage, underscoring the importance of early initiation of personalized treatment. Current routine diagnostic screening for inborn errors of metabolism relies on various targeted analyses of established biomarkers. However, this approach is time-consuming, focuses on a limited number of tests (based on clinical information) with a relatively small number of biomarkers, and does not facilitate the identification of new markers. In contrast, untargeted metabolomics-based screening offers a more efficient diagnostic solution, by assessing thousands of metabolites across multiple metabolic pathways in a single test. This not only saves time but also conserves resources for clinicians, the diagnostic laboratory, and for patients.This chapter describes the computational workflow of our "Next Generation Metabolic Screening" approach, which is a metabolomics-based method that is currently applied at the Translational Metabolic Laboratory of the Radboud University Medical Center (the Netherlands) for the diagnosis of inborn errors of metabolism.
Collapse
Affiliation(s)
- Udo F H Engelke
- Translational Metabolic Laboratory, Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alan Zammit
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Albert Gerritsen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marloes A H M Michels
- Translational Metabolic Laboratory, Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Karlien L M Coene
- Laboratory of Clinical Chemistry and Hematology, Maxima Medical Center, Veldhoven, The Netherlands
| | - Leo A J Kluijtmans
- Translational Metabolic Laboratory, Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Purva Kulkarni
- Translational Metabolic Laboratory, Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
3
|
Garrett R, Ptolemy AS, Pickett S, Kellogg MD, Peake RWA. Untargeted Metabolomics for Inborn Errors of Metabolism: Development and Evaluation of a Sustainable Reference Material for Correcting Inter-Batch Variability. Clin Chem 2024; 70:1452-1462. [PMID: 39365746 DOI: 10.1093/clinchem/hvae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/23/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND Untargeted metabolomics has shown promise in expanding screening and diagnostic capabilities for inborn errors of metabolism (IEMs). However, inter-batch variability remains a major barrier to its implementation in the clinical laboratory, despite attempts to address this through normalization techniques. We have developed a sustainable, matrix-matched reference material (RM) using the iterative batch averaging method (IBAT) to correct inter-batch variability in liquid chromatography-high-resolution mass spectrometry-based untargeted metabolomics for IEM screening. METHODS The RM was created using pooled batches of remnant plasma specimens. The batch size, number of batch iterations per RM, and stability compared to a conventional pool of specimens were determined. The effectiveness of the RM for correcting inter-batch variability in routine screening was evaluated using plasma collected from a cohort of phenylketonuria (PKU) patients. RESULTS The RM exhibited lower metabolite variability between iterations over time compared to metabolites from individual batches or individual specimens used for its creation. In addition, the mean variation across amino acid (n = 19) concentrations over 12 weeks was lower for the RM (CVtotal = 8.8%; range 4.7%-25.3%) compared to the specimen pool (CVtotal = 24.6%; range 9.0%-108.3%). When utilized in IEM screening, RM normalization minimized unwanted inter-batch variation and enabled the correct classification of 30 PKU patients analyzed 1 month apart from 146 non-PKU controls. CONCLUSIONS Our RM minimizes inter-batch variability in untargeted metabolomics and demonstrated its potential for routine IEM screening in a cohort of PKU patients. It provides a practical and sustainable solution for data normalization in untargeted metabolomics for clinical laboratories.
Collapse
Affiliation(s)
- Rafael Garrett
- Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
- Metabolomics Laboratory, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Adam S Ptolemy
- Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Sara Pickett
- Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Mark D Kellogg
- Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Roy W A Peake
- Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Šikić K, Peters TMA, Engelke U, Petković Ramadža D, Žigman T, Fumić K, Davidović M, Huljev Frković S, Körmendy T, Martinelli D, Novelli A, Lepri FR, Wevers RA, Barić I. Huppke-Brendel syndrome: Novel cases and a therapeutic trial with ketogenic diet and N-acetylcysteine. JIMD Rep 2024; 65:361-370. [PMID: 39512429 PMCID: PMC11540564 DOI: 10.1002/jmd2.12439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 05/26/2024] [Accepted: 07/01/2024] [Indexed: 11/15/2024] Open
Abstract
Huppke-Brendel syndrome (HBS) is an autosomal recessive disorder caused by SLC33A1 mutations, a gene coding for the acetyl-CoA transporter-1 (AT-1). So far it has been described in nine pediatric and one adult patient. Therapeutic trials with copper histidinate failed to achieve any clinical improvement. Here, we describe the clinical characteristics of two novel patients, one of them diagnosed by gene analysis and his sib postmortally based on clinical characteristics. We demonstrate a therapeutic trial with acetylation therapy, consisting of N-acetylcysteine and ketogenic diet, in one of them. We provide biochemical data on N-acetylated amino acids in cerebrospinal fluid (CSF) and plasma before and after starting this treatment regimen. Our results indicate that ketogenic diet and N-acetylcysteine do not seem to normalize the concentrations of N-acetylated amino acids in CSF or plasma. The overall metabolic pattern shows a trend toward lowered levels of N-acetylated amino acids in CSF and to a lesser extent in plasma. Although there are some assumptions, the function of AT-1 is still not clear and further studies are needed to better understand mechanisms underlying this complex disorder.
Collapse
Affiliation(s)
- Katarina Šikić
- Department of PediatricsUniversity Hospital Center ZagrebZagrebCroatia
| | - Tessa M. A. Peters
- Donders Institute for Brain, Cognition and BehaviorRadboud University Medical CenterNijmegenThe Netherlands
- Department Human Genetics, Translational Metabolic LaboratoryRadboud University Medical CenterNijmegenThe Netherlands
| | - Udo Engelke
- Donders Institute for Brain, Cognition and BehaviorRadboud University Medical CenterNijmegenThe Netherlands
- Department Human Genetics, Translational Metabolic LaboratoryRadboud University Medical CenterNijmegenThe Netherlands
| | - Danijela Petković Ramadža
- Department of PediatricsUniversity Hospital Center ZagrebZagrebCroatia
- University of Zagreb, School of MedicineZagrebCroatia
| | - Tamara Žigman
- Department of PediatricsUniversity Hospital Center ZagrebZagrebCroatia
- University of Zagreb, School of MedicineZagrebCroatia
| | - Ksenija Fumić
- Department of Laboratory DiagnosticsUniversity Hospital Centre ZagrebZagrebCroatia
| | - Maša Davidović
- Department of PediatricsUniversity Hospital Center ZagrebZagrebCroatia
| | - Sanda Huljev Frković
- Department of PediatricsUniversity Hospital Center ZagrebZagrebCroatia
- University of Zagreb, School of MedicineZagrebCroatia
| | - Tibor Körmendy
- Department of Diagnostic NeuroradiologyUniversity Hospital Centre ZagrebZagrebCroatia
| | - Diego Martinelli
- Division of Metabolic Diseases, Department of Paediatric Subspecialties and Liver‐Kidney TransplantationBambino Gesù Children's HospitalRomeItaly
| | - Antonio Novelli
- Translational Cytogenomics Research UnitBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Francesca Romana Lepri
- Translational Cytogenomics Research UnitBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Ron A. Wevers
- Donders Institute for Brain, Cognition and BehaviorRadboud University Medical CenterNijmegenThe Netherlands
- Department Human Genetics, Translational Metabolic LaboratoryRadboud University Medical CenterNijmegenThe Netherlands
| | - Ivo Barić
- Department of PediatricsUniversity Hospital Center ZagrebZagrebCroatia
- University of Zagreb, School of MedicineZagrebCroatia
| |
Collapse
|
5
|
Oliva C, Arias A, Ruiz-Sala P, Garcia-Villoria J, Carling R, Bierau J, Ruijter GJG, Casado M, Ormazabal A, Artuch R. Targeted ultra performance liquid chromatography tandem mass spectrometry procedures for the diagnosis of inborn errors of metabolism: validation through ERNDIM external quality assessment schemes. Clin Chem Lab Med 2024; 62:1991-2000. [PMID: 38456798 DOI: 10.1515/cclm-2023-1291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/22/2024] [Indexed: 03/09/2024]
Abstract
OBJECTIVES Early diagnosis of inborn errors of metabolism (IEM) is crucial to ensure early detection of conditions which are treatable. This study reports on targeted metabolomic procedures for the diagnosis of IEM of amino acids, acylcarnitines, creatine/guanidinoacetate, purines/pyrimidines and oligosaccharides, and describes its validation through external quality assessment schemes (EQA). METHODS Analysis was performed on a Waters ACQUITY UPLC H-class system coupled to a Waters Xevo triple-quadrupole (TQD) mass spectrometer, operating in both positive and negative electrospray ionization mode. Chromatographic separation was performed on a CORTECS C18 column (2.1 × 150, 1.6 µm). Data were collected by multiple reaction monitoring. RESULTS The internal and EQA results were generally adequate, with a few exceptions. We calculated the relative measurement error (RME) and only a few metabolites displayed a RME higher than 30 % (asparagine and some acylcarnitine species). For oligosaccharides, semi-quantitative analysis of an educational panel clearly identified the 8 different diseases included. CONCLUSIONS Overall, we have validated our analytical system through an external quality control assessment. This validation will contribute to harmonization between laboratories, thus improving identification and management of patients with IEM.
Collapse
Affiliation(s)
- Clara Oliva
- Biochemistry and Molecular Genetics Department, 571524 Hospital Clínic de Barcelona , Barcelona, Spain
| | - Angela Arias
- Clinical Biochemistry Department, 16512 Institut de Recerca Sant Joan de Déu , Barcelona, Spain
| | - Pedro Ruiz-Sala
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Centro de Diagnóstico de Enfermedades Moleculares, Universidad Autónoma de Madrid, IdIPAZ, Madrid, Spain
| | - Judit Garcia-Villoria
- Biochemistry and Molecular Genetics Department, 571524 Hospital Clínic de Barcelona , Barcelona, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Rachel Carling
- Department of Biochemical Sciences, 8945 Synnovis, Guy's & St Thomas' NHSFT , London, UK
| | - Jörgen Bierau
- Department of Clinical Genetics, 570888 Maastricht University Medical Center , Maastricht, The Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - George J G Ruijter
- Center for Lysosomal and Metabolic Diseases, Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mercedes Casado
- Clinical Biochemistry Department, 16512 Institut de Recerca Sant Joan de Déu , Barcelona, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Aida Ormazabal
- Clinical Biochemistry Department, 16512 Institut de Recerca Sant Joan de Déu , Barcelona, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Artuch
- Clinical Biochemistry Department, 16512 Institut de Recerca Sant Joan de Déu , Barcelona, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
6
|
Weerd JCVD, Wegberg AMJV, Boer TS, Engelke UFH, Coene KLM, Wevers RA, Bakker SJL, Blaauw PD, Groen J, Spronsen FJV, Heiner-Fokkema MR. Impact of Phenylketonuria on the Serum Metabolome and Plasma Lipidome: A Study in Early-Treated Patients. Metabolites 2024; 14:479. [PMID: 39330486 PMCID: PMC11434371 DOI: 10.3390/metabo14090479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Data suggest that metabolites, other than blood phenylalanine (Phe), better and independently predict clinical outcomes in patients with phenylketonuria (PKU). METHODS To find new biomarkers, we compared the results of untargeted lipidomics and metabolomics in treated adult PKU patients to those of matched controls. Samples (lipidomics in EDTA-plasma (22 PKU and 22 controls) and metabolomics in serum (35 PKU and 20 controls)) were analyzed using ultra-high-performance liquid chromatography and high-resolution mass spectrometry. Data were subjected to multivariate (PCA, OPLS-DA) and univariate (Mann-Whitney U test, p < 0.05) analyses. RESULTS Levels of 33 (of 20,443) lipid features and 56 (of 5885) metabolite features differed statistically between PKU patients and controls. For lipidomics, findings include higher glycerolipids, glycerophospholipids, and sphingolipids species. Significantly lower values were found for sterols and glycerophospholipids species. Seven features had unknown identities. Total triglyceride content was higher. Higher Phe and Phe catabolites, tryptophan derivatives, pantothenic acid, and dipeptides were observed for metabolomics. Ornithine levels were lower. Twenty-six metabolite features were not annotated. CONCLUSIONS This study provides insight into the metabolic phenotype of PKU patients. Additional studies are required to establish whether the observed changes result from PKU itself, diet, and/or an unknown reason.
Collapse
Affiliation(s)
- Jorine C van der Weerd
- Department of Laboratory Medicine, Laboratory of Metabolic Disease, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Annemiek M J van Wegberg
- Division of Metabolic Diseases, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Theo S Boer
- Department of Laboratory Medicine, Laboratory of Metabolic Disease, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Udo F H Engelke
- Department of Human Genetics, Translational Metabolic Laboratory (TML), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Karlien L M Coene
- Department of Human Genetics, Translational Metabolic Laboratory (TML), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Laboratory of Clinical Chemistry and Hematology, Máxima Medical Centre, 5504 DB Veldhoven, The Netherlands
| | - Ron A Wevers
- Department of Human Genetics, Translational Metabolic Laboratory (TML), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Stephan J L Bakker
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Pim de Blaauw
- Department of Laboratory Medicine, Laboratory of Metabolic Disease, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Joost Groen
- Department of Laboratory Medicine, Laboratory of Metabolic Disease, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Francjan J van Spronsen
- Division of Metabolic Diseases, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - M Rebecca Heiner-Fokkema
- Department of Laboratory Medicine, Laboratory of Metabolic Disease, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| |
Collapse
|
7
|
Mansoor S, Qamar R, Azam M. Inborn errors of metabolism: Historical perspectives to contemporary management. Clin Chim Acta 2024; 562:119883. [PMID: 39084485 DOI: 10.1016/j.cca.2024.119883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024]
Abstract
There are many different genetic diseases called inborn errors of metabolism (IEM) which result from defective enzymes in the metabolic pathway. As a result, these defects either cause a harmful accumulation of substances or lead to a lack of certain types of molecule. The present review traces the origin and development of IEMs from Sir Archibald Garrod's theory in the early 20th century to current diagnostic and therapeutic approaches. It also involves a systematic literature review complying with PRISMA which included studies sourced from PubMed, Scopus, Web of Science and Google Scholar. It points out that high rates of consanguinity are associated with high prevalence rates for IEMs especially in the Eastern Mediterranean area. IEMS are classified as energy deficiency disorders, intoxication disorders, and storage disorders. Each category has a variety of clinical manifestations. This study incorporates different diagnostic methods ranging from simple biochemical tests to tandem mass spectrometry and next generation sequencing; while management approaches such as dietary modifications, enzyme replacement therapy and gene therapy were assessed for their efficacy. Specific attention is paid to Pakistan where there exists considerable consanguinity among people coupled with inadequate health care services which have seriously affected delivery of health care services thereby leading to numerous challenges for the country healthcare system during service provision.
Collapse
Affiliation(s)
- Sumreena Mansoor
- Translational Genomics Laboratory, COMSATS University Islamabad, Islamabad, Pakistan; Department of Biochemistry, Shifa College of Medicine, Shifa Tameer-e-Millat University, Islamabad, Pakistan; Translational Genomics Laboratory, Taramri Chock, COMSATS University, Park Road, Islamabad, Islamabad 45550, Pakistan.
| | - Raheel Qamar
- Science and Technology Sector, ICESCO, Rabat 10104, Morocco; Pakistan Academy of Sciences, Islamabad, Pakistan; Translational Genomics Laboratory, Taramri Chock, COMSATS University, Park Road, Islamabad, Islamabad 45550, Pakistan
| | - Maleeha Azam
- Translational Genomics Laboratory, COMSATS University Islamabad, Islamabad, Pakistan; Translational Genomics Laboratory, Taramri Chock, COMSATS University, Park Road, Islamabad, Islamabad 45550, Pakistan.
| |
Collapse
|
8
|
Chaleckis R, Ito Y, Wasada H, Wheelock CE, Oishi H, Tomizawa M, Kamijima M. Fungicide Metabolite MS2 Spectral Libraries for Comprehensive Human Biomonitoring. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18247-18256. [PMID: 39101478 DOI: 10.1021/acs.jafc.4c02339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Fungicides undergo rapid metabolism and are excreted in the urine. There are few methods for screening these ubiquitous compounds, which have a high potential for human exposure. High-resolution mass spectrometry (HRMS) is a suitable technique to assess fungicide exposures; however, there is a lack of spectral libraries for fungicide annotation and in particular for downstream metabolites. We created spectral libraries for 32 fungicides for suspect screening. Fungicide standards were administered to mice, and 24-h urine was analyzed using hydrophilic interaction and reversed-phase chromatography coupled to hybrid quadrupole-orbitrap mass spectrometry. Suspect metabolite MS2 spectra for library creation were selected based on the ratio of exposed-to-control mouse urine. MS2 libraries were applied to urine collected from female university students (n = 73). Several tetraconazole and tebuconazole metabolites were detected in 3% (2/73) of the samples. The creation of comprehensive suspect screening MS2 libraries is a useful tool to detect fungicide exposure for human biomonitoring.
Collapse
Affiliation(s)
- Romanas Chaleckis
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Yuki Ito
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Hitomi Wasada
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Craig E Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm 171 77, Sweden
| | - Hisashi Oishi
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Motohiro Tomizawa
- Department of Chemistry, Faculty of Life Sciences, Tokyo University of Agriculture, Setagaya, Tokyo 156-8502, Japan
| | - Michihiro Kamijima
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| |
Collapse
|
9
|
Verheijen FWM, Tran TNM, Chang J, Broere F, Zaal EA, Berkers CR. Deciphering metabolic crosstalk in context: lessons from inflammatory diseases. Mol Oncol 2024; 18:1759-1776. [PMID: 38275212 PMCID: PMC11223610 DOI: 10.1002/1878-0261.13588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/02/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Metabolism plays a crucial role in regulating the function of immune cells in both health and disease, with altered metabolism contributing to the pathogenesis of cancer and many inflammatory diseases. The local microenvironment has a profound impact on the metabolism of immune cells. Therefore, immunological and metabolic heterogeneity as well as the spatial organization of cells in tissues should be taken into account when studying immunometabolism. Here, we highlight challenges of investigating metabolic communication. Additionally, we review the capabilities and limitations of current technologies for studying metabolism in inflamed microenvironments, including single-cell omics techniques, flow cytometry-based methods (Met-Flow, single-cell energetic metabolism by profiling translation inhibition (SCENITH)), cytometry by time of flight (CyTOF), cellular indexing of transcriptomes and epitopes by sequencing (CITE-Seq), and mass spectrometry imaging. Considering the importance of metabolism in regulating immune cells in diseased states, we also discuss the applications of metabolomics in clinical research, as well as some hurdles to overcome to implement these techniques in standard clinical practice. Finally, we provide a flowchart to assist scientists in designing effective strategies to unravel immunometabolism in disease-relevant contexts.
Collapse
Affiliation(s)
- Fenne W. M. Verheijen
- Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityThe Netherlands
- Division of Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityThe Netherlands
| | - Thi N. M. Tran
- Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityThe Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular ResearchUtrecht UniversityThe Netherlands
| | - Jung‐Chin Chang
- Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityThe Netherlands
| | - Femke Broere
- Division of Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityThe Netherlands
| | - Esther A. Zaal
- Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityThe Netherlands
| | - Celia R. Berkers
- Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityThe Netherlands
| |
Collapse
|
10
|
van Wegberg AMJ, van der Weerd JC, Engelke UFH, Coene KLM, Jahja R, Bakker SJL, Huijbregts SCJ, Wevers RA, Heiner-Fokkema MR, van Spronsen FJ. The clinical relevance of novel biomarkers as outcome parameter in adults with phenylketonuria. J Inherit Metab Dis 2024; 47:624-635. [PMID: 38556470 DOI: 10.1002/jimd.12732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 04/02/2024]
Abstract
Recent studies in PKU patients identified alternative biomarkers in blood using untargeted metabolomics. To test the added clinical value of these novel biomarkers, targeted metabolomics of 11 PKU biomarkers (phenylalanine, glutamyl-phenylalanine, glutamyl-glutamyl-phenylalanine, N-lactoyl-phenylalanine, N-acetyl-phenylalanine, the dipeptides phenylalanyl-phenylalanine and phenylalanyl-leucine, phenylalanine-hexose conjugate, phenyllactate, phenylpyruvate, and phenylacetate) was performed in stored serum samples of the well-defined PKU patient-COBESO cohort and a healthy control group. Serum samples of 35 PKU adults and 20 healthy age- and sex-matched controls were analyzed using ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry. Group differences were tested using the Mann-Whitney U test. Multiple linear regression analyses were performed with these biomarkers as predictors of (neuro-)cognitive functions working memory, sustained attention, inhibitory control, and mental health. Compared to healthy controls, phenylalanine, glutamyl-phenylalanine, N-lactoyl-phenylalanine, N-acetyl-phenylalanine, phenylalanine-hexose conjugate, phenyllactate, phenylpyruvate, and phenylacetate were significant elevated in PKU adults (p < 0.001). The remaining three were below limit of detection in PKU and controls. Both phenylalanine and N-lactoyl-phenylalanine were associated with DSM-VI Attention deficit/hyperactivity (R2 = 0.195, p = 0.039 and R2 = 0.335, p = 0.002, respectively) of the ASR questionnaire. In addition, N-lactoyl-phenylalanine showed significant associations with ASR DSM-VI avoidant personality (R2 = 0.265, p = 0.010), internalizing (R2 = 0.192, p = 0.046) and externalizing problems (R2 = 0.217, p = 0.029) of the ASR questionnaire and multiple aspects of the MS2D and FI tests, reflecting working memory with R2 between 0.178 (p = 0.048) and 0.204 (p = 0.033). Even though the strength of the models was not considered strong, N-lactoyl-phenylalanine outperformed phenylalanine in its association with working memory and mental health outcomes.
Collapse
Affiliation(s)
- A M J van Wegberg
- Division of Metabolic Diseases, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, The Netherlands
| | - J C van der Weerd
- Department of Laboratory Medicine, Laboratory of Metabolic Diseases, University of Groningen, University Medical Centre Groningen, The Netherlands
| | - U F H Engelke
- Department of Human Genetics, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | - K L M Coene
- Laboratory of Clinical Chemistry and Hematology, Máxima Medical Centre, Veldhoven, The Netherlands
| | - R Jahja
- Division of Metabolic Diseases, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, The Netherlands
| | - S J L Bakker
- Department of Internal Medicine, University of Groningen, University Medical Center Groningen, The Netherlands
| | - S C J Huijbregts
- Department of Clinical Child and Adolescent Studies-Neurodevelopmental Disorders, Faculty of Social Sciences, Leiden University, Leiden, The Netherlands
| | - R A Wevers
- Department of Human Genetics, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M R Heiner-Fokkema
- Department of Laboratory Medicine, Laboratory of Metabolic Diseases, University of Groningen, University Medical Centre Groningen, The Netherlands
| | - F J van Spronsen
- Division of Metabolic Diseases, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, The Netherlands
| |
Collapse
|
11
|
Ashenden AJ, Chowdhury A, Anastasi LT, Lam K, Rozek T, Ranieri E, Siu CWK, King J, Mas E, Kassahn KS. The Multi-Omic Approach to Newborn Screening: Opportunities and Challenges. Int J Neonatal Screen 2024; 10:42. [PMID: 39051398 PMCID: PMC11270328 DOI: 10.3390/ijns10030042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 07/27/2024] Open
Abstract
Newborn screening programs have seen significant evolution since their initial implementation more than 60 years ago, with the primary goal of detecting treatable conditions within the earliest possible timeframe to ensure the optimal treatment and outcomes for the newborn. New technologies have driven the expansion of screening programs to cover additional conditions. In the current era, the breadth of screened conditions could be further expanded by integrating omic technologies such as untargeted metabolomics and genomics. Genomic screening could offer opportunities for lifelong care beyond the newborn period. For genomic newborn screening to be effective and ready for routine adoption, it must overcome barriers such as implementation cost, public acceptability, and scalability. Metabolomics approaches, on the other hand, can offer insight into disease phenotypes and could be used to identify known and novel biomarkers of disease. Given recent advances in metabolomic technologies, alongside advances in genomics including whole-genome sequencing, the combination of complementary multi-omic approaches may provide an exciting opportunity to leverage the best of both approaches and overcome their respective limitations. These techniques are described, along with the current outlook on multi-omic-based NBS research.
Collapse
Affiliation(s)
- Alex J. Ashenden
- Department of Biochemical Genetics, SA Pathology, Women’s and Children’s Hospital, Adelaide, SA 5006, Australia (T.R.)
| | - Ayesha Chowdhury
- Department of Molecular Pathology, SA Pathology, Adelaide, SA 5000, Australia; (A.C.); (L.T.A.)
| | - Lucy T. Anastasi
- Department of Molecular Pathology, SA Pathology, Adelaide, SA 5000, Australia; (A.C.); (L.T.A.)
| | - Khoa Lam
- Department of Biochemical Genetics, SA Pathology, Women’s and Children’s Hospital, Adelaide, SA 5006, Australia (T.R.)
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Tomas Rozek
- Department of Biochemical Genetics, SA Pathology, Women’s and Children’s Hospital, Adelaide, SA 5006, Australia (T.R.)
| | - Enzo Ranieri
- Department of Biochemical Genetics, SA Pathology, Women’s and Children’s Hospital, Adelaide, SA 5006, Australia (T.R.)
| | - Carol Wai-Kwan Siu
- Department of Biochemical Genetics, SA Pathology, Women’s and Children’s Hospital, Adelaide, SA 5006, Australia (T.R.)
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Jovanka King
- Immunology Directorate, SA Pathology, Adelaide, SA 5000, Australia
- Department of Allergy and Clinical Immunology, Women’s and Children’s Hospital, Adelaide, SA 5006, Australia
- Discipline of Paediatrics, Women’s and Children’s Hospital, The University of Adelaide, Adelaide, SA 5006, Australia
| | - Emilie Mas
- Department of Biochemical Genetics, SA Pathology, Women’s and Children’s Hospital, Adelaide, SA 5006, Australia (T.R.)
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Karin S. Kassahn
- Department of Molecular Pathology, SA Pathology, Adelaide, SA 5000, Australia; (A.C.); (L.T.A.)
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
12
|
Khaghani F, Hemmati M, Ebrahimi M, Salmaninejad A. Emerging Multi-omic Approaches to the Molecular Diagnosis of Mitochondrial Disease and Available Strategies for Treatment and Prevention. Curr Genomics 2024; 25:358-379. [PMID: 39323625 PMCID: PMC11420563 DOI: 10.2174/0113892029308327240612110334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/03/2024] [Accepted: 05/21/2024] [Indexed: 09/27/2024] Open
Abstract
Mitochondria are semi-autonomous organelles present in several copies within most cells in the human body that are controlled by the precise collaboration of mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) encoding mitochondrial proteins. They play important roles in numerous metabolic pathways, such as the synthesis of adenosine triphosphate (ATP), the predominant energy substrate of the cell generated through oxidative phosphorylation (OXPHOS), intracellular calcium homeostasis, metabolite biosynthesis, aging, cell cycles, and so forth. Previous studies revealed that dysfunction of these multi-functional organelles, which may arise due to mutations in either the nuclear or mitochondrial genome, leads to a diverse group of clinically and genetically heterogeneous disorders. These diseases include neurodegenerative and metabolic disorders as well as cardiac and skeletal myopathies in both adults and newborns. The plethora of phenotypes and defects displayed leads to challenges in the diagnosis and treatment of mitochondrial diseases. In this regard, the related literature proposed several diagnostic options, such as high throughput mitochondrial genomics and omics technologies, as well as numerous therapeutic options, such as pharmacological approaches, manipulating the mitochondrial genome, increasing the mitochondria content of the affected cells, and recently mitochondrial diseases transmission prevention. Therefore, the present article attempted to review the latest advances and challenges in diagnostic and therapeutic options for mitochondrial diseases.
Collapse
Affiliation(s)
- Faeze Khaghani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
- Medical Genetic Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahboobeh Hemmati
- Medical Genetic Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoumeh Ebrahimi
- Department of Animal Biology, School of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Arash Salmaninejad
- Medical Genetic Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Regenerative Medicine, Organ Procurement and Transplantation Multi-Disciplinary Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
13
|
van Dijk MJ, Ruiter TJJ, van der Veen S, Rab MAE, van Oirschot BA, Bos J, Derichs C, Rijneveld AW, Cnossen MH, Nur E, Biemond BJ, Bartels M, Schutgens REG, van Solinge WW, Jans JJM, van Beers EJ, van Wijk R. Metabolic blood profile and response to treatment with the pyruvate kinase activator mitapivat in patients with sickle cell disease. Hemasphere 2024; 8:e109. [PMID: 38919958 PMCID: PMC11196954 DOI: 10.1002/hem3.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/10/2024] [Accepted: 05/01/2024] [Indexed: 06/27/2024] Open
Abstract
Mitapivat is an investigational, oral, small-molecule allosteric activator of pyruvate kinase (PK). PK is a regulatory glycolytic enzyme that is key in providing the red blood cell (RBC) with sufficient amounts of adenosine triphosphate (ATP). In sickle cell disease (SCD), decreased 2,3-DPG levels increase the oxygen affinity of hemoglobin, thereby preventing deoxygenation and polymerization of sickle hemoglobin. The PK activator mitapivat has been shown to decrease levels of 2,3-DPG and increase levels of ATP in RBCs in patients with SCD. In this phase 2, investigator-initiated, open-label study (https://www.clinicaltrialsregister.eu/ NL8517; EudraCT 2019-003438-18), untargeted metabolomics was used to explore the overall metabolic effects of 8-week treatment with mitapivat in the dose-finding period. In total, 1773 unique metabolites were identified in dried blood spots of whole blood from ten patients with SCD and 42 healthy controls (HCs). The metabolic phenotype of patients with SCD revealed alterations in 139/1773 (7.8%) metabolites at baseline when compared to HCs (false discovery rate-adjusted p < 0.05), including increases of (derivatives of) polyamines, purines, and acyl carnitines. Eight-week treatment with mitapivat in nine patients with SCD altered 85/1773 (4.8%) of the total metabolites and 18/139 (12.9%) of the previously identified altered metabolites in SCD (unadjusted p < 0.05). Effects were observed on a broad spectrum of metabolites and were not limited to glycolytic intermediates. Our results show the relevance of metabolic profiling in SCD, not only to unravel potential pathophysiological pathways and biomarkers in multisystem diseases but also to determine the effect of treatment.
Collapse
Affiliation(s)
- Myrthe J. van Dijk
- Center for Benign Hematology, Thrombosis and Hemostasis—Van CreveldkliniekUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
- Central Diagnostic Laboratory and ResearchUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Titine J. J. Ruiter
- Central Diagnostic Laboratory and ResearchUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
- Section Metabolic Diagnostics, Department of GeneticsUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Sigrid van der Veen
- Center for Benign Hematology, Thrombosis and Hemostasis—Van CreveldkliniekUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
- Section Metabolic Diagnostics, Department of GeneticsUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Minke A. E. Rab
- Central Diagnostic Laboratory and ResearchUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
- Department of Hematology, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Brigitte A. van Oirschot
- Central Diagnostic Laboratory and ResearchUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Jennifer Bos
- Central Diagnostic Laboratory and ResearchUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Cleo Derichs
- Center for Benign Hematology, Thrombosis and Hemostasis—Van CreveldkliniekUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Anita W. Rijneveld
- Department of Hematology, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Marjon H. Cnossen
- Department of Pediatric Hematology, Erasmus MC Sophia Children's HospitalUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Erfan Nur
- Department of HematologyAmsterdam University Medical Center, University of AmsterdamAmsterdamThe Netherlands
- Department of Blood Cell Research, Sanquin ResearchAmsterdamThe Netherlands
| | - Bart J. Biemond
- Department of HematologyAmsterdam University Medical Center, University of AmsterdamAmsterdamThe Netherlands
| | - Marije Bartels
- Center for Benign Hematology, Thrombosis and Hemostasis—Van CreveldkliniekUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Roger E. G. Schutgens
- Center for Benign Hematology, Thrombosis and Hemostasis—Van CreveldkliniekUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Wouter W. van Solinge
- Central Diagnostic Laboratory and ResearchUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Judith J. M. Jans
- Section Metabolic Diagnostics, Department of GeneticsUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Eduard J. van Beers
- Center for Benign Hematology, Thrombosis and Hemostasis—Van CreveldkliniekUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Richard van Wijk
- Central Diagnostic Laboratory and ResearchUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
14
|
Alotaibi AZ, AlMalki RH, Al Mogren M, Sebaa R, Alanazi M, Jacob M, Alodaib A, Alfares A, Abdel Rahman AM. Exploratory Untargeted Metabolomics of Dried Blood Spot Samples from Newborns with Maple Syrup Urine Disease. Int J Mol Sci 2024; 25:5720. [PMID: 38891907 PMCID: PMC11171634 DOI: 10.3390/ijms25115720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Currently, tandem mass spectrometry-based newborn screening (NBS), which examines targeted biomarkers, is the first approach used for the early detection of maple syrup urine disease (MSUD) in newborns, followed by confirmatory genetic mutation tests. However, these diagnostic approaches have limitations, demanding the development of additional tools for the diagnosis/screening of MUSD. Recently, untargeted metabolomics has been used to explore metabolic profiling and discover the potential biomarkers/pathways of inherited metabolic diseases. Thus, we aimed to discover a distinctive metabolic profile and biomarkers/pathways for MSUD newborns using untargeted metabolomics. Herein, untargeted metabolomics was used to analyze dried blood spot (DBS) samples from 22 MSUD and 22 healthy control newborns. Our data identified 210 altered endogenous metabolites in MSUD newborns and new potential MSUD biomarkers, particularly L-alloisoleucine, methionine, and lysoPI. In addition, the most impacted pathways in MSUD newborns were the ascorbate and aldarate pathways and pentose and glucuronate interconversions, suggesting that oxidative and detoxification events may occur in early life. Our approach leads to the identification of new potential biomarkers/pathways that could be used for the early diagnosis/screening of MSUD newborns but require further validation studies. Our untargeted metabolomics findings have undoubtedly added new insights to our understanding of the pathogenicity of MSUD, which helps us select the appropriate early treatments for better health outcomes.
Collapse
Affiliation(s)
- Abeer Z. Alotaibi
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11652, Saudi Arabia; (A.Z.A.); (M.A.)
| | - Reem H. AlMalki
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia; (R.H.A.); (M.A.M.); (M.J.); (A.A.); (A.A.)
| | - Maha Al Mogren
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia; (R.H.A.); (M.A.M.); (M.J.); (A.A.); (A.A.)
| | - Rajaa Sebaa
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia;
| | - Mohammad Alanazi
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11652, Saudi Arabia; (A.Z.A.); (M.A.)
| | - Minnie Jacob
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia; (R.H.A.); (M.A.M.); (M.J.); (A.A.); (A.A.)
| | - Ahamd Alodaib
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia; (R.H.A.); (M.A.M.); (M.J.); (A.A.); (A.A.)
| | - Ahmad Alfares
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia; (R.H.A.); (M.A.M.); (M.J.); (A.A.); (A.A.)
| | - Anas M. Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia; (R.H.A.); (M.A.M.); (M.J.); (A.A.); (A.A.)
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
15
|
Peters TMA, Engelke UFH, de Boer S, Reintjes JTG, Roullet JB, Broekman S, de Vrieze E, van Wijk E, Wamelink MMC, Artuch R, Barić I, Merx J, Boltje TJ, Martens J, Willemsen MAAP, Verbeek MM, Wevers RA, Gibson KM, Coene KLM. Succinic semialdehyde dehydrogenase deficiency in mice and in humans: An untargeted metabolomics perspective. J Inherit Metab Dis 2024; 47:417-430. [PMID: 37455357 DOI: 10.1002/jimd.12657] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a rare neurometabolic disorder caused by disruption of the gamma-aminobutyric acid (GABA) pathway. A more detailed understanding of its pathophysiology, beyond the accumulation of GABA and gamma-hydroxybutyric acid (GHB), will increase our understanding of the disease and may support novel therapy development. To this end, we compared biochemical body fluid profiles from SSADHD patients with controls using next-generation metabolic screening (NGMS). Targeted analysis of NGMS data from cerebrospinal fluid (CSF) showed a moderate increase of aspartic acid, glutaric acid, glycolic acid, 4-guanidinobutanoic acid, and 2-hydroxyglutaric acid, and prominent elevations of GHB and 4,5-dihydroxyhexanoic acid (4,5-DHHA) in SSADHD samples. Remarkably, the intensities of 4,5-DHHA and GHB showed a significant positive correlation in control CSF, but not in patient CSF. In an established zebrafish epilepsy model, 4,5-DHHA showed increased mobility that may reflect limited epileptogenesis. Using untargeted metabolomics, we identified 12 features in CSF with high biomarker potential. These had comparable increased fold changes as GHB and 4,5-DHHA. For 10 of these features, a similar increase was found in plasma, urine and/or mouse brain tissue for SSADHD compared to controls. One of these was identified as the novel biomarker 4,5-dihydroxyheptanoic acid. The intensities of selected features in plasma and urine of SSADHD patients positively correlated with the clinical severity score of epilepsy and psychiatric symptoms of those patients, and also showed a high mutual correlation. Our findings provide new insights into the (neuro)metabolic disturbances in SSADHD and give leads for further research concerning SSADHD pathophysiology.
Collapse
Affiliation(s)
- Tessa M A Peters
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Translational Metabolic Laboratory (TML), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Udo F H Engelke
- Department of Laboratory Medicine, Translational Metabolic Laboratory (TML), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Siebolt de Boer
- Department of Laboratory Medicine, Translational Metabolic Laboratory (TML), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joris T G Reintjes
- Department of Laboratory Medicine, Translational Metabolic Laboratory (TML), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jean-Baptiste Roullet
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| | - Sanne Broekman
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Erik de Vrieze
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Erwin van Wijk
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mirjam M C Wamelink
- Department of Clinical Chemistry, Metabolic Unit, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Rafael Artuch
- Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu, CIBERER and MetabERN Hospital Sant Joan de Déu, Barcelona, Spain
| | - Ivo Barić
- Department of Pediatrics, School of Medicine, University Hospital Center Zagreb and University of Zagreb, Zagreb, Croatia
| | - Jona Merx
- Institute for Molecules and Materials, Synthetic Organic Chemistry, Radboud University, Nijmegen, The Netherlands
| | - Thomas J Boltje
- Institute for Molecules and Materials, Synthetic Organic Chemistry, Radboud University, Nijmegen, The Netherlands
| | - Jonathan Martens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Nijmegen, The Netherlands
| | - Michèl A A P Willemsen
- Department of Pediatric Neurology, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel M Verbeek
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Translational Metabolic Laboratory (TML), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ron A Wevers
- Department of Laboratory Medicine, Translational Metabolic Laboratory (TML), Radboud University Medical Center, Nijmegen, The Netherlands
| | - K Michael Gibson
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| | - Karlien L M Coene
- Department of Laboratory Medicine, Translational Metabolic Laboratory (TML), Radboud University Medical Center, Nijmegen, The Netherlands
- Laboratory of Clinical Chemistry and Haematology, Máxima Medical Center, Veldhoven, The Netherlands
| |
Collapse
|
16
|
Sabi EM, AlMogren M, Sebaa R, Sumaily KM, AlMalki R, Mujamammi AH, Abdel Rahman AM. Comprehensive metabolomics analysis reveals novel biomarkers and pathways in falsely suspected glutaric aciduria Type-1 newborns. Clin Chim Acta 2024; 557:117861. [PMID: 38490341 DOI: 10.1016/j.cca.2024.117861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/04/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Glutaric aciduria type-1 (GA-1) is a rare metabolic disorder due to glutaryl coenzyme A dehydrogenase deficiency, causing elevated levels of glutaryl-CoA and its derivatives. GA-1 exhibits symptoms like macrocephaly, developmental delays, and movement disorders. Timely diagnosis through genetic testing and newborn screening is crucial. However, in some cases, transiently elevated level of glutarylcarnitine (C5DC) challenges accurate diagnosis, highlighting the need for alternative diagnostic methods, like mass spectrometry-based untargeted metabolomics, to identify additional biomarkers for distinguishing falsely suspected GA-1 from healthy newborns. METHODOLOGY DBS samples from falsely suspected GA-1 newborns (n = 47) and matched control were collected through the NBS program. Untargeted metabolomics using liquid chromatography-high-resolution mass spectrometry (LC-HRMS) was performed to enable biomarker and pathway investigations for significantly altered metabolites. RESULTS 582 and 546 were up- and down-regulated metabolites in transient GA-1. 155 endogenous metabolites displayed significant variations compared to the control group. Furthermore, our data identified novel altered metabolic biomarkers, such as N-palmitoylcysteine, heptacarboxyporphyrin, 3-hydroxylinoleoylcarnitine, and monoacylglyceride (MG) (0:0/20:1/0:0), along with perturbed metabolic pathways like sphingolipid and thiamine metabolism associated with the transient elevated C5DC levels in DBS samples. CONCLUSIONS A distinct metabolic pattern linked to the transient C5DC elevation in newborns was reported to enhance the prediction of the falsely positive cases, which could help avoiding unnecessary medical treatments and minimizing the financial burdens in the health sector.
Collapse
Affiliation(s)
- Essa M Sabi
- Clinical Biochemistry Unit, Pathology Department, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Maha AlMogren
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, KSA, Saudi Arabia
| | - Rajaa Sebaa
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Khalid M Sumaily
- Clinical Biochemistry Unit, Pathology Department, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Reem AlMalki
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, KSA, Saudi Arabia
| | - Ahmed H Mujamammi
- Clinical Biochemistry Unit, Pathology Department, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Anas M Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, KSA, Saudi Arabia; The Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| |
Collapse
|
17
|
Su H, Zhang H, Wu J, Huang L, Zhang M, Xu W, Cao J, Liu W, Liu N, Jiang H, Gu X, Qian K. Fast Label-Free Metabolic Profile Recognition Identifies Phenylketonuria and Subtypes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305701. [PMID: 38348590 PMCID: PMC11022714 DOI: 10.1002/advs.202305701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/25/2024] [Indexed: 04/18/2024]
Abstract
Phenylketonuria (PKU) is the most common inherited metabolic disease in humans. Clinical screening of newborn heel blood samples for PKU is costly and time-consuming because it requires multiple procedures, like isotope labeling and derivatization, and PKU subtype identification requires an additional urine sample. Delayed diagnosis of PKU, or subtype identification can result in mental disability. Here, plasmonic silver nanoshells are used for laser desorption/ionization mass spectrometry (MS) detection of PKU with label-free assay by recognizing metabolic profile in dried blood spot (DBS) samples. A total of 1100 subjects are recruited and each DBS sample can be processed in seconds. This platform achieves PKU screening with a sensitivity of 0.985 and specificity of 0.995, which is comparable to existing clinical liquid chromatography MS (LC-MS) methods. This method can process 360 samples per hour, compared with the LC-MS method which processes only 30 samples per hour. Moreover, this assay enables precise identification of PKU subtypes without the need for a urine sample. It is demonstrated that this platform enables high-performance and fast, low-cost PKU screening and subtype identification. This approach might be suitable for the detection of other clinically relevant biomarkers in blood or other clinical samples.
Collapse
Affiliation(s)
- Haiyang Su
- Henan Key Laboratory of Rare DiseasesEndocrinology and Metabolism CenterThe First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and TechnologyLuoyang471003P. R. China
- State Key Laboratory of Systems Medicine for CancerSchool of Biomedical EngineeringInstitute of Medical Robotics and Shanghai Academy of Experimental MedicineShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Huiwen Zhang
- Xinhua HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200092P. R. China
| | - Jiao Wu
- State Key Laboratory of Systems Medicine for CancerSchool of Biomedical EngineeringInstitute of Medical Robotics and Shanghai Academy of Experimental MedicineShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Lin Huang
- Country Department of Clinical Laboratory MedicineShanghai Chest HospitalShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Mengji Zhang
- State Key Laboratory of Systems Medicine for CancerSchool of Biomedical EngineeringInstitute of Medical Robotics and Shanghai Academy of Experimental MedicineShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Wei Xu
- State Key Laboratory for Oncogenes and Related GenesDivision of CardiologyRenji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai200127P. R. China
| | - Jing Cao
- State Key Laboratory of Systems Medicine for CancerSchool of Biomedical EngineeringInstitute of Medical Robotics and Shanghai Academy of Experimental MedicineShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Wanshan Liu
- Xinhua HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200092P. R. China
| | - Ning Liu
- School of Electronics Information and Electrical EngineeringShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Hongwei Jiang
- Henan Key Laboratory of Rare DiseasesEndocrinology and Metabolism CenterThe First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and TechnologyLuoyang471003P. R. China
| | - Xuefan Gu
- Xinhua HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200092P. R. China
| | - Kun Qian
- State Key Laboratory of Systems Medicine for CancerSchool of Biomedical EngineeringInstitute of Medical Robotics and Shanghai Academy of Experimental MedicineShanghai Jiao Tong UniversityShanghai200030P. R. China
| |
Collapse
|
18
|
Moritz L, Schumann A, Pohl M, Köttgen A, Hannibal L, Spiekerkoetter U. A systematic review of metabolomic findings in adult and pediatric renal disease. Clin Biochem 2024; 123:110703. [PMID: 38097032 DOI: 10.1016/j.clinbiochem.2023.110703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 12/29/2023]
Abstract
Chronic kidney disease (CKD) affects over 0.5 billion people worldwide across their lifetimes. Despite a growingly ageing world population, an increase in all-age prevalence of kidney disease persists. Adult-onset forms of kidney disease often result from lifestyle-modifiable metabolic illnesses such as type 2 diabetes. Pediatric and adolescent forms of renal disease are primarily caused by morphological abnormalities of the kidney, as well as immunological, infectious and inherited metabolic disorders. Alterations in energy metabolism are observed in CKD of varying causes, albeit the molecular mechanisms underlying pathology are unclear. A systematic indexing of metabolites identified in plasma and urine of patients with kidney disease alongside disease enrichment analysis uncovered inborn errors of metabolism as a framework that links features of adult and pediatric kidney disease. The relationship of genetics and metabolism in kidney disease could be classified into three distinct landscapes: (i) Normal genotypes that develop renal damage because of lifestyle and / or comorbidities; (ii) Heterozygous genetic variants and polymorphisms that result in unique metabotypes that may predispose to the development of kidney disease via synergistic heterozygosity, and (iii) Homozygous genetic variants that cause renal impairment by perturbing metabolism, as found in children with monogenic inborn errors of metabolism. Interest in the identification of early biomarkers of onset and progression of CKD has grown steadily in the last years, though it has not translated into clinical routine yet. This systematic review indexes findings of differential concentration of metabolites and energy pathway dysregulation in kidney disease and appraises their potential use as biomarkers.
Collapse
Affiliation(s)
- Lennart Moritz
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany; Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Anke Schumann
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany; Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Martin Pohl
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Luciana Hannibal
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany.
| | - Ute Spiekerkoetter
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany.
| |
Collapse
|
19
|
Gropman AL, Uittenbogaard MN, Chiaramello AE. Challenges and opportunities to bridge translational to clinical research for personalized mitochondrial medicine. Neurotherapeutics 2024; 21:e00311. [PMID: 38266483 PMCID: PMC10903101 DOI: 10.1016/j.neurot.2023.e00311] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024] Open
Abstract
Mitochondrial disorders are a group of rare and heterogeneous genetic diseases characterized by dysfunctional mitochondria leading to deficient adenosine triphosphate synthesis and chronic energy deficit in patients. The majority of these patients exhibit a wide range of phenotypic manifestations targeting several organ systems, making their clinical diagnosis and management challenging. Bridging translational to clinical research is crucial for improving the early diagnosis and prognosis of these intractable mitochondrial disorders and for discovering novel therapeutic drug candidates and modalities. This review provides the current state of clinical testing in mitochondrial disorders, discusses the challenges and opportunities for converting basic discoveries into clinical settings, explores the most suited patient-centric approaches to harness the extraordinary heterogeneity among patients affected by the same primary mitochondrial disorder, and describes the current outlook of clinical trials.
Collapse
Affiliation(s)
- Andrea L Gropman
- Children's National Medical Center, Division of Neurogenetics and Neurodevelopmental Pediatrics, Washington, DC 20010, USA
| | - Martine N Uittenbogaard
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Anne E Chiaramello
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA.
| |
Collapse
|
20
|
Wurth R, Turgeon C, Stander Z, Oglesbee D. An evaluation of untargeted metabolomics methods to characterize inborn errors of metabolism. Mol Genet Metab 2024; 141:108115. [PMID: 38181458 PMCID: PMC10843816 DOI: 10.1016/j.ymgme.2023.108115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/19/2023] [Accepted: 12/12/2023] [Indexed: 01/07/2024]
Abstract
Inborn errors of metabolism (IEMs) encompass a diverse group of disorders that can be difficult to classify due to heterogenous clinical, molecular, and biochemical manifestations. Untargeted metabolomics platforms have become a popular approach to analyze IEM patient samples because of their ability to detect many metabolites at once, accelerating discovery of novel biomarkers, and metabolic mechanisms of disease. However, there are concerns about the reproducibility of untargeted metabolomics research due to the absence of uniform reporting practices, data analyses, and experimental design guidelines. Therefore, we critically evaluated published untargeted metabolomic platforms used to characterize IEMs to summarize the strengths and areas for improvement of this technology as it progresses towards the clinical laboratory. A total of 96 distinct IEMs were collectively evaluated by the included studies. However, most of these IEMs were evaluated by a single untargeted metabolomic method, in a single study, with a limited cohort size (55/96, 57%). The goals of the included studies generally fell into two, often overlapping, categories: detecting known biomarkers from many biochemically distinct IEMs using a single platform, and detecting novel metabolites or metabolic pathways. There was notable diversity in the design of the untargeted metabolomic platforms. Importantly, the majority of studies reported adherence to quality metrics, including the use of quality control samples and internal standards in their experiments, as well as confirmation of at least some of their feature annotations with commercial reference standards. Future applications of untargeted metabolomics platforms to the study of IEMs should move beyond single-subject analyses, and evaluate reproducibility using a prospective, or validation cohort.
Collapse
Affiliation(s)
- Rachel Wurth
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, 200 1(st) St SW, Rochester, MN 55905, USA
| | - Coleman Turgeon
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
| | - Zinandré Stander
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
| | - Devin Oglesbee
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA.
| |
Collapse
|
21
|
Batagov A, Dalan R, Wu A, Lai W, Tan CS, Eisenhaber F. Generalized metabolic flux analysis framework provides mechanism-based predictions of ophthalmic complications in type 2 diabetes patients. Health Inf Sci Syst 2023; 11:18. [PMID: 37008895 PMCID: PMC10060506 DOI: 10.1007/s13755-023-00218-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 02/19/2023] [Indexed: 03/31/2023] Open
Abstract
Chronic metabolic diseases arise from changes in metabolic fluxes through biomolecular pathways and gene networks accumulated over the lifetime of an individual. While clinical and biochemical profiles present just real-time snapshots of the patients' health, efficient computation models of the pathological disturbance of biomolecular processes are required to achieve individualized mechanistic insights into disease progression. Here, we describe the Generalized metabolic flux analysis (GMFA) for addressing this gap. Suitably grouping individual metabolites/fluxes into pools simplifies the analysis of the resulting more coarse-grain network. We also map non-metabolic clinical modalities onto the network with additional edges. Instead of using the time coordinate, the system status (metabolite concentrations and fluxes) is quantified as function of a generalized extent variable (a coordinate in the space of generalized metabolites) that represents the system's coordinate along its evolution path and evaluates the degree of change between any two states on that path. We applied GMFA to analyze Type 2 Diabetes Mellitus (T2DM) patients from two cohorts: EVAS (289 patients from Singapore) and NHANES (517) from the USA. Personalized systems biology models (digital twins) were constructed. We deduced disease dynamics from the individually parameterized metabolic network and predicted the evolution path of the metabolic health state. For each patient, we obtained an individual description of disease dynamics and predict an evolution path of the metabolic health state. Our predictive models achieve an ROC-AUC in the range 0.79-0.95 (sensitivity 80-92%, specificity 62-94%) in identifying phenotypes at the baseline and predicting future development of diabetic retinopathy and cataract progression among T2DM patients within 3 years from the baseline. The GMFA method is a step towards realizing the ultimate goal to develop practical predictive computational models for diagnostics based on systems biology. This tool has potential use in chronic disease management in medical practice. Supplementary Information The online version contains supplementary material available at 10.1007/s13755-023-00218-x.
Collapse
Affiliation(s)
- Arsen Batagov
- Mesh Bio Pte. Ltd., 10 Anson Rd, #22-02, 079903 Singapore, Singapore
| | - Rinkoo Dalan
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Andrew Wu
- Mesh Bio Pte. Ltd., 10 Anson Rd, #22-02, 079903 Singapore, Singapore
| | - Wenbin Lai
- Mesh Bio Pte. Ltd., 10 Anson Rd, #22-02, 079903 Singapore, Singapore
| | - Colin S. Tan
- Fundus Image Reading Center, National Healthcare Group Eye Institute, Singapore, Singapore
- Tan Tock Seng Hospital, National Healthcare Group Eye Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Frank Eisenhaber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- School of Biological Science (SBS), Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
22
|
Willems AP, van der Ham M, Schiebergen-Bronkhorst BGM, van Aalderen M, de Barse MMJ, De Gruyter FE, van Hoek IN, Pras-Raves ML, de Sain-van der Velden MGM, Prinsen HCMT, Verhoeven-Duif NM, Jans JJM. A one-year pilot study comparing direct-infusion high resolution mass spectrometry based untargeted metabolomics to targeted diagnostic screening for inherited metabolic diseases. Front Mol Biosci 2023; 10:1283083. [PMID: 38028537 PMCID: PMC10657655 DOI: 10.3389/fmolb.2023.1283083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Background: Early diagnosis of inherited metabolic diseases (IMDs) is important because treatment may lead to reduced mortality and improved prognosis. Due to their diversity, it is a challenge to diagnose IMDs in time, effecting an emerging need for a comprehensive test to acquire an overview of metabolite status. Untargeted metabolomics has proven its clinical potential in diagnosing IMDs, but is not yet widely used in genetic metabolic laboratories. Methods: We assessed the potential role of plasma untargeted metabolomics in a clinical diagnostic setting by using direct infusion high resolution mass spectrometry (DI-HRMS) in parallel with traditional targeted metabolite assays. We compared quantitative data and qualitative performance of targeted versus untargeted metabolomics in patients suspected of an IMD (n = 793 samples) referred to our laboratory for 1 year. To compare results of both approaches, the untargeted data was limited to polar metabolites that were analyzed in targeted plasma assays. These include amino acid, (acyl)carnitine and creatine metabolites and are suitable for diagnosing IMDs across many of the disease groups described in the international classification of inherited metabolic disorders (ICIMD). Results: For the majority of metabolites, the concentrations as measured in targeted assays correlated strongly with the semi quantitative Z-scores determined with DI-HRMS. For 64/793 patients, targeted assays showed an abnormal metabolite profile possibly indicative of an IMD. In 55 of these patients, similar aberrations were found with DI-HRMS. The remaining 9 patients showed only marginally increased or decreased metabolite concentrations that, in retrospect, were most likely to be clinically irrelevant. Illustrating its potential, DI-HRMS detected additional patients with aberrant metabolites that were indicative of an IMD not detected by targeted plasma analysis, such as purine and pyrimidine disorders and a carnitine synthesis disorder. Conclusion: This one-year pilot study showed that DI-HRMS untargeted metabolomics can be used as a first-tier approach replacing targeted assays of amino acid, acylcarnitine and creatine metabolites with ample opportunities to expand. Using DI-HRMS untargeted metabolomics as a first-tier will open up possibilities to look for new biomarkers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Judith J. M. Jans
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
23
|
Kuhara T, Tetsuo M, Ohse M, Shirakawa T, Nakashima Y, Yoshiura K, Tanaka N, Taya T. Three cases of xanthinuria identified by gas chromatography/mass spectrometry-based urine metabolomics. IJU Case Rep 2023; 6:436-439. [PMID: 37928284 PMCID: PMC10622199 DOI: 10.1002/iju5.12642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/06/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction Early diagnosis of patients with urolithiasis or hypouricemia owing to inborn errors of hypoxanthine metabolism is important in preventing renal failure or drug-induced toxicity. Case presentation We identified three patients with xanthinuria using gas chromatography/mass spectrometry-based urine metabolomics: a 72-year-old male with bladder stone, a severe hypouricemic 59-year-old female with type 2 diabetes mellitus, and an 8-year and 9-month-old female who was first discovered to harbor a mutation in the xanthine dehydrogenase gene using whole-exome sequencing, but had a normal molybdenum cofactor sulfurase gene. Hydantoin-5-propionate was detected in the first and third patients but not in the second, suggesting that the first and second patients had type I and II xanthinuria, respectively. Conclusion Gas chromatography/mass spectrometry-based metabolomics can be used for undiagnosed patients with xanthinuria, identification of the type of xanthinuria without allopurinol loading, and the quick functional evaluation of mutations in the xanthinuria-related genes.
Collapse
Affiliation(s)
- Tomiko Kuhara
- Japan Clinical Metabolomics InstituteKahokuIshikawaJapan
| | | | - Morimasa Ohse
- Japan Clinical Metabolomics InstituteKahokuIshikawaJapan
| | | | - Yumiko Nakashima
- Department of PediatricsNagasaki University HospitalNagasakiJapan
| | - Koh‐ichiro Yoshiura
- Department of Human GeneticsAtomic Bomb Disease Institute, Nagasaki UniversityNagasakiJapan
| | - Nagaaki Tanaka
- Center for Diabetes, Endocrinology and MetabolismKansai Electric Power HospitalOsakaJapan
| | | |
Collapse
|
24
|
Muñoz-Pujol G, Ugarteburu O, Segur-Bailach E, Moliner S, Jurado S, Garrabou G, Guitart-Mampel M, García-Villoria J, Artuch R, Fons C, Ribes A, Tort F. CRISPR/Cas9-based functional genomics strategy to decipher the pathogenicity of genetic variants in inherited metabolic disorders. J Inherit Metab Dis 2023; 46:1029-1042. [PMID: 37718653 DOI: 10.1002/jimd.12681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/19/2023]
Abstract
The determination of the functional impact of variants of uncertain significance (VUS) is one of the major bottlenecks in the diagnostic workflow of inherited genetic diseases. To face this problem, we set up a CRISPR/Cas9-based strategy for knock-in cellular model generation, focusing on inherited metabolic disorders (IMDs). We selected variants in seven IMD-associated genes, including seven reported disease-causing variants and four benign/likely benign variants. Overall, 11 knock-in cell models were generated via homology-directed repair in HAP1 haploid cells using CRISPR/Cas9. The functional impact of the variants was determined by analyzing the characteristic biochemical alterations of each disorder. Functional studies performed in knock-in cell models showed that our approach accurately distinguished the functional effect of pathogenic from non-pathogenic variants in a reliable manner in a wide range of IMDs. Our study provides a generic approach to assess the functional impact of genetic variants to improve IMD diagnosis and this tool could emerge as a promising alternative to invasive tests, such as muscular or skin biopsies. Although the study has been performed only in IMDs, this strategy is generic and could be applied to other genetic disorders.
Collapse
Affiliation(s)
- Gerard Muñoz-Pujol
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic de Barcelona, IDIBAPS, CIBERER, Barcelona, Spain
| | - Olatz Ugarteburu
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic de Barcelona, IDIBAPS, CIBERER, Barcelona, Spain
| | - Eulàlia Segur-Bailach
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic de Barcelona, IDIBAPS, CIBERER, Barcelona, Spain
| | - Sonia Moliner
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic de Barcelona, IDIBAPS, CIBERER, Barcelona, Spain
| | - Susana Jurado
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic de Barcelona, IDIBAPS, CIBERER, Barcelona, Spain
| | - Glòria Garrabou
- Inherited Metabolic diseases and Muscle Disorder's lab, Cellex-IDIBAPS, Faculty of Medicine and Health Sciences, University of Barcelona, Internal Medicine Service-Hospital Clinic of Barcelona and CIBERER, Barcelona, Spain
| | - Mariona Guitart-Mampel
- Inherited Metabolic diseases and Muscle Disorder's lab, Cellex-IDIBAPS, Faculty of Medicine and Health Sciences, University of Barcelona, Internal Medicine Service-Hospital Clinic of Barcelona and CIBERER, Barcelona, Spain
| | - Judit García-Villoria
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic de Barcelona, IDIBAPS, CIBERER, Barcelona, Spain
| | - Rafael Artuch
- Clinical Biochemistry and Molecular Medicine and Genetics Departments, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, and CIBERER, Esplúgues de Llobregat, Barcelona, Spain
| | - Carme Fons
- Neurology Department, Fetal, Neonatal Neurology and Early Epilepsy Unit, Institut de Recerca, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Antonia Ribes
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic de Barcelona, IDIBAPS, CIBERER, Barcelona, Spain
| | - Frederic Tort
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic de Barcelona, IDIBAPS, CIBERER, Barcelona, Spain
| |
Collapse
|
25
|
Hoei-Hansen CE, Weber L, Johansen M, Fabricius R, Hansen JK, Viuff ACF, Rønde G, Hahn GH, Østergaard E, Duno M, Larsen VA, Madsen CG, Røhder K, Elvrum AKG, Laugesen B, Ganz M, Madsen KS, Willerslev-Olsen M, Debes NM, Christensen J, Christensen R, Rackauskaite G. Cerebral Palsy - Early Diagnosis and Intervention Trial: protocol for the prospective multicentre CP-EDIT study with focus on diagnosis, prognostic factors, and intervention. BMC Pediatr 2023; 23:544. [PMID: 37899466 PMCID: PMC10614332 DOI: 10.1186/s12887-023-04312-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/14/2023] [Indexed: 10/31/2023] Open
Abstract
BACKGROUND Early diagnosis of cerebral palsy (CP) is important to enable intervention at a time when neuroplasticity is at its highest. Current mean age at diagnosis is 13 months in Denmark. Recent research has documented that an early-diagnosis set-up can lower diagnostic age in high-risk infants. The aim of the current study is to lower diagnostic age of CP regardless of neonatal risk factors. Additionally, we want to investigate if an early intervention program added to standard care is superior to standard care alone. METHODS The current multicentre study CP-EDIT (Early Diagnosis and Intervention Trial) with the GO-PLAY intervention included (Goal Oriented ParentaL supported home ActivitY program), aims at testing the feasibility of an early diagnosis set-up and the GO-PLAY early intervention. CP-EDIT is a prospective cohort study, consecutively assessing approximately 500 infants at risk of CP. We will systematically collect data at inclusion (age 3-11 months) and follow a subset of participants (n = 300) with CP or at high risk of CP until the age of two years. The GO-PLAY early intervention will be tested in 80 infants with CP or high risk of CP. Focus is on eight areas related to implementation and perspectives of the families: early cerebral magnetic resonance imaging (MRI), early genetic testing, implementation of the General Movements Assessment method, analysis of the GO-PLAY early intervention, parental perspective of early intervention and early diagnosis, early prediction of CP, and comparative analysis of the Hand Assessment for Infants, Hammersmith Infant Neurological Examination, MRI, and the General Movements method. DISCUSSION Early screening for CP is increasingly possible and an interim diagnosis of "high risk of CP" is recommended but not currently used in clinical care in Denmark. Additionally, there is a need to accelerate identification in mild or ambiguous cases to facilitate appropriate therapy early. Most studies on early diagnosis focus on identifying CP in infants below five months corrected age. Little is known about early diagnosis in the 50% of all CP cases that are discernible later in infancy. The current study aims at improving care of patients with CP even before they have an established diagnosis. TRIAL REGISTRATION ClinicalTrials.gov ID 22013292 (reg. date 31/MAR/2023) for the CP-EDIT cohort and ID 22041835 (reg. date 31/MAR/2023) for the GO-PLAY trial.
Collapse
Affiliation(s)
- Christina Engel Hoei-Hansen
- Department of Paediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.
- Department Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Lene Weber
- Department of Paediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
- Department of Occupational Therapy and Physiotherapy, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Section for Biostatistics and Evidence-Based Research, the Parker Institute, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Mette Johansen
- Section for Biostatistics and Evidence-Based Research, the Parker Institute, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Department of Paediatrics and Adolescent Medicine, University Hospital Aalborg, Aalborg, Denmark
- Department Clinical Medicine, University of Aarhus, Aarhus, Denmark
| | - Rebecca Fabricius
- Department of Paediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
- Department Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Kjeldbjerg Hansen
- Department of Paediatrics and Adolescent Medicine, University Hospital Aalborg, Aalborg, Denmark
| | - Anne-Cathrine F Viuff
- Department of Paediatrics and Adolescent Medicine, University Hospital Aalborg, Aalborg, Denmark
| | - Gitte Rønde
- Department of Paediatrics and Adolescent Medicine, University Hospital Herlev, Herlev, Denmark
| | - Gitte Holst Hahn
- Department of Neonatology, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Elsebet Østergaard
- Department Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Genetics, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Morten Duno
- Department of Clinical Genetics, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Vibeke Andrée Larsen
- Department of Radiology, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Camilla Gøbel Madsen
- Radiological Section, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital, Hvidovre, Denmark
| | - Katrine Røhder
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Ann-Kristin Gunnes Elvrum
- Department of Neuromedicine and Movement Science (INB), Norwegian University of Science and Technology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Britt Laugesen
- Clinical Nursing Research Unit, Aalborg University Hospital, Centre for Clinical Guidelines, Aalborg University, Aalborg, Denmark
| | - Melanie Ganz
- Datalogisk Institut, Københavns Universitet, Copenhagen, Denmark
- Neurobiologisk Forskningsenhed, Rigshospitalet, Copenhagen, Denmark
| | - Kathrine Skak Madsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Maria Willerslev-Olsen
- Department of Neuroscience, University of Copenhagen and Elsass Foundation, Copenhagen, Denmark
| | - Nanette Mol Debes
- Department Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Paediatrics and Adolescent Medicine, University Hospital Herlev, Herlev, Denmark
| | - Jan Christensen
- Department of Occupational Therapy and Physiotherapy, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Section of Social Medicine, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Robin Christensen
- Section for Biostatistics and Evidence-Based Research, the Parker Institute, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Research Unit of Rheumatology, Department of Clinical Research, University of Southern Denmark, Odense University Hospital, Odense, Denmark
| | - Gija Rackauskaite
- Department Clinical Medicine, University of Aarhus, Aarhus, Denmark
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
26
|
Piskláková B, Friedecká J, Ivanovová E, Hlídková E, Bekárek V, Prídavok M, Kvasnička A, Adam T, Friedecký D. Rapid and efficient LC-MS/MS diagnosis of inherited metabolic disorders: a semi-automated workflow for analysis of organic acids, acylglycines, and acylcarnitines in urine. Clin Chem Lab Med 2023; 61:2017-2027. [PMID: 37207286 DOI: 10.1515/cclm-2023-0084] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/10/2023] [Indexed: 05/21/2023]
Abstract
OBJECTIVES The analysis of organic acids in urine is an important part of the diagnosis of inherited metabolic disorders (IMDs), for which gas chromatography coupled with mass spectrometry is still predominantly used. METHODS Ultra-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for urinary organic acids, acylcarnitines and acylglycines was developed and validated. Sample preparation consists only of dilution and the addition of internal standards. Raw data processing is quick and easy using selective scheduled multiple reaction monitoring mode. A robust standardised value calculation as a data transformation together with advanced automatic visualisation tools are applied for easy evaluation of complex data. RESULTS The developed method covers 146 biomarkers consisting of organic acids (n=99), acylglycines (n=15) and acylcarnitines (n=32) including all clinically important isomeric compounds present. Linearity with r2>0.98 for 118 analytes, inter-day accuracy between 80 and 120 % and imprecision under 15 % for 120 analytes were achieved. Over 2 years, more than 800 urine samples from children tested for IMDs were analysed. The workflow was evaluated on 93 patient samples and ERNDIM External Quality Assurance samples involving a total of 34 different IMDs. CONCLUSIONS The established LC-MS/MS workflow offers a comprehensive analysis of a wide range of organic acids, acylcarnitines and acylglycines in urine to perform effective, rapid and sensitive semi-automated diagnosis of more than 80 IMDs.
Collapse
Affiliation(s)
- Barbora Piskláková
- Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jaroslava Friedecká
- Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
| | - Eliška Ivanovová
- Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
| | - Eva Hlídková
- Laboratory for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital Olomouc, Olomouc, Czech Republic
| | - Vojtěch Bekárek
- Laboratory for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital Olomouc, Olomouc, Czech Republic
| | - Matúš Prídavok
- Department of Laboratory Medicine, Centre for Inherited Metabolic Disorders, National Institute of Children's Diseases, Bratislava, Slovakia
| | - Aleš Kvasnička
- Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
| | - Tomáš Adam
- Laboratory for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital Olomouc, Olomouc, Czech Republic
- Institute of Molecular and Translational Medicine, Czech Advanced Technology and Research Institute (CATRIN), Palacky University Olomouc, Olomouc, Czech Republic
- Faculty of Health Care, Slovak Medical University, Banská Bystrica, Slovakia
| | - David Friedecký
- Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
- Laboratory for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital Olomouc, Olomouc, Czech Republic
| |
Collapse
|
27
|
Wohlgemuth R. Synthesis of Metabolites and Metabolite-like Compounds Using Biocatalytic Systems. Metabolites 2023; 13:1097. [PMID: 37887422 PMCID: PMC10608848 DOI: 10.3390/metabo13101097] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/28/2023] Open
Abstract
Methodologies for the synthesis and purification of metabolites, which have been developed following their discovery, analysis, and structural identification, have been involved in numerous life science milestones. The renewed focus on the small molecule domain of biological cells has also created an increasing awareness of the rising gap between the metabolites identified and the metabolites which have been prepared as pure compounds. The design and engineering of resource-efficient and straightforward synthetic methodologies for the production of the diverse and numerous metabolites and metabolite-like compounds have attracted much interest. The variety of metabolic pathways in biological cells provides a wonderful blueprint for designing simplified and resource-efficient synthetic routes to desired metabolites. Therefore, biocatalytic systems have become key enabling tools for the synthesis of an increasing number of metabolites, which can then be utilized as standards, enzyme substrates, inhibitors, or other products, or for the discovery of novel biological functions.
Collapse
Affiliation(s)
- Roland Wohlgemuth
- MITR, Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego Street 116, 90-924 Lodz, Poland;
- Swiss Coordination Committee Biotechnology (SKB), 8021 Zurich, Switzerland
- European Society of Applied Biocatalysis (ESAB), 1000 Brussels, Belgium
| |
Collapse
|
28
|
Ortigoza-Escobar JD. Catching the Culprit: How Chorea May Signal an Inborn Error of Metabolism. Tremor Other Hyperkinet Mov (N Y) 2023; 13:36. [PMID: 37810989 PMCID: PMC10558026 DOI: 10.5334/tohm.801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/27/2023] [Indexed: 10/10/2023] Open
Abstract
Background Movement disorders, particularly chorea, are uncommon in inborn errors of metabolism, but their identification is essential for improved clinical outcomes. In this context, comprehensive descriptions of movement disorders are limited and primarily derived from single cases or small patient series, highlighting the need for increased awareness and additional research in this field. Methods A systematic review was conducted using the MEDLINE database and GeneReviews. The search included studies on inborn errors of metabolism associated with chorea, athetosis, or ballismus. The review adhered to PRISMA guidelines. Results The systematic review analyzed 76 studies out of 2350 records, encompassing the period from 1964 to 2022. Chorea was observed in 90.1% of the 173 patients, followed by athetosis in 5.7%. Various inborn errors of metabolism showed an association with chorea, with trace elements and metals being the most frequent. Cognitive and developmental abnormalities were common in the cohort. Frequent neurological features included seizures, dysarthria, and optic atrophy, whereas non-neurological features included, among others, facial dysmorphia and failure to thrive. Neuroimaging and biochemical testing played crucial roles in aiding diagnosis, revealing abnormal findings in 34.1% and 47.9% of patients, respectively. However, symptomatic treatment efficacy for movement disorders was limited. Discussion This study emphasizes the complexities of chorea in inborn errors of metabolism. A systematic approach with red flags, biochemical testing, and neuroimaging is required for diagnosis. Collaboration between neurologists, geneticists, and metabolic specialists is crucial for improving early detection and individualized treatment. Utilizing genetic testing technologies and potential therapeutic avenues can aid in the improvement of patient outcomes.
Collapse
Affiliation(s)
- Juan Darío Ortigoza-Escobar
- Department of Paediatric Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
- European Reference Network for Rare Neurological Diseases (ERN-RND), Barcelona, Spain
- U-703 Centre for Biomedical Research on Rare Diseases (CIBER-ER), Instituto de Salud Carlos III, Barcelona, Spain
| |
Collapse
|
29
|
Smirnov D, Konstantinovskiy N, Prokisch H. Integrative omics approaches to advance rare disease diagnostics. J Inherit Metab Dis 2023; 46:824-838. [PMID: 37553850 DOI: 10.1002/jimd.12663] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023]
Abstract
Over the past decade high-throughput DNA sequencing approaches, namely whole exome and whole genome sequencing became a standard procedure in Mendelian disease diagnostics. Implementation of these technologies greatly facilitated diagnostics and shifted the analysis paradigm from variant identification to prioritisation and evaluation. The diagnostic rates vary widely depending on the cohort size, heterogeneity and disease and range from around 30% to 50% leaving the majority of patients undiagnosed. Advances in omics technologies and computational analysis provide an opportunity to increase these unfavourable rates by providing evidence for disease-causing variant validation and prioritisation. This review aims to provide an overview of the current application of several omics technologies including RNA-sequencing, proteomics, metabolomics and DNA-methylation profiling for diagnostics of rare genetic diseases in general and inborn errors of metabolism in particular.
Collapse
Affiliation(s)
- Dmitrii Smirnov
- School of Medicine, Institute of Human Genetics, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Computational Health Center, Helmholtz Munich, Neuherberg, Germany
| | - Nikita Konstantinovskiy
- School of Medicine, Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Holger Prokisch
- School of Medicine, Institute of Human Genetics, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Computational Health Center, Helmholtz Munich, Neuherberg, Germany
| |
Collapse
|
30
|
Pinto WBVDR, Oliveira ASB, Carvalho AADS, Akman HO, de Souza PVS. Editorial: The expanding clinical and genetic basis of adult inherited neurometabolic disorders. Front Neurol 2023; 14:1255513. [PMID: 37560451 PMCID: PMC10408293 DOI: 10.3389/fneur.2023.1255513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 07/14/2023] [Indexed: 08/11/2023] Open
Affiliation(s)
- Wladimir Bocca Vieira de Rezende Pinto
- Division of Neuromuscular Diseases, Neurometabolic Unit, Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Acary Souza Bulle Oliveira
- Division of Neuromuscular Diseases, Neurometabolic Unit, Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | | | | | - Paulo Victor Sgobbi de Souza
- Division of Neuromuscular Diseases, Neurometabolic Unit, Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
31
|
Kadıoğlu Yılmaz B, Akgül AH. Inherited Metabolic Diseases from Past to Present: A Bibliometric Analysis (1968-2023). CHILDREN (BASEL, SWITZERLAND) 2023; 10:1205. [PMID: 37508702 PMCID: PMC10378490 DOI: 10.3390/children10071205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
Bibliometric studies on inherited metabolic diseases (IMDs) do not exist in the literature. Therefore, our research aims to conduct a bibliometric study to determine the current status, trending topics, and missing points of publications on IMDs. Between 1968 and 2023, we conducted a literature search with the keyword "inherited metabolic disease" in the SCOPUS database. We included research articles in medicine written in English and published in the final section. We created our data pool using VOSviewer, SciMAT, and Rstudio software programs for the bibliometric parameters of the articles that met the inclusion criteria. We performed a bibliometric analysis of the data with the R package "bibliometrix" and BibExcel programs. We included 2702 research articles published on IMDs. The top three countries that have written the most articles in this field are the USA (n = 501), the United Kingdom (n = 182), and China (n = 172). The most preferred keywords by the authors were: newborn screening (n = 54), mutation (n = 43), phenylketonuria (n = 42), children (n = 35), genetics (n = 34), and maple syrup urine disease (n = 32). Trending topics were osteoporosis, computed tomography, bone marrow transplantation in the early years of the study, chronic kidney disease, urea cycle disorders, next-generation sequencing, newborn screening, and familial hypercholesterolemia in the final years of the study. This study provides clinicians with a new perspective, showing that molecular and genetic studies of inherited metabolic diseases will play an essential role in diagnosis and treatment in the future.
Collapse
Affiliation(s)
- Banu Kadıoğlu Yılmaz
- Department of Pediatric Nutrition and Metabolism, Faculty of Medicine, Selçuk University, Konya 42250, Turkey
| | - Ayşe Hümeyra Akgül
- Department of Pediatrics, Faculty of Medicine, Necmettin Erbakan University, Konya 42080, Turkey
| |
Collapse
|
32
|
Sebaa R, AlMalki RH, Alseraty W, Abdel Rahman AM. A Distinctive Metabolomics Profile and Potential Biomarkers for Very Long Acylcarnitine Dehydrogenase Deficiency (VLCADD) Diagnosis in Newborns. Metabolites 2023; 13:725. [PMID: 37367883 DOI: 10.3390/metabo13060725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Very long-chain acylcarnitine dehydrogenase deficiency (VLCADD) is a rare inherited metabolic disorder associated with fatty acid β-oxidation and characterized by genetic mutations in the ACADVL gene and accumulations of acylcarnitines. VLCADD, developed in neonates or later adults, can be diagnosed using newborn bloodspot screening (NBS) or genetic sequencing. These techniques have limitations, such as a high false discovery rate and variants of uncertain significance (VUS). As a result, an extra diagnostic tool is needed to deliver improved performance and health outcomes. As VLCADD is linked with metabolic disturbance, we postulated that newborn patients with VLCADD could display a distinct metabolomics pattern compared to healthy newborns and other disorders. Herein, we applied an untargeted metabolomics approach using liquid chromatography-high resolution mass spectrometry (LC-HRMS) to measure the global metabolites in dried blood spot (DBS) cards collected from VLCADD newborns (n = 15) and healthy controls (n = 15). Two hundred and six significantly dysregulated endogenous metabolites were identified in VLCADD, in contrast to healthy newborns. Fifty-eight and one hundred and eight up- and down-regulated endogenous metabolites were involved in several pathways such as tryptophan biosynthesis, aminoacyl-tRNA biosynthesis, amino sugar and nucleotide sugar metabolism, pyrimidine metabolism and pantothenate, and CoA biosynthesis. Furthermore, biomarker analyses identified 3,4-Dihydroxytetradecanoylcarnitine (AUC = 1), PIP (20:1)/PGF1alpha) (AUC = 0.982), and PIP2 (16:0/22:3) (AUC = 0.978) as potential metabolic biomarkers for VLCADD diagnosis. Our findings showed that compared to healthy newborns, VLCAADD newborns exhibit a distinctive metabolic profile, and identified potential biomarkers that can be used for early diagnosis, which improves the identification of the affected patients earlier. This allows for the timely administration of proper treatments, leading to improved health. However, further studies with large independent cohorts of VLCADD patients with different ages and phenotypes need to be studied to validate our potential diagnostic biomarkers and their specificity and accuracy during early life.
Collapse
Affiliation(s)
- Rajaa Sebaa
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Al-Dawadmi 17472, Saudi Arabia
| | - Reem H AlMalki
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia
| | - Wafaa Alseraty
- Department of Nursing, College of Applied Medical Sciences, Shaqra University, Al-Dawadmi 17472, Saudi Arabia
| | - Anas M Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
33
|
Sebaa R, AlMogren M, Alseraty W, Abdel Rahman AM. Untargeted Metabolomics Identifies Biomarkers for MCADD Neonates in Dried Blood Spots. Int J Mol Sci 2023; 24:ijms24119657. [PMID: 37298607 DOI: 10.3390/ijms24119657] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/02/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the most common inherited mitochondrial metabolic disease of fatty acid β-oxidation, especially in newborns. MCADD is clinically diagnosed using Newborn Bloodspot Screening (NBS) and genetic testing. Still, these methods have limitations, such as false negatives or positives in NBS and the variants of uncertain significance in genetic testing. Thus, complementary diagnostic approaches for MCADD are needed. Recently, untargeted metabolomics has been proposed as a diagnostic approach for inherited metabolic diseases (IMDs) due to its ability to detect a wide range of metabolic alterations. We performed an untargeted metabolic profiling of dried blood spots (DBS) from MCADD newborns (n = 14) and healthy controls (n = 14) to discover potential metabolic biomarkers/pathways associated with MCADD. Extracted metabolites from DBS samples were analyzed using UPLC-QToF-MS for untargeted metabolomics analyses. Multivariate and univariate analyses were used to analyze the metabolomics data, and pathway and biomarker analyses were also performed on the significantly identified endogenous metabolites. The MCADD newborns had 1034 significantly dysregulated metabolites compared to healthy newborns (moderated t-test, no correction, p-value ≤ 0.05, FC 1.5). A total of 23 endogenous metabolites were up-regulated, while 84 endogenous metabolites were down-regulated. Pathway analyses showed phenylalanine, tyrosine, and tryptophan biosynthesis as the most affected pathways. Potential metabolic biomarkers for MCADD were PGP (a21:0/PG/F1alpha) and glutathione, with an area under the curve (AUC) of 0.949 and 0.898, respectively. PGP (a21:0/PG/F1alpha) was the first oxidized lipid in the top 15 biomarker list affected by MCADD. Additionally, glutathione was chosen to indicate oxidative stress events that could happen during fatty acid oxidation defects. Our findings suggest that MCADD newborns may have oxidative stress events as signs of the disease. However, further validations of these biomarkers are needed in future studies to ensure their accuracy and reliability as complementary markers with established MCADD markers for clinical diagnosis.
Collapse
Affiliation(s)
- Rajaa Sebaa
- Department of Medical Laboratories, College of Applied Medical Sciences, University of Shaqra, Al-Dawadmi 17472, Saudi Arabia
| | - Maha AlMogren
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh 11533, Saudi Arabia
| | - Wafaa Alseraty
- Department of Nursing, College of Applied Medical Sciences, University of Shaqra, Al-Dawadmi 17472, Saudi Arabia
| | - Anas M Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
34
|
Dai HD, Qiu F, Jackson K, Fruttiger M, Rizzo WB. Untargeted Metabolomic Analysis of Sjögren-Larsson Syndrome Reveals a Distinctive Pattern of Multiple Disrupted Biochemical Pathways. Metabolites 2023; 13:682. [PMID: 37367841 DOI: 10.3390/metabo13060682] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
Sjögren-Larsson syndrome (SLS) is a rare inherited neurocutaneous disease characterized by ichthyosis, spastic diplegia or tetraplegia, intellectual disability and a distinctive retinopathy. SLS is caused by bi-allelic mutations in ALDH3A2, which codes for fatty aldehyde dehydrogenase (FALDH) and results in abnormal lipid metabolism. The biochemical abnormalities in SLS are not completely known, and the pathogenic mechanisms leading to symptoms are still unclear. To search for pathways that are perturbed in SLS, we performed untargeted metabolomic screening in 20 SLS subjects along with age- and sex-matched controls. Of 823 identified metabolites in plasma, 121 (14.7%) quantitatively differed in the overall SLS cohort from controls; 77 metabolites were decreased and 44 increased. Pathway analysis pointed to disrupted metabolism of sphingolipids, sterols, bile acids, glycogen, purines and certain amino acids such as tryptophan, aspartate and phenylalanine. Random forest analysis identified a unique metabolomic profile that had a predictive accuracy of 100% for discriminating SLS from controls. These results provide new insight into the abnormal biochemical pathways that likely contribute to disease in SLS and may constitute a biomarker panel for diagnosis and future therapeutic studies.
Collapse
Affiliation(s)
- Hongying Daisy Dai
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Fang Qiu
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | - Marcus Fruttiger
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - William B Rizzo
- Department of Pediatrics and Child Health Research Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Children's Hospital & Medical Center, Omaha, NE 68114, USA
| |
Collapse
|
35
|
Amer B, Deshpande RR, Bird SS. Simultaneous Quantitation and Discovery (SQUAD) Analysis: Combining the Best of Targeted and Untargeted Mass Spectrometry-Based Metabolomics. Metabolites 2023; 13:metabo13050648. [PMID: 37233689 DOI: 10.3390/metabo13050648] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 04/27/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023] Open
Abstract
Untargeted and targeted approaches are the traditional metabolomics workflows acquired for a wider understanding of the metabolome under focus. Both approaches have their strengths and weaknesses. The untargeted, for example, is maximizing the detection and accurate identification of thousands of metabolites, while the targeted is maximizing the linear dynamic range and quantification sensitivity. These workflows, however, are acquired separately, so researchers compromise either a low-accuracy overview of total molecular changes (i.e., untargeted analysis) or a detailed yet blinkered snapshot of a selected group of metabolites (i.e., targeted analysis) by selecting one of the workflows over the other. In this review, we present a novel single injection simultaneous quantitation and discovery (SQUAD) metabolomics that combines targeted and untargeted workflows. It is used to identify and accurately quantify a targeted set of metabolites. It also allows data retro-mining to look for global metabolic changes that were not part of the original focus. This offers a way to strike the balance between targeted and untargeted approaches in one single experiment and address the two approaches' limitations. This simultaneous acquisition of hypothesis-led and discovery-led datasets allows scientists to gain more knowledge about biological systems in a single experiment.
Collapse
Affiliation(s)
- Bashar Amer
- Thermo Fisher Scientific, San Jose, 95134 CA, USA
| | | | - Susan S Bird
- Thermo Fisher Scientific, San Jose, 95134 CA, USA
| |
Collapse
|
36
|
Slenter DN, Hemel IMGM, Evelo CT, Bierau J, Willighagen EL, Steinbusch LKM. Extending inherited metabolic disorder diagnostics with biomarker interaction visualizations. Orphanet J Rare Dis 2023; 18:95. [PMID: 37101200 PMCID: PMC10131334 DOI: 10.1186/s13023-023-02683-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/02/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Inherited Metabolic Disorders (IMDs) are rare diseases where one impaired protein leads to a cascade of changes in the adjacent chemical conversions. IMDs often present with non-specific symptoms, a lack of a clear genotype-phenotype correlation, and de novo mutations, complicating diagnosis. Furthermore, products of one metabolic conversion can be the substrate of another pathway obscuring biomarker identification and causing overlapping biomarkers for different disorders. Visualization of the connections between metabolic biomarkers and the enzymes involved might aid in the diagnostic process. The goal of this study was to provide a proof-of-concept framework for integrating knowledge of metabolic interactions with real-life patient data before scaling up this approach. This framework was tested on two groups of well-studied and related metabolic pathways (the urea cycle and pyrimidine de-novo synthesis). The lessons learned from our approach will help to scale up the framework and support the diagnosis of other less-understood IMDs. METHODS Our framework integrates literature and expert knowledge into machine-readable pathway models, including relevant urine biomarkers and their interactions. The clinical data of 16 previously diagnosed patients with various pyrimidine and urea cycle disorders were visualized on the top 3 relevant pathways. Two expert laboratory scientists evaluated the resulting visualizations to derive a diagnosis. RESULTS The proof-of-concept platform resulted in varying numbers of relevant biomarkers (five to 48), pathways, and pathway interactions for each patient. The two experts reached the same conclusions for all samples with our proposed framework as with the current metabolic diagnostic pipeline. For nine patient samples, the diagnosis was made without knowledge about clinical symptoms or sex. For the remaining seven cases, four interpretations pointed in the direction of a subset of disorders, while three cases were found to be undiagnosable with the available data. Diagnosing these patients would require additional testing besides biochemical analysis. CONCLUSION The presented framework shows how metabolic interaction knowledge can be integrated with clinical data in one visualization, which can be relevant for future analysis of difficult patient cases and untargeted metabolomics data. Several challenges were identified during the development of this framework, which should be resolved before this approach can be scaled up and implemented to support the diagnosis of other (less understood) IMDs. The framework could be extended with other OMICS data (e.g. genomics, transcriptomics), and phenotypic data, as well as linked to other knowledge captured as Linked Open Data.
Collapse
Affiliation(s)
- Denise N Slenter
- Department of Bioinformatics (BiGCaT), NUTRIM, Maastricht University, Maastricht, The Netherlands.
| | - Irene M G M Hemel
- Department of Bioinformatics (BiGCaT), NUTRIM, Maastricht University, Maastricht, The Netherlands
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
| | - Chris T Evelo
- Department of Bioinformatics (BiGCaT), NUTRIM, Maastricht University, Maastricht, The Netherlands
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
| | - Jörgen Bierau
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Egon L Willighagen
- Department of Bioinformatics (BiGCaT), NUTRIM, Maastricht University, Maastricht, The Netherlands
| | - Laura K M Steinbusch
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
37
|
Zou YG, Wang H, Li WW, Dai DL. Challenges in pediatric inherited/metabolic liver disease: Focus on the disease spectrum, diagnosis and management of relatively common disorders. World J Gastroenterol 2023; 29:2114-2126. [PMID: 37122598 PMCID: PMC10130973 DOI: 10.3748/wjg.v29.i14.2114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/09/2023] [Accepted: 03/21/2023] [Indexed: 04/13/2023] Open
Abstract
The clinical scenario of pediatric liver disease is becoming more intricate due to changes in the disease spectrum, in which an increasing number of inherited/ metabolic liver diseases are reported, while infectious diseases show a decreasing trend. The similar clinical manifestations caused by inherited/metabolic diseases might be under-recognized or misdiagnosed due to nonspecific characteristics. A delayed visit to a doctor due to a lack of symptoms or mild symptoms at an early stage will result in late diagnosis and treatment. Moreover, limited diagnostic approaches, especially liver biopsy, are not easily accepted by pediatric patients, leading to challenges in etiological diagnosis. Liver dysfunction due to inherited/metabolic diseases is often caused by a variety of metabolites, so precision treatment is difficult; symptomatic treatment is a compelling option for inherited disorders.
Collapse
Affiliation(s)
- Yi-Gui Zou
- Key Laboratory for Precision Diagnosis and Treatment of Pediatric Digestive System Diseases and Endoscopy Center, Shenzhen Children's Hospital, Shenzhen 518026, Guangdong Province, China
| | - Huan Wang
- Key Laboratory for Precision Diagnosis and Treatment of Pediatric Digestive System Diseases and Endoscopy Center, Shenzhen Children's Hospital, Shenzhen 518026, Guangdong Province, China
| | - Wen-Wen Li
- Key Laboratory for Precision Diagnosis and Treatment of Pediatric Digestive System Diseases and Endoscopy Center, Shenzhen Children's Hospital, Shenzhen 518026, Guangdong Province, China
| | - Dong-Ling Dai
- Key Laboratory for Precision Diagnosis and Treatment of Pediatric Digestive System Diseases and Endoscopy Center, Shenzhen Children's Hospital, Shenzhen 518026, Guangdong Province, China
| |
Collapse
|
38
|
de Moraes MBM, de Souza HMR, de Oliveira MLC, Peake RWA, Scalco FB, Garrett R. Combined targeted and untargeted high-resolution mass spectrometry analyses to investigate metabolic alterations in pompe disease. Metabolomics 2023; 19:29. [PMID: 36988742 DOI: 10.1007/s11306-023-01989-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/05/2023] [Indexed: 03/30/2023]
Abstract
INTRODUCTION Pompe disease is a rare, lysosomal disorder, characterized by intra-lysosomal glycogen accumulation due to an impaired function of α-glucosidase enzyme. The laboratory testing for Pompe is usually performed by enzyme activity, genetic test, or urine glucose tetrasaccharide (Glc4) screening by HPLC. Despite being a good preliminary marker, the Glc4 is not specific for Pompe. OBJECTIVE The purpose of the present study was to develop a simple methodology using liquid chromatography-high resolution mass spectrometry (LC-HRMS) for targeted quantitative analysis of Glc4 combined with untargeted metabolic profiling in a single analytical run to search for complementary biomarkers in Pompe disease. METHODS We collected 21 urine specimens from 13 Pompe disease patients and compared their metabolic signatures with 21 control specimens. RESULTS Multivariate statistical analyses on the untargeted profiling data revealed Glc4, creatine, sorbitol/mannitol, L-phenylalanine, N-acetyl-4-aminobutanal, N-acetyl-L-aspartic acid, and 2-aminobenzoic acid as significantly altered in Pompe disease. This panel of metabolites increased sample class prediction (Pompe disease versus control) compared with a single biomarker. CONCLUSION This study has demonstrated the potential of combined acquisition methods in LC-HRMS for Pompe disease investigation, allowing for routine determination of an established biomarker and discovery of complementary candidate biomarkers that may increase diagnostic accuracy, or improve the risk stratification of patients with disparate clinical phenotypes.
Collapse
Affiliation(s)
- Mariana B M de Moraes
- Metabolomics Laboratory, Institute of Chemistry, Federal University of Rio de Janeiro, Av. Horácio Macedo 1281, Rio de Janeiro, RJ, 21941-598, Brazil
| | - Hygor M R de Souza
- Metabolomics Laboratory, Institute of Chemistry, Federal University of Rio de Janeiro, Av. Horácio Macedo 1281, Rio de Janeiro, RJ, 21941-598, Brazil
- Institute of Chemistry, Fluminense Federal University, Niterói, RJ, Brazil
| | - Maria L C de Oliveira
- Inborn Error of Metabolism Laboratory, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Roy W A Peake
- Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Fernanda B Scalco
- Inborn Error of Metabolism Laboratory, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Rafael Garrett
- Metabolomics Laboratory, Institute of Chemistry, Federal University of Rio de Janeiro, Av. Horácio Macedo 1281, Rio de Janeiro, RJ, 21941-598, Brazil.
- Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
39
|
Cossu M, Pintus R, Zaffanello M, Mussap M, Serra F, Marcialis MA, Fanos V. Metabolomic Studies in Inborn Errors of Metabolism: Last Years and Future Perspectives. Metabolites 2023; 13:metabo13030447. [PMID: 36984887 PMCID: PMC10058105 DOI: 10.3390/metabo13030447] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
The inborn errors of metabolism (IEMs or Inherited Metabolic Disorders) are a heterogeneous group of diseases caused by a deficit of some specific metabolic pathways. IEMs may present with multiple overlapping symptoms, sometimes difficult delayed diagnosis and postponed therapies. Additionally, many IEMs are not covered in newborn screening and the diagnostic profiling in the metabolic laboratory is indispensable to reach a correct diagnosis. In recent years, Metabolomics helped to obtain a better understanding of pathogenesis and pathophysiology of IEMs, by validating diagnostic biomarkers, discovering new specific metabolic patterns and new IEMs itself. The expansion of Metabolomics in clinical biochemistry and laboratory medicine has brought these approaches in clinical practice as part of newborn screenings, as an exam for differential diagnosis between IEMs, and evaluation of metabolites in follow up as markers of severity or therapies efficacy. Lastly, several research groups are trying to profile metabolomics data in platforms to have a holistic vision of the metabolic, proteomic and genomic pathways of every single patient. In 2018 this team has made a review of literature to understand the value of Metabolomics in IEMs. Our review offers an update on use and perspectives of metabolomics in IEMs, with an overview of the studies available from 2018 to 2022.
Collapse
Affiliation(s)
- Marcello Cossu
- School of Pediatrics, University of Cagliari, 09042 Monserrato, Italy
| | - Roberta Pintus
- Department of Surgical Science, University of Cagliari, 09042 Monserrato, Italy
| | - Marco Zaffanello
- Department of Surgical Science, Dentistry, Gynecology and Pediatrics, University of Verona, 37100 Verona, Italy
| | - Michele Mussap
- Laboratory Medicine, Department of Surgical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Fabiola Serra
- School of Pediatrics, University of Cagliari, 09042 Monserrato, Italy
| | | | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgery, University of Cagliari, 09042 Monserrato, Italy
| |
Collapse
|
40
|
Stoltze UK, Hagen CM, van Overeem Hansen T, Byrjalsen A, Gerdes AM, Yakimov V, Rasmussen S, Bækvad-Hansen M, Hougaard DM, Schmiegelow K, Hjalgrim H, Wadt K, Bybjerg-Grauholm J. Combinatorial batching of DNA for ultralow-cost detection of pathogenic variants. Genome Med 2023; 15:17. [PMID: 36918911 PMCID: PMC10013285 DOI: 10.1186/s13073-023-01167-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Next-generation sequencing (NGS) based population screening holds great promise for disease prevention and earlier diagnosis, but the costs associated with screening millions of humans remain prohibitive. New methods for population genetic testing that lower the costs of NGS without compromising diagnostic power are needed. METHODS We developed double batched sequencing where DNA samples are batch-sequenced twice - directly pinpointing individuals with rare variants. We sequenced batches of at-birth blood spot DNA using a commercial 113-gene panel in an explorative (n = 100) and a validation (n = 100) cohort of children who went on to develop pediatric cancers. All results were benchmarked against individual whole genome sequencing data. RESULTS We demonstrated fully replicable detection of cancer-causing germline variants, with positive and negative predictive values of 100% (95% CI, 0.91-1.00 and 95% CI, 0.98-1.00, respectively). Pathogenic and clinically actionable variants were detected in RB1, TP53, BRCA2, APC, and 19 other genes. Analyses of larger batches indicated that our approach is highly scalable, yielding more than 95% cost reduction or less than 3 cents per gene screened for rare disease-causing mutations. We also show that double batched sequencing could cost-effectively prevent childhood cancer deaths through broad genomic testing. CONCLUSIONS Our ultracheap genetic diagnostic method, which uses existing sequencing hardware and standard newborn blood spots, should readily open up opportunities for population-wide risk stratification using genetic screening across many fields of clinical genetics and genomics.
Collapse
Affiliation(s)
- Ulrik Kristoffer Stoltze
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Blegdamsvej 9, 2100, KBH Ø, Denmark. .,Department of Clinical Genetics, Rigshospitalet, Blegdamsvej 9, 2100, KBH Ø, Denmark.
| | - Christian Munch Hagen
- Department of Congenital Disorders, Statens Serum Institute, 2300, KBH S, Artillerivej 5, Denmark
| | - Thomas van Overeem Hansen
- Department of Clinical Genetics, Rigshospitalet, Blegdamsvej 9, 2100, KBH Ø, Denmark.,Department of Clinical Medicine, Copenhagen University, Blegdamsvej 3B, 2200, KBH N, Denmark
| | - Anna Byrjalsen
- Department of Clinical Genetics, Rigshospitalet, Blegdamsvej 9, 2100, KBH Ø, Denmark
| | - Anne-Marie Gerdes
- Department of Clinical Genetics, Rigshospitalet, Blegdamsvej 9, 2100, KBH Ø, Denmark
| | - Victor Yakimov
- Department of Congenital Disorders, Statens Serum Institute, 2300, KBH S, Artillerivej 5, Denmark
| | - Simon Rasmussen
- Novo Nordisk Foundation Center for Protein Research, Copenhagen University, Blegdamsvej 3B, 2200, KBH N, Denmark
| | - Marie Bækvad-Hansen
- Department of Congenital Disorders, Statens Serum Institute, 2300, KBH S, Artillerivej 5, Denmark
| | - David Michael Hougaard
- Department of Congenital Disorders, Statens Serum Institute, 2300, KBH S, Artillerivej 5, Denmark
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Blegdamsvej 9, 2100, KBH Ø, Denmark.,Department of Clinical Medicine, Copenhagen University, Blegdamsvej 3B, 2200, KBH N, Denmark
| | - Henrik Hjalgrim
- Department of Clinical Medicine, Copenhagen University, Blegdamsvej 3B, 2200, KBH N, Denmark.,Danish Cancer Society Research Centre, Danish Cancer Society, Strandboulevarden 49, 2100, KBH Ø, Denmark.,Department of Epidemiology Research, Statens Serum Institut, 2300, KBH S, Artillerivej 5, Denmark.,Department of Haematology, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark
| | - Karin Wadt
- Department of Clinical Genetics, Rigshospitalet, Blegdamsvej 9, 2100, KBH Ø, Denmark
| | - Jonas Bybjerg-Grauholm
- Department of Congenital Disorders, Statens Serum Institute, 2300, KBH S, Artillerivej 5, Denmark.
| |
Collapse
|
41
|
Fu J, Zhu F, Xu CJ, Li Y. Metabolomics meets systems immunology. EMBO Rep 2023; 24:e55747. [PMID: 36916532 PMCID: PMC10074123 DOI: 10.15252/embr.202255747] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/24/2022] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
Metabolic processes play a critical role in immune regulation. Metabolomics is the systematic analysis of small molecules (metabolites) in organisms or biological samples, providing an opportunity to comprehensively study interactions between metabolism and immunity in physiology and disease. Integrating metabolomics into systems immunology allows the exploration of the interactions of multilayered features in the biological system and the molecular regulatory mechanism of these features. Here, we provide an overview on recent technological developments of metabolomic applications in immunological research. To begin, two widely used metabolomics approaches are compared: targeted and untargeted metabolomics. Then, we provide a comprehensive overview of the analysis workflow and the computational tools available, including sample preparation, raw spectra data preprocessing, data processing, statistical analysis, and interpretation. Third, we describe how to integrate metabolomics with other omics approaches in immunological studies using available tools. Finally, we discuss new developments in metabolomics and its prospects for immunology research. This review provides guidance to researchers using metabolomics and multiomics in immunity research, thus facilitating the application of systems immunology to disease research.
Collapse
Affiliation(s)
- Jianbo Fu
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.,TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany.,College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Cheng-Jian Xu
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.,TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany.,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yang Li
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.,TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany.,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
42
|
van Outersterp R, Oosterhout J, Gebhardt CR, Berden G, Engelke UFH, Wevers RA, Cuyckens F, Oomens J, Martens J. Targeted Small-Molecule Identification Using Heartcutting Liquid Chromatography-Infrared Ion Spectroscopy. Anal Chem 2023; 95:3406-3413. [PMID: 36735826 PMCID: PMC9933049 DOI: 10.1021/acs.analchem.2c04904] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Infrared ion spectroscopy (IRIS) can be used to identify molecular structures detected in mass spectrometry (MS) experiments and has potential applications in a wide range of analytical fields. However, MS-based approaches are often combined with orthogonal separation techniques, in many cases liquid chromatography (LC). The direct coupling of LC and IRIS is challenging due to the mismatching timescales of the two technologies: an IRIS experiment typically takes several minutes, whereas an LC fraction typically elutes in several seconds. To resolve this discrepancy, we present a heartcutting LC-IRIS approach using a setup consisting of two switching valves and two sample loops as an alternative to direct online LC-IRIS coupling. We show that this automated setup enables us to record multiple IR spectra for two LC-features from a single injection without degrading the LC-separation performance. We demonstrate the setup for application in drug metabolism research by recording six m/z-selective IR spectra for two drug metabolites from a single 2 μL sample of cell incubation extract. Additionally, we measure the IR spectra of two closely eluting diastereomeric biomarkers for the inborn error of metabolism pyridoxine-dependent epilepsy (PDE-ALDH7A1), which shows that the heartcutting LC-IRIS setup has good sensitivity (requiring ∼μL injections of ∼μM samples) and that the separation between closely eluting isomers is maintained. We envision applications in a range of research fields, where the identification of molecular structures detected by LC-MS is required.
Collapse
Affiliation(s)
- Rianne
E. van Outersterp
- Radboud
University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Jitse Oosterhout
- Radboud
University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | | | - Giel Berden
- Radboud
University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Udo F. H. Engelke
- Department
of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Ron A. Wevers
- Department
of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Filip Cuyckens
- Drug
Metabolism & Pharmacokinetics, Janssen R&D, Beerse 2340, Belgium
| | - Jos Oomens
- Radboud
University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands,van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, 1098XH Amsterdam, The Netherlands
| | - Jonathan Martens
- Radboud
University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands,
| |
Collapse
|
43
|
Benchmarking Outlier Detection Methods for Detecting IEM Patients in Untargeted Metabolomics Data. Metabolites 2023; 13:metabo13010097. [PMID: 36677022 PMCID: PMC9863797 DOI: 10.3390/metabo13010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Untargeted metabolomics (UM) is increasingly being deployed as a strategy for screening patients that are suspected of having an inborn error of metabolism (IEM). In this study, we examined the potential of existing outlier detection methods to detect IEM patient profiles. We benchmarked 30 different outlier detection methods when applied to three untargeted metabolomics datasets. Our results show great differences in IEM detection performances across the various methods. The methods DeepSVDD and R-graph performed most consistently across the three metabolomics datasets. For datasets with a more balanced number of samples-to-features ratio, we found that AE reconstruction error, Mahalanobis and PCA reconstruction error also performed well. Furthermore, we demonstrated the importance of a PCA transform prior to applying an outlier detection method since we observed that this increases the performance of several outlier detection methods. For only one of the three metabolomics datasets, we observed clinically satisfying performances for some outlier detection methods, where we were able to detect 90% of the IEM patient samples while detecting no false positives. These results suggest that outlier detection methods have the potential to aid the clinical investigator in routine screening for IEM using untargeted metabolomics data, but also show that further improvements are needed to ensure clinically satisfying performances.
Collapse
|
44
|
Diagnosing, discarding, or de-VUSsing: A practical guide to (un)targeted metabolomics as variant-transcending functional tests. Genet Med 2023; 25:125-134. [PMID: 36350326 DOI: 10.1016/j.gim.2022.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/11/2022] Open
Abstract
PURPOSE For patients with inherited metabolic disorders (IMDs), any diagnostic delay should be avoided because early initiation of personalized treatment could prevent irreversible health damage. To improve diagnostic interpretation of genetic data, gene function tests can be valuable assets. For IMDs, variant-transcending functional tests are readily available through (un)targeted metabolomics assays. To support the application of metabolomics for this purpose, we developed a gene-based guide to select functional tests to either confirm or exclude an IMD diagnosis. METHODS Using information from a diagnostic IMD exome panel, Kyoto Encyclopedia of Genes and Genomes, and Inborn Errors of Metabolism Knowledgebase, we compiled a guide for metabolomics-based gene function tests. From our practical experience with this guide, we retrospectively selected illustrative cases for whom combined metabolomic/genomic testing improved diagnostic success and evaluated the effect hereof on clinical management. RESULTS The guide contains 2047 metabolism-associated genes for which a validated or putative variant-transcending gene function test is available. We present 16 patients for whom metabolomic testing either confirmed or ruled out the presence of a second pathogenic variant, validated or ruled out pathogenicity of variants of uncertain significance, or identified a diagnosis initially missed by genetic analysis. CONCLUSION Metabolomics-based gene function tests provide additional value in the diagnostic trajectory of patients with suspected IMD by enhancing and accelerating diagnostic success.
Collapse
|
45
|
Peters TMA, Merx J, Kooijman PC, Noga M, de Boer S, van Gemert LA, Salden G, Engelke UFH, Lefeber DJ, van Outersterp RE, Berden G, Boltje TJ, Artuch R, Pías-Peleteiro L, García-Cazorla Á, Barić I, Thöny B, Oomens J, Martens J, Wevers RA, Verbeek MM, Coene KLM, Willemsen MAAP. Novel cerebrospinal fluid biomarkers of glucose transporter type 1 deficiency syndrome: Implications beyond the brain's energy deficit. J Inherit Metab Dis 2023; 46:66-75. [PMID: 36088537 PMCID: PMC10091941 DOI: 10.1002/jimd.12554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/26/2022] [Accepted: 09/07/2022] [Indexed: 01/19/2023]
Abstract
We used next-generation metabolic screening to identify new biomarkers for improved diagnosis and pathophysiological understanding of glucose transporter type 1 deficiency syndrome (GLUT1DS), comparing metabolic cerebrospinal fluid (CSF) profiles from 12 patients to those of 116 controls. This confirmed decreased CSF glucose and lactate levels in patients with GLUT1DS and increased glutamine at group level. We identified three novel biomarkers significantly decreased in patients, namely gluconic + galactonic acid, xylose-α1-3-glucose, and xylose-α1-3-xylose-α1-3-glucose, of which the latter two have not previously been identified in body fluids. CSF concentrations of gluconic + galactonic acid may be reduced as these metabolites could serve as alternative substrates for the pentose phosphate pathway. Xylose-α1-3-glucose and xylose-α1-3-xylose-α1-3-glucose may originate from glycosylated proteins; their decreased levels are hypothetically the consequence of insufficient glucose, one of two substrates for O-glucosylation. Since many proteins are O-glucosylated, this deficiency may affect cellular processes and thus contribute to GLUT1DS pathophysiology. The novel CSF biomarkers have the potential to improve the biochemical diagnosis of GLUT1DS. Our findings imply that brain glucose deficiency in GLUT1DS may cause disruptions at the cellular level that go beyond energy metabolism, underlining the importance of developing treatment strategies that directly target cerebral glucose uptake.
Collapse
Affiliation(s)
- Tessa M A Peters
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Translational Metabolic Laboratory (TML), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jona Merx
- Institute for Molecules and Materials, Synthetic Organic Chemistry, Radboud University, Nijmegen, The Netherlands
| | - Pieter C Kooijman
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Nijmegen, The Netherlands
| | - Marek Noga
- Department of Laboratory Medicine, Translational Metabolic Laboratory (TML), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Siebolt de Boer
- Department of Laboratory Medicine, Translational Metabolic Laboratory (TML), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Loes A van Gemert
- Amalia Children's Hospital, Department of Pediatric Neurology & Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Guido Salden
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Translational Metabolic Laboratory (TML), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Udo F H Engelke
- Department of Laboratory Medicine, Translational Metabolic Laboratory (TML), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dirk J Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Translational Metabolic Laboratory (TML), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rianne E van Outersterp
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Nijmegen, The Netherlands
| | - Giel Berden
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Nijmegen, The Netherlands
| | - Thomas J Boltje
- Institute for Molecules and Materials, Synthetic Organic Chemistry, Radboud University, Nijmegen, The Netherlands
| | - Rafael Artuch
- Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu, CIBERER and MetabERN Hospital Sant Joan de Déu, Barcelona, Spain
| | - Leticia Pías-Peleteiro
- Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu, CIBERER and MetabERN Hospital Sant Joan de Déu, Barcelona, Spain
| | - Ángeles García-Cazorla
- Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu, CIBERER and MetabERN Hospital Sant Joan de Déu, Barcelona, Spain
| | - Ivo Barić
- Department of Pediatrics, University Hospital Center Zagreb & University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Beat Thöny
- Division of Metabolism, University Children's Hospital Zürich, Zürich, Switzerland
| | - Jos Oomens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Nijmegen, The Netherlands
| | - Jonathan Martens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Nijmegen, The Netherlands
| | - Ron A Wevers
- Department of Laboratory Medicine, Translational Metabolic Laboratory (TML), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel M Verbeek
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Translational Metabolic Laboratory (TML), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Karlien L M Coene
- Department of Laboratory Medicine, Translational Metabolic Laboratory (TML), Radboud University Medical Center, Nijmegen, The Netherlands
- Laboratory of Clinical Chemistry and Hematology, Elisabeth TweeSteden Hospital, Tilburg, The Netherlands
| | - Michèl A A P Willemsen
- Amalia Children's Hospital, Department of Pediatric Neurology & Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
46
|
Šikić K, Peters TMA, Marušić E, Čagalj IČ, Ramadža DP, Žigman T, Fumić K, Fernandez E, Gevaert K, Debeljak Ž, Wevers RA, Barić I. Abnormal concentrations of acetylated amino acids in cerebrospinal fluid in acetyl-CoA transporter deficiency. J Inherit Metab Dis 2022; 45:1048-1058. [PMID: 35999711 DOI: 10.1002/jimd.12549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/30/2022] [Accepted: 08/20/2022] [Indexed: 11/11/2022]
Abstract
Acetyl-CoA transporter 1 (AT-1) is a transmembrane protein which regulates influx of acetyl-CoA from the cytosol to the lumen of the endoplasmic reticulum and is therefore important for the posttranslational modification of numerous proteins. Pathological variants in the SLC33A1 gene coding for AT-1 have been linked to a disorder called Huppke-Brendel syndrome, which is characterized by congenital cataracts, hearing loss, severe developmental delay and early death. It has been described in eight patients so far, who all had the abovementioned symptoms together with low serum copper and ceruloplasmin concentrations. The link between AT-1 and low ceruloplasmin concentrations is not clear, nor is the complex pathogenesis of the disease. Here we describe a further case of Huppke-Brendel syndrome with a novel and truncating homozygous gene variant and provide novel biochemical data on N-acetylated amino acids in cerebrospinal fluid (CSF) and plasma. Our results indicate that decreased levels of many N-acetylated amino acids in CSF are a typical metabolic fingerprint for AT-1 deficiency and are potential biomarkers for the defect. As acetyl-CoA is an important substrate for protein acetylation, we performed N-terminal proteomics, but found only minor effects on this particular protein modification. The acetyl-CoA content in patient's fibroblasts was insignificantly decreased. Our data may help to better understand the mechanisms underlying the metabolic disturbances, the pathophysiology and the clinical phenotype of the disease.
Collapse
Affiliation(s)
- Katarina Šikić
- Department of Pediatrics, University Hospital Center Zagreb, Zagreb, Croatia
| | - Tessa M A Peters
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, Netherlands
| | - Eugenija Marušić
- Department of Pediatrics, University Hospital Center Split, Split, Croatia
- University of Split, School of Medicine, Split, Croatia
| | - Ivana Čulo Čagalj
- Department of Pediatrics, University Hospital Center Split, Split, Croatia
- University of Split, School of Medicine, Split, Croatia
| | - Danijela Petković Ramadža
- Department of Pediatrics, University Hospital Center Zagreb, Zagreb, Croatia
- University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Tamara Žigman
- Department of Pediatrics, University Hospital Center Zagreb, Zagreb, Croatia
- University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Ksenija Fumić
- Department of Laboratory Diagnostics, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Esperanza Fernandez
- VIB Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Željko Debeljak
- Clinical Institute of Laboratory Diagnostics, University Hospital Osijek, Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Ron A Wevers
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ivo Barić
- Department of Pediatrics, University Hospital Center Zagreb, Zagreb, Croatia
- University of Zagreb, School of Medicine, Zagreb, Croatia
| |
Collapse
|
47
|
Hertzog A, Selvanathan A, Devanapalli B, Ho G, Bhattacharya K, Tolun AA. A narrative review of metabolomics in the era of "-omics": integration into clinical practice for inborn errors of metabolism. Transl Pediatr 2022; 11:1704-1716. [PMID: 36345452 PMCID: PMC9636448 DOI: 10.21037/tp-22-105] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Traditional targeted metabolomic investigations identify a pre-defined list of analytes in samples and have been widely used for decades in the diagnosis and monitoring of inborn errors of metabolism (IEMs). Recent technological advances have resulted in the development and maturation of untargeted metabolomics: a holistic, unbiased, analytical approach to detecting metabolic disturbances in human disease. We aim to provide a summary of untargeted metabolomics [focusing on tandem mass spectrometry (MS-MS)] and its application in the field of IEMs. METHODS Data for this review was identified through a literature search using PubMed, Google Scholar, and personal repositories of articles collected by the authors. Findings are presented within several sections describing the metabolome, the current use of targeted metabolomics in the diagnostic pathway of patients with IEMs, the more recent integration of untargeted metabolomics into clinical care, and the limitations of this newly employed analytical technique. KEY CONTENT AND FINDINGS Untargeted metabolomic investigations are increasingly utilized in screening for rare disorders, improving understanding of cellular and subcellular physiology, discovering novel biomarkers, monitoring therapy, and functionally validating genomic variants. Although the untargeted metabolomic approach has some limitations, this "next generation metabolic screening" platform is becoming increasingly affordable and accessible. CONCLUSIONS When used in conjunction with genomics and the other promising "-omic" technologies, untargeted metabolomics has the potential to revolutionize the diagnostics of IEMs (and other rare disorders), improving both clinical and health economic outcomes.
Collapse
Affiliation(s)
- Ashley Hertzog
- NSW Biochemical Genetics Service, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Arthavan Selvanathan
- Genetic Metabolic Disorders Service, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Beena Devanapalli
- NSW Biochemical Genetics Service, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Gladys Ho
- Sydney Genome Diagnostics, The Children's Hospital at Westmead, Westmead, NSW, Australia.,Specialty of Genomic Medicine, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Kaustuv Bhattacharya
- Genetic Metabolic Disorders Service, The Children's Hospital at Westmead, Westmead, NSW, Australia.,Specialty of Genomic Medicine, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Adviye Ayper Tolun
- NSW Biochemical Genetics Service, The Children's Hospital at Westmead, Westmead, NSW, Australia.,Specialty of Genomic Medicine, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
48
|
Merx J, van Outersterp RE, Engelke UFH, Hendriks V, Wevers RA, Huigen MCDG, Waterval HWAH, Körver-Keularts IMLW, Mecinović J, Rutjes FPJT, Oomens J, Coene KLM, Martens J, Boltje TJ. Identification of Δ-1-pyrroline-5-carboxylate derived biomarkers for hyperprolinemia type II. Commun Biol 2022; 5:997. [PMID: 36131087 PMCID: PMC9492674 DOI: 10.1038/s42003-022-03960-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 09/07/2022] [Indexed: 11/10/2022] Open
Abstract
Hyperprolinemia type II (HPII) is an inborn error of metabolism due to genetic variants in ALDH4A1, leading to a deficiency in Δ-1-pyrroline-5-carboxylate (P5C) dehydrogenase. This leads to an accumulation of toxic levels of P5C, an intermediate in proline catabolism. The accumulating P5C spontaneously reacts with, and inactivates, pyridoxal 5’-phosphate, a crucial cofactor for many enzymatic processes, which is thought to be the pathophysiological mechanism for HPII. Here, we describe the use of a combination of LC-QTOF untargeted metabolomics, NMR spectroscopy and infrared ion spectroscopy (IRIS) to identify and characterize biomarkers for HPII that result of the spontaneous reaction of P5C with malonic acid and acetoacetic acid. We show that these biomarkers can differentiate between HPI, caused by a deficiency of proline oxidase activity, and HPII. The elucidation of their molecular structures yields insights into the disease pathophysiology of HPII. Combined metabolomics, NMR, and, IRIS identify biomarkers of hyperprolinemia type II (HPII) distinct from HPI and similar metabolic signatures as in patients with pyridoxine-dependent epilepsy.
Collapse
Affiliation(s)
- Jona Merx
- Radboud University, Institute for Molecules and Materials, Synthetic Organic Chemistry, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Rianne E van Outersterp
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED, Nijmegen, the Netherlands
| | - Udo F H Engelke
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
| | - Veronique Hendriks
- Radboud University, Institute for Molecules and Materials, Synthetic Organic Chemistry, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Ron A Wevers
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands.,United for Metabolic Disease, UMD, Amsterdam, The Netherlands
| | - Marleen C D G Huigen
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands.,United for Metabolic Disease, UMD, Amsterdam, The Netherlands
| | - Huub W A H Waterval
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Irene M L W Körver-Keularts
- United for Metabolic Disease, UMD, Amsterdam, The Netherlands.,Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jasmin Mecinović
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Floris P J T Rutjes
- Radboud University, Institute for Molecules and Materials, Synthetic Organic Chemistry, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Jos Oomens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED, Nijmegen, the Netherlands
| | - Karlien L M Coene
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands.,United for Metabolic Disease, UMD, Amsterdam, The Netherlands.,Department of Clinical Chemistry and Hematology, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
| | - Jonathan Martens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED, Nijmegen, the Netherlands.
| | - Thomas J Boltje
- Radboud University, Institute for Molecules and Materials, Synthetic Organic Chemistry, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| |
Collapse
|
49
|
Marques C, Liu L, Duncan KD, Lanekoff I. A Direct Infusion Probe for Rapid Metabolomics of Low-Volume Samples. Anal Chem 2022; 94:12875-12883. [PMID: 36070505 PMCID: PMC9494293 DOI: 10.1021/acs.analchem.2c02918] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022]
Abstract
Targeted and nontargeted metabolomics has the potential to evaluate and detect global metabolite changes in biological systems. Direct infusion mass spectrometric analysis enables detection of all ionizable small molecules, thus simultaneously providing information on both metabolites and lipids in chemically complex samples. However, to unravel the heterogeneity of the metabolic status of cells in culture and tissue a low number of cells per sample should be analyzed with high sensitivity, which requires low sample volumes. Here, we present the design and characterization of the direct infusion probe, DIP. The DIP is simple to build and position directly in front of a mass spectrometer for rapid metabolomics of chemically complex biological samples using pneumatically assisted electrospray ionization at 1 μL/min flow rate. The resulting data is acquired in a square wave profile with minimal carryover between samples that enhances throughput and enables several minutes of uniform MS signal from 5 μL sample volumes. The DIP was applied to study the intracellular metabolism of insulin secreting INS-1 cells and the results show that exposure to 20 mM glucose for 15 min significantly alters the abundance of several small metabolites, amino acids, and lipids.
Collapse
Affiliation(s)
- Cátia Marques
- Department
of Chemistry—BMC, Uppsala University, 75123 Uppsala, Sweden
| | - Liangwen Liu
- Department
of Medical Cell Biology, Uppsala University, 75123 Uppsala, Sweden
| | - Kyle D. Duncan
- Department
of Chemistry—BMC, Uppsala University, 75123 Uppsala, Sweden
| | - Ingela Lanekoff
- Department
of Chemistry—BMC, Uppsala University, 75123 Uppsala, Sweden
| |
Collapse
|
50
|
Mashabela MD, Masamba P, Kappo AP. Metabolomics and Chemoinformatics in Agricultural Biotechnology Research: Complementary Probes in Unravelling New Metabolites for Crop Improvement. BIOLOGY 2022; 11:1156. [PMID: 36009783 PMCID: PMC9405339 DOI: 10.3390/biology11081156] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/16/2022] [Accepted: 07/28/2022] [Indexed: 11/25/2022]
Abstract
The United Nations (UN) estimate that the global population will reach 10 billion people by 2050. These projections have placed the agroeconomic industry under immense pressure to meet the growing demand for food and maintain global food security. However, factors associated with climate variability and the emergence of virulent plant pathogens and pests pose a considerable threat to meeting these demands. Advanced crop improvement strategies are required to circumvent the deleterious effects of biotic and abiotic stress and improve yields. Metabolomics is an emerging field in the omics pipeline and systems biology concerned with the quantitative and qualitative analysis of metabolites from a biological specimen under specified conditions. In the past few decades, metabolomics techniques have been extensively used to decipher and describe the metabolic networks associated with plant growth and development and the response and adaptation to biotic and abiotic stress. In recent years, metabolomics technologies, particularly plant metabolomics, have expanded to screening metabolic biomarkers for enhanced performance in yield and stress tolerance for metabolomics-assisted breeding. This review explores the recent advances in the application of metabolomics in agricultural biotechnology for biomarker discovery and the identification of new metabolites for crop improvement. We describe the basic plant metabolomics workflow, the essential analytical techniques, and the power of these combined analytical techniques with chemometrics and chemoinformatics tools. Furthermore, there are mentions of integrated omics systems for metabolomics-assisted breeding and of current applications.
Collapse
Affiliation(s)
| | | | - Abidemi Paul Kappo
- Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus, P.O. Box 524, Johannesburg 2006, South Africa; (M.D.M.); (P.M.)
| |
Collapse
|