1
|
Anderson AN, Conley P, Klocke CD, Sengupta SK, Pang A, Farley HC, Gillingham AR, Dawson AD, Fan Y, Jones JA, Gibbs SL, Skalet AH, Wu G, Wong MH. Detection of neoplastic-immune hybrid cells with metastatic properties in uveal melanoma. Biomark Res 2024; 12:67. [PMID: 39030653 PMCID: PMC11264923 DOI: 10.1186/s40364-024-00609-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/18/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Uveal melanoma is the most common non-cutaneous melanoma and is an intraocular malignancy affecting nearly 7,000 individuals per year worldwide. Of these, approximately 50% will progress to metastatic disease for which there are currently no effective curative therapies. Despite advances in molecular profiling and metastatic stratification of uveal melanoma tumors, little is known regarding their underlying biology of metastasis. Our group has identified a disseminated neoplastic cell population characterized by co-expression of immune and melanoma proteins, circulating hybrid cells (hybrids), in patients with uveal melanoma. Compared to circulating tumor cells, which lack expression of immune proteins, hybrids are detected at an increased prevalence in peripheral blood and can be used as a non-invasive biomarker to predict metastatic progression. METHODS To ascertain mechanisms underlying enhanced hybrid cell dissemination we identified hybrid cells within primary uveal melanoma tumors using single cell RNA sequencing (n = 8) and evaluated their gene expression and predicted ligand-receptor interactions in relation to other melanoma and immune cells within the primary tumor. We then verified expression of upregulated hybrid pathways within patient-matched tumor and peripheral blood hybrids (n = 4) using cyclic immunofluorescence and quantified their protein expression relative to other non-hybrid tumor and disseminated tumor cells. RESULTS Among the top upregulated genes and pathways in hybrid cells were those involved in enhanced cell motility and cytoskeletal rearrangement, immune evasion, and altered cellular metabolism. In patient-matched tumor and peripheral blood, we verified gene expression by examining concordant protein expression for each pathway category: TMSB10 (cell motility), CD74 (immune evasion) and GPX1 (metabolism). Both TMSB10 and GPX1 were expressed on significantly higher numbers of disseminated hybrid cells compared to circulating tumor cells, and CD74 and GPX1 were expressed on more disseminated hybrids than tumor-resident hybrids. Lastly, we identified that hybrid cells express ligand-receptor signaling pathways implicated in promoting metastasis including GAS6-AXL, CXCL12-CXCR4, LGALS9-P4HB and IGF1-IGFR1. CONCLUSION These findings highlight the importance of TMSB10, GPX1 and CD74 for successful hybrid cell dissemination and survival in circulation. Our results contribute to the understanding of uveal melanoma tumor progression and interactions between tumor cells and immune cells in the tumor microenvironment that may promote metastasis.
Collapse
Affiliation(s)
- Ashley N Anderson
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Patrick Conley
- Department of Medical Informatics and Clinical Epidemiology, OHSU, Portland, OR, USA
| | - Christopher D Klocke
- Department of Medical Informatics and Clinical Epidemiology, OHSU, Portland, OR, USA
| | - Sidharth K Sengupta
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Amara Pang
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Hannah C Farley
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University (OHSU), Portland, OR, USA
- Department of Biomedical Engineering, OHSU, Portland, OR, USA
| | - Abigail R Gillingham
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Aubrey D Dawson
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Yichen Fan
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Jocelyn A Jones
- Department of Biomedical Engineering, OHSU, Portland, OR, USA
| | - Summer L Gibbs
- Department of Biomedical Engineering, OHSU, Portland, OR, USA
- Knight Cancer Institute, OHSU, Portland, OR, USA
| | - Alison H Skalet
- Casey Eye Institute, OHSU, Portland, OR, USA
- Knight Cancer Institute, OHSU, Portland, OR, USA
| | - Guanming Wu
- Department of Medical Informatics and Clinical Epidemiology, OHSU, Portland, OR, USA
- Knight Cancer Institute, OHSU, Portland, OR, USA
| | - Melissa H Wong
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University (OHSU), Portland, OR, USA.
- Knight Cancer Institute, OHSU, Portland, OR, USA.
| |
Collapse
|
2
|
Anderson AN, Conley P, Klocke CD, Sengupta SK, Pang A, Farley HC, Gillingham AR, Dawson AD, Fan Y, Jones JA, Gibbs SL, Skalet AH, Wu G, Wong MH. Detection of neoplastic-immune hybrid cells with metastatic properties in uveal melanoma. RESEARCH SQUARE 2023:rs.3.rs-3694879. [PMID: 38106024 PMCID: PMC10723549 DOI: 10.21203/rs.3.rs-3694879/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Background Uveal melanoma is the most common non-cutaneous melanoma and is an intraocular malignancy affecting nearly 7,000 individuals per year worldwide. Of these, approximately 50% will progress to metastatic disease for which there are currently no effective therapies. Despite advances in molecular profiling and metastatic stratification of uveal melanoma tumors, little is known regarding their underlying biology of metastasis. Our group has identified a disseminated neoplastic cell population characterized by co-expression of immune and melanoma proteins, circulating hybrid cells (hybrids), in patients with uveal melanoma. Compared to circulating tumor cells, which lack expression of immune proteins, hybrids are detected at an increased prevalence in peripheral blood and can be used as a non-invasive biomarker to predict metastatic progression. Methods To ascertain mechanisms underlying enhanced hybrid cell dissemination we identified hybrid cells within primary uveal melanoma tumors using single cell RNA sequencing and evaluated their gene expression and predicted ligand-receptor interactions in relation to other melanoma and immune cells within the primary tumor. We then verified expression of upregulated hybrid pathways within patient-matched tumor and peripheral blood hybrids using cyclic immunofluorescence and quantified their protein expression relative to other non-hybrid tumor and disseminated tumor cells. Results Among the top upregulated genes and pathways in hybrid cells were those involved in enhanced cell motility and cytoskeletal rearrangement, immune evasion, and altered cellular metabolism. In patient-matched tumor and peripheral blood, we verified gene expression by examining concordant protein expression for each pathway category: TMSB10 (cell motility), CD74 (immune evasion) and GPX1 (metabolism). Both TMSB10 and GPX1 were expressed on significantly higher numbers of disseminated hybrid cells compared to circulating tumor cells, and CD74 and GPX1 were expressed on more disseminated hybrids than tumor-resident hybrids. Lastly, we identified that hybrid cells express ligand-receptor signaling pathways implicated in promoting metastasis including GAS6-AXL, CXCL12-CXCR4, LGALS9-P4HB and IGF1-IGFR1. Conclusion These findings highlight the importance of TMSB10, GPX1 and CD74 for successful hybrid cell dissemination and survival in circulation. Our results contribute to the understanding of uveal melanoma tumor progression and interactions between tumor cells and immune cells in the tumor microenvironment that may promote metastasis.
Collapse
|
3
|
Anderson AN, Conley P, Klocke CD, Sengupta SK, Robinson TL, Fan Y, Jones JA, Gibbs SL, Skalet AH, Wu G, Wong MH. Analysis of uveal melanoma scRNA sequencing data identifies neoplastic-immune hybrid cells that exhibit metastatic potential. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563815. [PMID: 37961378 PMCID: PMC10634980 DOI: 10.1101/2023.10.24.563815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Uveal melanoma (UM) is the most common non-cutaneous melanoma and is an intraocular malignancy that affects nearly 7,000 individuals per year worldwide. Of these, nearly 50% will progress to metastatic disease for which there are currently no effective therapies. Despite advances in the molecular profiling and metastatic stratification of class 1 and 2 UM tumors, little is known regarding the underlying biology of UM metastasis. Our group has identified a disseminated tumor cell population characterized by co-expression of immune and melanoma proteins, (circulating hybrid cells (CHCs), in patients with UM. Compared to circulating tumor cells, CHCs are detected at an increased prevalence in peripheral blood and can be used as a non-invasive biomarker to predict metastatic progression. To identify mechanisms underlying enhanced hybrid cell dissemination we sought to identify hybrid cells within a primary UM single cell RNA-seq dataset. Using rigorous doublet discrimination approaches, we identified UM hybrids and evaluated their gene expression, predicted ligand-receptor status, and cell-cell communication state in relation to other melanoma and immune cells within the primary tumor. We identified several genes and pathways upregulated in hybrid cells, including those involved in enhancing cell motility and cytoskeleton rearrangement, evading immune detection, and altering cellular metabolism. In addition, we identified that hybrid cells express ligand-receptor signaling pathways implicated in promoting cancer metastasis including IGF1-IGFR1, GAS6-AXL, LGALS9-P4HB, APP-CD74 and CXCL12-CXCR4. These results contribute to our understanding of tumor progression and interactions between tumor cells and immune cells in the UM microenvironment that may promote metastasis.
Collapse
|
4
|
De Leon-Oliva D, Garcia-Montero C, Fraile-Martinez O, Boaru DL, García-Puente L, Rios-Parra A, Garrido-Gil MJ, Casanova-Martín C, García-Honduvilla N, Bujan J, Guijarro LG, Alvarez-Mon M, Ortega MA. AIF1: Function and Connection with Inflammatory Diseases. BIOLOGY 2023; 12:biology12050694. [PMID: 37237507 DOI: 10.3390/biology12050694] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/29/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
Macrophages are a type of immune cell distributed throughout all tissues of an organism. Allograft inflammatory factor 1 (AIF1) is a calcium-binding protein linked to the activation of macrophages. AIF1 is a key intracellular signaling molecule that participates in phagocytosis, membrane ruffling and F-actin polymerization. Moreover, it has several cell type-specific functions. AIF1 plays important roles in the development of several diseases: kidney disease, rheumatoid arthritis, cancer, cardiovascular diseases, metabolic diseases and neurological disorders, and in transplants. In this review, we present a comprehensive review of the known structure, functions and role of AIF1 in inflammatory diseases.
Collapse
Affiliation(s)
- Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo Garcia-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Luis García-Puente
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Antonio Rios-Parra
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Principe de Asturias University Hospital, 28806 Alcala de Henares, Spain
| | - Maria J Garrido-Gil
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Carlos Casanova-Martín
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Luis G Guijarro
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Unit of Biochemistry and Molecular Biology, Department of System Biology (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), University Hospital Príncipe de Asturias, 28806 Alcala de Henares, Spain
| | - Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Principe de Asturias University Hospital, 28806 Alcala de Henares, Spain
| |
Collapse
|
5
|
Li Q, Hu L, Liu G, Yin X, Li Y, Wei X, Duan N, Zhao X, Gong Q, Du Z. Inhibition of AIF-1 alleviates laser-induced macular neovascularization by inhibiting endothelial cell proliferation via restrained p44/42 MAPK signaling pathway. Exp Eye Res 2023; 231:109474. [PMID: 37080383 DOI: 10.1016/j.exer.2023.109474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/27/2023] [Accepted: 04/10/2023] [Indexed: 04/22/2023]
Abstract
Age-related macular degeneration (AMD) is a leading blinding disease worldwide, and macular neovascularization (MNV) is a common complication encountered in the advanced stages of AMD. While the underlying causes of MNV remain elusive, aberrant multiplication of choroidal endothelial cells (CECs) and increased vascular endothelial growth factor (VEGF) are thought to play significant roles in the occurrence and development of MNV. Allograft inflammatory factor-1(AIF-1) is a crucial regulatory factor of vascular tubular structure formation and growth, involving the proliferation and migration of vascular endothelial cells and various tumor cells. This study aimed to understand how AIF-1 effects the proliferation of CECs and the subsequent progression of MNV. To study this, a mouse MNV model was established through laser injury, and the AIF-1 expression levels were then measured using western blot and immunohistochemistry. AIF-1 siRNA was intravitreally injected to silence AIF-1 gene expression. Western blot and choroidal flat mount were performed to measure the progression of MNV and proliferation of the CECs. These results showed that the protein expression of AIF-1 was significantly elevated in the laser-induced mouse MNV model, and the expression trend was consistent with VEGF. The protein level of AIF-1 was significantly decreased after the intravitreal injection of AIF-1 siRNA, the damage range of laser lesions was significantly reduced, and the proliferation of endothelial cells was inhibited. Knockdown of the AIF-1 gene significantly inhibited the expression of mitogen-activated protein kinase p44/42 in MNV lesions. In summary, this research demonstrates that AIF-1 promoted MNV progression by promoting the proliferation of CECs and that silencing AIF-1 significantly ameliorates MNV progression in mouse models, which may act through the p44/42 MAPK signaling pathway. AIF-1 could be a new potential molecular target for MNV.
Collapse
Affiliation(s)
- Qinghua Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Liting Hu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Guibo Liu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Xiaoni Yin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Ying Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Xiangyang Wei
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Ning Duan
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Xiaoran Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Qingyun Gong
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Zhaodong Du
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China.
| |
Collapse
|
6
|
Liu X, Zhang D, Hu J, Xu S, Xu C, Shen Y. Allograft inflammatory factor 1 is a potential diagnostic, immunological, and prognostic biomarker in pan-cancer. Aging (Albany NY) 2023; 15:2582-2609. [PMID: 37014322 PMCID: PMC10120906 DOI: 10.18632/aging.204631] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023]
Abstract
BACKGROUND Allograft Inflammatory Factor 1 (AIF-1) is a member of the allograft inflammatory factor gene family and plays an essential role in the occurrence and development of malignant tumors. However, little is known about the expression pattern, predictive value, and biological function of AIF-1 across cancers. MATERIALS AND METHODS We first analyzed AIF-1 expression across cancers based on data from public databases. Univariate Cox regression and Kaplan-Meier analyses were used to explore the predictive value of AIF-1 expression in various cancers. Moreover, gene set enrichment analysis (GSEA) was applied to determine the cancer hallmarks associated with AIF-1 expression. Spearman correlation analysis was performed to investigate the association between AIF-1 expression and tumor microenvironment scores, immune cell infiltration, immune-related genes, TMB, MSI, and DNA methyltransferases. RESULTS AIF-1 expression was upregulated in most cancer types and exhibited prognosis-predictive ability. AIF-1 expression was positively correlated with immune infiltrating cells and immune checkpoint-related genes in most cancers. Additionally, the promoter methylation level of AIF-1 was different in distinct tumors. High methylation levels of AIF-1 were associated with a worse prognosis in UCEC and melanoma, whereas they were associated with a better prognosis in GBM, KIRC, OV, and UVM. Finally, we found that AIF-1 was significantly highly expressed in KIRC tissues. Functionally, silencing AIF-1 dramatically decreased proliferation, migration, and invasion abilities. CONCLUSION Our results reveal that AIF-1 acts as a robust tumor biomarker and is closely correlated with tumor immune infiltration. Furthermore, AIF-1 may function as an oncogene and promote tumor progression in KIRC.
Collapse
Affiliation(s)
- Xin Liu
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Dandan Zhang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Jianping Hu
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
- Department of Medical Genetics, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Sikai Xu
- Department of Medical Genetics, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Chengyun Xu
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yang Shen
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
- Department of Medical Genetics, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
7
|
Wang L, Zhao X, Zheng H, Zhu C, Liu Y. AIF-1, a potential biomarker of aggressive tumor behavior in patients with non-small cell lung cancer. PLoS One 2022; 17:e0279211. [PMID: 36520870 PMCID: PMC9754194 DOI: 10.1371/journal.pone.0279211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Allogeneic inflammatory factor-1 (AIF-1) overexpression has been reported to be associated with tumorigenesis and tumor metastasis. This study aimed to investigate the role of AIF-1 in the development and progression of non-small cell lung cancer (NSCLC). AIF-1, IL-6, and VEGF expressions in human NSCLC tissue were examined by immunofluorescence staining. Bioinformatics analyses were performed to identify AIF-1-related molecules and pathways in NSCLC. Human lung cancer A549 cell proliferation was assessed by CCK-8 assay, and cell migration was evaluated with wound-healing assay. IL-6 and VEGF secretions in A549 cell culture supernatants were quantified using the Elecsys IL-6 immunoassay kit and Vascular Endothelial Growth Factor Assay Kit. RT-PCR and western blot were performed to quantify the expressions of AIF-1, IL-6, and VEGF mRNAs and proteins involved in p38-MAPK and JAK/STAT3 signaling such as p-p38 and p-STAT3. The effects of AIF-1 on A549 cell proliferation and the expressions of IL-6 and VEGF were assessed using SB203580 and ruxolitinib. The results showed that AIF-1 expression was higher in human NSCLC tissue than that in paracancer tissue. High AIF-1 expression was associated with metastasis, higher TNM stage, and poorer survival. Bioinformatics connected AIF-1 to JAK/STAT signaling in NSCLC. AIF-1 increased A549 cell proliferation, migration, IL-6 secretion and, VEGF secretion, and these effects were attenuated by inhibition of p38-MAPK or JAK/STAT3 signaling. In conclusion, AIF-1 may promote aggressive NSCLC behavior via activation of p38-MAPK and JAK/STAT signaling.
Collapse
Affiliation(s)
- Lingling Wang
- Department of Laboratory Diagnosis, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Laboratory Diagnosis, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Xing Zhao
- Department of Pathology, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Huachuan Zheng
- Department of Oncology and Experimental Center, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Cuimin Zhu
- Department of Oncology, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Yanhong Liu
- Department of Laboratory Diagnosis, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- * E-mail:
| |
Collapse
|
8
|
Wu Y, Li X, Li Q, Cheng C, Zheng L. Adipose tissue-to-breast cancer crosstalk: Comprehensive insights. Biochim Biophys Acta Rev Cancer 2022; 1877:188800. [PMID: 36103907 DOI: 10.1016/j.bbcan.2022.188800] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
The review focuses on mechanistic evidence for the link between obesity and breast cancer. According to the IARC study, there is sufficient evidence that obesity is closely related to a variety of cancers. Among them, breast cancer is particularly disturbed by adipose tissue due to the unique histological structure of the breast. The review introduces the relationship between obesity and breast cancer from two aspects, including factors that promote tumorigenesis or metastasis. We summarize alterations in adipokines and metabolic pathways that contribute to breast cancer development. Breast cancer metastasis is closely related to obesity-induced pro-inflammatory microenvironment, adipose stem cells, and miRNAs. Based on the mechanism by which obesity causes breast cancer, we list possible therapeutic directions, including reducing the risk of breast cancer and inhibiting the progression of breast cancer. We also discussed the risk of autologous breast remodeling and fat transplantation. Finally, the causes of the obesity paradox and the function of enhancing immunity are discussed. Evaluating the balance between obesity-induced inflammation and enhanced immunity warrants further study.
Collapse
Affiliation(s)
- Yuan Wu
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
| | - Xu Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, PR China
| | - Qiong Li
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
| | - Chienshan Cheng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
| | - Lan Zheng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China.
| |
Collapse
|
9
|
Hu T, Zhao X, Zhao Y, Cheng J, Xiong J, Lu C. Identification and Verification of Necroptosis-Related Gene Signature and Associated Regulatory Axis in Breast Cancer. Front Genet 2022; 13:842218. [PMID: 35251139 PMCID: PMC8888972 DOI: 10.3389/fgene.2022.842218] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/28/2022] [Indexed: 12/20/2022] Open
Abstract
Background: Breast invasive carcinoma (BRCA) is the second leading cause of malignancy death among women. Necroptosis is a newly discovered mechanism of cell death involved in the progression and prognosis of cancer. The role of necroptosis-related genes (NRGs) in BRCA is still a mystery. Methods: LASSO Cox regression analysis was performed to construct a prognostic necroptosis-related signature. A ceRNA was constructed to explore the potential lncRNA-miRNA-mRNA regulatory axis in BRCA. Results: A total of 63 necroptosis-related genes were differentially expressed in BRCA. We also summarized the genetic mutation landscape of NRGs in BRCA. BRCA patients with low expression of BCL2 and LEF1, as well as high expression of PLK1 and BNIP3, had a poor OS, DSS, and DFS. A necroptosis-related prognostic signature with four genes (BCL2, LEF1, PLK1, and BNIP3) was constructed, and it could serve as a prognosis biomarker in BRCA, predicting the OS rate with medium to high accuracy. Moreover, the risk score was correlated with immune infiltration in BRCA. Further comprehensive analysis revealed that the expression of BCL2, LEF1, PLK1, and BNIP3 was correlated with tumor mutation burden, microsatellite instability, drug sensitivity, and pathology stage. Previous studies have been extensively studied. The roles of LEF1, PLK1, and BNIP3 in BRCA and BCL2 were selected for further analysis. We then constructed a ceRNA network, which identified an lncRNA LINC00665/miR-181c-5p/BCL2 regulatory axis for BRCA. Conclusion: The bioinformatics method was performed to develop a prognostic necroptosis-related prognostic signature containing four genes (BCL2, LEF1, PLK1, and BNIP3) in BRCA. We also constructed a ceRNA network and identified an lncRNA LINC00665/miR-181c-5p/BCL2 regulatory axis for BRCA. Further in vivo and in vitro studies should be conducted to verify these results.
Collapse
Affiliation(s)
- Ting Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangwang Zhao
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanxia Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Cheng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Xiong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jie Xiong, ; Chong Lu,
| | - Chong Lu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jie Xiong, ; Chong Lu,
| |
Collapse
|
10
|
Kashyap D, Garg VK, Goel N. Intrinsic and extrinsic pathways of apoptosis: Role in cancer development and prognosis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 125:73-120. [PMID: 33931145 DOI: 10.1016/bs.apcsb.2021.01.003] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Apoptosis, also named programmed cell death, is a fundament process required for morphogenetic homeostasis during early development and in pathophysiological conditions. It is come into existence in 1972 by work of Kerr, Wyllie and Currie and later on investigated during the research on development of the C. elegans. Trigger by several stimuli, apoptosis is necessary during the embryonic development and aging as homeostatic mechanism to control the cell population and also play a key role as defense mechanism against the immune responses and elimination of damaged cells. Cancer, a genetic disease, is a growing burden on the health and economy of both developing and developed countries. Every year there is tremendously increasing in the number of new cancer cases and mortality rate. Although, there is a significant improvement have been made in biotechnological and bioinformatic fields however, the therapeutic advantages and cancer etiology is still under explored. Several studies determined the deregulation of different apoptotic components during the cancer development and progression. Apoptosis relies on activation of distinct signaling pathways that are often deregulated in cancer. Thus, exploring the single or more than one apoptotic component underlying their expression in carcinogenesis could help to track the disease progression. Current book chapter will provide the several evidences supporting the use of different apoptotic components as prognosis and prediction markers in various human cancer types.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduation Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | | | - Neelam Goel
- Department of Information Technology, UIET, Panjab University, Chandigarh, India.
| |
Collapse
|
11
|
Liu L, Zhang Y, Tang L, Zhong H, Danzeng D, Liang C, Liu S. The Neuroprotective Effect of Byu d Mar 25 in LPS-Induced Alzheimer's Disease Mice Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:8879014. [PMID: 33727946 PMCID: PMC7936888 DOI: 10.1155/2021/8879014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/02/2020] [Accepted: 02/08/2021] [Indexed: 12/22/2022]
Abstract
Inflammatory factors play an important role in the pathogenesis of Alzheimer's disease (AD). Byu d Mar 25 (BM25) has been suggested to have protective effects in the central nervous system. However, the effect of BM25 on AD has not been determined. This study aims to investigate the neuroprotective effect of BM25 in AD. A total of 40 AD model mice were randomly assigned to the following five groups (n = 8 per group): the AD + NS group, the AD + donepezil group, and three AD + BM25 groups treated with either 58.39 mg/kg (AD + BM25-L), 116.77 mg/kg (AD + BM25-M), or 233.54 mg/kg BM25 (AD + BM25-H). The Morris water maze test was performed to assess alterations in spatial learning and memory deficits. Nissl staining was performed to detect Nissl bodies and neuronal damage. The expression of IL-1β and TNF-α was evaluated by ELISA. The protein expression of P-P38, P38, P-IκBα, caspase 1, COX2, and iNOS was determined by western blotting. The expression of Aβ, p-Tau, and CD11b was measured by immunohistochemistry. The mRNA expression levels of IL-1β, TNF-α, COX2, and iNOS were measured by qRT-PCR. Spatial memory significantly improved in the AD + BM25-M and AD + BM25-H groups compared with the AD + NS group (p < 0.05). The expression of Aβ and p-Tau significantly decreased in the AD + BM25-M and AD + BM25-H groups (p < 0.05). The neuron density and hierarchy and number of pyramidal neurons significantly increased in the AD + BM25-M and AD + BM25-H groups (p < 0.05). In addition, the expression levels of CD11b, IL-1β, TNF-α, COX2, iNOS, caspase 1, p-IκBα, and p-P38 significantly decreased in the AD + BM25-M and AD + BM25-H groups (p < 0.05). In conclusion, our findings suggest that BM25 may exert anti-inflammatory and neuroprotective effects in AD model mice by suppressing the activity of microglia and inhibiting the phosphorylation of IκBα and p38 MAPK.
Collapse
Affiliation(s)
- Lan Liu
- Medical College, Tibet University, Lhasa, Tibet 850000, China
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Woman and Children (Sichuan University), Ministry of Education, Sichuan 610041, China
| | - Yongcang Zhang
- Medical College, Tibet University, Lhasa, Tibet 850000, China
| | - Liang Tang
- Department of Human Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha 410219, China
| | - Hua Zhong
- Department of Anatomy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610041, China
| | - Dunzhu Danzeng
- Medical College, Tibet University, Lhasa, Tibet 850000, China
| | - Cuiting Liang
- Medical College, Tibet University, Lhasa, Tibet 850000, China
| | - Shanling Liu
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Woman and Children (Sichuan University), Ministry of Education, Sichuan 610041, China
| |
Collapse
|
12
|
Ngo MHT, Jeng HY, Kuo YC, Nanda JD, Brahmadhi A, Ling TY, Chang TS, Huang YH. The Role of IGF/IGF-1R Signaling in Hepatocellular Carcinomas: Stemness-Related Properties and Drug Resistance. Int J Mol Sci 2021; 22:ijms22041931. [PMID: 33669204 PMCID: PMC7919800 DOI: 10.3390/ijms22041931] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
Insulin-like Growth Factor (IGF)/IGF-1 Receptor (IGF-1R) signaling is known to regulate stem cell pluripotency and differentiation to trigger cell proliferation, organ development, and tissue regeneration during embryonic development. Unbalanced IGF/IGF-1R signaling can promote cancer cell proliferation and activate cancer reprogramming in tumor tissues, especially in the liver. Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death, with a high incidence and mortality rate in Asia. Most patients with advanced HCC develop tyrosine kinase inhibitor (TKI)-refractoriness after receiving TKI treatment. Dysregulation of IGF/IGF-1R signaling in HCC may activate expression of cancer stemness that leads to TKI refractoriness and tumor recurrence. In this review, we summarize the evidence for dysregulated IGF/IGF-1R signaling especially in hepatitis B virus (HBV)-associated HCC. The regulation of cancer stemness expression and drug resistance will be highlighted. Current clinical treatments and potential therapies targeting IGF/IGF-1R signaling for the treatment of HCC will be discussed.
Collapse
Affiliation(s)
- Mai-Huong Thi Ngo
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (M.-H.T.N.); (J.D.N.); (A.B.)
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Han-Yin Jeng
- Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.J.); (Y.-C.K.)
| | - Yung-Che Kuo
- Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.J.); (Y.-C.K.)
| | - Josephine Diony Nanda
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (M.-H.T.N.); (J.D.N.); (A.B.)
| | - Ageng Brahmadhi
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (M.-H.T.N.); (J.D.N.); (A.B.)
| | - Thai-Yen Ling
- Department and Graduate Institute of Pharmacology, National Taiwan University, Taipei 11031, Taiwan
- Correspondence: (T.-Y.L.); (T.-S.C.); (Y.-H.H.); Tel.: +886-2-2312-3456 (ext. 8-8322) (T.-Y.L.); +886-5-3621-000 (ext. 2242) (T.-S.C.); +886-2-2736-1661 (ext. 3150) (Y.-H.H.)
| | - Te-Sheng Chang
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33382, Taiwan
- Division of Internal Medicine, Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
- Correspondence: (T.-Y.L.); (T.-S.C.); (Y.-H.H.); Tel.: +886-2-2312-3456 (ext. 8-8322) (T.-Y.L.); +886-5-3621-000 (ext. 2242) (T.-S.C.); +886-2-2736-1661 (ext. 3150) (Y.-H.H.)
| | - Yen-Hua Huang
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (M.-H.T.N.); (J.D.N.); (A.B.)
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.J.); (Y.-C.K.)
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Comprehensive Cancer Center, Taipei Medical University, Taipei 11031, Taiwan
- Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (T.-Y.L.); (T.-S.C.); (Y.-H.H.); Tel.: +886-2-2312-3456 (ext. 8-8322) (T.-Y.L.); +886-5-3621-000 (ext. 2242) (T.-S.C.); +886-2-2736-1661 (ext. 3150) (Y.-H.H.)
| |
Collapse
|
13
|
Welberry C, Macdonald I, McElveen J, Parsy-Kowalska C, Allen J, Healey G, Irving W, Murray A, Chapman C. Tumor-associated autoantibodies in combination with alpha-fetoprotein for detection of early stage hepatocellular carcinoma. PLoS One 2020; 15:e0232247. [PMID: 32374744 PMCID: PMC7202612 DOI: 10.1371/journal.pone.0232247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 04/10/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) continues to be a leading challenge in modern oncology. Early detection via blood-based screening tests has the potential to cause a stage-shift at diagnosis and improve clinical outcomes. Tumor associated autoantibodies (TA-AAbs) have previously shown the ability to distinguish HCC from patients with high-risk liver disease. This research aimed to further show the utility of TA-AAbs as biomarkers of HCC and assess their use in combination with Alpha-fetoprotein (AFP) for detection of HCC across multiple tumor stages. METHODS Levels of circulating G class antibodies to 44 recombinant tumor associated antigens and circulating AFP were measured in the serum of patients with HCC, non-cancerous chronic liver disease (NCCLD) and healthy controls via enzyme-linked immunosorbent assay (ELISA). TA-AAb cut-offs were set at the highest Youden's J statistic at a specificity ≥95.00%. Panels of TA-AAbs were formed using net reclassification improvement. AFP was assessed at a cut-off of 200 ng/ml. RESULTS Sensitivities ranged from 1.01% to 12.24% at specificities of 95.96% to 100.00% for single TA-AAbs. An ELISA test measuring a panel of 10 of these TA-AAbs achieved a combined sensitivity of 36.73% at a specificity of 89.89% when distinguishing HCC from NCCLD controls. At a cut-off of 200 ng/ml, AFP achieved a sensitivity of 31.63% at a specificity of 100.00% in the same cohort. Combination of the TA-AAb panel with AFP significantly increased the sensitivity for stage one (40.00%) and two (55.00%) HCC over the TA-AAb panel or AFP alone. CONCLUSIONS A panel of TA-AAbs in combination with AFP could be clinically relevant as a replacement for measuring levels of AFP alone in surveillance and diagnosis strategies. The increased early stage sensitivity could lead to a stage shift with positive prognostic outcomes.
Collapse
Affiliation(s)
- Christopher Welberry
- Oncimmune ltd, Nottingham, United Kingdom
- School of Medicine, University of Nottingham, Nottingham, United Kingdom
- * E-mail: ,
| | | | | | | | - Jared Allen
- Oncimmune ltd, Nottingham, United Kingdom
- School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | | | - William Irving
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, United Kingdom
| | | | - Caroline Chapman
- School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Bowel Cancer Screening Program, Nottingham University NHS Trust, Nottingham, United Kingdom
| |
Collapse
|
14
|
Parikh D, Riascos-Bernal DF, Egaña-Gorroño L, Jayakumar S, Almonte V, Chinnasamy P, Sibinga NES. Allograft inflammatory factor-1-like is not essential for age dependent weight gain or HFD-induced obesity and glucose insensitivity. Sci Rep 2020; 10:3594. [PMID: 32107417 PMCID: PMC7046694 DOI: 10.1038/s41598-020-60433-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 02/04/2020] [Indexed: 01/01/2023] Open
Abstract
The allograft inflammatory factor (AIF) gene family consists of two identified paralogs – AIF1 and AIF1-like (AIF1L). The encoded proteins, AIF1 and AIF1L, are 80% similar in sequence and show conserved tertiary structure. While studies in human populations suggest links between AIF1 and metabolic diseases such as obesity and diabetes, such associations with AIF1L have not been reported. Drawing parallels based on structural similarity, we postulated that AIF1L might contribute to metabolic disorders, and studied it using mouse models. Here we report that AIF1L is expressed in major adipose depots and kidney but was not detectable in liver or skeletal muscle; in notable contrast to AIF1, AIF1L was also not found in spleen. Studies of AIF1L deficient mice showed no obvious postnatal developmental phenotype. In response to high fat diet (HFD) feeding for 6 or 18 weeks, WT and AIF1L deficient mice gained weight similarly, showed no differences in fat or lean mass accumulation, and displayed no changes in energy expenditure or systemic glucose handling. These findings indicate that AIF1L is not essential for the development of obesity or impaired glucose handling due to HFD, and advance understanding of this little-studied gene and its place in the AIF gene family.
Collapse
Affiliation(s)
- Dippal Parikh
- Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), and Department of Developmental and Molecular Biology. 1300 Morris Park Avenue, Bronx, New York, 10461, USA
| | - Dario F Riascos-Bernal
- Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), and Department of Developmental and Molecular Biology. 1300 Morris Park Avenue, Bronx, New York, 10461, USA
| | - Lander Egaña-Gorroño
- Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), and Department of Developmental and Molecular Biology. 1300 Morris Park Avenue, Bronx, New York, 10461, USA.,Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Langone Medical Center, New York, NY, 10016, USA
| | - Smitha Jayakumar
- Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), and Department of Developmental and Molecular Biology. 1300 Morris Park Avenue, Bronx, New York, 10461, USA
| | - Vanessa Almonte
- Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), and Department of Developmental and Molecular Biology. 1300 Morris Park Avenue, Bronx, New York, 10461, USA
| | - Prameladevi Chinnasamy
- Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), and Department of Developmental and Molecular Biology. 1300 Morris Park Avenue, Bronx, New York, 10461, USA
| | - Nicholas E S Sibinga
- Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), and Department of Developmental and Molecular Biology. 1300 Morris Park Avenue, Bronx, New York, 10461, USA.
| |
Collapse
|
15
|
Cruceriu D, Baldasici O, Balacescu O, Berindan-Neagoe I. The dual role of tumor necrosis factor-alpha (TNF-α) in breast cancer: molecular insights and therapeutic approaches. Cell Oncol (Dordr) 2020; 43:1-18. [PMID: 31900901 DOI: 10.1007/s13402-019-00489-1] [Citation(s) in RCA: 241] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Breast cancer is the most prevalent cancer among women worldwide and the fifth cause of death among all cancer patients. Breast cancer development is driven by genetic and epigenetic alterations, with the tumor microenvironment (TME) playing an essential role in disease progression and evolution through mechanisms like inflammation promotion. TNF-α is one of the essential pro-inflammatory cytokines found in the TME of breast cancer patients, being secreted both by stromal cells, mainly by tumor-associated macrophages, and by the cancer cells themselves. In this review, we explore the biological and clinical impact of TNF-α in all stages of breast cancer development. First of all, we explore the correlation between TNF-α expression levels at the tumor site or in plasma/serum of breast cancer patients and their respective clinical status and outcome. Secondly, we emphasize the role of TNF-α signaling in both estrogen-positive and -negative breast cancer cells. Thirdly, we underline TNF-α involvement in epithelial-to-mesenchymal transition (EMT) and metastasis of breast cancer cells, and we point out the contribution of TNF-α to the development of acquired drug resistance. CONCLUSIONS Collectively, these data reveal a pro-tumorigenic role of TNF-α during breast cancer progression and metastasis. We systemize the knowledge regarding TNF-α-related therapies in breast cancer, and we explain how TNF-α may act as both a target and a drug in different breast cancer therapeutic approaches. By corroborating the known molecular effects of TNF-α signaling in breast cancer cells with the results from several preclinical and clinical trials, including TNF-α-related clinical observations, we conclude that the potential of TNF-α in breast cancer therapy promises to be of great interest.
Collapse
Affiliation(s)
- Daniel Cruceriu
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania.,Department of Molecular Biology and Biotechnology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Oana Baldasici
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania
| | - Ovidiu Balacescu
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania. .,11th Department of Medical Oncology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 34-36 Republicii Street, 400015, Cluj-Napoca, Romania.
| | - Ioana Berindan-Neagoe
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania. .,Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania. .,MedFuture Research Center for Advanced Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337, Cluj-Napoca, Romania.
| |
Collapse
|
16
|
Role of allograft inflammatory factor-1 in pathogenesis of diseases. Immunol Lett 2019; 218:1-4. [PMID: 31830499 DOI: 10.1016/j.imlet.2019.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/27/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023]
Abstract
Allograft inflammatory factor-1 (AIF-1) is a 17 kDa calcium-binding protein produced by monocytes, macrophages, and lymphocytes; its synthesis is induced by INF-γ. The AIF-1 gene is located in the major histocompatibility complex (MHC) class III region on chromosome 6p21.3, surrounded by surface glycoprotein genes and complement cascade protein genes as well as TNF-α, TNF-β, and NF-κB genes. Increased expression of AIF-1 was observed in several diseases, including endometriosis, breast cancer, atherosclerosis, rheumatoid arthritis, and fibrosis. In this review, we summarise the role of AIF-1 in allograft rejection and the pathogenesis of diseases.
Collapse
|
17
|
Abstract
Background Inflammation is a major player in breast cancer (BC) progression. Allograft-inflammatory factor-1 (AIF1) is a crucial mediator in the inflammatory response. AIF1 reportedly plays a role in BC, but the mechanism remains to be elucidated. We identified two AIF1 isoforms, AIF1v1 and AIF1v3, which were differentially expressed between affected and unaffected sisters from families with high risk of BC with no deleterious BRCA1/BRCA2 mutations (BRCAX). We investigated potential functions of AIFv1/v3 in BC of varying severity and breast adipose tissue by evaluating their expression, and association with metabolic and clinical parameters of BC patients. Methods AIF1v1/v3 expression was determined in BC tissues and cell lines using quantitative real-time PCR. Potential roles and mechanisms were examined in the microenvironment (fibroblasts, adipose tissue, monocytes and macrophages), inflammatory response (cell reaction in BC subgroups), and metabolism [treatment with docosahexaenoic acid (DHA)]. Association of AIF1 transcript expression with clinical factors was determined by Spearman’s rank correlation. Bioinformatics analyses were performed to characterize transcripts. Results AIF1v1/v3 were mostly expressed in the less severe BC samples, and their expression appeared to originate from the tumor microenvironment. AIF1 isoforms had different expression rates and sources in breast adipose tissue; lymphocytes mostly expressed AIF1v1 while activated macrophages mainly expressed AIF1v3. Bioinformatics analysis revealed major structural differences suggesting distinct functions in BC progression. Lymphocytes were the most infiltrating cells in breast tumors and their number correlated with AIF1v1 adipose expression. Furthermore, DHA supplementation significantly lowered the expression of AIF1 isoforms in BRCAX cell lines. Finally, the expression of AIF1 isoforms in BC and breast adipose tissue correlated with clinical parameters of BC patients. Conclusions Results strongly suggest that AIF1v1 as much as AIF1v3 play a major role in the crosstalk between BC and infiltrating immune cells mediating tumor progression, implying their high potential as target molecules for BC diagnostic, prognostication and treatment. Electronic supplementary material The online version of this article (10.1186/s12935-018-0663-3) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Zhang Q, Sun S, Zhu C, Xie F, Cai Q, Sun H, Chen G, Liang X, Xie H, Shi J, Liao Y, Zhou J. Expression of Allograft Inflammatory Factor-1 (AIF-1) in Hepatocellular Carcinoma. Med Sci Monit 2018; 24:6218-6228. [PMID: 30188879 PMCID: PMC6139115 DOI: 10.12659/msm.908510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background Allograft inflammatory factor-1 (AIF-1) is a cytoplasmic protein cloned from activated macrophages in human and rat allografts. AIF-1 has been identified as a modulator of inflammatory response, and recently published studies have shown its increased expression in carcinogenesis. However, there are still limited data on the potential functional role of AIF-1 in hepatocellular carcinoma (HCC). Material/Methods We evaluated the expression of AIF-1 in 104 cases of paired HCC and adjacent non-cancerous liver tissues using immunohistochemistry, Western blotting, and qPCR analysis, and sought to determine whether its expression was correlated with clinicopathological features. In vitro assays, including cell proliferation and migration assays, were used to study the effects of AIF-1 knockdown in L02 human hepatocyte, and Huh7 and SMMC7721 liver cancer cell lines. Results Expression of AIF-1 was increased in HCC compared to adjacent normal liver tissues and was positively correlated with median tumor size (p=0.046), number of tumor deposits (p=0.009), the Barcelona Clinic Liver Cancer (BCLC) stage (p=0.004), and portal vein tumor thrombus (PVTT) (p<0.001). Huh7 and SMMC7721 human HCC cells demonstrated upregulated AIF-1 expression compared to normal hepatocytes. Small interfering RNA (siRNA)-mediated silencing of AIF-1 expression resulted in a reduction in cell proliferation and migration in human HCC cells. Conclusions These findings suggest AIF-1 may have roles as a diagnostic or prognostic biomarker and a promising therapeutic target in HCC.
Collapse
Affiliation(s)
- Qifan Zhang
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Shibo Sun
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Chen Zhu
- Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Fang Xie
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Qing Cai
- Department of Hepatobiliary Surgery and Liver Transplantation Center, Guangzhou General Hospital of Guangzhou Military Area, Guangzhou, Guangdong, China (mainland)
| | - Hang Sun
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Gang Chen
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Xiaolu Liang
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Haorong Xie
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Jie Shi
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Yan Liao
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Jie Zhou
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|
19
|
Yasuda-Yamahara M, Rogg M, Yamahara K, Maier JI, Huber TB, Schell C. AIF1L regulates actomyosin contractility and filopodial extensions in human podocytes. PLoS One 2018; 13:e0200487. [PMID: 30001384 PMCID: PMC6042786 DOI: 10.1371/journal.pone.0200487] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/27/2018] [Indexed: 11/17/2022] Open
Abstract
Podocytes are highly-specialized epithelial cells essentially required for the generation and the maintenance of the kidney filtration barrier. This elementary function is directly based on an elaborated cytoskeletal apparatus establishing a complex network of primary and secondary processes. Here, we identify the actin-bundling protein allograft-inflammatory-inhibitor 1 like (AIF1L) as a selectively expressed podocyte protein in vivo. We describe the distinct subcellular localization of AIF1L to actin stress fibers, focal adhesion complexes and the nuclear compartment of podocytes in vitro. Genetic deletion of AIF1L in immortalized human podocytes resulted in an increased formation of filopodial extensions and decreased actomyosin contractility. By the use of SILAC based quantitative proteomics analysis we describe the podocyte specific AIF1L interactome and identify several components of the actomyosin machinery such as MYL9 and UNC45A as potential AIF1L interaction partners. Together, these findings indicate an involvement of AIF1L in the stabilization of podocyte morphology by titrating actomyosin contractility and membrane dynamics.
Collapse
Affiliation(s)
- Mako Yasuda-Yamahara
- Department of Medicine IV, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Manuel Rogg
- Department of Medicine IV, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kosuke Yamahara
- Department of Medicine IV, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Jasmin I. Maier
- Department of Medicine IV, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Surgical Pathology, University Medical Center Freiburg, Freiburg, Germany
| | - Tobias B. Huber
- Department of Medicine IV, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BIOSS Center for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- Department of Medicine III, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail:
| | - Christoph Schell
- Department of Medicine IV, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Surgical Pathology, University Medical Center Freiburg, Freiburg, Germany
- Berta-Ottenstein Programme, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
20
|
Xu B, Zhou M, Wang J, Zhang D, Guo F, Si C, Leung PCK, Zhang A. Increased AIF-1-mediated TNF-α expression during implantation phase in IVF cycles with GnRH antagonist protocol. Hum Reprod 2018; 33:1270-1280. [PMID: 29897458 PMCID: PMC6012176 DOI: 10.1093/humrep/dey119] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 04/27/2018] [Accepted: 05/15/2018] [Indexed: 11/14/2022] Open
Abstract
STUDY QUESTION Is allograft inflammatory factor-1 (AIF-1), a cytokine associated with inflammation and allograft rejection, aberrantly elevated in in vitro fertilization (IVF) cycles with gonadotropin-releasing hormone (GnRH) antagonist protocol with potential effects on endometrial receptivity? SUMMARY ANSWER Our findings indicated AIF-1 is increased in IVF cycles with GnRH antagonist protocol and mediates greater TNF-α expression during implantation phase, which may be unfavorable for embryo implantation. WHAT IS KNOWN ALREADY Studies have shown that GnRH antagonist protocol cycles have lower implantation and clinical pregnancy rates than GnRH agonist long protocol cycles. Endometrial receptivity but not embryo quality is a key factor contributing to this phenomenon; however, the mechanism is still unknown. STUDY DESIGN, SIZE, DURATION Implantation and pregnancy rates were studied in 238 patients undergoing their first cycle of IVF/ICSI between 2012 and 2014. Forty of these patients opted to have no fresh embryo replacement and were divided into two equal groups: (i) GnRH antagonist protocol and (ii) GnRH agonist long protocol, group 3 included 20 infertile women with a tubal factor in untreated cycles. During the same interval, endometrial tissues were taken from 18 infertile women with a tubal factor in the early proliferative phase, late proliferative phase, and mid-secretory phase of the menstrual cycle (n = 6/group). PARTICIPANTS/MATERIALS, SETTING, METHODS Microarray analysis, RT-qPCR, Western blot analysis, immunohistochemistry were used to investigate the expression levels of AIF-1 and the related cytokines (TNF-α, IL1β, IL1RA, IL6, IL12, IL15 and IL18). The effect of AIF-1 on uterine receptivity was modeled using in vitro adhesion experiments (coculture of JAR cells and Ishikawa cells). MAIN RESULTS AND THE ROLE OF CHANCE The expression of AIF-1 was the highest in early proliferative phase, decreasing thereafter in the late proliferative phase, and almost disappearing in the mid-secretory phase, indicating that low AIF-1 expression might be important for embryo implantation during implantation phase. Microarray results revealed that AIF-1 was upregulated in the antagonist group compared with the control group (fold change [FC] = 3.75) and the agonist (FC = 2.20) group. The raw microarray data and complete gene expression table were uploaded to GEO under the accession number of GSE107914. Both the mRNA and protein expression levels of AIF-1 and TNF-α were the higher in the antagonist group than in the other two groups (P < 0.05) which did not differ significantly (P > 0.05). The protein levels of TNF-α in both Ishikawa cells and primary endometrial cells were significantly increased (P < 0.05) at 96 h after transfection with the AIF-1 expression vector, indicating that TNF-α was mediated by AIF-1 in endometrial cells. Overexpression of AIF-1 in Ishikawa cells inhibited adhesion of JAR cells to them. Thus, increased AIF-1 might inhibit adhesion during implantation via raised TNF-α. LIMITATIONS REASONS FOR CAUTION The sample size of the microarray was small, which might weaken the accuracy of our results; however, the sample size of RT-qPCR and the Western blotting assays were sufficient to compensate for this deficiency in our study. In addition, the aberrant AIF-1 and thus TNF-α expression is one of many factors that may contribute to limiting implantation success. Therefore, further extensive in vitro mechanistic and in vivo animal studies are needed to assess the actual functional impact of this pathway. WIDER IMPLICATIONS OF THE FINDINGS Anti-TNF-α therapy might mitigate the adverse effects of GnRH antagonist on endometrial receptivity and improve the implantation rate in GnRH antagonist protocols in IVF. STUDY FUNDING/COMPETING INTERESTS This work was supported by grants from the National Natural Science Foundation of China, Grant numbers 81771656 and 81370763; Clinical research special fund of Chinese Medical Association, Grant number 16020480664; Shanghai Jiao Tong University Medicine-Engineering Fund, Grant number YG2017ZD11 and YG2017MS57; and the Merck-Serono China Research Fund for Fertility Agreement. P.C.K.L. is supported by a Canadian Institutes of Health Research Foundation Scheme Grant 143317. None of the authors has any competing interests.
Collapse
Affiliation(s)
- Bufang Xu
- Reproductive Medical Center of Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 197 Ruijin 2nd Road, Shanghai, China
| | - Mingjuan Zhou
- Reproductive Medical Center of Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 197 Ruijin 2nd Road, Shanghai, China
| | - Jingwen Wang
- Reproductive Medical Center of Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 197 Ruijin 2nd Road, Shanghai, China
| | - Dan Zhang
- Reproductive Medical Center of Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 197 Ruijin 2nd Road, Shanghai, China
| | - Feng Guo
- Reproductive Medical Center of Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 197 Ruijin 2nd Road, Shanghai, China
| | - Chenchen Si
- Reproductive Medical Center of Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 197 Ruijin 2nd Road, Shanghai, China
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aijun Zhang
- Reproductive Medical Center of Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 197 Ruijin 2nd Road, Shanghai, China
- Shanghai Key Laboratory of Reproductive Medicine, 280 South Chongqing Road, Shanghai, China
| |
Collapse
|
21
|
艾 晓, 姚 芳, 王 晓, 段 东, 李 科, 胡 子, 殷 果, 王 梅, 吴 炳. [Role of allograft inflammatory factor-1 in regulating the proliferation, migration and apoptosis of colorectal cancer cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:511-519. [PMID: 29891445 PMCID: PMC6743897 DOI: 10.3969/j.issn.1673-4254.2018.05.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To investigate the role of allograft inflammatory factor-1 (AIF-1) in colorectal cancer (CRC) progression and explore the possible mechanism. METHODS The expression levels of AIF-1 in 70 CRC tissues and paired adjacent tissues were detected using immunohistochemistry and Western blotting, and the correlation of AIF-1 expression with the clinicopathological features of the patients was analyzed. In the CRC cell line SW480, the functional role of AIF-1 in regulating tumor progression was investigated by transfecting the cells with an AIF-1-overexpressing plasmid (AIF-1) and a negative control plasmid (NC). EdU proliferation assay and flow cytometry were used to assess the cell proliferation and cell cycle changes; Transwell migration assay and Annexin V-APC/7-AAD apoptosis assay kit were used to analyze the cell migration and apoptosis. The changes in the biological behaviors of the cells were observed after application of SB203580 to block the p38 MAPK pathway. The expression levels of CDK4, cyclin D1, P21, P27, MMP2, MMP9, Bax, Bcl2, Bcl-xl, p38 and p-p38 were detected using Western blotting. RESULTS AIF-1 was down-regulated in CRC tissues compared with the adjacent normal tissues, and its expression level was positively correlated with lymph node metastasis (P=0.008), TNM stage (P=0.003) and tumor size (P=0.023). Overexpression of AIF-1 in SW480 cells significantly reduced EdU-positive cells and caused obvious cell cycle arrest in G1 phase (P<0.05). AIF-1 overexpression resulted in significantly lowered protein expressions of CDK4 and cyclin D1, enhanced expressions of P21 and P27, attenuated cell migration ability (P<0.001), and decreased protein levels of MMP2 and MMP9. AIF-1 overexpression also induced obvious apoptosis of SW480 cells (P<0.01), significantly increased the protein levels of Bax and p-p38, and decreased the protein levels of Bcl-2 and Bcl-xl; SB203580 significantly attenuated the apoptosis-inducing effect of AIF-1 overexpression. CONCLUSION AIF-1 plays the role of a tumor suppressor in CRC by inhibiting cell proliferation, suppressing cell migration and inducing cell apoptosis. AIF-1 overexpression promotes the apoptosis of CRC cells by activating the p38 MAPK pathway.
Collapse
Affiliation(s)
- 晓兰 艾
- />南方医科大学南方医院临床医学实验研究中心,广东 广州 510515Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 芳 姚
- />南方医科大学南方医院临床医学实验研究中心,广东 广州 510515Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 晓睛 王
- />南方医科大学南方医院临床医学实验研究中心,广东 广州 510515Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 东北 段
- />南方医科大学南方医院临床医学实验研究中心,广东 广州 510515Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 科 李
- />南方医科大学南方医院临床医学实验研究中心,广东 广州 510515Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 子有 胡
- />南方医科大学南方医院临床医学实验研究中心,广东 广州 510515Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 果 殷
- />南方医科大学南方医院临床医学实验研究中心,广东 广州 510515Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 梅 王
- />南方医科大学南方医院临床医学实验研究中心,广东 广州 510515Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 炳义 吴
- />南方医科大学南方医院临床医学实验研究中心,广东 广州 510515Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
22
|
Román ID, Cano-Martínez D, Lobo MVT, Fernández-Moreno MD, Hernández-Breijo B, Sacristán S, Sanmartín-Salinas P, Monserrat J, Gisbert JP, Guijarro LG. Infliximab therapy reverses the increase of allograft inflammatory factor-1 in serum and colonic mucosa of rats with inflammatory bowel disease. Biomarkers 2016; 22:133-144. [PMID: 27781498 DOI: 10.1080/1354750x.2016.1252950] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Our purpose was to study the molecular basis of infliximab (IFX) effect on colon mucosa in a colitis model and to identify new biomarkers of mucosal healing. METHODS Healthy rats and rats which were subjected to experimental colitis induced by dextran sulfate sodium, with or without IFX treatment (in the short- and long-term), were studied along with forty-seven IBD patients. Colon mucosal integrity by periodic acid Schiff (PAS) staining, intestinal damage by immunohistochemistry (proliferating cell nuclear antigen, β-catenin, E-cadherin, phosphotyrosine, p-p38, allograft inflammatory factor-1 (AIF-1) and colonic mucosal apoptosis by TUNEL staining were evaluated in rats while serum and colon AIF-1 levels were determined in IBD patients. RESULTS In rats with colitis, IFX reestablished the epithelial barrier integrity, recovered mucus production and decreased colon inflammation, as verified by reduced serum and colon AIF-1 levels; colon and serum AIF-1 levels were also lower in inactive IBD patients compare to active ones. P38 activation after IFX treatment tended to induce differentiation/proliferation of epithelial cells along the colonic crypt-villous axis. CONCLUSIONS These findings support AIF-1 as a new biomarker of mucosal healing in experimental colitis and suggest that p38 activation is involved in the mucosal healing intracellular mechanism induced by IFX treatment.
Collapse
Affiliation(s)
- Irene D Román
- a Department of Systems Biology , Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Alcalá , Alcalá de Henares , Spain
| | - David Cano-Martínez
- a Department of Systems Biology , Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Alcalá , Alcalá de Henares , Spain
| | - María Val T Lobo
- b Department of Biomedicine and Biotechnology , University of Alcalá , Alcalá de Henares , Spain
| | - María Dolores Fernández-Moreno
- a Department of Systems Biology , Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Alcalá , Alcalá de Henares , Spain
| | - Borja Hernández-Breijo
- a Department of Systems Biology , Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Alcalá , Alcalá de Henares , Spain
| | - Silvia Sacristán
- c Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS) , Madrid , Spain
| | - Patricia Sanmartín-Salinas
- a Department of Systems Biology , Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Alcalá , Alcalá de Henares , Spain
| | - Jorge Monserrat
- d Department of Medicine , University of Alcalá , Alcalá de Henares , Spain
| | - Javier P Gisbert
- e Gastroenterology Unit , Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa (IIS-IP), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) , Madrid , Spain
| | - Luis G Guijarro
- a Department of Systems Biology , Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Alcalá , Alcalá de Henares , Spain
| |
Collapse
|
23
|
Zhang Y, Wang S, Li L. EF Hand Protein IBA2 Promotes Cell Proliferation in Breast Cancers via Transcriptional Control of Cyclin D1. Cancer Res 2016; 76:4535-45. [DOI: 10.1158/0008-5472.can-15-2927] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 05/03/2016] [Indexed: 11/16/2022]
|
24
|
Jia S, Du Z, Jiang H, Huang X, Chen Z, Chen N. Daintain/AIF-1 accelerates the activation of insulin-like growth factor-1 receptor signaling pathway in HepG2 cells. Oncol Rep 2015; 34:511-7. [PMID: 25998745 DOI: 10.3892/or.2015.4002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/09/2015] [Indexed: 11/06/2022] Open
Abstract
Daintain/allograft inflammatory factor-1 (AIF-1), as a novel inflammatory factor, has been reported to accelerate the proliferation and migration of breast cancer cells. However, the effect of daintain/AIF-1 on hepatocarcinogenesis remains unclear. In order to explore the effect of daintain/AIF-1 on the progression of hepatocellular carcinoma (HCC), enzyme-linked immunosorbent assay (ELISA) and reverse transcription polymerase chain reaction (RT-PCR) were performed to examine the secretion and gene expression of (IGF)-1, IGF-2 and IGFBP-3. The expression of IGF-1R and its downstream targets was evaluated by western blotting. In addition, the proliferation and cell-cycle progression of HepG2 cells was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenylterazolium bromide (MTT) and flow cytometric analysis. The results showed that HepG2 cells subjected to daintain/AIF-1 treatment revealed an obvious increase in the secretion of IGF-1 and IGF-2, and a reduction in the secretion of IGFBP-3. Moreover, daintain/AIF-1 accelerated the activation of IGF-1-induced IGF-1R and its downstream AKT signaling pathway, and subsequently promoted the activation of cyclin D1 pathway, thus accelerating the progression of the cell cycle and eventually promoting the proliferation of HepG2 cells. In conclusion, daintain/AIF-1 promoted the proliferation of HepG2 cells by accelerating the activation of IGF-1R and its downstream signaling pathway, which confirms that daintain/AIF-1 plays a crucial role in the development of HCC.
Collapse
Affiliation(s)
- Shaohui Jia
- College of Health Science, Wuhan Sports University, Wuhan, Hubei 430079, P.R. China
| | - Zhongxia Du
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Hua Jiang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Xingyuan Huang
- School of Life Science and Technology, Hubei Engineering University, Xiaogan, Hubei 432000, P.R. China
| | - Zhengwang Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Ning Chen
- College of Health Science, Wuhan Sports University, Wuhan, Hubei 430079, P.R. China
| |
Collapse
|
25
|
Fersini E, Messina E, Archetti F. A p-Median approach for predicting drug response in tumour cells. BMC Bioinformatics 2014; 15:353. [PMID: 25359173 PMCID: PMC4222443 DOI: 10.1186/s12859-014-0353-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 10/16/2014] [Indexed: 01/15/2023] Open
Abstract
Background The complexity of biological data related to the genetic origins of tumour cells, originates significant challenges to glean valuable knowledge that can be used to predict therapeutic responses. In order to discover a link between gene expression profiles and drug responses, a computational framework based on Consensus p-Median clustering is proposed. The main goal is to simultaneously predict (in silico) anticancer responses by extracting common patterns among tumour cell lines, selecting genes that could potentially explain the therapy outcome and finally learning a probabilistic model able to predict the therapeutic responses. Results The experimental investigation performed on the NCI60 dataset highlights three main findings: (1) Consensus p-Median is able to create groups of cell lines that are highly correlated both in terms of gene expression and drug response; (2) from a biological point of view, the proposed approach enables the selection of genes that are strongly involved in several cancer processes; (3) the final prediction of drug responses, built upon Consensus p-Median and the selected genes, represents a promising step for predicting potential useful drugs. Conclusion The proposed learning framework represents a promising approach predicting drug response in tumour cells. Electronic supplementary material The online version of this article (doi:10.1186/s12859-014-0353-7) contains supplementary material, which is available to authorized users.
Collapse
|
26
|
He Z, He J, Liu Z, Xu J, Yi SF, Liu H, Yang J. MAPK11 in breast cancer cells enhances osteoclastogenesis and bone resorption. Biochimie 2014; 106:24-32. [PMID: 25066918 DOI: 10.1016/j.biochi.2014.07.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 07/16/2014] [Indexed: 01/09/2023]
Abstract
Breast cancer cells frequently metastasize to bone and induce osteolytic bone destruction in patients. These metastases cause severe bone pain, high risk of fractures and hypercalcemia, and are essentially incurable and fatal. Recent studies show that breast cancer cells in bone activate osteoclastogenesis and bone resorption. However the underlying mechanism is poorly understood. This study shows that the p38 MAPK (p38) isoform MAPK11 (p38β) is expressed in breast cancer cells. By using specific small hairpin RNAs for MAPK11, we demonstrated that p38β-mediated p38 activity in breast cancer cells is responsible for breast cancer-induced osteolytic bone destruction. The addition of conditioned media from breast cancer cell lines MDA-MB-231 and MDA-MB-468, which have high expression of p38β, induced osteoclast differentiation and bone resorption. In contrast, knockdown of p38β in breast cancer cells reduced osteoclast differentiation in vitro and reduced bone destruction in severe combined immunodeficiency (SCID) mouse models. The knockdown of p38β did not affect tumor growth or survival or the ability of cancer cells to home to bone. Furthermore, our results showed that p38β upregulated the expression and secretion of monocyte chemotactic protein-1 (MCP-1) in breast cancer cells, and upregulated MCP-1 activates osteoclast differentiation and activity. This study elucidates a novel molecular mechanism of breast cancer cell-induced osteolytic bone destruction. This study also indicates that targeting breast cancer cell p38β and its product MCP-1 may be a viable approach to treat or prevent bone destruction in patients with bone-metastatic breast cancer.
Collapse
Affiliation(s)
- Zhimin He
- Cancer Research Institute and Cancer Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jin He
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhiqiang Liu
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jingda Xu
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sofia F Yi
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huan Liu
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jing Yang
- Cancer Research Institute and Cancer Hospital, Guangzhou Medical University, Guangzhou, China; Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
27
|
Daintain/AIF-1 Reinforces the Resistance of Breast Cancer Cells to Cisplatin. Biosci Biotechnol Biochem 2014; 76:2338-41. [DOI: 10.1271/bbb.120577] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
Chen QR, Guan F, Song SM, Jin JK, Lei DS, Chen CM, Lei JH, Chen ZW, Niu AO. Allograft inflammatory factor-1 alleviates liver disease of BALB/c mice infected with Schistosoma japonicum. Parasitol Res 2014; 113:2629-39. [PMID: 24816816 DOI: 10.1007/s00436-014-3915-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/09/2014] [Indexed: 02/06/2023]
Abstract
Allograft inflammatory factor-1 (AIF-1) plays an important role in various inflammatory conditions. Our previous study demonstrated that AIF-1 was over-expressed in the liver of BALB/c mice infected with Schistosoma japonicum and played significant role in the pathogenesis of schistosomiasis. The aim of this study was to focus on the effect of AIF-1 treatment on liver fibrosis and necrosis of BALB/c mice infected with S. japonicum. Seventy-two BALB/c mice were infected with cercariae of S. japonicum and then divided into three groups: AIF-1-treated group, saline-treated group, and control group. The vital signs, liver function, egg load, and hepatic pathological changes of the mice were assessed, and the levels of AIF-1 and TNF-α in the liver and spleen were measured at 5, 8, and 14 weeks postinfection. The treatment of AIF-1 on the mice infected with S. japonicum suppressed the expression of TNF-α and increased the effectiveness of AIF-1 in the liver and spleen at 14 weeks postinfection. Histopathological analysis and Masson trichrome staining for the liver tissues showed that the liver fibrosis and necrosis were alleviated previously compared with other infected mice at 14 weeks postinfection. The treatment of AIF-1 on the mice infected with S. japonicum can alleviate hepatic fibrosis and necrosis which indicate that AIF-1 use may prevent and cure the liver fibrosis.
Collapse
Affiliation(s)
- Qiong-Rong Chen
- Department of Pathology, Hubei Cancer Hospital, Wuhan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Xu T, Xie J, Zhu B, Liu X, Wu X. allograft inflammatory factor 1 functions as a pro-inflammatory cytokine in the oyster, Crassostrea ariakensis. PLoS One 2014; 9:e95859. [PMID: 24759987 PMCID: PMC3997479 DOI: 10.1371/journal.pone.0095859] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 04/01/2014] [Indexed: 11/19/2022] Open
Abstract
The oyster Crassostrea ariakensis is an economically important bivalve species in China, unfortunately it has suffered severe mortalities in recent years caused by rickettsia-like organism (RLO) infection. Prevention and control of this disease is a priority for the development of oyster aquaculture. Allograft inflammatory factor-1 (AIF-1) was identified as a modulator of the immune response during macrophage activation and a key gene in host immune defense reaction and inflammatory response. Therefore we investigated the functions of C. ariakensis AIF-1 (Ca-AIF1) and its antibody (anti-CaAIF1) in oyster RLO/LPS-induced disease and inflammation. Ca-AIF1 encodes a 149 amino acid protein containing two typical Ca2+ binding EF-hand motifs and shares a 48-95% amino acid sequence identity with other animal AIF-1s. Tissue-specific expression analysis indicates that Ca-AIF1 is highly expressed in hemocytes. Significant and continuous up-regulation of Ca-AIF1 is detected when hemocytes are stimulated with RLO/LPS (RLO or LPS). Treatment with recombinant Ca-AIF1 protein significantly up-regulates the expression levels of LITAF, MyD88 and TGFβ. When anti-CaAIF1 antibody is added to RLO/LPS-challenged hemocyte monolayers, a significant reduction of RLO/LPS-induced LITAF is observed at 1.5-12 h after treatment, suggesting that interference with Ca-AIF1 can suppress the inflammatory response. Furthermore, flow cytometric analysis indicated that anti-CaAIF1 administration reduces RLO/LPS-induced apoptosis and necrosis rates of hemocytes. Collectively these findings suggest that Ca-AIF1 functions as a pro-inflammatory cytokine in the oyster immune response and is a potential target for controlling RLO infection and LPS-induced inflammation.
Collapse
Affiliation(s)
- Ting Xu
- Laboratory of Marine Life Science and Technology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang institute of freshwater fishery, Huzhou, Zhejiang, China
| | - Jiasong Xie
- Laboratory of Marine Life Science and Technology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Baojian Zhu
- College of Life Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiao Liu
- Ningbo University, Ningbo, Zhejiang, China
| | - Xinzhong Wu
- Laboratory of Marine Life Science and Technology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
30
|
Wang F, Chang Z, Fan Q, Wang L. Epigallocatechin‑3‑gallate inhibits the proliferation and migration of human ovarian carcinoma cells by modulating p38 kinase and matrix metalloproteinase‑2. Mol Med Rep 2014; 9:1085-9. [PMID: 24452912 DOI: 10.3892/mmr.2014.1909] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 01/20/2014] [Indexed: 11/05/2022] Open
Abstract
Epigallocatechin‑3‑gallate (EGCG), a major catechin in green tea, has recently been reported to exhibit anticancer effects on a number of types of cancer cells in vitro; however, the molecular mechanisms of this anticancer effect remain poorly understood. In the current study, the effects of EGCG on the proliferation and migration of the OVCAR‑3 human ovarian carcinoma cell line were investigated. Cells were treated with EGCG and their proliferation rates were determined by an MTT assay. In addition, cell migration was detected by transwell assay. The activity of mitogen‑activated protein kinases (MAPKs) and the expression of matrix metalloproteinase‑2/9 (MMP‑2/9) were examined by western blotting. The results showed that EGCG significantly inhibited (P<0.05) the proliferation of OVCAR‑3 cells in a time‑ and concentration‑dependent manner. EGCG (100 µM) time‑dependently increased (P<0.05) the activity of p38, but not extracellular signal‑regulated kinases 1/2. SB203580, a specific p38 MAPK inhibitor, completely diminished EGCG‑induced phosphorylation of p38 and partially blocked EGCG‑inhibited OVCAR‑3 cell proliferation. Furthermore, EGCG (0‑100 µM) dose‑dependently inhibited (P<0.05) OVCAR‑3 cell migration. The protein expression levels of MPP‑2, but not MMP‑9, were dose‑dependently decreased following treatment with EGCG (0‑100 µM) for 48 h. These data indicated that EGCG inhibited OVCAR‑3 cell proliferation and migration, potentially mediated via the activation of p38 MAPK and downregulation of the protein expression of MMP2. Thus, the therapeutic potential of EGCG for ovarian cancer requires further investigation.
Collapse
Affiliation(s)
- Feng Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhiwei Chang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Qingxia Fan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Liuxing Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
31
|
Ye Y, Miao S, Lu R, Xia X, Chen Y, Zhang J, Wu X, He S, Qiang F, Zhou J. Allograft inflammatory factor-1 is an independent prognostic indicator that regulates β-catenin in gastric cancer. Oncol Rep 2013; 31:828-34. [PMID: 24337893 DOI: 10.3892/or.2013.2915] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/29/2013] [Indexed: 11/05/2022] Open
Abstract
Previous studies have revealed that expression of allograft inflammatory factor-1 (AIF-1) protein appears to be increased in malignancies and is correlated with a poorer prognosis in cervical cancer, while its role in gastric cancer has not been reported. We analyzed the expression of AIF-1 in 78 cancer lesions and the corresponding non-cancerous tissues by immunohistochemistry. In contrast with other cancers, we found that AIF-1 protein levels were significantly decreased in 53 of the 78 (67.9%) gastric cancer tissues when compared with the matched normal tissues. This was further confirmed using 7 pairs of fresh gastric cancer tissues and matched adjacent normal tissues. Low tumoral AIF-1 expression was significantly correlated with less favorable clinicopathological characteristics, as well as with reduced overall survival (P<0.001) in the gastric cancer patients. Furthermore, knockdown of AIF-1 obviously increased proliferation, migration and β-catenin expression in BGC-823 and SGC-7901 gastric cancer cells. Taken together, for the first time, we provide evidence that the level of AIF-1 expression may serve as a protective prognostic indicator for gastric cancer.
Collapse
Affiliation(s)
- Yang Ye
- Department of Preventive Medicine, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Shuhan Miao
- Department of Molecular Cell Biology and Toxicology, Cancer Center, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Rongzhu Lu
- Department of Preventive Medicine, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Xiaowei Xia
- Department of Molecular Cell Biology and Toxicology, Cancer Center, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yansu Chen
- Department of Molecular Cell Biology and Toxicology, Cancer Center, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jianbing Zhang
- Department of Molecular Cell Biology and Toxicology, Cancer Center, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xuming Wu
- Department of Molecular Cell Biology and Toxicology, Cancer Center, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Song He
- Department of Pathology, Nantong Cancer Hospital, Nantong, Jiangsu 226361, P.R. China
| | - Fulin Qiang
- Department of Pathology, Nantong Cancer Hospital, Nantong, Jiangsu 226361, P.R. China
| | - Jianwei Zhou
- Department of Molecular Cell Biology and Toxicology, Cancer Center, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
32
|
Zhao YY, Yan DJ, Chen ZW. Role of AIF-1 in the regulation of inflammatory activation and diverse disease processes. Cell Immunol 2013; 284:75-83. [DOI: 10.1016/j.cellimm.2013.07.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 06/23/2013] [Accepted: 07/16/2013] [Indexed: 01/29/2023]
|
33
|
Du J, Wang XF, Zhou QM, Zhang TL, Lu YY, Zhang H, Su SB. Evodiamine induces apoptosis and inhibits metastasis in MDA‑MB-231 human breast cancer cells in vitro and in vivo. Oncol Rep 2013; 30:685-94. [PMID: 23708383 DOI: 10.3892/or.2013.2498] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/16/2013] [Indexed: 11/06/2022] Open
Abstract
Breast cancer remains the leading cause of cancer-related deaths among women. Owing to high efficiency and low toxic effects, further exploration of natural compounds from Chinese herbal medicine may be an efficient approach for breast cancer drug discovery. In this study, we investigated the effects of evodiamine on the growth and metastasis of MDA-MB-231 human breast cancer cells in vitro and in vivo. In vitro, evodiamine inhibited cell migration and invasion abilities through downregulation of MMP-9, urokinase-type plasminogen activator (uPA) and uPAR expression. Evodiamine-induced G0/G1 arrest and apoptosis were associated with a decrease in Bcl-2, cyclin D1 and cyclin-dependent kinase 6 (CDK6) expression and an increase in Bax and p27Kip1 expression. Moreover, evodiamine regulated p-ERK and p-p38 MAPK expression. Evodiamine-induced apoptosis was enhanced by its combination with the extracellular signal-regulated kinase (ERK) inhibitor PD98059 or the p38 mitogen-activated protein kinase (p38 MAPK) inhibitor SB203580. Evodiamine-inhibited metastasis was partly blocked by combination with PD98059 or SB203580. In vivo, the administration of evodiamine (10 mg/kg) significantly reduced tumor growth and pulmonary metastasis. These results demonstrate that evodiamine possesses antitumor activities via inhibition of cell migration and invasion, arrest of the cell cycle and induction of cell apoptosis in MDA-MB-231 cells.
Collapse
Affiliation(s)
- Jia Du
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Pudong, Shanghai 201203, PR China
| | | | | | | | | | | | | |
Collapse
|
34
|
Liu Y, Mei C, Du R, Shen L. Protective effect of allograft inflammatory factor-1 on the apoptosis of fibroblast-like synoviocytes in patients with rheumatic arthritis induced by nitro oxide donor sodium nitroprusside. Scand J Rheumatol 2013; 42:349-55. [DOI: 10.3109/03009742.2013.772233] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
35
|
Ben-Baruch A. The Tumor-Promoting Flow of Cells Into, Within and Out of the Tumor Site: Regulation by the Inflammatory Axis of TNFα and Chemokines. CANCER MICROENVIRONMENT 2011; 5:151-64. [PMID: 22190050 DOI: 10.1007/s12307-011-0094-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 12/08/2011] [Indexed: 12/19/2022]
Abstract
Tumors are dynamic organs, in which active processes of cell motility affect disease course by regulating the composition of cells at the tumor site. While sub-populations of tumor-promoting leukocytes are recruited inward and endothelial cell migration stands in the basis of vascular branching throughout the tumor, cancer cells make their way out of the primary site towards specific metastatic sites. This review describes the independent and cross-regulatory roles of inflammatory chemokines and of the inflammatory cytokine tumor necrosis factor α (TNFα) in determining cell motility processes that eventually have profound effects on tumor growth and metastasis. First, the effects of inflammatory chemokines such as CCL2 (MCP-1), CCL5 (RANTES) and CXCL8 (IL-8) are described, regulating the inward flow of leukocyte sub-populations with pro-tumoral activities, such as tumor-associated macrophages (TAM), myeloid-derived suppressor cells (MDSC), tumor-associated neutrophils (TAN), Th17 cells and Tregs. Then, the ability of inflammatory chemokines to induce endothelial cell migration, sprouting and tube formation is discussed, with its implications on tumor angiogenesis. This part is followed by an in depth description of the manners by which TNFα potentiates the above activities of the inflammatory chemokines, alongside with its ability to directly induce migratory processes in the tumor cells thus promoting metastasis. Note worthy is the ability of TNFα to induce in the tumor cells the important process of epithelial-to-mesenchymal transition (EMT). Emphasis is given to the ability of TNFα to establish an inflammatory network with the chemokines, and in parallel to form a cell re-modeling network together with transforming growth factor β (TGFβ). The review concludes by discussing the implications of such networks on disease course, and on the future design of therapeutic measures in cancer.
Collapse
Affiliation(s)
- Adit Ben-Baruch
- Department Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel,
| |
Collapse
|
36
|
Chen QR, Guan F, Yan DJ, Lei DS, Fu L, Xia HS, Zhu YH, Chen ZW, Niu AO. The dynamic expression of allograft inflammatory factor-1 in hepatic tissues and splenic cells of BALB/c mice with Schistosoma japonicum infection. ACTA ACUST UNITED AC 2011; 79:33-41. [DOI: 10.1111/j.1399-0039.2011.01809.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|