1
|
de Moraes FCA, Souza MEC, Sano VKT, Moraes RA, Melo AC. Association of tumor-infiltrating lymphocytes with clinical outcomes in patients with triple-negative breast cancer receiving neoadjuvant chemotherapy: a systematic review and meta-analysis. Clin Transl Oncol 2024:10.1007/s12094-024-03661-8. [PMID: 39154313 DOI: 10.1007/s12094-024-03661-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024]
Abstract
OBJECTIVE Triple-negative breast cancer (TNBC) presents a clinical challenge as an aggressive tumor, correlated with unfavorable prognosis. Tumor-infiltrating lymphocytes (TILs) have garnered interest as a potential prognostic biomarker. However, the disparity in outcomes between varying TILs rates remains inadequately explored. METHODS PubMed, Scopus, Web of Science, and Cochrane databases were searched for studies about the prognostic value of TILs in patients with TNBC receiving neoadjuvant chemotherapy. The hazard ratios (HRs) or odds ratios (ORs) were computed for binary endpoints, with 95% confidence intervals (CIs). RESULTS Twenty-nine studies were included, involving a population of six thousand one hundred sixty-one (80.41%) with TNBC. The cut-off TILs value ranged from 10 to 60%, with 50% being the most related value. Compared with the low-TIL expression group, the disease-free survival (DFS) (HR 0.71; 95% CI 0.61-0.82; p < 0.00001) and overall survival (OS) (HR 0.76; 95% CI 0.63-0.90; p = 0.002) rates showed significant improvement with higher TIL infiltrations. In the subgroup analyses of the lymphocyte subtypes CD4 + and CD8 + , there was statistical significance favoring higher TILs rates in both subtypes, each associated with improved DFS (HR 0.48; 95% CI 0.33-0.71; p = 0.0002) and OS (HR 0.53; 95% CI 0.36-0.78; p = 0.001), regardless of which cell subtype was predominantly infiltrated. The complete pathological response analysis showed better rates for the higher TIL group than the control for both the TIL (OR 1.29; 95% CI 1.13-1.48; p = 0.0003) and Ki-67 (OR 2.74; 95% CI 2.01-3.73; p < 0.00001) analyses. CONCLUSION Higher expressions of TILs in patients with TNBC were associated with improved significantly DFS, OS, and pCR outcomes.
Collapse
Affiliation(s)
| | | | | | | | - Ana C Melo
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
2
|
Sun HK, Jiang WL, Zhang SL, Xu PC, Wei LM, Liu JB. Predictive value of tumor-infiltrating lymphocytes for neoadjuvant therapy response in triple-negative breast cancer: A systematic review and meta-analysis. World J Clin Oncol 2024; 15:920-935. [PMID: 39071463 PMCID: PMC11271722 DOI: 10.5306/wjco.v15.i7.920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/21/2024] [Accepted: 06/06/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND The association between tumor-infiltrating lymphocyte (TIL) levels and the response to neoadjuvant therapy (NAT) in patients with triple-negative breast cancer (TNBC) remains unclear. AIM To investigate the predictive potential of TIL levels for the response to NAT in TNBC patients. METHODS A systematic search of the National Center for Biotechnology Information PubMed database was performed to collect relevant published literature prior to August 31, 2023. The correlation between TIL levels and the NAT pathologic complete response (pCR) in TNBC patients was assessed using a systematic review and meta-analysis. Subgroup analysis, sensitivity analysis, and publication bias analysis were also conducted. RESULTS A total of 32 studies were included in this meta-analysis. The overall meta-analysis results indicated that the pCR rate after NAT treatment in TNBC patients in the high TIL subgroup was significantly greater than that in patients in the low TIL subgroup (48.0% vs 27.7%) (risk ratio 2.01; 95% confidence interval 1.77-2.29; P < 0.001, I 2 = 56%). Subgroup analysis revealed that the between-study heterogeneity originated from differences in study design, TIL level cutoffs, and study populations. Publication bias could have existed in the included studies. The meta-analysis based on different NAT protocols revealed that all TNBC patients with high levels of TILs had a greater rate of pCR after NAT treatment in all protocols (all P ≤ 0.01), and there was no significant between-protocol difference in the statistics among the different NAT protocols (P = 0.29). Additionally, sensitivity analysis demonstrated that the overall results of the meta-analysis remained consistent when the included studies were individually excluded. CONCLUSION TILs can serve as a predictor of the response to NAT treatment in TNBC patients. TNBC patients with high levels of TILs exhibit a greater NAT pCR rate than those with low levels of TILs, and this predictive capability is consistent across different NAT regimens.
Collapse
Affiliation(s)
- Hai-Kuan Sun
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471000, Henan Province, China
| | - Wen-Long Jiang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471000, Henan Province, China
| | - Shi-Lei Zhang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471000, Henan Province, China
| | - Peng-Cheng Xu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471000, Henan Province, China
| | - Li-Min Wei
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471000, Henan Province, China
| | - Jiang-Bo Liu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471000, Henan Province, China
| |
Collapse
|
3
|
Suwannaphoom K, Soontornsit S, Wiwatwarayos K, Seneetuntigul P, Julimasart P. Assessing the relationship between tumor-infiltrating lymphocytes and PD-L1 expression in triple negative breast cancer: Identifying optimal TILs cut-off value for pathologic reporting. Ann Diagn Pathol 2024; 70:152294. [PMID: 38513466 DOI: 10.1016/j.anndiagpath.2024.152294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Triple Negative Breast Cancer (TNBC) presents diagnostic complexities, particularly in evaluating Tumor-Infiltrating Lymphocytes (TILs) and Programmed Death-Ligand 1 (PD-L1) expression. This study aimed to identify optimal TILs percentage cut-offs predictive of PD-L1 expression and to investigate the relationship between TILs, PD-L1, and tertiary lymphoid structures (TLSs). METHOD Analyzing 141 TNBC cases, we assessed TILs, PD-L1 expression (clones 22C3 and SP142), and TLS presence. RESULTS We identified TILs cut-offs (<20 %, 20-60 %, ≥60 %) correlating with PD-L1 expression. TILs <20 % rarely express PD-L1 with either 22C3 or SP142 clones. TILs ≥60 % demonstrate PD-L1 expression across both clones. TILs within the 20-60 % range correlate with PD-L1 expression using the SP142 clone, but not 22C3. Evaluating TILs solely at the tumor edge led to inaccuracies, highlighting the need for overall assessment of TILs throughout the entire lesion. TLS presence correlated with higher TIL percentages and PD-L1 expression, particularly with SP142. Discrepancies between 22C3 and SP142 clones (15 % vs. 50 % positivity, respectively) underscored the variability in PD-L1 detection. CONCLUSION This study identifies TILs cut-offs predictive of PD-L1 positivity, suggesting the need for institutions to tailor these thresholds based on the selected PD-L1 clone and treatment. Evaluating TILs solely at the tumor edge may overlook the complexity of tumor immune infiltration. While TLS presence correlates with higher PD-L1 expression, particularly with the SP142 clone, its exact predictive value for PD-L1 remains to be clarified. The SP142 clone exhibits higher positivity rates compared to 22C3.
Collapse
|
4
|
McGuinness C, Britt KL. Estrogen receptor regulation of the immune microenvironment in breast cancer. J Steroid Biochem Mol Biol 2024; 240:106517. [PMID: 38555985 DOI: 10.1016/j.jsbmb.2024.106517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/07/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Breast cancer (BCa) is the most common cancer in women and the estrogen receptor (ER)+ subtype is increasing in incidence. There are numerous therapy options available for patients that target the ER, however issues such as innate and acquired treatment resistance, and treatment related side effects justify research into alternative therapeutic options for these patients. Patients of many solid tumour types have benefitted from immunotherapy, however response rates have been generally low in ER+ BCa. We summarise the recent work assessing CDK4/6 inhibitors for ER+ BCa and how they have been shown to prime anti-tumour immune cells and achieve impressive results in preclinical models. A great example of how the immune system might be activated against ER+ BCa. We review the role of estrogen signalling in immune cells, and explore recent data highlighting the hormonal regulation of the immune microenvironment of normal breast, BCa and immune disorders. As recent data has indicated that macrophages are particularly susceptible to estrogen signalling, we highlight macrophage phagocytosis as a key potential target for priming the tumour immune microenvironment. We challenge the generally accepted paradigm that ER+ BCa are "immune-cold" - advocating instead for research into therapies that could be used in combination with targeted therapies and/or immune checkpoint blockade to achieve durable antitumour responses in ER+ BCa.
Collapse
Affiliation(s)
- Conor McGuinness
- Breast Cancer Risk and Prevention Lab, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Kara L Britt
- Breast Cancer Risk and Prevention Lab, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
5
|
Akshatha CR, Halanaik D, Nachiappa Ganesh R, Kishore N, Ganesan P, Kayal S, Kumar H, Dubashi B. Assessment of novel prognostic biomarkers to predict pathological complete response in patients with non-metastatic triple-negative breast cancer using a window of opportunity design. Ther Adv Med Oncol 2024; 16:17588359241248329. [PMID: 38800567 PMCID: PMC11127577 DOI: 10.1177/17588359241248329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/03/2024] [Indexed: 05/29/2024] Open
Abstract
Background Triple-negative breast cancer (TNBC) includes approximately 20% of all breast cancer and is characterized by its aggressive nature, high recurrence rates, and visceral metastasis. Pathological complete response (pCR) is an established surrogate endpoint for survival. The window of opportunity studies provide valuable information on the disease biology prior to definitive treatment. Objectives To study the association of dynamic change in pathological, imagining, and genomic biomarkers that can prognosticate pCR. The study aims to develop a composite prognostic score. Design Clinical, interventional, and prognostic biomarker study using the novel window of opportunity design. Methods The study aims to enroll 80 treatment-naïve, pathologically confirmed TNBC patients, administering a single dose of paclitaxel and carboplatin during the window period before neoadjuvant chemotherapy (NACT). Tumor tissue will be obtained through a tru-cut biopsy, and positron emission tomography and computed tomography scans will be performed for each patient at two time points aiming to evaluate biomarker alterations. This will be followed by the administration of standard dose-dense NACT containing anthracyclines and taxanes, with the study culminating in surgery to assess pCR. Results The study would develop a composite prognostic risk score derived from the dynamic change in the Ki-67, tumor-infiltrating lymphocytes, Standardized Uptake Value (SUV max), Standardized Uptake Value for lean body mass (SUL max), and gene expression level pre- and post-intervention during the window period prior to the start of definitive treatment. This outcome will aid in categorizing the disease biology into risk categories. Trial registration The current study is approved by the Institutional Ethics Committee [Ethics: Protocol. no. JIP/IEC/2020/019]. This study was registered with ClinicalTrials.gov [CTRI Registration: CTRI/2022/06/043109]. Conclusion The validated biomarker score will help to personalize NACT protocols in patients in TNBC planned for definitive treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Smita Kayal
- Department of Medical Oncology, JIPMER, Puducherry, India
| | | | - Biswajit Dubashi
- Department of Medical Oncology, JIPMER, Dhanvantri Nagar, Puducherry 605006, India
| |
Collapse
|
6
|
Otterlei Fjørtoft M, Huse K, Rye IH. The Tumor Immune Microenvironment in Breast Cancer Progression. Acta Oncol 2024; 63:359-367. [PMID: 38779867 PMCID: PMC11332517 DOI: 10.2340/1651-226x.2024.33008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/12/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND The tumor microenvironment significantly influences breast cancer development, progression, and metastasis. Various immune cell populations, including T cells, B cells, NK cells, and myeloid cells exhibit diverse functions in different breast cancer subtypes, contributing to both anti-tumor and pro-tumor activities. PURPOSE This review provides an overview of the predominant immune cell populations in breast cancer subtypes, elucidating their suppressive and prognostic effects. We aim to outline the role of the immune microenvironment from normal breast tissue to invasive cancer and distant metastasis. METHODS A comprehensive literature review was conducted to analyze the involvement of immune cells throughout breast cancer progression. RESULTS In breast cancer, tumors exhibit increased immune cell infiltration compared to normal tissue. Variations exist across subtypes, with higher levels observed in triple-negative and HER2+ tumors are linked to better survival. In contrast, ER+ tumors display lower immune infiltration, associated with poorer outcomes. Furthermore, metastatic sites commonly exhibit a more immunosuppressive microenvironment. CONCLUSION Understanding the complex interaction between tumor and immune cells during breast cancer progression is essential for future research and the development of immune-based strategies. This comprehensive understanding may pave the way for more effective treatment approaches and improved patients outcomes.
Collapse
Affiliation(s)
- Marit Otterlei Fjørtoft
- Department of Cancer Genetics, Institute for Cancer Research, Division of Cancer Medicine, Oslo University Hospital, Radium Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kanutte Huse
- Department of Cancer Immunology, Institute for Cancer Research, Division of Cancer Medicine, Oslo University Hospital, Radium Hospital, Oslo, Norway
| | - Inga Hansine Rye
- Department of Cancer Genetics, Institute for Cancer Research, Division of Cancer Medicine, Oslo University Hospital, Radium Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
7
|
Baez-Navarro X, van den Ende NS, Nguyen AH, Sinke R, Westenend P, van Brakel JB, Stobbe C, Westerga J, van Deurzen CHM. HER2-low and tumor infiltrating lymphocytes in triple-negative breast cancer: Are they connected? Breast Cancer Res 2024; 26:41. [PMID: 38468323 PMCID: PMC10926638 DOI: 10.1186/s13058-024-01783-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/11/2024] [Indexed: 03/13/2024] Open
Abstract
Most patients with triple-negative breast cancer (TNBC) are not candidates for targeted therapy, leaving chemotherapy as the primary treatment option. Recently, immunotherapy has demonstrated promising results in TNBC, due to its immunogenicity. In addition, a novel antibody-drug conjugate, namely, trastuzumab-deruxtecan, has shown effectiveness in TNBC patients with low-HER2 expression (HER2-low). These novel treatment options raise the question about the potential association between the density of stromal tumor-infiltrating lymphocytes (sTILs) and the level of HER2 expression. We aimed to evaluate the association between the level of HER2 expression (HER2-low versus HER2-0) and density of sTILs in TNBC patients, and how they impact the response to neoadjuvant chemotherapy (NAC). This was a retrospective multicenter study including all TNBC patients diagnosed between 2018 and 2022. Central pathology review included sTILs percentages and level of HER2 expression. Tumors were reclassified as either HER2-0 (HER2 IHC 0) or HER2-low (IHC 1 + or 2 + with negative reflex test). Various clinicopathologic characteristics, including sTILs density, and response to NAC were compared between HER2-0 and HER2-low cases. In total, 753 TNBC patients were included in this study, of which 292 patients received NAC. Interobserver agreement between the original pathology report and central review was moderate (77% had the same IHC status after reclassification in either HER2-0 or HER2-low; k = 0.45). HER2-low TNBC represented about one third (36%) of the tumors. No significant difference in sTILs density or complete pathologic response rate was found between HER2-0 and HER2-low cases (p = 0.476 and p = 0.339, respectively). The density of sTILs (≥ 10% sTILs vs. < 10%) was independently associated with achieving a pCR (p = 0.011). In conclusion, no significant association was found between HER2-low status and density of sTILs nor response to NAC. Nonetheless, sTILs could be an independent biomarker for predicting NAC response in TNBC patients.
Collapse
Affiliation(s)
- Ximena Baez-Navarro
- Department of Pathology, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands.
| | - Nadine S van den Ende
- Department of Pathology, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Anh H Nguyen
- Department of Pathology, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
- Department of Pathology, HMC, The Hague, The Netherlands
| | - Renata Sinke
- Department of Pathology, Pathan B.V., Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands
| | - Pieter Westenend
- Laboratory of Pathology, PAL Dordrecht, Dordrecht, The Netherlands
| | | | - Claudia Stobbe
- Department of Pathology, Pathan B.V., Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands
| | - Johan Westerga
- Department of Pathology, Pathan B.V., Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands
| | | |
Collapse
|
8
|
Arqueros C, Gallardo A, Vidal S, Osuna-Gómez R, Tibau A, Lidia Bell O, Ramón Y Cajal T, Lerma E, Lobato-Delgado B, Salazar J, Barnadas A. Clinical Relevance of Tumour-Infiltrating Immune Cells in HER2-Negative Breast Cancer Treated with Neoadjuvant Therapy. Int J Mol Sci 2024; 25:2627. [PMID: 38473874 DOI: 10.3390/ijms25052627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Currently, therapy response cannot be accurately predicted in HER2-negative breast cancer (BC). Measuring stromal tumour-infiltrating lymphocytes (sTILs) and mediators of the tumour microenvironment and characterizing tumour-infiltrating immune cells (TIICs) may improve treatment response in the neoadjuvant setting. Tumour tissue and peripheral blood samples were retrospectively collected from 118 patients, and sTILs were evaluated. Circulating exosomes and myeloid-derived suppressor cells were determined by flow cytometry. TIICs markers (CD4, CD8, CD20, CD1a, and CD68) were assessed immunohistochemically. High sTILs were significantly associated with pathological complete response (pCR; p = 0.048) and event-free survival (EFS; p = 0.027). High-CD68 cells were significantly associated with pCR in triple-negative (TN, p = 0.027) and high-CD1a cells with EFS in luminal-B (p = 0.012) BC. Cluster analyses of TIICs revealed two groups of tumours (C1 and C2) that had different immune patterns and clinical outcomes. An immunoscore based on clinicopathological variables was developed to identify high risk (C1) or low-risk (C2) patients. Additionally, cluster analyses revealed two groups of tumours for both luminal-B and TNBC. Our findings support the association of sTILs with pCR and show an immunological component in a subset of patients with HER2-negative BC. Our immunoscore may be useful for future escalation or de-escalation treatments.
Collapse
Affiliation(s)
- Cristina Arqueros
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Department of Medicine, Faculty of Medicine, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Alberto Gallardo
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Department of Morphological Sciences, Faculty of Medicine, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Institut de Recerca Sant Pau-CERCA Center, 08041 Barcelona, Spain
| | - Silvia Vidal
- Inflammatory Diseases, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Institut de Recerca Sant Pau-CERCA Center, 08041 Barcelona, Spain
| | - Rubén Osuna-Gómez
- Inflammatory Diseases, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Institut de Recerca Sant Pau-CERCA Center, 08041 Barcelona, Spain
| | - Ariadna Tibau
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Olga Lidia Bell
- Translational Medical Oncology Laboratory, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Institut de Recerca Sant Pau-CERCA Center, 08041 Barcelona, Spain
| | - Teresa Ramón Y Cajal
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Enrique Lerma
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Department of Morphological Sciences, Faculty of Medicine, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Institut de Recerca Sant Pau-CERCA Center, 08041 Barcelona, Spain
| | - Bárbara Lobato-Delgado
- Unitat de Genòmica de Malalties Complexes, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau-CERCA Center, 08041 Barcelona, Spain
| | - Juliana Salazar
- Translational Medical Oncology Laboratory, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Institut de Recerca Sant Pau-CERCA Center, 08041 Barcelona, Spain
| | - Agustí Barnadas
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Department of Medicine, Faculty of Medicine, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Translational Medical Oncology Laboratory, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Institut de Recerca Sant Pau-CERCA Center, 08041 Barcelona, Spain
- Centro de Investigación Biomedica en Red Cancer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
9
|
Saad HA, Baz A, Riad M, Eraky ME, El-Taher A, Farid MI, Sharaf K, Said HEM, Ibrahim LA. Tumor microenvironment and immune system preservation in early-stage breast cancer: routes for early recurrence after mastectomy and treatment for lobular and ductal forms of disease. BMC Immunol 2024; 25:9. [PMID: 38273260 PMCID: PMC10809557 DOI: 10.1186/s12865-023-00591-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/07/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Intra-ductal cancer (IDC) is the most common type of breast cancer, with intra-lobular cancer (ILC) coming in second. Surgery is the primary treatment for early stage breast cancer. There are now irrefutable data demonstrating that the immune context of breast tumors can influence growth and metastasis. Adjuvant chemotherapy may be administered in patients who are at a high risk of recurrence. Our goal was to identify the processes underlying both types of early local recurrences. METHODS This was a case-control observational study. Within 2 years of receiving adjuvant taxan and anthracycline-based chemotherapy, as well as modified radical mastectomy (MRM), early stage IDC and ILC recurred. Vimentin, α-smooth muscle actin (SMA), platelet-derived growth factor (PDGF), matrix metalloproteinase (MMP1), and clustered differentiation (CD95) were investigated. RESULTS Of the samples in the ductal type group, 25 showed local recurrence, and 25 did not. Six individuals in the lobular-type group did not experience recurrence, whereas seven did. Vimentin (p = 0.000 and 0.021), PDGF (p = 0.000 and 0.002), and CD95 (p = 0.000 and 0.045) expressions were significantly different in ductal and lobular carcinoma types, respectively. Measurement of ductal type was the sole significant difference found in MMP1 (p = 0.000) and α-SMA (p = 0.000). α-SMA and CD95 were two variables that helped the recurrence mechanism in the ductal type according to the pathway analysis. In contrast, the CD95 route is a recurrent mechanism for the lobular form. CONCLUSIONS While the immune system plays a larger role in ILC, the tumor microenvironment and immune system both influence the recurrence of IDC. According to this study, improving the immune system may be a viable cancer treatment option.
Collapse
Affiliation(s)
- Hassan A Saad
- Surgical Department, Faculty of Medicine, Zagazig University, Zagazig City, 44661, Egypt.
| | - Azza Baz
- Surgical Department, Alahrar Teaching Hospital, Zagazig University, Zagazig City, 55971, Egypt
| | - Mohamed Riad
- Surgical Department, Faculty of Medicine, Zagazig University, Zagazig City, 44661, Egypt
| | - Mohamed E Eraky
- Surgical Department, Faculty of Medicine, Zagazig University, Zagazig City, 44661, Egypt
| | - Ahmed El-Taher
- Surgical Department, Faculty of Medicine, Zagazig University, Zagazig City, 44661, Egypt
| | - Mohamed I Farid
- Surgical Department, Faculty of Medicine, Zagazig University, Zagazig City, 44661, Egypt
| | - Khaled Sharaf
- Surgical Department, Faculty of Medicine, Zagazig University, Zagazig City, 44661, Egypt
| | - Huda E M Said
- Clinical Pathology Department, Faculty of Medicine, Zagazig University, Zagazig City, 55971, Egypt
| | - Lotfy A Ibrahim
- Surgical Department, AlAzhar University, Nasr City, Cairo, 55888, Egypt
| |
Collapse
|
10
|
Hart S, Garcia V, Dudgeon SN, Hanna MG, Li X, Blenman KRM, Elfer K, Ly A, Salgado R, Saltz J, Gupta R, Hytopoulos E, Larsimont D, Lennerz J, Gallas BD. Initial interactions with the FDA on developing a validation dataset as a medical device development tool. J Pathol 2023; 261:378-384. [PMID: 37794720 PMCID: PMC10841854 DOI: 10.1002/path.6208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/14/2023] [Accepted: 08/24/2023] [Indexed: 10/06/2023]
Abstract
Quantifying tumor-infiltrating lymphocytes (TILs) in breast cancer tumors is a challenging task for pathologists. With the advent of whole slide imaging that digitizes glass slides, it is possible to apply computational models to quantify TILs for pathologists. Development of computational models requires significant time, expertise, consensus, and investment. To reduce this burden, we are preparing a dataset for developers to validate their models and a proposal to the Medical Device Development Tool (MDDT) program in the Center for Devices and Radiological Health of the U.S. Food and Drug Administration (FDA). If the FDA qualifies the dataset for its submitted context of use, model developers can use it in a regulatory submission within the qualified context of use without additional documentation. Our dataset aims at reducing the regulatory burden placed on developers of models that estimate the density of TILs and will allow head-to-head comparison of multiple computational models on the same data. In this paper, we discuss the MDDT preparation and submission process, including the feedback we received from our initial interactions with the FDA and propose how a qualified MDDT validation dataset could be a mechanism for open, fair, and consistent measures of computational model performance. Our experiences will help the community understand what the FDA considers relevant and appropriate (from the perspective of the submitter), at the early stages of the MDDT submission process, for validating stromal TIL density estimation models and other potential computational models. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Steven Hart
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester MN, USA
| | - Victor Garcia
- Division of Imaging, Diagnostics, and Software Reliability, Office Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, USA
| | - Sarah N. Dudgeon
- Computational Biology and Bioinformatics Program, Yale University, New Haven, CT, USA
| | | | - Xiaoxian Li
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Kim RM Blenman
- Department of Internal Medicine, Section of Medical Oncology, School of Medicine, Yale University, New Haven, CT, USA
- Department of Computer Science, School of Engineering and Applied Science, Yale University, New Haven, CT, USA
| | - Katherine Elfer
- Division of Imaging, Diagnostics, and Software Reliability, Office Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, USA
| | - Amy Ly
- Department of Pathology, Massachusetts General Hospital, MA, USA
| | - Roberto Salgado
- Department of Pathology, GZA-ZNA Hospitals, Antwerp, Belgium
- Division of Research, Peter Mac Callum Cancer Centre, Melbourne, Australia
| | - Joel Saltz
- Department of Biomedical Informatics, Stony Brook School of Medicine, Stony Brook NY, USA
| | - Rajarsi Gupta
- Department of Biomedical Informatics, Stony Brook School of Medicine, Stony Brook NY, USA
| | | | - Denis Larsimont
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Jochen Lennerz
- Massachusetts General Hospital/Massachusetts General Hospital, Center for Integrated Diagnostics, Boston, MA, USA
| | - Brandon D. Gallas
- Division of Imaging, Diagnostics, and Software Reliability, Office Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
11
|
Liu Y, Han D, Parwani AV, Li Z. Applications of Artificial Intelligence in Breast Pathology. Arch Pathol Lab Med 2023; 147:1003-1013. [PMID: 36800539 DOI: 10.5858/arpa.2022-0457-ra] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2022] [Indexed: 02/19/2023]
Abstract
CONTEXT.— Increasing implementation of whole slide imaging together with digital workflow and advances in computing capacity enable the use of artificial intelligence (AI) in pathology, including breast pathology. Breast pathologists often face a significant workload, with diagnosis complexity, tedious repetitive tasks, and semiquantitative evaluation of biomarkers. Recent advances in developing AI algorithms have provided promising approaches to meet the demand in breast pathology. OBJECTIVE.— To provide an updated review of AI in breast pathology. We examined the success and challenges of current and potential AI applications in diagnosing and grading breast carcinomas and other pathologic changes, detecting lymph node metastasis, quantifying breast cancer biomarkers, predicting prognosis and therapy response, and predicting potential molecular changes. DATA SOURCES.— We obtained data and information by searching and reviewing literature on AI in breast pathology from PubMed and based our own experience. CONCLUSIONS.— With the increasing application in breast pathology, AI not only assists in pathology diagnosis to improve accuracy and reduce pathologists' workload, but also provides new information in predicting prognosis and therapy response.
Collapse
Affiliation(s)
- Yueping Liu
- From the Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China (Liu, Han)
| | - Dandan Han
- From the Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China (Liu, Han)
| | - Anil V Parwani
- The Department of Pathology, The Ohio State University, Columbus (Parwani, Li)
| | - Zaibo Li
- From the Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China (Liu, Han)
| |
Collapse
|
12
|
Choi S, Cho SI, Jung W, Lee T, Choi SJ, Song S, Park G, Park S, Ma M, Pereira S, Yoo D, Shin S, Ock CY, Kim S. Deep learning model improves tumor-infiltrating lymphocyte evaluation and therapeutic response prediction in breast cancer. NPJ Breast Cancer 2023; 9:71. [PMID: 37648694 PMCID: PMC10469174 DOI: 10.1038/s41523-023-00577-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 08/17/2023] [Indexed: 09/01/2023] Open
Abstract
Tumor-infiltrating lymphocytes (TILs) have been recognized as key players in the tumor microenvironment of breast cancer, but substantial interobserver variability among pathologists has impeded its utility as a biomarker. We developed a deep learning (DL)-based TIL analyzer to evaluate stromal TILs (sTILs) in breast cancer. Three pathologists evaluated 402 whole slide images of breast cancer and interpreted the sTIL scores. A standalone performance of the DL model was evaluated in the 210 cases (52.2%) exhibiting sTIL score differences of less than 10 percentage points, yielding a concordance correlation coefficient of 0.755 (95% confidence interval [CI], 0.693-0.805) in comparison to the pathologists' scores. For the 226 slides (56.2%) showing a 10 percentage points or greater variance between pathologists and the DL model, revisions were made. The number of discordant cases was reduced to 116 (28.9%) with the DL assistance (p < 0.001). The DL assistance also increased the concordance correlation coefficient of the sTIL score among every two pathologists. In triple-negative and human epidermal growth factor receptor 2 (HER2)-positive breast cancer patients who underwent the neoadjuvant chemotherapy, the DL-assisted revision notably accentuated higher sTIL scores in responders (26.8 ± 19.6 vs. 19.0 ± 16.4, p = 0.003). Furthermore, the DL-assistant revision disclosed the correlation of sTIL-high tumors (sTIL ≥ 50) with the chemotherapeutic response (odd ratio 1.28 [95% confidence interval, 1.01-1.63], p = 0.039). Through enhancing inter-pathologist concordance in sTIL interpretation and predicting neoadjuvant chemotherapy response, here we report the utility of the DL-based tool as a reference for sTIL scoring in breast cancer assessment.
Collapse
Affiliation(s)
- Sangjoon Choi
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | | | | | | | - Su Jin Choi
- Department of Pathology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | | | | | | | - Minuk Ma
- Lunit Inc, Seoul, Republic of Korea
| | | | | | | | | | - Seokhwi Kim
- Department of Pathology, Ajou University School of Medicine, Suwon, Republic of Korea.
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea.
| |
Collapse
|
13
|
Choi H, Ahn SG, Bae SJ, Kim JH, Eun NL, Lee Y, Nahm JH, Jeong J, Cha YJ. Comparison of Programmed Cell Death Ligand 1 Status between Core Needle Biopsy and Surgical Specimens of Triple-Negative Breast Cancer. Yonsei Med J 2023; 64:518-525. [PMID: 37488704 PMCID: PMC10375241 DOI: 10.3349/ymj.2023.0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 07/26/2023] Open
Abstract
PURPOSE Pembrolizumab is currently used to treat advanced triple-negative breast cancer (TNBC) and high-risk early TNBC with neoadjuvant chemotherapy (NAC). The tumor-infiltrating lymphocyte (TIL) level and programmed cell death ligand 1 (PD-L1) status are predictors of response to NAC and immune checkpoint inhibitor treatment. We aimed to investigate whether the PD-L1 status in core needle biopsies (CNBs) could represent the whole tumor in TNBC. MATERIALS AND METHODS A total of 49 patients diagnosed with TNBC who received upfront surgery without NAC between January 2018 and March 2021 were included. The PD-L1 expression (SP142 and 22C3 clones) and TIL were evaluated in paired CNBs and resected specimens. The concordance PD-L1 status and TIL levels between CNBs and resected specimens were analyzed. RESULTS PD-L1 positivity was more frequently observed in resected specimens. The overall reliability of TIL level in the CNB was good [intraclass correlation coefficient (ICC)=0.847, p<0.001]. The agreements of PD-L1 status were good and fair, respectively (SP142, κ=0.503, p<0.001; 22C3, κ=0.380, p=0.010). As the core number of CNB increased, the reliability and agreement also improved, especially from five tumor cores (TIL, ICC=0.911, p<0.001; PD-L1 [22C3], κ=0.750, p=0.028). Regarding PD-L1 (SP142), no further improvement was observed with ≥5 tumor cores (κ=0.600, p=0.058). CONCLUSION CNBs with ≥5 tumor cores were sufficient to represent the TIL level and PD-L1 (22C3) status in TNBC.
Collapse
Affiliation(s)
- Hyungwook Choi
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Gwe Ahn
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
- Institute of Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Soong Joon Bae
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
- Institute of Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jee Hung Kim
- Institute of Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul, Korea
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Na Lae Eun
- Department of Radiology, Yonsei University College of Medicine, Seoul, Korea
| | - Yangkyu Lee
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
- Institute of Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Hae Nahm
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Joon Jeong
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
- Institute of Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Yoon Jin Cha
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
- Institute of Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
14
|
Wang J, Saltzman AB, Jaehnig EJ, Lei JT, Malovannaya A, Holt MV, Young MN, Rimawi MF, Ademuyiwa FO, Anurag M, Kim BJ, Ellis MJ. Kinase Inhibitor Pulldown Assay Identifies a Chemotherapy Response Signature in Triple-negative Breast Cancer Based on Purine-binding Proteins. CANCER RESEARCH COMMUNICATIONS 2023; 3:1551-1563. [PMID: 37587913 PMCID: PMC10426551 DOI: 10.1158/2767-9764.crc-22-0501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/10/2023] [Accepted: 06/21/2023] [Indexed: 08/18/2023]
Abstract
Triple-negative breast cancer (TNBC) constitutes 10%-15% of all breast tumors. The current standard of care is multiagent chemotherapy, which is effective in only a subset of patients. The original objective of this study was to deploy a mass spectrometry (MS)-based kinase inhibitor pulldown assay (KIPA) to identify kinases elevated in non-pCR (pathologic complete response) cases for therapeutic targeting. Frozen optimal cutting temperature compound-embedded core needle biopsies were obtained from 43 patients with TNBC before docetaxel- and carboplatin-based neoadjuvant chemotherapy. KIPA was applied to the native tumor lysates that were extracted from samples with high tumor content. Seven percent of all identified proteins were kinases, and none were significantly associated with lack of pCR. However, among a large population of "off-target" purine-binding proteins (PBP) identified, seven were enriched in pCR-associated samples (P < 0.01). In orthogonal mRNA-based TNBC datasets, this seven-gene "PBP signature" was associated with chemotherapy sensitivity and favorable clinical outcomes. Functional annotation demonstrated IFN gamma response, nuclear import of DNA repair proteins, and cell death associations. Comparisons with standard tandem mass tagged-based discovery proteomics performed on the same samples demonstrated that KIPA-nominated pCR biomarkers were unique to the platform. KIPA is a novel biomarker discovery tool with unexpected utility for the identification of PBPs related to cytotoxic drug response. The PBP signature has the potential to contribute to clinical trials designed to either escalate or de-escalate therapy based on pCR probability. Significance The identification of pretreatment predictive biomarkers for pCR in response to neoadjuvant chemotherapy would advance precision treatment for TNBC. To complement standard proteogenomic discovery profiling, a KIPA was deployed and unexpectedly identified a seven-member non-kinase PBP pCR-associated signature. Individual members served diverse pathways including IFN gamma response, nuclear import of DNA repair proteins, and cell death.
Collapse
Affiliation(s)
- Junkai Wang
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Alexander B. Saltzman
- Mass Spectrometry Proteomics Core, Advanced Technology Cores, Baylor College of Medicine, Houston, Texas
| | - Eric J. Jaehnig
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Jonathan T. Lei
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Anna Malovannaya
- Mass Spectrometry Proteomics Core, Advanced Technology Cores, Baylor College of Medicine, Houston, Texas
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
| | - Matthew V. Holt
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Meggie N. Young
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
| | - Mothaffar F. Rimawi
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Foluso O. Ademuyiwa
- Siteman Comprehensive Cancer Center and Washington University School of Medicine, St. Louis, Missouri
| | - Meenakshi Anurag
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Beom-Jun Kim
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
- AstraZeneca, Gaithersburg, Maryland
| | - Matthew J. Ellis
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
- AstraZeneca, Gaithersburg, Maryland
| |
Collapse
|
15
|
Abuhadra N, Sun R, Yam C, Rauch GM, Ding Q, Lim B, Thompson AM, Mittendorf EA, Adrada BE, Damodaran S, Virani K, White J, Ravenberg E, Sun J, Choi J, Candelaria R, Arun B, Ueno NT, Santiago L, Saleem S, Abouharb S, Murthy RK, Ibrahim N, Sahin A, Valero V, Symmans WF, Litton JK, Tripathy D, Moulder S, Huo L. Predictive Roles of Baseline Stromal Tumor-Infiltrating Lymphocytes and Ki-67 in Pathologic Complete Response in an Early-Stage Triple-Negative Breast Cancer Prospective Trial. Cancers (Basel) 2023; 15:3275. [PMID: 37444385 DOI: 10.3390/cancers15133275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
High stromal tumor-infiltrating lymphocytes (sTILs) are associated with improved pathologic complete response (pCR) in triple-negative breast cancer (TNBC). We hypothesize that integrating high sTILs and additional clinicopathologic features associated with pCR could enhance our ability to predict the group of patients on whom treatment de-escalation strategies could be tested. In this prospective early-stage TNBC neoadjuvant chemotherapy study, pretreatment biopsies from 408 patients were evaluated for their clinical and demographic features, as well as biomarkers including sTILs, Ki-67, PD-L1 and androgen receptor. Multivariate logistic regression models were developed to generate a computed response score to predict pCR. The pCR rate for the entire cohort was 41%. Recursive partitioning analysis identified ≥20% as the optimal cutoff for sTILs to denote 35% (143/408) of patients as having high sTILs, with a pCR rate of 59%, and 65% (265/408) of patients as having low sTILs, with a pCR rate of 31%. High Ki-67 (cutoff > 35%) was identified as the only predictor of pCR in addition to sTILs in the training set. This finding was verified in the testing set, where the highest computed response score encompassing both high sTILa and high Ki-67 predicted a pCR rate of 65%. Integrating Ki67 and sTIL may refine the selection of early stage TNBC patients for neoadjuvant clinical trials evaluating de-escalation strategies.
Collapse
Affiliation(s)
- Nour Abuhadra
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ryan Sun
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Clinton Yam
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gaiane M Rauch
- Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Qingqing Ding
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bora Lim
- Department of Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alastair M Thompson
- Division of Surgical Oncology, Section of Breast Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Elizabeth A Mittendorf
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Beatriz E Adrada
- Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Senthil Damodaran
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kiran Virani
- Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jason White
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elizabeth Ravenberg
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jia Sun
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jaihee Choi
- Department of Statistics, Rice University, Houston, TX 77005, USA
| | - Rosalind Candelaria
- Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Banu Arun
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Naoto T Ueno
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lumarie Santiago
- Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sadia Saleem
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sausan Abouharb
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rashmi K Murthy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nuhad Ibrahim
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Aysegul Sahin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vicente Valero
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - William Fraser Symmans
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer K Litton
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Stacy Moulder
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lei Huo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
16
|
Greco S, Fabbri N, Spaggiari R, De Giorgi A, Fabbian F, Giovine A. Update on Classic and Novel Approaches in Metastatic Triple-Negative Breast Cancer Treatment: A Comprehensive Review. Biomedicines 2023; 11:1772. [PMID: 37371867 DOI: 10.3390/biomedicines11061772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
Triple-negative breast cancer (TNBC) accounts for almost 15% of all diagnosed breast cancers and often presents high rates of relapses and metastases, with generally poor prognosis despite multiple lines of treatment. Immunotherapy has radically changed the approach of clinicians towards TNBC in the last two to three years, even if targeted and specific therapeutic options are still missing; this unmet need is further justified by the extreme molecular and clinical heterogeneity of this subtype of breast cancer and by the weak response to both single-agent and combined therapies. In March 2023, the National Comprehensive Cancer Network (NCCN), the main association of cancer centers in the United States, released the last clinical practice guidelines, with an update on classic and novel approaches in the field of breast cancer. The purpose of this comprehensive review is to summarize the latest findings in the setting of metastatic TNBC treatment, focusing on each category of drugs approved by the Food and Drug Administration (FDA) and included in the NCCN guidelines. We also introduce part of the latest published studies, which have reported new and promising molecules able to specifically target some of the biomarkers involved in TNBC pathogenesis. We searched the PubMed and Scopus databases for free full texts reported in the literature of the last 5 years, using the words "triple-negative breast cancer" or "TNBC" or "basal-like". The articles were analyzed by the authors independently and double-blindly, and a total of 114 articles were included in the review.
Collapse
Affiliation(s)
- Salvatore Greco
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
- Department of Internal Medicine, Delta Hospital, Via Valle Oppio 2, 44023 Ferrara, Italy
| | - Nicolò Fabbri
- Department of General Surgery, Delta Hospital, Via Valle Oppio 2, 44023 Ferrara, Italy
| | - Riccardo Spaggiari
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Alfredo De Giorgi
- Department of Internal Medicine, University Hospital of Ferrara, Via Aldo Moro 8, 44124 Ferrara, Italy
| | - Fabio Fabbian
- Department of Medical Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Antonio Giovine
- Department of Internal Medicine, Delta Hospital, Via Valle Oppio 2, 44023 Ferrara, Italy
| |
Collapse
|
17
|
Pan L, Han J, Lin M. Targeting breast cancer stem cells directly to treat refractory breast cancer. Front Oncol 2023; 13:981247. [PMID: 37251931 PMCID: PMC10213424 DOI: 10.3389/fonc.2023.981247] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/02/2023] [Indexed: 05/31/2023] Open
Abstract
For patients with refractory breast cancer (BC), integrative immunotherapies are emerging as a critical component of treatment. However, many patients remain unresponsive to treatment or relapse after a period. Different cells and mediators in the tumor microenvironment (TME) play important roles in the progression of BC, and cancer stem cells (CSCs) are deemed the main cause of relapse. Their characteristics depend on their interactions with their microenvironment as well as on the inducing factors and elements in this environment. Strategies to modulate the immune system in the TME of BC that are aimed at reversing the suppressive networks within it and eradicating residual CSCs are, thus, essential for improving the current therapeutic efficacy of BC. This review focuses on the development of immunoresistance in BCs and discusses the strategies that can modulate the immune system and target breast CSCs directly to treat BC including immunotherapy with immune checkpoint blockades.
Collapse
Affiliation(s)
- Liping Pan
- Wuhan Center for Clinical Laboratory, Wuhan, China
| | - Juan Han
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Lin
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Hacking SM, Karam J, Singh K, Gamsiz Uzun ED, Brickman A, Yakirevich E, Taliano R, Wang Y. Whole slide image features predict pathologic complete response and poor clinical outcomes in triple-negative breast cancer. Pathol Res Pract 2023; 246:154476. [PMID: 37146413 DOI: 10.1016/j.prp.2023.154476] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/07/2023]
Abstract
INTRODUCTION Breast cancers are complex ecosystem like networks of malignant cells and their associated microenvironment. Applications for machine intelligence and the tumoral microenvironment are expanding frontiers in pathology. Previously, computational approaches have been developed to quantify and spatially analyze immune cells, proportionate stroma, and detect tumor budding. Little work has been done to analyze different types of tumor-associated stromata both quantitatively and computationally in relation to clinical endpoints. METHODS We aimed to quantify stromal features from whole slide images (WSI) including stromata (myxoid, collagenous, immune) and tumoral components and combined them with traditional clinical and pathologic parameters in 120 triple-negative breast cancer (TNBC) patients treated with neoadjuvant chemotherapy (NAC) to predict pathologic complete response (pCR) and poor clinical outcomes. RESULTS High collagenous stroma on WSI was best associated with lower rates of pCR, while combined high proportionated stroma (myxoid, collagenous, and immune) most optimally predicted worse clinical survival outcomes. When combining clinical, pathologic, and WSI features, Receiver Operator Characteristics (ROC) curves for LASSO features was up to 0.67 for pCR and 0.77 for poor outcomes. CONCLUSION The techniques demonstrated in the present study can be performed with appropriate quality assurance. Future trials are needed to demonstrate whether coupling applications for machine intelligence, inclusive of the tumor mesenchyme, can improve outcomes prediction for patients with breast cancer.
Collapse
Affiliation(s)
- Sean M Hacking
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Lifespan Medical Center, Providence, RI, United States; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Julie Karam
- Center for Computational Molecular Biology, Brown University, Providence, RI, United States
| | - Kamaljeet Singh
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Providence, RI, United States; Department of Pathology and Laboratory Medicine, Women and Infants Hospital, Providence, RI, United States
| | - Ece D Gamsiz Uzun
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Lifespan Medical Center, Providence, RI, United States; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Providence, RI, United States; Center for Computational Molecular Biology, Brown University, Providence, RI, United States
| | - Arlen Brickman
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Lifespan Medical Center, Providence, RI, United States; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Evgeny Yakirevich
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Lifespan Medical Center, Providence, RI, United States; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Ross Taliano
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Lifespan Medical Center, Providence, RI, United States; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Yihong Wang
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Lifespan Medical Center, Providence, RI, United States; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Providence, RI, United States.
| |
Collapse
|
19
|
Thomas JA, Gireesh Moly AG, Xavier H, Suboj P, Ladha A, Gupta G, Singh SK, Palit P, Babykutty S. Enhancement of immune surveillance in breast cancer by targeting hypoxic tumor endothelium: Can it be an immunological switch point? Front Oncol 2023; 13:1063051. [PMID: 37056346 PMCID: PMC10088512 DOI: 10.3389/fonc.2023.1063051] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/17/2023] [Indexed: 03/30/2023] Open
Abstract
Breast cancer ranks second among the causes of cancer-related deaths in women. In spite of the recent advances achieved in the diagnosis and treatment of breast cancer, further study is required to overcome the risk of cancer resistance to treatment and thereby improve the prognosis of individuals with advanced-stage breast cancer. The existence of a hypoxic microenvironment is a well-known event in the development of mutagenesis and rapid proliferation of cancer cells. Tumor cells, purposefully cause local hypoxia in order to induce angiogenesis and growth factors that promote tumor growth and metastatic characteristics, while healthy tissue surrounding the tumor suffers damage or mutate. It has been found that these settings with low oxygen levels cause immunosuppression and a lack of immune surveillance by reducing the activation and recruitment of tumor infiltrating leukocytes (TILs). The immune system is further suppressed by hypoxic tumor endothelium through a variety of ways, which creates an immunosuppressive milieu in the tumor microenvironment. Non responsiveness of tumor endothelium to inflammatory signals or endothelial anergy exclude effector T cells from the tumor milieu. Expression of endothelial specific antigens and immunoinhibitory molecules like Programmed death ligand 1,2 (PDL-1, 2) and T cell immunoglobulin and mucin-domain containing-3 (TIM-3) by tumor endothelium adds fuel to the fire by inhibiting T lymphocytes while promoting regulatory T cells. The hypoxic microenvironment in turn recruits Myeloid Derived Suppressor Cells (MDSCs), Tumor Associated Macrophages (TAMs) and T regulatory cells (Treg). The structure and function of newly generated blood vessels within tumors, on the other hand, are aberrant, lacking the specific organization of normal tissue vasculature. Vascular normalisation may work for a variety of tumour types and show to be an advantageous complement to immunotherapy for improving tumour access. By enhancing immune response in the hypoxic tumor microenvironment, via immune-herbal therapeutic and immune-nutraceuticals based approaches that leverage immunological evasion of tumor, will be briefly reviewed in this article. Whether these tactics may be the game changer for emerging immunological switch point to attenuate the breast cancer growth and prevent metastatic cell division, is the key concern of the current study.
Collapse
Affiliation(s)
- Juvin Ann Thomas
- Centre for Tumor Immunology and Microenvironment, Department of Zoology, Mar Ivanios College, Nalanchira, Thiruvananthapuram, Kerala, India
| | - Athira Gireesh Gireesh Moly
- Centre for Tumor Immunology and Microenvironment, Department of Zoology, Mar Ivanios College, Nalanchira, Thiruvananthapuram, Kerala, India
| | - Hima Xavier
- Centre for Tumor Immunology and Microenvironment, Department of Zoology, Mar Ivanios College, Nalanchira, Thiruvananthapuram, Kerala, India
| | - Priya Suboj
- Department of Botany and Biotechnology, St. Xaviers College, Thumba, Thiruvananthapuram, Kerala, India
| | - Amit Ladha
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, West-Midlands, United Kingdom
| | - Gaurav Gupta
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Santosh Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Partha Palit
- Drug Discovery Research Laboratory, Assam University, Silchar, Department of Pharmaceutical Sciences, Assam, India
| | - Suboj Babykutty
- Centre for Tumor Immunology and Microenvironment, Department of Zoology, Mar Ivanios College, Nalanchira, Thiruvananthapuram, Kerala, India
| |
Collapse
|
20
|
van den Ende NS, Nguyen AH, Jager A, Kok M, Debets R, van Deurzen CHM. Triple-Negative Breast Cancer and Predictive Markers of Response to Neoadjuvant Chemotherapy: A Systematic Review. Int J Mol Sci 2023; 24:ijms24032969. [PMID: 36769287 PMCID: PMC9918290 DOI: 10.3390/ijms24032969] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Around 40-50% of all triple-negative breast cancer (TNBC) patients achieve a pathological complete response (pCR) after treatment with neoadjuvant chemotherapy (NAC). The identification of biomarkers predicting the response to NAC could be helpful for personalized treatment. This systematic review provides an overview of putative biomarkers at baseline that are predictive for a pCR following NAC. Embase, Medline and Web of Science were searched for articles published between January 2010 and August 2022. The articles had to meet the following criteria: patients with primary invasive TNBC without distant metastases and patients must have received NAC. In total, 2045 articles were screened by two reviewers resulting in the inclusion of 92 articles. Overall, the most frequently reported biomarkers associated with a pCR were a high expression of Ki-67, an expression of PD-L1 and the abundance of tumor-infiltrating lymphocytes, particularly CD8+ T cells, and corresponding immune gene signatures. In addition, our review reveals proteomic, genomic and transcriptomic markers that relate to cancer cells, the tumor microenvironment and the peripheral blood, which also affect chemo-sensitivity. We conclude that a prediction model based on a combination of tumor and immune markers is likely to better stratify TNBC patients with respect to NAC response.
Collapse
Affiliation(s)
- Nadine S. van den Ende
- Department of Pathology, Erasmus MC Cancer Institute, Erasmus University Medical Centre, 3015 GD Rotterdam, The Netherlands
- Correspondence: ; Tel.: +31-640213383
| | - Anh H. Nguyen
- Department of Pathology, Erasmus MC Cancer Institute, Erasmus University Medical Centre, 3015 GD Rotterdam, The Netherlands
| | - Agnes Jager
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Centre, 3015 GD Rotterdam, The Netherlands
| | - Marleen Kok
- Department of Medical Oncology, Tumor Biology & Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Reno Debets
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Centre, 3015 GD Rotterdam, The Netherlands
| | - Carolien H. M. van Deurzen
- Department of Pathology, Erasmus MC Cancer Institute, Erasmus University Medical Centre, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
21
|
Huang Z, Shao W, Han Z, Alkashash AM, De la Sancha C, Parwani AV, Nitta H, Hou Y, Wang T, Salama P, Rizkalla M, Zhang J, Huang K, Li Z. Artificial intelligence reveals features associated with breast cancer neoadjuvant chemotherapy responses from multi-stain histopathologic images. NPJ Precis Oncol 2023; 7:14. [PMID: 36707660 PMCID: PMC9883475 DOI: 10.1038/s41698-023-00352-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Advances in computational algorithms and tools have made the prediction of cancer patient outcomes using computational pathology feasible. However, predicting clinical outcomes from pre-treatment histopathologic images remains a challenging task, limited by the poor understanding of tumor immune micro-environments. In this study, an automatic, accurate, comprehensive, interpretable, and reproducible whole slide image (WSI) feature extraction pipeline known as, IMage-based Pathological REgistration and Segmentation Statistics (IMPRESS), is described. We used both H&E and multiplex IHC (PD-L1, CD8+, and CD163+) images, investigated whether artificial intelligence (AI)-based algorithms using automatic feature extraction methods can predict neoadjuvant chemotherapy (NAC) outcomes in HER2-positive (HER2+) and triple-negative breast cancer (TNBC) patients. Features are derived from tumor immune micro-environment and clinical data and used to train machine learning models to accurately predict the response to NAC in breast cancer patients (HER2+ AUC = 0.8975; TNBC AUC = 0.7674). The results demonstrate that this method outperforms the results trained from features that were manually generated by pathologists. The developed image features and algorithms were further externally validated by independent cohorts, yielding encouraging results, especially for the HER2+ subtype.
Collapse
Affiliation(s)
- Zhi Huang
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Department of Electrical and Computer Engineering, Indiana University - Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Wei Shao
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Zhi Han
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Regenstrief Institute, Indianapolis, IN, 46202, USA
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Ahmad Mahmoud Alkashash
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Carlo De la Sancha
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Anil V Parwani
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Hiroaki Nitta
- Roche Tissue Diagnostics, 1910 E. Innovation Park Drive, Tucson, AZ, 85755, USA
| | - Yanjun Hou
- University Hospitals Cleveland Medical Center, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Tongxin Wang
- Department of Computer Science, Indiana University Bloomington, Bloomington, IN, 47408, USA
| | - Paul Salama
- Department of Electrical and Computer Engineering, Indiana University - Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Maher Rizkalla
- Department of Electrical and Computer Engineering, Indiana University - Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Jie Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Kun Huang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Regenstrief Institute, Indianapolis, IN, 46202, USA.
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Zaibo Li
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| |
Collapse
|
22
|
Wu J, Chen Y, Chen L, Ji Z, Tian H, Zheng D, Yang Q, Liu Y, Cai J, Zheng J, Chen Y, Li Z. Global research trends on anti-PD-1/anti-PD-L1 immunotherapy for triple-negative breast cancer: A scientometric analysis. Front Oncol 2023; 12:1002667. [PMID: 36713507 PMCID: PMC9875294 DOI: 10.3389/fonc.2022.1002667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/15/2022] [Indexed: 01/12/2023] Open
Abstract
In recent years, anti-PD-1/anti-PD-L1 has been considered to be a valuable therapeutic target and prognostic indicator for triple-negative breast cancer. We analyzed all publications published in the field from their inception until the present day in order to determine the current research status and hotspots. All related publications were searched on the Web of Science. Our research used R-studio (bibliometrix package), VOSviewer, and CiteSpace to analyze and obtain annual publications and citation information, articles, highest publication countries and affiliations, influential journals and authors, keyword analysis, and keyword bursts. In total, 851 documents were retrieved including 628 articles and 223 review articles. The output of publications increased year by year from 2013 to 2021. However, the average article citation times reached the top in 2014 but generally showed a downward trend from 2014 to 2021. It was an article written by Schmid et al. in 2018 that received the most citations. With regard to publications, citations, and link strength, among the top countries was the United States. Cancers was the most published journal. Schmid and Loi ranked top in total citations and h-index. Schmid has the largest M-index and Loi has the most publication. The keywords that received the most attention were "Immunotherapy", "PD-L1", "Triple-negative breast cancer", "Tumor-infiltrating lymphocytes", and "Expression". According to the report, this current research focuses on immunotherapy for triple-negative breast cancer and the expression of PD-L1 and tumor-infiltrating lymphocytes (TILs). Pembrolizumab and Atezolizumab plus chemotherapy have completed the Phase 3 clinical trial. However, the biomarkers were limited in predicting the treatment prognosis. Through the scientometric analysis, we can understand the current research status and potential research points in this filed and provide research direction for researchers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yexi Chen
- *Correspondence: Yexi Chen, ; Zhiyang Li,
| | - Zhiyang Li
- *Correspondence: Yexi Chen, ; Zhiyang Li,
| |
Collapse
|
23
|
Yazaki S, Shimoi T, Yoshida M, Sumiyoshi-Okuma H, Arakaki M, Saito A, Kita S, Yamamoto K, Kojima Y, Nishikawa T, Tanioka M, Sudo K, Noguchi E, Murata T, Shiino S, Takayama S, Suto A, Ohe Y, Fujiwara Y, Yonemori K. Integrative prognostic analysis of tumor-infiltrating lymphocytes, CD8, CD20, programmed cell death-ligand 1, and tertiary lymphoid structures in patients with early-stage triple-negative breast cancer who did not receive adjuvant chemotherapy. Breast Cancer Res Treat 2023; 197:287-297. [PMID: 36385236 PMCID: PMC9823028 DOI: 10.1007/s10549-022-06787-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022]
Abstract
PURPOSE Stromal tumor-infiltrating lymphocytes (TILs) are independent prognostic factors in systemically untreated early-stage triple-negative breast cancer (TNBC). Other immune biomarkers including CD8, CD20, programmed cell death-ligand 1 (PD-L1), and tertiary lymphoid structures (TLS) are also reported to be associated with prognosis. However, whether combining other immune biomarkers with TILs would allow for further prognostic stratification is unknown. METHODS We retrospectively analyzed 125 patients with early-stage TNBC not receiving perioperative chemotherapy. Stromal TILs and TLS were evaluated on hematoxylin-eosin slides. PD-L1 expression was evaluated using the SP142 assay. CD8 and CD20 were assessed by immunohistochemistry and counted by digital pathology. RESULTS Immune biomarker levels were positively correlated (p < 0.001). Adding CD8 and PD-L1 to multivariable analysis including clinicopathological factors (stage and histological grade) and TILs significantly improved the prognostic model (likelihood ratio χ2 = 9.24, p = 0.01). In Cox regression analysis, high CD8 was significantly associated with better prognosis [hazard ratio (HR) 0.69, 95% confidence interval (CI) 0.48-0.98, p = 0.04], and PD-L1 positivity was significantly associated with worse prognosis (HR 4.33, 95%CI 1.57-11.99, p = 0.005). Patients with high CD8/PD-L1 (-) tumors had the most favorable prognosis [5 year invasive disease-free survival (iDFS), 100%], while patients with low CD8/PD-L1( +) tumors had the worst prognosis (5 year iDFS, 33.3%). CONCLUSION CD8 and PD-L1 levels add prognostic information beyond TILs for early-stage TNBC not receiving perioperative chemotherapy. CD8-positive T cells and PD-L1 may be useful for prognostic stratification and in designing future clinical trials of TNBC.
Collapse
Affiliation(s)
- Shu Yazaki
- Department of Medical Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Cancer Medicine, Jikei University Graduate School of Medicine, Tokyo, Japan
| | - Tatsunori Shimoi
- Department of Medical Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Masayuki Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Hitomi Sumiyoshi-Okuma
- Department of Medical Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Motoko Arakaki
- Department of Medical Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Ayumi Saito
- Department of Medical Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shosuke Kita
- Department of Medical Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kasumi Yamamoto
- Department of Medical Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yuki Kojima
- Department of Medical Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Tadaaki Nishikawa
- Department of Medical Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Maki Tanioka
- Department of Medical Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kazuki Sudo
- Department of Medical Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Emi Noguchi
- Department of Medical Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Takeshi Murata
- Department of Breast Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Sho Shiino
- Department of Breast Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Shin Takayama
- Department of Breast Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Akihiko Suto
- Department of Breast Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Yuichiro Ohe
- Cancer Medicine, Jikei University Graduate School of Medicine, Tokyo, Japan
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yasuhiro Fujiwara
- Department of Medical Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kan Yonemori
- Department of Medical Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| |
Collapse
|
24
|
Barnestein R, Galland L, Kalfeist L, Ghiringhelli F, Ladoire S, Limagne E. Immunosuppressive tumor microenvironment modulation by chemotherapies and targeted therapies to enhance immunotherapy effectiveness. Oncoimmunology 2022; 11:2120676. [PMID: 36117524 PMCID: PMC9481153 DOI: 10.1080/2162402x.2022.2120676] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
With the rapid clinical development of immune checkpoint inhibitors (ICIs), the standard of care in cancer management has evolved rapidly. However, immunotherapy is not currently beneficial for all patients. In addition to intrinsic tumor factors, other etiologies of resistance to ICIs arise from the complex interplay between cancer and its microenvironment. Recognition of the essential role of the tumor microenvironment (TME) in cancer progression has led to a shift from a tumor-cell-centered view of cancer development, to the concept of a complex tumor ecosystem that supports tumor growth and metastatic dissemination. The expansion of immunosuppressive cells represents a cardinal strategy deployed by tumor cells to escape detection and elimination by the immune system. Regulatory T lymphocytes (Treg), myeloid-derived suppressor cells (MDSCs), and type-2 tumor-associated macrophages (TAM2) are major components of these inhibitory cellular networks, with the ability to suppress innate and adaptive anticancer immunity. They therefore represent major impediments to anticancer therapies, particularly immune-based interventions. Recent work has provided evidence that, beyond their direct cytotoxic effects on cancer cells, several conventional chemotherapeutic (CT) drugs and agents used in targeted therapies (TT) can promote the elimination or inactivation of suppressive immune cells, resulting in enhanced antitumor immunity. In this review, we will analyze findings pertaining to this concept, discuss the possible molecular bases underlying the selective targeting of these immunosuppressive cells by antineoplastic agents (CT and/or TT), and consider current challenges and future prospects related to the integration of these molecules into more efficient anticancer strategies, in the era of immunotherapy.
Collapse
Affiliation(s)
- Robby Barnestein
- University of Burgundy, Dijon, France
- Platform of Transfer in Cancer Biology, Georges François Leclerc Cancer Center, Dijon, France
| | - Loïck Galland
- University of Burgundy, Dijon, France
- Platform of Transfer in Cancer Biology, Georges François Leclerc Cancer Center, Dijon, France
- Department of Medical Oncology, Georges François Leclerc Center, Dijon, France
| | - Laura Kalfeist
- University of Burgundy, Dijon, France
- Platform of Transfer in Cancer Biology, Georges François Leclerc Cancer Center, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon University Hospital, Dijon, France
| | - François Ghiringhelli
- University of Burgundy, Dijon, France
- Platform of Transfer in Cancer Biology, Georges François Leclerc Cancer Center, Dijon, France
- Department of Medical Oncology, Georges François Leclerc Center, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon University Hospital, Dijon, France
| | - Sylvain Ladoire
- University of Burgundy, Dijon, France
- Platform of Transfer in Cancer Biology, Georges François Leclerc Cancer Center, Dijon, France
- Department of Medical Oncology, Georges François Leclerc Center, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon University Hospital, Dijon, France
| | - Emeric Limagne
- University of Burgundy, Dijon, France
- Platform of Transfer in Cancer Biology, Georges François Leclerc Cancer Center, Dijon, France
- Department of Medical Oncology, Georges François Leclerc Center, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon University Hospital, Dijon, France
| |
Collapse
|
25
|
Ademuyiwa FO, Gao F, Street CR, Chen I, Northfelt DW, Wesolowski R, Arora M, Brufsky A, Dees EC, Santa-Maria CA, Connolly RM, Force J, Moreno-Aspitia A, Herndon JM, Carmody M, Davies SR, Larson S, Pfaff KL, Jones SM, Weirather JL, Giobbie-Hurder A, Rodig SJ, Liu Z, Hagemann IS, Sharon E, Gillanders WE. A randomized phase 2 study of neoadjuvant carboplatin and paclitaxel with or without atezolizumab in triple negative breast cancer (TNBC) - NCI 10013. NPJ Breast Cancer 2022; 8:134. [PMID: 36585404 PMCID: PMC9803651 DOI: 10.1038/s41523-022-00500-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 12/13/2022] [Indexed: 12/31/2022] Open
Abstract
Atezolizumab with chemotherapy has shown improved progression-free and overall survival in patients with metastatic PD-L1 positive triple negative breast cancer (TNBC). Atezolizumab with anthracycline- and taxane-based neoadjuvant chemotherapy has also shown increased pathological complete response (pCR) rates in early TNBC. This trial evaluated neoadjuvant carboplatin and paclitaxel with or without atezolizumab in patients with clinical stages II-III TNBC. The co-primary objectives were to evaluate if chemotherapy and atezolizumab increase pCR rate and tumor infiltrating lymphocyte (TIL) percentage compared to chemotherapy alone in the mITT population. Sixty-seven patients (ages 25-78 years; median, 52 years) were randomly assigned - 22 patients to Arm A, and 45 to Arm B. Median follow up was 6.6 months. In the modified intent to treat population (all patients evaluable for the primary endpoints who received at least one dose of combination therapy), the pCR rate was 18.8% (95% CI 4.0-45.6%) in Arm A, and 55.6% (95% CI 40.0-70.4%) in Arm B (estimated treatment difference: 36.8%, 95% CI 8.5-56.6%; p = 0.018). Grade 3 or higher treatment-related adverse events occurred in 62.5% of patients in Arm A, and 57.8% of patients in Arm B. One patient in Arm B died from recurrent disease during the follow-up period. TIL percentage increased slightly from baseline to cycle 1 in both Arm A (mean ± SD: 0.6% ± 21.0%) and Arm B (5.7% ± 15.8%) (p = 0.36). Patients with pCR had higher median TIL percentages (24.8%) than those with non-pCR (14.2%) (p = 0.02). Although subgroup analyses were limited by the small sample size, PD-L1-positive patients treated with chemotherapy and atezolizumab had a pCR rate of 75% (12/16). The addition of atezolizumab to neoadjuvant carboplatin and paclitaxel resulted in a statistically significant and clinically relevant increased pCR rate in patients with clinical stages II and III TNBC. (Funded by National Cancer Institute).
Collapse
Affiliation(s)
| | - Feng Gao
- Washington University School of Medicine, St Louis, MO, 63110, USA
| | | | - Ina Chen
- Washington University School of Medicine, St Louis, MO, 63110, USA
| | | | - Robert Wesolowski
- Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Mili Arora
- UC Davis Comprehensive Cancer Center, Sacramento, CA, 95817, USA
| | - Adam Brufsky
- University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - E Claire Dees
- University of North Carolina School of Medicine, Chapel Hill, NC, 27514, USA
| | - Cesar A Santa-Maria
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, 21287, USA
| | | | - Jeremy Force
- Duke University School of Medicine, Durham, NC, 27710, USA
| | | | - John M Herndon
- Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Madelyn Carmody
- Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Sherri R Davies
- Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Sarah Larson
- Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Kathleen L Pfaff
- Cancer Immune Monitoring and Analysis Center, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Stephanie M Jones
- Cancer Immune Monitoring and Analysis Center, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Jason L Weirather
- Cancer Immune Monitoring and Analysis Center, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Anita Giobbie-Hurder
- Cancer Immune Monitoring and Analysis Center, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Scott J Rodig
- Cancer Immune Monitoring and Analysis Center, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Zheng Liu
- Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Ian S Hagemann
- Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Elad Sharon
- National Cancer Institute, Bethesda, MD, 20892, USA
| | | |
Collapse
|
26
|
Kudelova E, Smolar M, Holubekova V, Hornakova A, Dvorska D, Lucansky V, Koklesova L, Kudela E, Kubatka P. Genetic Heterogeneity, Tumor Microenvironment and Immunotherapy in Triple-Negative Breast Cancer. Int J Mol Sci 2022; 23:ijms232314937. [PMID: 36499265 PMCID: PMC9735793 DOI: 10.3390/ijms232314937] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
Heterogeneity of triple-negative breast cancer is well known at clinical, histopathological, and molecular levels. Genomic instability and greater mutation rates, which may result in the creation of neoantigens and enhanced immunogenicity, are additional characteristics of this breast cancer type. Clinical outcome is poor due to early age of onset, high metastatic potential, and increased likelihood of distant recurrence. Consequently, efforts to elucidate molecular mechanisms of breast cancer development, progression, and metastatic spread have been initiated to improve treatment options and improve outcomes for these patients. The extremely complex and heterogeneous tumor immune microenvironment is made up of several cell types and commonly possesses disorganized gene expression. Altered signaling pathways are mainly associated with mutated genes including p53, PIK3CA, and MAPK, and which are positively correlated with genes regulating immune response. Of note, particular immunity-associated genes could be used in prognostic indexes to assess the most effective management. Recent findings highlight the fact that long non-coding RNAs also play an important role in shaping tumor microenvironment formation, and can mediate tumor immune evasion. Identification of molecular signatures, through the use of multi-omics approaches, and effector pathways that drive early stages of the carcinogenic process are important steps in developing new strategies for targeted cancer treatment and prevention. Advances in immunotherapy by remodeling the host immune system to eradicate tumor cells have great promise to lead to novel therapeutic strategies. Current research is focused on combining immune checkpoint inhibition with chemotherapy, PARP inhibitors, cancer vaccines, or natural killer cell therapy. Targeted therapies may improve therapeutic response, eliminate therapeutic resistance, and improve overall patient survival. In the future, these evolving advancements should be implemented for personalized medicine and state-of-art management of cancer patients.
Collapse
Affiliation(s)
- Eva Kudelova
- Clinic of Surgery and Transplant Centre, Jessenius Faculty of Medicine Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Marek Smolar
- Clinic of Surgery and Transplant Centre, Jessenius Faculty of Medicine Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Veronika Holubekova
- Biomedical Centre, Jessenius Faculty of Medicine Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Andrea Hornakova
- Biomedical Centre, Jessenius Faculty of Medicine Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Dana Dvorska
- Biomedical Centre, Jessenius Faculty of Medicine Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Vincent Lucansky
- Biomedical Centre, Jessenius Faculty of Medicine Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Lenka Koklesova
- Clinic of Gynecology and Obstetrics, Jessenius Faculty of Medicine Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Erik Kudela
- Clinic of Gynecology and Obstetrics, Jessenius Faculty of Medicine Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
- Correspondence:
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| |
Collapse
|
27
|
Tower H, Dall G, Davey A, Stewart M, Lanteri P, Ruppert M, Lambouras M, Nasir I, Yeow S, Darcy PK, Ingman WV, Parker B, Haynes NM, Britt KL. Estrogen-induced immune changes within the normal mammary gland. Sci Rep 2022; 12:18986. [PMID: 36347875 PMCID: PMC9643548 DOI: 10.1038/s41598-022-21871-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 10/05/2022] [Indexed: 11/09/2022] Open
Abstract
Breast cancer (BCa) incidence increases following aberrant hormone exposure, which has been linked to direct effects on estrogen receptor (ER)+ mammary epithelium. While estrogen exposure during mammary involution has been shown to drive tumour growth via neutrophils, the potential for the ER + immune microenvironment to mediate part (in addition to mammary epithelial cells) of hormonally controlled BCa risk during normal development has not been assessed. We collected mammary tissue, lymph nodes and blood from tumour naïve mice treated with, oophorectomy, estrogen (17β estradiol) or Fulvestrant. Flow cytometry was used to examine the impact on the frequency of innate and adaptive immune cells. Oophorectomy and fulvestrant decreased the proportion of macrophages, particularly pro-tumour polarized M2 macrophages and neutrophils. Conversely, dendritic cells were increased by these therapies, as were eosinophils. Estrogen increased the proportion of M2 macrophages and to a lesser extent CD4-CD8- double negative and FoxP3+ regulatory T cells but decreased CD8 + T cells and B cells. Excluding eosinophils, these changes were restricted to the mammary tissue. This suggests that inhibiting estrogen action lowers the immune suppressive myeloid cells, increases in antigen presentation and eosinophil-mediated direct or indirect cytotoxic effects. In contrast, estrogen exposure, which drives BCa risk, increases the suppressive myeloid cells and reduces anti-tumour cytotoxic T cells. The impact of hormonal exposure on BCa risk, may in part be linked to its immune modulatory activity.
Collapse
Affiliation(s)
- Helen Tower
- grid.1055.10000000403978434Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Genevieve Dall
- grid.1055.10000000403978434Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1042.70000 0004 0432 4889The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia
| | - Ashleigh Davey
- grid.1055.10000000403978434Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1042.70000 0004 0432 4889Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, 5052 Australia
| | - Melanie Stewart
- grid.1055.10000000403978434Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Patrick Lanteri
- grid.1055.10000000403978434Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Meagan Ruppert
- grid.1055.10000000403978434Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Maria Lambouras
- grid.1055.10000000403978434Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1002.30000 0004 1936 7857Department of Anatomy and Developmental Biology, Monash University Clayton, Wellington Rd, Clayton, 3800 Australia
| | - Ibraheem Nasir
- grid.1055.10000000403978434Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Serene Yeow
- grid.1055.10000000403978434Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Phillip K. Darcy
- grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Melbourne, VIC Australia ,grid.1055.10000000403978434Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Wendy V. Ingman
- grid.1010.00000 0004 1936 7304Discipline of Surgical Specialties, Adelaide Medical School, The Queen Elizabeth Hospital, University of Adelaide, Adelaide, SA 5011 Australia ,grid.1010.00000 0004 1936 7304Robinson Research Institute, University of Adelaide, Adelaide, SA 5005 Australia
| | - Belinda Parker
- grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Melbourne, VIC Australia ,grid.1055.10000000403978434Cancer Evolution and Metastasis Program, Peter MacCallum Cancer Centre, Melbourne, VIC Australia
| | - Nicole M. Haynes
- grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Melbourne, VIC Australia ,grid.1055.10000000403978434Cancer Therapeutics Program, Peter MacCallum Cancer Centre, Melbourne, VIC Australia
| | - Kara L. Britt
- grid.1055.10000000403978434Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1002.30000 0004 1936 7857Department of Anatomy and Developmental Biology, Monash University Clayton, Wellington Rd, Clayton, 3800 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Melbourne, VIC Australia
| |
Collapse
|
28
|
Mollavelioglu B, Cetin Aktas E, Cabioglu N, Abbasov A, Onder S, Emiroglu S, Tükenmez M, Muslumanoglu M, Igci A, Deniz G, Ozmen V. High co-expression of immune checkpoint receptors PD-1, CTLA-4, LAG-3, TIM-3, and TIGIT on tumor-infiltrating lymphocytes in early-stage breast cancer. World J Surg Oncol 2022; 20:349. [PMID: 36271406 DOI: 10.1186/s12957-022-02810-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/21/2022] [Indexed: 11/10/2022] Open
Abstract
High expression of immune checkpoint receptors (ICRs) in the tumor microenvironment regulates the anti-tumor response. In this study, the differential expressions of ICRs on tumor-infiltrating lymphocytes (TILs) in patients with early-stage breast cancer were investigated.The study included 32 patients who underwent surgery with a diagnosis of early-stage breast cancer between September 2018 and March 2020. TIL isolation was performed using a MACS tumor separation device and tumor separation kit. PD-1, CTLA-4, LAG-3, TIM-3, and TIGIT expression of cytotoxic T and natural killer (NK) cells on TILs and peripheral blood lymphocytes (PBLs) were determined by flow cytometry.Patients with a high Ki-67 index, high TIL density, and HER-2 positivity were more likely to have increased CD16+CD56dim NK cells on TILs. Patients with T2 tumors were more likely to have increased expression of PD-1, LAG-3, and TIGIT on tumor-infiltrating CD8+ cytotoxic T cells than those with T1 tumors. PD-1, CTLA-4, TIGIT, LAG-3, and TIM-3 expression of CD8+ T and CD16-CD56bright NK cells in TILs showed significant positive correlations with each other. PD1+CD8+, TIGIT+CD16+, and CTLA-4+CD56+ cells in PBLs and TILs were found to be negatively correlated, whereas only TIM-3+ expression of CD8+ T and CD16+CD56dim cells in PBLs and TILs showed positive correlations.Our results suggest that CD16+CD56dim NK cells on TILs may play a major role in the immune response against HER2-positive or highly proliferating breast tumors in patients with early-stage breast cancer. Furthermore, various ICRs were found to be highly co-expressed with each other on TILs, including PD-1, CTLA-4, LAG-3, TIM-3, and TIGIT. These receptors may synergistically suppress the response to the tumor, which may trigger immune escape mechanisms in the early stage of carcinogenesis. However, ICR expressions other than TIM3 on PBLs were not found to accompany their counterparts on TILs.
Collapse
Affiliation(s)
- Baran Mollavelioglu
- Istanbul Faculty of Medicine, Department of General Surgery, Istanbul University, Istanbul, Turkey
| | - Esin Cetin Aktas
- Department of Immunology, Istanbul University, Aziz Sancar Institute of Experimental Medicine, Istanbul, Turkey
| | - Neslihan Cabioglu
- Istanbul Faculty of Medicine, Department of General Surgery, Istanbul University, Istanbul, Turkey
| | - Aykhan Abbasov
- Istanbul Faculty of Medicine, Department of General Surgery, Istanbul University, Istanbul, Turkey
| | - Semen Onder
- Department of Pathology, Istanbul University Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Selman Emiroglu
- Istanbul Faculty of Medicine, Department of General Surgery, Istanbul University, Istanbul, Turkey
| | - Mustafa Tükenmez
- Istanbul Faculty of Medicine, Department of General Surgery, Istanbul University, Istanbul, Turkey
| | - Mahmut Muslumanoglu
- Istanbul Faculty of Medicine, Department of General Surgery, Istanbul University, Istanbul, Turkey
| | - Abdullah Igci
- Istanbul Faculty of Medicine, Department of General Surgery, Istanbul University, Istanbul, Turkey
| | - Gunnur Deniz
- Department of Immunology, Istanbul University, Aziz Sancar Institute of Experimental Medicine, Istanbul, Turkey
| | - Vahit Ozmen
- Istanbul Faculty of Medicine, Department of General Surgery, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
29
|
Lazaratos AM, Annis MG, Siegel PM. GPNMB: a potent inducer of immunosuppression in cancer. Oncogene 2022; 41:4573-4590. [PMID: 36050467 DOI: 10.1038/s41388-022-02443-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/09/2022]
Abstract
The immune system is comprised of both innate and adaptive immune cells, which, in the context of cancer, collectively function to eliminate tumor cells. However, tumors can actively sculpt the immune landscape to favor the establishment of an immunosuppressive microenvironment, which promotes tumor growth and progression to metastatic disease. Glycoprotein-NMB (GPNMB) is a transmembrane glycoprotein that is overexpressed in a variety of cancers. It can promote primary tumor growth and metastasis, and GPNMB expression correlates with poor prognosis and shorter recurrence-free survival in patients. There is growing evidence supporting an immunosuppressive role for GPNMB in the context of malignancy. This review provides a description of the emerging roles of GPNMB as an inducer of immunosuppression, with a particular focus on its role in mediating cancer progression by restraining pro-inflammatory innate and adaptive immune responses.
Collapse
Affiliation(s)
| | - Matthew G Annis
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada.,Department of Medicine, McGill University, Montréal, QC, Canada
| | - Peter M Siegel
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada. .,Department of Medicine, McGill University, Montréal, QC, Canada. .,Department of Biochemistry, McGill University, Montréal, QC, Canada. .,Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada. .,Department of Oncology, McGill University, Montréal, QC, Canada.
| |
Collapse
|
30
|
Irajizad E, Wu R, Vykoukal J, Murage E, Spencer R, Dennison JB, Moulder S, Ravenberg E, Lim B, Litton J, Tripathym D, Valero V, Damodaran S, Rauch GM, Adrada B, Candelaria R, White JB, Brewster A, Arun B, Long JP, Do KA, Hanash S, Fahrmann JF. Application of Artificial Intelligence to Plasma Metabolomics Profiles to Predict Response to Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer. Front Artif Intell 2022; 5:876100. [PMID: 36034598 PMCID: PMC9403735 DOI: 10.3389/frai.2022.876100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
There is a need to identify biomarkers predictive of response to neoadjuvant chemotherapy (NACT) in triple-negative breast cancer (TNBC). We previously obtained evidence that a polyamine signature in the blood is associated with TNBC development and progression. In this study, we evaluated whether plasma polyamines and other metabolites may identify TNBC patients who are less likely to respond to NACT. Pre-treatment plasma levels of acetylated polyamines were elevated in TNBC patients that had moderate to extensive tumor burden (RCB-II/III) following NACT compared to those that achieved a complete pathological response (pCR/RCB-0) or had minimal residual disease (RCB-I). We further applied artificial intelligence to comprehensive metabolic profiles to identify additional metabolites associated with treatment response. Using a deep learning model (DLM), a metabolite panel consisting of two polyamines as well as nine additional metabolites was developed for improved prediction of RCB-II/III. The DLM has potential clinical value for identifying TNBC patients who are unlikely to respond to NACT and who may benefit from other treatment modalities.
Collapse
Affiliation(s)
- Ehsan Irajizad
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ranran Wu
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jody Vykoukal
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Eunice Murage
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rachelle Spencer
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jennifer B. Dennison
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Stacy Moulder
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Elizabeth Ravenberg
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Bora Lim
- Breast Cancer Research Program, Baylor College of Medicine, Houston, TX, United States
| | - Jennifer Litton
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Debu Tripathym
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Vicente Valero
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Senthil Damodaran
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Gaiane M. Rauch
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Beatriz Adrada
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rosalind Candelaria
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jason B. White
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Abenaa Brewster
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Banu Arun
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - James P. Long
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kim Anh Do
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sam Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- *Correspondence: Sam Hanash
| | - Johannes F. Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Johannes F. Fahrmann
| |
Collapse
|
31
|
Davodabadi F, Sarhadi M, Arabpour J, Sargazi S, Rahdar A, Díez-Pascual AM. Breast cancer vaccines: New insights into immunomodulatory and nano-therapeutic approaches. J Control Release 2022; 349:844-875. [PMID: 35908621 DOI: 10.1016/j.jconrel.2022.07.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 10/16/2022]
Abstract
Breast cancer (BC) is known to be a highly heterogeneous disease that is clinically subdivided into four primary molecular subtypes, each having distinct morphology and clinical implications. These subtypes are principally defined by hormone receptors and other proteins involved (or not involved) in BC development. BC therapeutic vaccines [including peptide-based vaccines, protein-based vaccines, nucleic acid-based vaccines (DNA/RNA vaccines), bacterial/viral-based vaccines, and different immune cell-based vaccines] have emerged as an appealing class of cancer immunotherapeutics when used alone or combined with other immunotherapies. Employing the immune system to eliminate BC cells is a novel therapeutic modality. The benefit of active immunotherapies is that they develop protection against neoplastic tissue and readjust the immune system to an anti-tumor monitoring state. Such immunovaccines have not yet shown effectiveness for BC treatment in clinical trials. In recent years, nanomedicines have opened new windows to increase the effectiveness of vaccinations to treat BC. In this context, some nanoplatforms have been designed to efficiently deliver molecular, cellular, or subcellular vaccines to BC cells, increasing the efficacy and persistence of anti-tumor immunity while minimizing undesirable side effects. Immunostimulatory nano-adjuvants, liposomal-based vaccines, polymeric vaccines, virus-like particles, lipid/calcium/phosphate nanoparticles, chitosan-derived nanostructures, porous silicon microparticles, and selenium nanoparticles are among the newly designed nanostructures that have been used to facilitate antigen internalization and presentation by antigen-presenting cells, increase antigen stability, enhance vaccine antigenicity and remedial effectivity, promote antigen escape from the endosome, improve cytotoxic T lymphocyte responses, and produce humoral immune responses in BC cells. Here, we summarized the existing subtypes of BC and shed light on immunomodulatory and nano-therapeutic strategies for BC vaccination. Finally, we reviewed ongoing clinical trials on BC vaccination and highlighted near-term opportunities for moving forward.
Collapse
Affiliation(s)
- Fatemeh Davodabadi
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran
| | - Mohammad Sarhadi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
| | - Javad Arabpour
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran.
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
32
|
Principe DR, Kamath SD, Korc M, Munshi HG. The immune modifying effects of chemotherapy and advances in chemo-immunotherapy. Pharmacol Ther 2022; 236:108111. [PMID: 35016920 PMCID: PMC9271143 DOI: 10.1016/j.pharmthera.2022.108111] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/06/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have transformed the treatment paradigm for several malignancies. While the use of single-agent or combined ICIs has achieved acceptable disease control rates in a variety of solid tumors, such approaches have yet to show substantial therapeutic efficacy in select difficult-to-treat cancer types. Recently, select chemotherapy regimens are emerging as extensive modifiers of the tumor microenvironment, leading to the reprogramming of local immune responses. Accordingly, data is now emerging to suggest that certain anti-neoplastic agents modulate various immune cell processes, most notably the cross-presentation of tumor antigens, leukocyte trafficking, and cytokine biosynthesis. As such, the combination of ICIs and cytotoxic chemotherapy are beginning to show promise in many cancers that have long been considered poorly responsive to ICI-based immunotherapy. Here, we discuss past and present attempts to advance chemo-immunotherapy in these difficult-to-treat cancer histologies, mechanisms through which select chemotherapies modify tumor immunogenicity, as well as important considerations when designing such approaches to maximize efficacy and improve therapeutic response rates.
Collapse
Affiliation(s)
- Daniel R Principe
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, IL, USA; Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, USA.
| | - Suneel D Kamath
- Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA
| | - Murray Korc
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Hidayatullah G Munshi
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Jesse Brown VA Medical Center, Chicago, IL, USA
| |
Collapse
|
33
|
Huertas-Caro CA, Ramirez MA, Gonzalez-Torres HJ, Sanabria-Salas MC, Serrano-Gómez SJ. Immune Lymphocyte Infiltrate and its Prognostic Value in Triple-Negative Breast Cancer. Front Oncol 2022; 12:910976. [PMID: 35924147 PMCID: PMC9342669 DOI: 10.3389/fonc.2022.910976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Triple-negative breast cancer (TNBC) occurs more frequently in young (<50 years) non-Hispanic black and Hispanic/Latina women. It is considered the most aggressive subtype of breast cancer, although, recently, immune infiltrate has been associated with long-term survival, lower risk of death and recurrence, and response to neoadjuvant chemotherapy. The aim of this review was to evaluate the clinical impact of the immune infiltrate in TNBC by discussing whether its prognostic value varies across different populations. A comprehensive systematic search in databases such as PubMed and Web of Science was conducted to include papers focused on tumor-infiltrating lymphocytes (TILs) in TNBC in different population groups and that were published before January 2021. TNBC patients with higher levels of TILs had longer overall survival and disease-free survival times compared with TNBC patients with low TIL levels. Similar results were observed for CD4+, CD8+ TIL populations. On the other hand, patients with high TIL levels showed a higher rate of pathological complete response regardless of the population group (Asian, European, and American). These results altogether suggest that TIL subpopulations might have a prognostic role in TNBC, but the underlying mechanism needs to be elucidated. Although the prognosis value of TILs was not found different between the population groups analyzed in the revised literature, further studies including underrepresented populations with different genetic ancestries are still necessary to conclude in this regard.
Collapse
Affiliation(s)
| | - Mayra Alejandra Ramirez
- Grupo de investigación en biología del cáncer, Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Henry J. Gonzalez-Torres
- Doctorado en Ciencias Biomédicas, Universidad del Valle, Cali, Colombia
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla, Colombia
| | | | - Silvia J. Serrano-Gómez
- Grupo de apoyo y seguimiento para la investigación, Instituto Nacional de Cancerología, Bogotá, Colombia
| |
Collapse
|
34
|
Jimenez JE, Abdelhafez A, Mittendorf EA, Elshafeey N, Yung JP, Litton JK, Adrada BE, Candelaria RP, White J, Thompson AM, Huo L, Wei P, Tripathy D, Valero V, Yam C, Hazle JD, Moulder SL, Yang WT, Rauch GM. A model combining pretreatment MRI radiomic features and tumor-infiltrating lymphocytes to predict response to neoadjuvant systemic therapy in triple-negative breast cancer. Eur J Radiol 2022; 149:110220. [DOI: 10.1016/j.ejrad.2022.110220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/13/2021] [Accepted: 02/10/2022] [Indexed: 12/20/2022]
|
35
|
Xing X, Shi J, Jia Y, Dou Y, Li Z, Dong B, Guo T, Cheng X, Li X, Du H, Hu Y, Jia S, Zhang J, Li Z, Ji J. Effect of neoadjuvant chemotherapy on the immune microenvironment in gastric cancer as determined by multiplex immunofluorescence and T cell receptor repertoire analysis. J Immunother Cancer 2022; 10:e003984. [PMID: 35361730 PMCID: PMC8971786 DOI: 10.1136/jitc-2021-003984] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The combination of immune checkpoint blockade and chemotherapy has revolutionized the treatment of advanced gastric cancer (GC). It is crucial to unravel chemotherapy-induced tumor microenvironment (TME) modulation and identify which immunotherapy would improve antitumor effect. METHODS In this study, tumor-associated immune cells (TAICs) infiltration in residual tumor after neoadjuvant chemotherapy (NAC) together with 1075 cases of treatment-naïve GC patients was analyzed first. Then we performed multiplex fluorescence staining of a panel of immune markers (CD3, CD4, CD8, FOXP3 and PDL1) and T cell receptor β-chain sequencing to phenotype and enumerate T cell subpopulations and clonal expansion in paired GC samples (prechemotherapy and postchemotherapy) from another cohort of 30 cases of stage II/III GC patients. RESULTS Infiltration of CD68+ macrophages in residual tumors after NAC was significantly decreased compared with treatment-naïve GC patients, while no significant difference observed with respect to other immune markers. In residual tumors, post-NAC CD8 +T cells and CD68+ macrophages levels were significantly associated with chemotherapy response. Post-NAC CD8+ T cell levels remained as an independent predictor for favorable prognosis. Furthermore, when comparing the paired samples before and after NAC from 30 cases of stage II/III GC patients, we found FOXP3+ regulatory T cells proportion significantly decreased after chemotherapy. Pre-NAC FOXP3+ T reg cells level was much richer in the response group and decreased more significantly in the stromal compartment. CD8+ cytotoxic T lymphocytes levels were elevated after chemotherapy, which was more significant in the group treated with XELOX regimen and in patients with better response, consistent with the TCR diversity elevation. CONCLUSIONS These findings have deepened our understanding of the immune modulating effect of chemotherapy and suggest that the immune profile of specimens after standard chemotherapy should be considered for the personalized immunotherapy to ultimately improve clinical outcome in patients with GC.
Collapse
Affiliation(s)
- Xiaofang Xing
- Department of Gastrointestinal Translational Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital, Beijing, China
| | - Jinyao Shi
- Department of Gastrointestinal Translational Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital, Beijing, China
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Yongning Jia
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Yunsheng Dou
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Zhongwu Li
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Bin Dong
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Ting Guo
- Department of Gastrointestinal Translational Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital, Beijing, China
| | - Xiaojing Cheng
- Department of Gastrointestinal Translational Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital, Beijing, China
| | - Xiaomei Li
- Department of Gastrointestinal Translational Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital, Beijing, China
| | - Hong Du
- Department of Gastrointestinal Translational Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital, Beijing, China
| | - Ying Hu
- Biobank, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Shuqin Jia
- Department of Molecular Diagnosis, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Jian Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Ziyu Li
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Jiafu Ji
- Department of Gastrointestinal Translational Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital, Beijing, China
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
36
|
Qureshi S, Chan N, George M, Ganesan S, Toppmeyer D, Omene C. Immune Checkpoint Inhibitors in Triple Negative Breast Cancer: The Search for the Optimal Biomarker. Biomark Insights 2022; 17:11772719221078774. [PMID: 35221668 PMCID: PMC8874164 DOI: 10.1177/11772719221078774] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022] Open
Abstract
Triple negative breast cancer (TNBC) is a high-risk and aggressive malignancy characterized by the absence of estrogen receptors (ER) and progesterone receptors (PR) on the surface of malignant cells, and by the lack of overexpression of human epidermal growth factor 2 (HER2). It has limited therapeutic options compared to other subtypes of breast cancer. There is now a growing body of evidence on the role of immunotherapy in TNBC, however much of the data from clinical trials is conflicting and thus, challenging for clinicians to integrate the data into clinical practice. Landmark phase III trials using immunotherapy in the early-stage neoadjuvant setting concluded that the addition of immunotherapy to chemotherapy improved the pathologic complete response (pCR) rate compared to chemotherapy with placebo while others found no significant improvement in pCR. Phase III trials have investigated the utility of immunotherapy in previously untreated metastatic TNBC, and these studies have similarly arrived at inconsistent conclusions. Some studies showed no benefit while others demonstrated a clinically significant improvement in overall survival in the PD-L1 positive population. It is not yet clear which biomarkers are most useful, and assays for these biomarkers have not been standardized. Given the often serious and severe side effects of immunotherapy, it is important and necessary to identify predictive biomarkers of response and resistance in order to enhance patient selection. In this review, we will discuss both the challenges of traditional biomarkers and the opportunities of emerging biomarkers for patient selection.
Collapse
Affiliation(s)
- Sadaf Qureshi
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Nancy Chan
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Mridula George
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Shridar Ganesan
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Deborah Toppmeyer
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Coral Omene
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
37
|
Molecular Mechanisms, Biomarkers and Emerging Therapies for Chemotherapy Resistant TNBC. Int J Mol Sci 2022; 23:ijms23031665. [PMID: 35163586 PMCID: PMC8836182 DOI: 10.3390/ijms23031665] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is associated with high recurrence rates, high incidence of distant metastases, and poor overall survival (OS). Taxane and anthracycline-containing chemotherapy (CT) is currently the main systemic treatment option for TNBC, while platinum-based chemotherapy showed promising results in the neoadjuvant and metastatic settings. An early arising of intrinsic or acquired CT resistance is common and represents the main hurdle for successful TNBC treatment. Numerous mechanisms were uncovered that can lead to the development of chemoresistance. These include cancer stem cells (CSCs) induction after neoadjuvant chemotherapy (NACT), ATP-binding cassette (ABC) transporters, hypoxia and avoidance of apoptosis, single factors such as tyrosine kinase receptors (EGFR, IGFR1), a disintegrin and metalloproteinase 10 (ADAM10), and a few pathological molecular pathways. Some biomarkers capable of predicting resistance to specific chemotherapeutic agents were identified and are expected to be validated in future studies for a more accurate selection of drugs to be employed and for a more tailored approach, both in neoadjuvant and advanced settings. Recently, based on specific biomarkers, some therapies were tailored to TNBC subsets and became available in clinical practice: olaparib and talazoparib for BRCA1/2 germline mutation carriers larotrectinib and entrectinib for neurotrophic tropomyosin receptor kinase (NTRK) gene fusion carriers, and anti-trophoblast cell surface antigen 2 (Trop2) antibody drug conjugate therapy for heavily pretreated metastatic TNBC (mTNBC). Further therapies targeting some pathologic molecular pathways, apoptosis, miRNAS, epidermal growth factor receptor (EGFR), insulin growth factor 1 receptor (IGF-1R), and androgen receptor (AR) are under investigation. Among them, phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) and EGFR inhibitors as well as antiandrogens showed promising results and are under evaluation in Phase II/III clinical trials. Emerging therapies allow to select specific antiblastics that alone or by integrating the conventional therapeutic approach may overcome/hinder chemoresistance.
Collapse
|
38
|
Corti C, Giachetti PPMB, Eggermont AMM, Delaloge S, Curigliano G. Therapeutic vaccines for breast cancer: Has the time finally come? Eur J Cancer 2022; 160:150-174. [PMID: 34823982 PMCID: PMC8608270 DOI: 10.1016/j.ejca.2021.10.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/15/2022]
Abstract
The ability to exploit the immune system as a weapon against cancer has revolutionised the treatment of cancer patients, especially through immune checkpoint inhibitors (ICIs). However, ICIs demonstrated a modest benefit in treating breast cancer (BC), with the exception of certain subsets of triple-negative BCs. An immune-suppressive tumour microenvironment (TME), typically present in BC, is an important factor in the poor response to immunotherapy. After almost two decades of poor clinical trial results, cancer vaccines (CVs), an active immunotherapy, have come back in the spotlight because of some technological advancements, ultimately boosted by coronavirus disease 2019 pandemic. In particular, neoantigens are emerging as the preferred targets for CVs, with gene-based and viral vector-based platforms in development. Moreover, lipid nanoparticles proved to be immunogenic and efficient delivery vehicles. Past clinical trials investigating CVs focused especially on the metastatic disease, where the TME is more likely compromised by inhibitory mechanisms. In this sense, favouring the use of CVs as monotherapy in premalignant or in the adjuvant setting and establishing combination treatments (i.e. CV plus ICI) in late-stage disease are promising strategies. This review provides a full overview of the past and current breast cancer vaccine landscape.
Collapse
Affiliation(s)
- Chiara Corti
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Haematology (DIPO), University of Milan, Milan, Italy
| | - Pier P M B Giachetti
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Haematology (DIPO), University of Milan, Milan, Italy
| | - Alexander M M Eggermont
- Princess Máxima Center, Utrecht, the Netherlands; Department of Cancer Medicine, Institut Gustave Roussy, Villejuif, France
| | - Suzette Delaloge
- Department of Cancer Medicine, Institut Gustave Roussy, Villejuif, France
| | - Giuseppe Curigliano
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Haematology (DIPO), University of Milan, Milan, Italy.
| |
Collapse
|
39
|
Immune Milieu and Genomic Alterations Set the Triple-Negative Breast Cancer Immunomodulatory Subtype Tumor Behavior. Cancers (Basel) 2021; 13:cancers13246256. [PMID: 34944876 PMCID: PMC8699570 DOI: 10.3390/cancers13246256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Triple-negative breast cancer (TNBC) is an aggressive and highly heterogeneous breast cancer subtype, both molecular and transcriptomic. Gene expression patterns identified seven TNBC subtypes; basal-like 1 (BL1), basal-like 2 (BL2), immunomodulatory (IM), mesenchymal (M), mesenchymal stem-like (MSL), luminal androgen receptor (LAR), and unstable (UNS). Herein, we contrasted the IM subtype with non-IM TNBC, including clinical, histopathological, and molecular variables. Our results showed that the IM subtype featured an increased FOXP3+ TILs infiltration and a higher CTLA-4 and PD-L1 expression compared with non-IM tumors. Long intergenic non-coding RNAs associated with the immune response through transcriptomic and enrichment analyses characterized the IM-subtype enriched by the β-catenin signaling pathway. Additionally, DNA sequencing identified differences in mutation rates as well as some specific mutations. These results should motivate the design of future clinical trials in which the benefit of immune-based therapy in this subgroup of patients could be evaluated. Abstract Triple-negative breast cancer (TNBC) is an aggressive and heterogeneous disease. Seven subtypes have been described based on gene expression patterns. Herein, we characterized the tumor biology and clinical behavior of the immunomodulatory (IM) subtype. Methods: Formalin-fixed paraffin-embedded tumor samples from 68 high-risk (stage III-IV) TNBC patients were analyzed through microarrays, immunohistochemistry, and DNA sequencing. Results: The IM subtype was identified in 24% of TNBC tumor samples and characterized by a higher intratumoral (intT) and stromal (strml) infiltration of FOXP3+ TILs (Treg) compared with non-IM subtypes. Further, PD-L1+ (>1%) expression was significantly higher, as well as CTLA-4+ intT and strml expression in the IM subtype. Differential expression and gene set enrichment analysis identified biological processes associated with the immune system. Pathway analysis revealed enrichment of the β-catenin signaling pathway. The non-coding analysis led to seven Long Intergenic Non-Protein Coding RNAs (lincRNAs) (6 up-regulated and 1 down-regulated) that were associated with a favorable prognosis in the TNBC-IM subtype. The DNA sequencing highlighted two genes relevant to immune system responses: CTNNB1 (Catenin β-1) and IDH1. Conclusion: the IM subtype showed a distinct immune microenvironment, as well as subtype-specific genomic alterations. Characterizing TNBC at a molecular and transcriptomic level might guide immune-based therapy in this subgroup of patients.
Collapse
|
40
|
Pullikuth AK, Routh ED, Zimmerman KD, Chifman J, Chou JW, Soike MH, Jin G, Su J, Song Q, Black MA, Print C, Bedognetti D, Howard-McNatt M, O’Neill SS, Thomas A, Langefeld CD, Sigalov AB, Lu Y, Miller LD. Bulk and Single-Cell Profiling of Breast Tumors Identifies TREM-1 as a Dominant Immune Suppressive Marker Associated With Poor Outcomes. Front Oncol 2021; 11:734959. [PMID: 34956864 PMCID: PMC8692779 DOI: 10.3389/fonc.2021.734959] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
BackgroundTriggering receptor expressed on myeloid cells (TREM)-1 is a key mediator of innate immunity previously associated with the severity of inflammatory disorders, and more recently, the inferior survival of lung and liver cancer patients. Here, we investigated the prognostic impact and immunological correlates of TREM1 expression in breast tumors.MethodsBreast tumor microarray and RNAseq expression profiles (n=4,364 tumors) were analyzed for associations between gene expression, tumor immune subtypes, distant metastasis-free survival (DMFS) and clinical response to neoadjuvant chemotherapy (NAC). Single-cell (sc)RNAseq was performed using the 10X Genomics platform. Statistical associations were assessed by logistic regression, Cox regression, Kaplan-Meier analysis, Spearman correlation, Student’s t-test and Chi-square test.ResultsIn pre-treatment biopsies, TREM1 and known TREM-1 inducible cytokines (IL1B, IL8) were discovered by a statistical ranking procedure as top genes for which high expression was associated with reduced response to NAC, but only in the context of immunologically “hot” tumors otherwise associated with a high NAC response rate. In surgical specimens, TREM1 expression varied among tumor molecular subtypes, with highest expression in the more aggressive subtypes (Basal-like, HER2-E). High TREM1 significantly and reproducibly associated with inferior distant metastasis-free survival (DMFS), independent of conventional prognostic markers. Notably, the association between high TREM1 and inferior DMFS was most prominent in the subset of immunogenic tumors that exhibited the immunologically hot phenotype and otherwise associated with superior DMFS. Further observations from bulk and single-cell RNAseq analyses indicated that TREM1 expression was significantly enriched in polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) and M2-like macrophages, and correlated with downstream transcriptional targets of TREM-1 (IL8, IL-1B, IL6, MCP-1, SPP1, IL1RN, INHBA) which have been previously associated with pro-tumorigenic and immunosuppressive functions.ConclusionsTogether, these findings indicate that increased TREM1 expression is prognostic of inferior breast cancer outcomes and may contribute to myeloid-mediated breast cancer progression and immune suppression.
Collapse
Affiliation(s)
- Ashok K. Pullikuth
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Eric D. Routh
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kip D. Zimmerman
- Center for Precision Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Julia Chifman
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, United States
- Department of Mathematics and Statistics, American University, Washington, DC, United States
| | - Jeff W. Chou
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston Salem, NC, United States
- The Comprehensive Cancer Center of Wake Forest University, Winston Salem, NC, United States
| | - Michael H. Soike
- Department of Radiation Oncology, University of Alabama-Birmingham, Birmingham, AL, United States
| | - Guangxu Jin
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, United States
- The Comprehensive Cancer Center of Wake Forest University, Winston Salem, NC, United States
| | - Jing Su
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston Salem, NC, United States
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Qianqian Song
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, United States
- Center for Cancer Genomics and Precision Oncology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Michael A. Black
- Department of Biochemistry, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Cristin Print
- Department of Molecular Medicine and Pathology and Maurice Wilkins Institute, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Davide Bedognetti
- Cancer Program, Sidra Medicine, Doha, Qatar & Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Marissa Howard-McNatt
- Surgical Oncology Service, Department of Surgery, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Stacey S. O’Neill
- The Comprehensive Cancer Center of Wake Forest University, Winston Salem, NC, United States
- Department of Pathology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Alexandra Thomas
- The Comprehensive Cancer Center of Wake Forest University, Winston Salem, NC, United States
- Section of Hematology and Oncology, Department of Internal Medicine, Wake Forest Baptist Medical Center, Winston Salem, NC, United States
| | - Carl D. Langefeld
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston Salem, NC, United States
- The Comprehensive Cancer Center of Wake Forest University, Winston Salem, NC, United States
| | | | - Yong Lu
- The Comprehensive Cancer Center of Wake Forest University, Winston Salem, NC, United States
- Department of Microbiology & Immunology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Lance D. Miller
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, United States
- The Comprehensive Cancer Center of Wake Forest University, Winston Salem, NC, United States
- *Correspondence: Lance D. Miller,
| |
Collapse
|
41
|
Liu J, Wang X, Deng Y, Yu X, Wang H, Li Z. Research Progress on the Role of Regulatory T Cell in Tumor Microenvironment in the Treatment of Breast Cancer. Front Oncol 2021; 11:766248. [PMID: 34868991 PMCID: PMC8636122 DOI: 10.3389/fonc.2021.766248] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) is a complex ecosystem comprised of cancer cells, stromal cells, and immune cells. Analysis of the composition of TME is essential to assess the prognosis of patients with breast cancer (BC) and the efficacy of different regimes. Treg plays a crucial role in the microenvironment of breast cancer subtypes, and its function contributes to the development and progression of BC by suppressing anti-tumor immunity directly or indirectly through multiple mechanisms. In addition, conventional treatments, such as anthracycline-based neoadjuvant chemotherapy, and neo-therapies, such as immune-checkpoint blockades, have a significant impact on the absence of Tregs in BC TME, thus gaining additional anti-tumor effect to some extent. Strikingly, Treg in BC TME revealed the predicted efficacy of some therapeutic strategies. All these results suggest that we can manipulate the abundance of Treg to achieve the ultimate effect of both conventional and novel treatments. In this review, we discuss new insights into the characteristics of Treg in BC TME, the impact of different regiments on Treg, and the possibilities of Treg as a predictive marker of efficacy for certain treatments.
Collapse
Affiliation(s)
- Jianyu Liu
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xueying Wang
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuhan Deng
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xin Yu
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hongbin Wang
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Zhigao Li
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
42
|
Huo X, Shen G, Liu Z, Liang Y, Li J, Zhao F, Ren D, Zhao J. Addition of immunotherapy to chemotherapy for metastatic triple-negative breast cancer: A systematic review and meta-analysis of randomized clinical trials. Crit Rev Oncol Hematol 2021; 168:103530. [PMID: 34801695 DOI: 10.1016/j.critrevonc.2021.103530] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 11/05/2021] [Accepted: 11/15/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND One of the front treatment regimens used for metastatic triple-negative breast cancer (mTNBC) is treatment with programmed death-1 (PD-1) or programmed death ligand-1 (PD-L1) blockade combine with chemotherapy. However, the results of such studies have been controversial. METHODS A systematic searched of PubMed, Embase, Cochrane Library, and the proceedings of the last 5 years of several meetings until February 18, 2021. The primary endpoint was the progression-free survival (PFS) of PD-L1-positive patients treated with PD1/PD-L1 blockade plus chemotherapy compare with chemotherapy. RESULTS Overall, 4 studies that included a total of 3007 mTNBC patients were analyzed in this meta-analysis. PFS was significantly improved in the PD1/PD-L1 blockade plus chemotherapy group compared with the chemotherapy group in PD-L1-positive mTNBC patients (hazard ratios, (HR), 0.69; 95% CI, 0.59-0.80; P < .001), also in intention-to-treat (ITT) population (HR, 0.82; 95% CI, 0.74-0.90; P < .001). However, no significant benefit in overall survival (OS) was observed regardless of PD-L1 status or ITT population. The immunotherapy plus chemotherapy has higher adverse events (AEs) compared with chemotherapy (all AEs, Odds ratios (ORs), 2.33; 95% CI, 1.50-3.62; P < .001; grade 3-5 AEs, OR, 1.27; 95% CI, 1.04-1.55; P = .019). CONCLUSIONS This meta-analysis showed that the addition of PD1/PD-L1 blockade to chemotherapy improved PFS in PD-L1 positive mTNBC patients, also in the ITT population. However, no significant benefit in OS was observed in patients of PD-L1 positive or in the ITT population after adding PD1/PD-L1 blockade. We found a higher rate of AEs with the addition of PD1/PD-L1 blockers to chemotherapy.
Collapse
Affiliation(s)
- Xingfa Huo
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining 810000, China.
| | - Guoshuang Shen
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining 810000, China.
| | - Zhen Liu
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining 810000, China.
| | - Yuhua Liang
- Graduate School of Qinghai University & Qinghai Provincial People's Hospital, Xining 810000, China.
| | - Jinming Li
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining 810000, China.
| | - Fuxing Zhao
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining 810000, China.
| | - Dengfeng Ren
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining 810000, China.
| | - Jiuda Zhao
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining 810000, China.
| |
Collapse
|
43
|
Current advances in immune checkpoint inhibitor combinations with radiation therapy or cryotherapy for breast cancer. Breast Cancer Res Treat 2021; 191:229-241. [PMID: 34714450 DOI: 10.1007/s10549-021-06408-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE Immune checkpoint inhibition (ICI) has demonstrated clinically significant efficacy when combined with chemotherapy in triple negative breast cancer (TNBC). Although many patients derived benefit, others do not respond to immunotherapy, therefore relying upon innovative combinations to enhance response. Local therapies such as radiation therapy (RT) and cryotherapy are immunogenic and potentially optimize responses to immunotherapy. Strategies combining these therapies and ICI are actively under investigation. This review will describe the rationale for combining ICI with targeted local therapies in breast cancer. METHODS A literature search was performed to identify pre-clinical and clinical studies assessing ICI combined with RT or cryotherapy published as of August 2021 using PubMed and ClinicalTrials.gov. RESULTS Published studies of ICI with RT and IPI have demonstrated safety and signals of early efficacy. CONCLUSION RT and cryotherapy are local therapies that can be integrated safely with ICI and has shown promise in early trials. Randomized phase II studies testing both of these approaches, such as P-RAD (NCT04443348) and ipilimumab/nivolumab/cryoablation for TNBC (NCT03546686) are current enrolling. The results of these studies are paramount as they will provide long term data on the safety and efficacy of these regimens.
Collapse
|
44
|
Liu H, Bai L, Huang L, Ning N, Li L, Li Y, Dong X, Du Q, Xia M, Chen Y, Zhao L, Li Y, Meng Q, Wang J, Duan Y, Ming J, Yuan AQ, Yang XP. Bispecific antibody targeting TROP2xCD3 suppresses tumor growth of triple negative breast cancer. J Immunother Cancer 2021; 9:jitc-2021-003468. [PMID: 34599021 PMCID: PMC8488747 DOI: 10.1136/jitc-2021-003468] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Triple negative breast cancer (TNBC) is a subtype of breast cancers with poor prognosis and targeted drug therapies are limited. To develop novel and efficacious therapies for TNBC, we developed a bispecific antibody F7AK3 that recognizes both trophoblast cell surface antigen 2 (TROP2) and CD3 and evaluated its antitumor activities both in vitro and in vivo. METHODS The binding affinities of F7AK3 to the two targets, TROP2 and CD3, were evaluated by surface plasmon resonance. Binding of F7AK3 to TNBC cells and T cells were evaluated by flow cytometry. Immunofluorescent staining was performed to demonstrate the interactions between T cells with TNBC cells. The cytotoxicity of T cells against TNBC cell lines and primary tumor cells mediated by F7AK3 were determined in vitro. In vivo antitumor activity of F7AK3 was investigated in a xenograft TNBC tumor model, using immunodeficient mice that were reconstituted with human peripheral blood mononuclear cells. RESULTS We demonstrated that F7AK3 binds specifically to human TROP2 and CD3 antigens, as well as TNBC cell lines and primary tumor cells. Human T cells can only be activated by F7AK3 in the presence of target tumor cells. F7AK3 recruits T cells to TROP2+ tumor cells in vitro and into tumor tissues in vivo. Antitumor growth activity of F7AK3 is observed in a xenograft TNBC tumor model. CONCLUSION This study showed the antitumor potential of an anti-TROP2xCD3 bispecific antibody F7AK3 to TNBC tumor cells both in vitro and in vivo. These data demonstrate that F7AK3 has the potential to treat TNBC patients, which warrants further preclinical and clinical evaluation of the F7AK3 in advanced or metastatic TNBC patients.
Collapse
Affiliation(s)
- Huicheng Liu
- Department of Immunology, School of Basic Medicine, Huazhong University of Science and Technology Tongji Medical College, Wuhan, Hubei, China
| | - Lili Bai
- Excyte Biopharma Ltd, Beijing, Haidian Dist, China
| | - Liu Huang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology Tongji Medical College, Wuhan, Hubei, China
| | - Na Ning
- Department of Immunology, School of Basic Medicine, Huazhong University of Science and Technology Tongji Medical College, Wuhan, Hubei, China
| | - Lin Li
- Department of Immunology, School of Basic Medicine, Huazhong University of Science and Technology Tongji Medical College, Wuhan, Hubei, China
| | - Yijia Li
- Excyte Biopharma Ltd, Beijing, Haidian Dist, China
| | - Xuejiao Dong
- Department of Immunology, School of Basic Medicine, Huazhong University of Science and Technology Tongji Medical College, Wuhan, Hubei, China
| | - Qiuyang Du
- Department of Immunology, School of Basic Medicine, Huazhong University of Science and Technology Tongji Medical College, Wuhan, Hubei, China
| | - Minghui Xia
- Department of Immunology, School of Basic Medicine, Huazhong University of Science and Technology Tongji Medical College, Wuhan, Hubei, China
| | - Yufei Chen
- Department of Immunology, School of Basic Medicine, Huazhong University of Science and Technology Tongji Medical College, Wuhan, Hubei, China
| | - Likun Zhao
- Excyte Biopharma Ltd, Beijing, Haidian Dist, China
| | - Yanhu Li
- Excyte Biopharma Ltd, Beijing, Haidian Dist, China
| | - Qingwu Meng
- Excyte Biopharma Ltd, Beijing, Haidian Dist, China
| | - Jing Wang
- Department of Immunology, School of Basic Medicine, Huazhong University of Science and Technology Tongji Medical College, Wuhan, Hubei, China
| | - Yaqi Duan
- Department of Pathology, School of Basic Medicine, Huazhong University of Science and Technology Tongji Medical College, Wuhan, Hubei, China.,Institute of Pathology, Tongji Hospital, Huazhong University of Science and Technology Tongji Medical College, Wuhan, Hubei, China
| | - Jie Ming
- Department of Breast and Thyroid Surgery, Wuhan Union Hospital, Huazhong University of Science and Technology Tongji Medical College, Wuhan, Hubei, China
| | | | - Xiang-Ping Yang
- Department of Immunology, School of Basic Medicine, Huazhong University of Science and Technology Tongji Medical College, Wuhan, Hubei, China
| |
Collapse
|
45
|
Ryu WJ, Sohn JH. Molecular Targets and Promising Therapeutics of Triple-Negative Breast Cancer. Pharmaceuticals (Basel) 2021; 14:ph14101008. [PMID: 34681231 PMCID: PMC8540846 DOI: 10.3390/ph14101008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most heterogeneous diseases in solid tumors and has limited therapeutic options. Due to the lack of appropriate targetable markers, the mainstay therapeutic strategy for patients with TNBC has been chemotherapy for the last several decades. Indeed, TNBC tumors have no expression of estrogen receptor, progesterone receptor, or human epidermal growth factor receptor 2 (HER2); therefore, they do not respond to hormone therapy and HER2-targeted therapy. In this review paper, the molecular heterogeneities, possible therapeutic targets, and recently approved and upcoming drugs for TNBC will be summarized.
Collapse
Affiliation(s)
- Won-Ji Ryu
- Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Joo Hyuk Sohn
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
- Correspondence: ; Tel.: +82-02-2228-8135
| |
Collapse
|
46
|
Choi BB. Effectiveness of ADC Difference Value on Pre-neoadjuvant Chemotherapy MRI for Response Evaluation of Breast Cancer. Technol Cancer Res Treat 2021; 20:15330338211039129. [PMID: 34519583 PMCID: PMC8445528 DOI: 10.1177/15330338211039129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background: Neoadjuvant chemotherapy (NAC) is known to be a suitable treatment and first-line defense for locally advanced breast cancer. However, the NAC response may include unexpected outcomes, and it is not easy to predict the NAC response precisely. Especially, early detection of those patients who do not benefit from NAC is needed to reduce unnecessary therapy and side effects. Objective: The purpose of this study was to determine whether the pretreatment apparent diffusion coefficient (ADC) value is effective for predicting the response of breast cancer to NAC. Method: Forty-nine breast cancer cases with pre- and post-NAC breast MRI were enrolled. MRI was performed using a 1.5-T scanner with the basic protocol including diffusion-weighted imaging. ADC difference value (ADC-diff) was calculated in all cases. Results: ADC-diff was high in complete response and partial response cases (p < .05). ADC-diff correlated with the DWI rim sign, with a positive DWI rim sign being associated with a higher ADC-diff (p < .05). Conclusion: High-ADC difference value on the pretreatment MRI can provide information for a better response of NAC on breast cancer.
Collapse
Affiliation(s)
- Bo Bae Choi
- 26715Chungnam National University Hospital, Daejeon, Republic of Korea
| |
Collapse
|
47
|
Poncin A, Onesti CE, Josse C, Boulet D, Thiry J, Bours V, Jerusalem G. Immunity and Breast Cancer: Focus on Eosinophils. Biomedicines 2021; 9:biomedicines9091087. [PMID: 34572273 PMCID: PMC8470317 DOI: 10.3390/biomedicines9091087] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/11/2021] [Accepted: 08/24/2021] [Indexed: 01/21/2023] Open
Abstract
The role of eosinophils, a cell type involved in the immune response to parasitic infections and allergies, has been investigated in different cancer types, in both tumor tissue and at the circulating level. Most studies showed a role mainly in conjunction with immunotherapy in melanomas and lung tumors, while few data are available in breast cancer. In this review, we summarize literature data on breast cancer, showing a prognostic role of circulating eosinophil counts as well as of the presence of tumor tissue infiltration by eosinophils. In particular, some studies showed an association between a higher circulating eosinophil count and a good prognosis, as well as an association with response to neoadjuvant chemotherapy in hormone receptor-negative/HER2-positive and in triple negative breast cancer. Several mechanistic studies have also been conducted in in vivo models, but the exact mechanism by which eosinophils act in the presence of breast cancer is still unknown. Further studies on this subject are desirable, in order to understand their role at the cellular level, identify related biomarkers and/or possibly search for new therapeutic targets.
Collapse
Affiliation(s)
- Aurélie Poncin
- Department of Medical Oncology, University Hospital of Liege, CHU Sart Tilman, 4000 Liege, Belgium; (A.P.); (G.J.)
| | - Concetta Elisa Onesti
- Clinical and Oncological Research Department, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
- Correspondence:
| | - Claire Josse
- Laboratory of Human Genetics, GIGA Research Center, University of Liège, 4000 Liege, Belgium; (C.J.); (D.B.); (J.T.); (V.B.)
| | - Delphine Boulet
- Laboratory of Human Genetics, GIGA Research Center, University of Liège, 4000 Liege, Belgium; (C.J.); (D.B.); (J.T.); (V.B.)
| | - Jérôme Thiry
- Laboratory of Human Genetics, GIGA Research Center, University of Liège, 4000 Liege, Belgium; (C.J.); (D.B.); (J.T.); (V.B.)
| | - Vincent Bours
- Laboratory of Human Genetics, GIGA Research Center, University of Liège, 4000 Liege, Belgium; (C.J.); (D.B.); (J.T.); (V.B.)
| | - Guy Jerusalem
- Department of Medical Oncology, University Hospital of Liege, CHU Sart Tilman, 4000 Liege, Belgium; (A.P.); (G.J.)
- Department of Medical Oncology, University of Liege, 4000 Liege, Belgium
| |
Collapse
|
48
|
Tavares MC, Sampaio CD, Lima GE, Andrade VP, Gonçalves DG, Macedo MP, Cordeiro de Lima VC. A high CD8 to FOXP3 ratio in the tumor stroma and expression of PTEN in tumor cells are associated with improved survival in non-metastatic triple-negative breast carcinoma. BMC Cancer 2021; 21:901. [PMID: 34362334 PMCID: PMC8343973 DOI: 10.1186/s12885-021-08636-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/06/2021] [Indexed: 12/31/2022] Open
Abstract
Background Triple-negative mammary carcinoma (TNBC) is an aggressive breast cancer subtype associated with dismal prognosis. The interaction between the immune system and the cancer cells plays a crucial role in tumor development and progression. However, it is still unclear how each diverse cell of the immune system contributes to the prognosis of patients with breast cancer. In this study, we investigated how the cell composition of the immune cell infiltrated modifies the survival of patients with resected TNBC. Methods Retrospectively, we collected data from 76 patients diagnosed with non-metastatic TNBC with available tissue blocks for tissue micro-array (TMA) construction. The TMA was constructed using two cores from each tumor block. The expression of CD4, CD8, FOXP3, CD20, CD68, CD163, PD-1, PD-L1, PTEN and phospho-STAT1 was determined by immunohistochemistry. Results We observed that the inflammatory infiltrate in TNBC is enriched for M2 macrophages and T lymphocytes (CD4+, CD8+). PD-L1 expression in the stroma was associated with the percentage of TILs (p = 0.018) as, PD-L1 expression in the tumor was associated with the percentage of TILs (p = 0.049). We found a correlation between TILs and PD-L1 expression in stroma cells (p = 0.020) and in tumor cells (p = 0.027). In our cohort, we observed a trend for improved survival associated with higher CD8+ (p = 0.054) and CD4 + (p = 0.082) cell counts, but the results were not statistically significant. Conversely, the expression of PTEN in tumor cells and a low number of FOXP3+ cells in tumor stroma were both associated with improved OS. The CD8 to FOXP3 ratio and the CD4 to FOXP3 ratio were associated with better OS as well, however, only the CD8 to FOXP3 ratio had its prognostic impact confirmed in the METABRIC TNBC cohort. There was no association between PD-L1 expression and OS. Conclusion TNBC tumor microenvironment is enriched for lymphocytes and macrophages. FOXP3 expression and the CD8 to FOXP3 ratio in the tumor stroma as well as the loss of PTEN expression in tumor cells are prognostic factors in non-metastatic TNBC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08636-4.
Collapse
Affiliation(s)
- Monique C Tavares
- Department of Medical Oncology, AC Camargo Cancer Center, Rua Professor Antonio Prudente 211, ZIP:01525-001, São Paulo, SP, Brazil.
| | - Cristina D Sampaio
- Department of Medical Oncology, AC Camargo Cancer Center, Rua Professor Antonio Prudente 211, ZIP:01525-001, São Paulo, SP, Brazil
| | - Geraldine E Lima
- Department of Medical Oncology, AC Camargo Cancer Center, Rua Professor Antonio Prudente 211, ZIP:01525-001, São Paulo, SP, Brazil
| | - Victor P Andrade
- Department of Anatomic Pathology, AC Camargo Cancer Center, São Paulo, Brazil
| | - Daniel G Gonçalves
- Laboratory of Bioinformatics, International Center for Teaching and Research AC Camargo Cancer Center, São Paulo, Brazil
| | - Mariana P Macedo
- Departament of Anatomic Pathology, Hospital Sírio Libanês, São Paulo, Brazil
| | - Vladmir C Cordeiro de Lima
- Department of Medical Oncology, AC Camargo Cancer Center, Rua Professor Antonio Prudente 211, ZIP:01525-001, São Paulo, SP, Brazil
| |
Collapse
|
49
|
Yang Y, He X, Tang QQ, Shao YC, Song WJ, Gong PJ, Zeng YF, Huang SR, Zhou JY, Wan HF, Wei L, Zhang JW. GMFG Has Potential to Be a Novel Prognostic Marker and Related to Immune Infiltrates in Breast Cancer. Front Oncol 2021; 11:629633. [PMID: 34367945 PMCID: PMC8343142 DOI: 10.3389/fonc.2021.629633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 06/30/2021] [Indexed: 12/24/2022] Open
Abstract
A growing amount of evidence has indicated immune genes perform a crucial position in the development and progression of breast cancer microenvironment. The purpose of our study was to identify immunogenic prognostic marker and explore potential regulatory mechanisms for breast cancer. We identified the genes related to ImmuneScore using ESTIMATE algorithm and WGCNA analysis, and we identified the differentially expressed gene (DEGs). Then, Glia maturation factor γ (GMFG) was determined as a predictive factor by intersecting immune-related genes with DEGs and survival analysis. We found the expression of GMFG was lower in breast cancer tissues compared with normal breast tissues, which was further verified by immunohistochemical (IHC). Moreover, the decreased expression of GMFG was significantly related to the poor prognosis. Besides, the expression of GMFG was related to the age, ER status, PR status, HER2 status and tumor size, which further suggested that the expression of GMFG was correlated with the subtype and the growth of tumor. The univariate and multivariate Cox regression analyses revealed that age, stage, the expression level of GMFG and radiotherapy were independent factors for predicting the prognosis of breast cancer patients. Subsequently, a prognostic model to predict the 3-year, 5-year and 10-year overall survival rate was developed based on the above four variables, and visualized as a nomogram. The values of area under the curve of the nomogram at 3-year, 5-year and 10-year were 0.897, 0.873 and 0.922, respectively, which was higher than stage in prognostic accuracy. In addition, we also found that GMFG expression level was correlated with sensitivity of some breast cancer chemotherapy drugs. Furthermore, the results of GSEA indicated immune-related pathways were mainly enriched in GMFG-high-expression group. CIBERSORT analysis for the proportion of tumor-infiltrating immune cells (TIICs) suggested that expression of GMFG was positively association with multiple kinds T-cell in BC. Among them, CD8+ T cells had the strongest correlation with GMFG expression, which revealed that GMFG might has an antitumor effect by increasing the infiltration of CD8+ T cells in breast cancer. Accordingly, GMFG has the potential to become a novel immune biomarker for the diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- Yan Yang
- Department of Breast and Thyroid Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xin He
- Department of Breast and Thyroid Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Qian-Qian Tang
- Department of Breast and Thyroid Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - You-Cheng Shao
- Department of Pathology and Pathophysiology, School of Basic Medicine, Wuhan University, Wuhan, China
| | - Wen-Jing Song
- Department of Breast and Thyroid Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Peng-Ju Gong
- Department of Breast and Thyroid Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yi-Fan Zeng
- Department of Breast and Thyroid Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Si-Rui Huang
- Department of Breast and Thyroid Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Jiang-Yao Zhou
- Department of Breast and Thyroid Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Hui-Fang Wan
- Department of Breast and Thyroid Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Lei Wei
- Department of Pathology and Pathophysiology, School of Basic Medicine, Wuhan University, Wuhan, China
| | - Jing-Wei Zhang
- Department of Breast and Thyroid Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
50
|
Lusho S, Durando X, Mouret-Reynier MA, Kossai M, Lacrampe N, Molnar I, Penault-Llorca F, Radosevic-Robin N, Abrial C. Platelet-to-Lymphocyte Ratio Is Associated With Favorable Response to Neoadjuvant Chemotherapy in Triple Negative Breast Cancer: A Study on 120 Patients. Front Oncol 2021; 11:678315. [PMID: 34367964 PMCID: PMC8331686 DOI: 10.3389/fonc.2021.678315] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/29/2021] [Indexed: 12/31/2022] Open
Abstract
Introduction Triple negative breast cancer (TNBC) is highly heterogeneous, but still most of the patients are treated by the anthracycline/taxane-based neoadjuvant therapy (NACT). Tumor-infiltrating lymphocytes (TILs) are a strong predictive and prognostic biomarker in TNBC, however are not always available. Peripheral blood counts, which reflect the systemic inflammatory/immune status, are easier to obtain than TILs. We investigated whether baseline white cell or platelet counts, as well as, Neutrophil-to-Lymphocyte Ratio (NLR) or Platelet-to-Lymphocyte Ratio (PLR) could replace baseline TILs as predictive or prognostic biomarkers in a series of TNBC treated by standard NACT. Patients and Methods One hundred twenty patients uniformly treated by FEC/taxane NACT in a tertiary cancer care center were retrospectively analyzed. The presence of pathological complete response (pCR: ypT0/Tis, ypN0) or the presence of pCR and/small residual disease (ypT0/Tis/T1ab, ypN0) were considered as good responses in data analysis. Baseline/pre-NACT blood count, NLR, PLR and TILs were evaluated as predictors of response, distant recurrence rate and distant recurrence-free survival (DRFS). Results TILs ≥30% and ≥1.5% were best predictors of pCR and distant recurrence risk, respectively (p = 0.007, p = 0.012). However, in this cohort, pCR status was not significantly associated with recurrence. Only the ensemble of patients with pCR and small residual disease had lower recurrence risk and longer survival DRFS (p = 0.042, p = 0.024, respectively) than the rest of the cohort (larger residual disease). The only parameter which could predict the pCR/small residual disease status was PLR: patients with values lower than 133.25 had significantly higher chance of reaching that status after NACT (p = 0.045). However, no direct correlation could be established between baseline PLR and metastatic recurrence. No correlation either was found between TIL and individual blood counts, or between TILs and NLR or PLR. Conclusion In this cohort, TILs retained their pCR predictive value; however PLR was a better predictor of the ensemble of responses which had good outcome in terms of less distant recurrences or longer DRFS (pCR or small residual disease). Thus, baseline PLR is worth further, prospective investigation together with baseline TILs, as it might indicate a good TNBC response to NACT when TILs are unavailable.
Collapse
Affiliation(s)
- Sejdi Lusho
- Clermont Auvergne University, INSERM U1240 "Molecular Imaging and Theranostic Strategies", Centre Jean Perrin, Clermont-Ferrand, France.,Delegation for Clinical Research and Innovation, Centre Jean Perrin, Clermont-Ferrand, France.,Centre for Clinical Investigation, INSERM U501, Clermont-Ferrand, France
| | - Xavier Durando
- Clermont Auvergne University, INSERM U1240 "Molecular Imaging and Theranostic Strategies", Centre Jean Perrin, Clermont-Ferrand, France.,Delegation for Clinical Research and Innovation, Centre Jean Perrin, Clermont-Ferrand, France.,Centre for Clinical Investigation, INSERM U501, Clermont-Ferrand, France.,Department of Medical Oncology, Centre Jean Perrin, Clermont-Ferrand, France
| | - Marie-Ange Mouret-Reynier
- Clermont Auvergne University, INSERM U1240 "Molecular Imaging and Theranostic Strategies", Centre Jean Perrin, Clermont-Ferrand, France.,Delegation for Clinical Research and Innovation, Centre Jean Perrin, Clermont-Ferrand, France.,Centre for Clinical Investigation, INSERM U501, Clermont-Ferrand, France.,Department of Medical Oncology, Centre Jean Perrin, Clermont-Ferrand, France
| | - Myriam Kossai
- Clermont Auvergne University, INSERM U1240 "Molecular Imaging and Theranostic Strategies", Centre Jean Perrin, Clermont-Ferrand, France.,Department of Pathology, Centre Jean Perrin, Clermont-Ferrand, France
| | - Nathalie Lacrampe
- Clermont Auvergne University, INSERM U1240 "Molecular Imaging and Theranostic Strategies", Centre Jean Perrin, Clermont-Ferrand, France.,Department of Pathology, Centre Jean Perrin, Clermont-Ferrand, France
| | - Ioana Molnar
- Clermont Auvergne University, INSERM U1240 "Molecular Imaging and Theranostic Strategies", Centre Jean Perrin, Clermont-Ferrand, France.,Delegation for Clinical Research and Innovation, Centre Jean Perrin, Clermont-Ferrand, France.,Centre for Clinical Investigation, INSERM U501, Clermont-Ferrand, France
| | - Frederique Penault-Llorca
- Clermont Auvergne University, INSERM U1240 "Molecular Imaging and Theranostic Strategies", Centre Jean Perrin, Clermont-Ferrand, France
| | - Nina Radosevic-Robin
- Clermont Auvergne University, INSERM U1240 "Molecular Imaging and Theranostic Strategies", Centre Jean Perrin, Clermont-Ferrand, France.,Department of Pathology, Centre Jean Perrin, Clermont-Ferrand, France
| | - Catherine Abrial
- Clermont Auvergne University, INSERM U1240 "Molecular Imaging and Theranostic Strategies", Centre Jean Perrin, Clermont-Ferrand, France.,Delegation for Clinical Research and Innovation, Centre Jean Perrin, Clermont-Ferrand, France.,Centre for Clinical Investigation, INSERM U501, Clermont-Ferrand, France
| |
Collapse
|