1
|
Paul S, Bhagat S, Dash L, Mohapatra HD, Jena S, Verma SK, Dutta A. ExoDS: a versatile exosome-based drug delivery platform to target cancer cells and cancer stem cells. Front Bioeng Biotechnol 2024; 12:1362681. [PMID: 38903193 PMCID: PMC11188490 DOI: 10.3389/fbioe.2024.1362681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/14/2024] [Indexed: 06/22/2024] Open
Abstract
Chemotherapy drugs like doxorubicin (Dox) are widely used in middle-income countries around the world to treat various types of cancers, including breast cancer. Although they are toxic, they are still widely used to treat cancer. Delivering chemotherapy drugs directly to cancer cells to reduce side effects remains a challenge. Moreover, modern research gave rise to cancer stem cell theory, which implicated cancer stem cells in tumor initiation, progression, and relapse. This makes it imperative to target cancer stem cells to achieve complete remission. Our work highlights the development of an exosome-based targeted drug delivery vehicle. These exosomes were isolated from mature dendritic cells (mDCs) and encapsulated with doxorubicin (ExoDS). Our results showed that ExoDS specifically targeted breast cancer cells and breast cancer stem cells. Further analysis revealed that ExoDS did not induce any significant apoptosis in healthy mammary cells and peripheral blood mononuclear cells (PBMCs) isolated from healthy individuals and breast cancer patients. ExoDS was also found to target circulating tumor cells (CTCs) isolated from patient blood. ExoDS also showed equal efficiency compared to free doxorubicin in vivo. We also observed that ExoDS reduced the expression of cancer stem cell markers in murine tumor tissues. Altogether, this work provides novel insights into how mDC-derived exosomes can be used to specifically target cancer cells and cancer stem cells.
Collapse
Affiliation(s)
- Swastika Paul
- EXSURE Pvt Ltd., KIIT University, Bhubaneswar, Odisha, India
| | | | - Lipsa Dash
- EXSURE Pvt Ltd., KIIT University, Bhubaneswar, Odisha, India
| | | | - Sarita Jena
- Institute of Life Sciences, Bhubaneswar, India
| | - Suresh K. Verma
- School of Biotechnology, KIIT Deemed-to-be-University, Bhubaneswar, Odisha, India
| | - Abhishek Dutta
- EXSURE Pvt Ltd., KIIT University, Bhubaneswar, Odisha, India
| |
Collapse
|
2
|
Lyu H, Hou D, Liu H, Ruan S, Tan C, Wu J, Hicks C, Liu B. HER3 targeting augments the efficacy of panobinostat in claudin-low triple-negative breast cancer cells. NPJ Precis Oncol 2023; 7:72. [PMID: 37537339 PMCID: PMC10400567 DOI: 10.1038/s41698-023-00422-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 07/03/2023] [Indexed: 08/05/2023] Open
Abstract
Patients with triple-negative breast cancer (TNBC) have a poor prognosis and high relapse rate due to limited therapeutic options. This study was conducted to determine the mechanisms of action of panobinostat, a pan-inhibitor of histone deacetylase (HDAC) and FDA-approved medication for multiple myeloma, in TNBC and to provide a rationale for effective drug combinations against this aggressive disease. RNA sequencing analyses of the claudin-low (CL) TNBC (MDA-MB-231) cells untreated or treated with panobinostat were performed to identify the differentially expressed genes. Adaptive alterations in gene expression were analyzed and validated in additional CL TNBC cells. Tumor xenograft models were used to test the in vivo antitumor activity of panobinostat alone or its combinations with gefitinib, an EGFR-tyrosine kinase inhibitor (TKI). Panobinostat potently inhibited proliferation and induced apoptosis in all TNBC cells tested. However, in CL TNBC cells, this HDAC inhibitor markedly enhanced expression of HER3, which interacted with EGFR to activate both receptors and Akt signaling pathways. Combinations of panobinostat and gefitinib synergistically suppressed CL TNBC cell proliferation and promoted apoptosis in vitro and in vivo. Upregulation of HER3 compromises the efficacy of panobinostat in CL TNBC. Inactivation of HER3 combined with panobinostat represents a practical approach to combat CL TNBC.
Collapse
Affiliation(s)
- Hui Lyu
- Departments of Interdisciplinary Oncology, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA, USA.
- Departments of Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA, USA.
| | - Defu Hou
- Departments of Interdisciplinary Oncology, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA, USA
- Department of Biochemistry and Molecular Biology, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Hao Liu
- Departments of Interdisciplinary Oncology, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA, USA
| | - Sanbao Ruan
- Departments of Interdisciplinary Oncology, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA, USA
| | - Congcong Tan
- Departments of Interdisciplinary Oncology, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA, USA
| | - Jiande Wu
- Departments of Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA, USA
| | - Chindo Hicks
- Departments of Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA, USA
| | - Bolin Liu
- Departments of Interdisciplinary Oncology, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA, USA.
- Departments of Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
3
|
Preclinical and Clinical Trials of New Treatment Strategies Targeting Cancer Stem Cells in Subtypes of Breast Cancer. Cells 2023; 12:cells12050720. [PMID: 36899854 PMCID: PMC10001180 DOI: 10.3390/cells12050720] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 02/26/2023] Open
Abstract
Breast cancer (BC) can be classified into various histological subtypes, each associated with different prognoses and treatment options, including surgery, radiation, chemotherapy, and endocrine therapy. Despite advances in this area, many patients still face treatment failure, the risk of metastasis, and disease recurrence, which can ultimately lead to death. Mammary tumors, like other solid tumors, contain a population of small cells known as cancer stem-like cells (CSCs) that have high tumorigenic potential and are involved in cancer initiation, progression, metastasis, tumor recurrence, and resistance to therapy. Therefore, designing therapies specifically targeting at CSCs could help to control the growth of this cell population, leading to increased survival rates for BC patients. In this review, we discuss the characteristics of CSCs, their surface biomarkers, and the active signaling pathways associated with the acquisition of stemness in BC. We also cover preclinical and clinical studies that focus on evaluating new therapy systems targeted at CSCs in BC through various combinations of treatments, targeted delivery systems, and potential new drugs that inhibit the properties that allow these cells to survive and proliferate.
Collapse
|
4
|
Eid RA, Alaa Edeen M, Shedid EM, Kamal ASS, Warda MM, Mamdouh F, Khedr SA, Soltan MA, Jeon HW, Zaki MSA, Kim B. Targeting Cancer Stem Cells as the Key Driver of Carcinogenesis and Therapeutic Resistance. Int J Mol Sci 2023; 24:ijms24021786. [PMID: 36675306 PMCID: PMC9861138 DOI: 10.3390/ijms24021786] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 01/18/2023] Open
Abstract
The emerging concept of cancer stem cells (CSCs) as the key driver behind carcinogenesis, progression, and diversity has displaced the prior model of a tumor composed of cells with similar subsequently acquired mutations and an equivalent capacity for renewal, invasion, and metastasis. This significant change has shifted the research focus toward targeting CSCs to eradicate cancer. CSCs may be characterized using cell surface markers. They are defined by their capacity to self-renew and differentiate, resist conventional therapies, and generate new tumors following repeated transplantation in xenografted mice. CSCs' functional capabilities are governed by various intracellular and extracellular variables such as pluripotency-related transcription factors, internal signaling pathways, and external stimuli. Numerous natural compounds and synthetic chemicals have been investigated for their ability to disrupt these regulatory components and inhibit stemness and terminal differentiation in CSCs, hence achieving clinical implications. However, no cancer treatment focuses on the biological consequences of these drugs on CSCs, and their functions have been established. This article provides a biomedical discussion of cancer at the time along with an overview of CSCs and their origin, features, characterization, isolation techniques, signaling pathways, and novel targeted therapeutic approaches. Additionally, we highlighted the factors endorsed as controlling or helping to promote stemness in CSCs. Our objective was to encourage future studies on these prospective treatments to develop a framework for their application as single or combined therapeutics to eradicate various forms of cancer.
Collapse
Affiliation(s)
- Refaat A. Eid
- Pathology Department, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia
| | - Muhammad Alaa Edeen
- Cell Biology, Histology & Genetics Division, Biology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
- Correspondence: (M.A.E.); (B.K.)
| | - Eslam M. Shedid
- Biotechnology Division, Zoology Department, Faculty of Science, Benha University, Al Qalyubia Governorate, Banha 13511, Egypt
| | - Al Shaimaa S. Kamal
- Biotechnology Department, Faculty of Agriculture, Benha University, Al Qalyubia Governorate, Banha 13511, Egypt
| | - Mona M. Warda
- Biotechnology Division, Zoology Department, Faculty of Science, Benha University, Al Qalyubia Governorate, Banha 13511, Egypt
| | - Farag Mamdouh
- Biotechnology Division, Zoology Department, Faculty of Science, Benha University, Al Qalyubia Governorate, Banha 13511, Egypt
| | - Sohila A. Khedr
- Industrial Biotechnology Department, Faculty of Science, Tanta University, Tanta 31733, Egypt
| | - Mohamed A. Soltan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, Ismailia 41611, Egypt
| | - Hee Won Jeon
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Mohamed Samir A. Zaki
- Anatomy Department, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia
- Department of Histology and Cell Biology, College of Medicine, Zagazig University, Zagazig 31527, Egypt
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence: (M.A.E.); (B.K.)
| |
Collapse
|
5
|
Cámara-Sánchez P, Díaz-Riascos ZV, García-Aranda N, Gener P, Seras-Franzoso J, Giani-Alonso M, Royo M, Vázquez E, Schwartz S, Abasolo I. Selectively Targeting Breast Cancer Stem Cells by 8-Quinolinol and Niclosamide. Int J Mol Sci 2022; 23:ijms231911760. [PMID: 36233074 PMCID: PMC9570236 DOI: 10.3390/ijms231911760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 12/01/2022] Open
Abstract
Cancer maintenance, metastatic dissemination and drug resistance are sustained by cancer stem cells (CSCs). Triple negative breast cancer (TNBC) is the breast cancer subtype with the highest number of CSCs and the poorest prognosis. Here, we aimed to identify potential drugs targeting CSCs to be further employed in combination with standard chemotherapy in TNBC treatment. The anti-CSC efficacy of up to 17 small drugs was tested in TNBC cell lines using cell viability assays on differentiated cancer cells and CSCs. Then, the effect of 2 selected drugs (8-quinolinol -8Q- and niclosamide -NCS-) in the cancer stemness features were evaluated using mammosphere growth, cell invasion, migration and anchorage-independent growth assays. Changes in the expression of stemness genes after 8Q or NCS treatment were also evaluated. Moreover, the potential synergism of 8Q and NCS with PTX on CSC proliferation and stemness-related signaling pathways was evaluated using TNBC cell lines, CSC-reporter sublines, and CSC-enriched mammospheres. Finally, the efficacy of NCS in combination with PTX was analyzed in vivo using an orthotopic mouse model of MDA-MB-231 cells. Among all tested drug candidates, 8Q and NCS showed remarkable specific anti-CSC activity in terms of CSC viability, migration, invasion and anchorage independent growth reduction in vitro. Moreover, specific 8Q/PTX and NCS/PTX ratios at which both drugs displayed a synergistic effect in different TNBC cell lines were identified. The sole use of PTX increased the relative presence of CSCs in TNBC cells, whereas the combination of 8Q and NCS counteracted this pro-CSC activity of PTX while significantly reducing cell viability. In vivo, the combination of NCS with PTX reduced tumor growth and limited the dissemination of the disease by reducing circulating tumor cells and the incidence of lung metastasis. The combination of 8Q and NCS with PTX at established ratios inhibits both the proliferation of differentiated cancer cells and the viability of CSCs, paving the way for more efficacious TNBC treatments.
Collapse
Affiliation(s)
- Patricia Cámara-Sánchez
- Drug Delivery and Targeting Group, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Zamira V. Díaz-Riascos
- Drug Delivery and Targeting Group, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Functional Validation & Preclinical Research (FVPR), Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Natalia García-Aranda
- Drug Delivery and Targeting Group, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Functional Validation & Preclinical Research (FVPR), Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Petra Gener
- Drug Delivery and Targeting Group, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Joaquin Seras-Franzoso
- Drug Delivery and Targeting Group, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Micaela Giani-Alonso
- Drug Delivery and Targeting Group, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Miriam Royo
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Institute for Advanced Chemistry (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Esther Vázquez
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Simó Schwartz
- Drug Delivery and Targeting Group, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Ibane Abasolo
- Drug Delivery and Targeting Group, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Functional Validation & Preclinical Research (FVPR), Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
- Correspondence:
| |
Collapse
|
6
|
Ji SL, Zhang CY, Yin XQ, Wang J, Wang JP, Xu X. Baicalein Loaded Crown Ether-mPEG-PLGA Micelle Drug Delivery System for Increased Breast Cancer Treatment: Preparation, Characterization, In-Vitro and In-Vivo Evaluations. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Due to low aqueous solubility and poor bioavailability of the flavone baicalein (BIC), a nano-micelle of delivery system was developed. Preparation of BIC-loaded crown ether-mPEG-PLGA micelle (BCPP-M) was performed via thin-film hydration method. Characterization of micellar excipients
was accomplished with 1H NMR, while evaluation of the optimal BCPP-M formulation was appropriately carried out through zeta potential (ZP), size of particles (PS), efficiency of encapsulation (EE) and capacity of drug loading (DL). We evaluated BIC release In-Vitro and profile
of In-Vivo pharmacokinetics. Evaluation of the anti-breast cancer property of BCPP-M using MCP-7 cells cytotoxicity and mice model was performed. Particles of BCPP-M were homogenously and spherically shaped with smaller average PS, coupled with higher EE and DL, good stability and polydispersity
index (PDI). The accumulative release of BCPP-M was obviously higher than free-BIC. Significantly, oral biological availability of BCPP-M was improved comparable to free BIC. Besides, half maximum inhibitory concentration (IC50) of BCPP-M in MCP-7 cells was lower than free-BIC. Animal experiments
also showed targeting, long circulation and antitumor potential of BCPP-M. Successful incorporation of BIC into long-acting and targeting micellar system could have enhanced solubility in aqueous media, oral In-Vivo availability and antitumor property of BIC.
Collapse
Affiliation(s)
- Shun-Li Ji
- Department of Pharmacy, Nantong University Affiliated Hospital, Chongchuan District, Nantong City, 226001, Jiangsu Province, China
| | - Chun-Yan Zhang
- Department of Pharmacy, Nantong University Affiliated Hospital, Chongchuan District, Nantong City, 226001, Jiangsu Province, China
| | - Xiao-Qin Yin
- Department of Pharmacy, Nantong University Affiliated Hospital, Chongchuan District, Nantong City, 226001, Jiangsu Province, China
| | - Jing Wang
- Department of Pharmacy, Nantong University Affiliated Hospital, Chongchuan District, Nantong City, 226001, Jiangsu Province, China
| | - Jia-Peng Wang
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu Province, China
| | - Xin Xu
- Department of Pharmacy, Nantong University Affiliated Hospital, Chongchuan District, Nantong City, 226001, Jiangsu Province, China
| |
Collapse
|
7
|
Dewi C, Fristiohady A, Amalia R, Khairul Ikram NK, Ibrahim S, Muchtaridi M. Signaling Pathways and Natural Compounds in Triple-Negative Breast Cancer Cell Line. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123661. [PMID: 35744786 PMCID: PMC9227697 DOI: 10.3390/molecules27123661] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, having a poor prognosis and rapid metastases. TNBC is characterized by the absence of estrogen, progesterone, and human epidermal growth receptor-2 (HER2) expressions and has a five-year survival rate. Compared to other breast cancer subtypes, TNBC patients only respond to conventional chemotherapies, and even then, with limited success. Shortages of chemotherapeutic medication can lead to resistance, pressured index therapy, non-selectivity, and severe adverse effects. Finding targeted treatments for TNBC is difficult owing to the various features of cancer. Hence, identifying the most effective molecular targets in TNBC pathogenesis is essential for predicting response to targeted therapies and preventing TNBC cell metastases. Nowadays, natural compounds have gained attention as TNBC treatments, and have offered new strategies for solving drug resistance. Here, we report a systematic review using the database from Pubmed, Science Direct, MDPI, BioScince, Springer, and Nature for articles screening from 2003 to 2022. This review analyzes relevant signaling pathways and the prospect of utilizing natural compounds as a therapeutic agent to improve TNBC treatments in the future.
Collapse
Affiliation(s)
- Citra Dewi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Pharmacy Department, Faculty of Science and Technology, Mandala Waluya University, Kendari 93561, Indonesia
| | - Adryan Fristiohady
- Faculty of Pharmacy, Halu Oleo University, Kampus Hijau Bumi Tridharma, Kendari 93232, Indonesia;
| | - Riezki Amalia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| | - Nur Kusaira Khairul Ikram
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Sugeng Ibrahim
- Department of Molecular Biology, Faculty of Medicine, Universitas Katolik Soegijapranata, Semarang 50234, Indonesia;
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Correspondence:
| |
Collapse
|
8
|
Gupta P, Neupane YR, Parvez S, Kohli K. Recent advances in targeted nanotherapeutic approaches for breast cancer management. Nanomedicine (Lond) 2021; 16:2605-2631. [PMID: 34854336 DOI: 10.2217/nnm-2021-0281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most commonly occurring tumor disease worldwide. Breast cancer is currently managed by conventional chemotherapy, which is inadequate in curbing this heterogeneous disease and results in off-site toxic effects, suggesting effective treatment approaches with better therapeutic profiles are needed. This review, therefore, focuses on the recent advancements in delivering therapeutics to the target site using passive and/or active targeted nanodrug-delivery systems to ameliorate endolysosomal escape. In addition, recent strategies in targeting breast cancer stem cells are discussed. The role of naturally cell-secreted nanovesicles (exosomes) in the management of triple-negative breast cancer is also discussed.
Collapse
Affiliation(s)
- Priya Gupta
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Yub Raj Neupane
- Department of Pharmacy, National University of Singapore, Singapore, 117559
| | - Suhel Parvez
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India.,Lloyd Institute of Management & Technology (Pharm.), Plot No. 11, Knowledge Park-II, Greater Noida, 201308, Uttar Pradesh, India
| |
Collapse
|
9
|
Altundag Ö, Canpinar H, Çelebi-Saltik B. Methionine affects the expression of pluripotency genes and protein levels associated with methionine metabolism in adult, fetal, and cancer stem cells. J Cell Biochem 2021; 123:406-416. [PMID: 34783058 DOI: 10.1002/jcb.30180] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 01/07/2023]
Abstract
Intracellular and extracellular regulatory factors promote the potency and self-renewal property of stem cells. Methionine is fundamental for protein synthesis and regulation of methylation reactions. Specifically, methionine metabolism in embryonic and fetal development processes regulates gene expression profile/epigenetic identity of stem cells to achieve pluripotency and cellular functions. We aimed to reveal the differences in methionine metabolism of bone marrow (BM)-mesenchymal stem cells (MSCs), umbilical cord blood (UCB)-MSCs, and cancer stem cells (CSCs), which reflect different metabolic profiles and developmental stages of stem cells. UCB-MSC, BM-MSCs, and breast CSCs were treated with different doses (0, 10, 25, 50, and 100 µM) of l-methionine. Cell surface marker and cell cycle assessment were performed by flow cytometry. Changes in gene expressions (OCT3/4, NANOG, DMNT1, DNMT3A, and DNMT3B, MAT2A, and MAT2B) with methionine supplementation were examined by quantitative real-time polymerase chain reaction and the changes in histone methylation (H3K4me3, H3K27me3) levels were demonstrated by western blot analysis. S-adenosylmethionine//S-adenosylhomocysteine (SAM/SAH) levels were evaluated by enzyme-linked immunosorbent assay. Cells that were exposed to different concentrations of l-methionine, were mostly arrested in the G0/G1 phase for each stem cell group. It was evaluated that BM-MSCs increased all gene expressions in the culture medium-containing 100 µM methionine, in addition to SAM/SAH levels. On the other hand, UCB-MSCs were found to increase OCT3/4, NANOG, and DNMT1 gene expressions and decrease MAT2A and MAT2B expressions in the culture medium containing 10 µM methionine. Moreover, an increase was observed in the He3K4me3 methylation profile. In addition, OCT3/4, NANOG, DNMT1, and MAT2B gene expressions in CSCs increased starting from the addition of 25 µM methionine. An increase was determined in H3K4me3 protein expression at 50 and 100 µM methionine-supplemented culture condition. This study demonstrates that methionine plays a critical role in metabolism and epigenetic regulation in different stem cell groups.
Collapse
Affiliation(s)
- Özlem Altundag
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara, Sihhiye, Turkey.,Center for Stem Cell Research and Development, Hacettepe University, Ankara, Sihhiye, Turkey
| | - Hande Canpinar
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Sihhiye, Turkey
| | - Betül Çelebi-Saltik
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara, Sihhiye, Turkey.,Center for Stem Cell Research and Development, Hacettepe University, Ankara, Sihhiye, Turkey
| |
Collapse
|
10
|
Urbaniak A, Reed MR, Fil D, Moorjani A, Heflin S, Antoszczak M, Sulik M, Huczyński A, Kupsik M, Eoff RL, MacNicol MC, Chambers TC, MacNicol AM. Single and double modified salinomycin analogs target stem-like cells in 2D and 3D breast cancer models. Biomed Pharmacother 2021; 141:111815. [PMID: 34130123 PMCID: PMC8429223 DOI: 10.1016/j.biopha.2021.111815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/25/2021] [Accepted: 06/07/2021] [Indexed: 01/05/2023] Open
Abstract
Breast cancer remains one of the leading cancers among women. Cancer stem cells (CSCs) are tumor-initiating cells which drive progression, metastasis, and reoccurrence of the disease. CSCs are resistant to conventional chemo- and radio-therapies and their ability to survive such treatment enables tumor reestablishment. Metastasis is the main cause of mortality in women with breast cancer, thus advances in treatment will depend on therapeutic strategies targeting CSCs. Salinomycin (SAL) is a naturally occurring polyether ionophore antibiotic known for its anticancer activity towards several types of tumor cells. In the present work, a library of 17 C1-single and C1/C20-double modified SAL analogs was screened to identify compounds with improved activity against breast CSCs. Six single- and two double-modified analogs were more potent (IC50 range of 1.1 ± 0.1-1.4 ± 0.2 µM) toward the breast cancer cell line MDA-MB-231 compared to SAL (IC50 of 4.9 ± 1.6 µM). Double-modified compound 17 was found to be more efficacious than SAL against the majority of cancer cell lines in the NCI-60 Human Tumor Cell Line Panel. Compound 17 was more potent than SAL in inhibiting cell migration and cell renewal properties of MDA-MB-231 cells, as well as inducing selective loss of the CD44+/CD24/low stem-cell-like subpopulation in both monolayer (2D) and organoid (3D) culture. The present findings highlight the therapeutic potential of SAL analogs towards breast CSCs and identify select compounds that merit further study and clinical development.
Collapse
Affiliation(s)
- Alicja Urbaniak
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| | - Megan R Reed
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Daniel Fil
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Anika Moorjani
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Sarah Heflin
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Michał Antoszczak
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Michał Sulik
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Adam Huczyński
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | | | - Robert L Eoff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Melanie C MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Timothy C Chambers
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Angus M MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| |
Collapse
|
11
|
Wang H, Zhang H, Zhu Y, Wu Z, Cui C, Cai F. Anticancer Mechanisms of Salinomycin in Breast Cancer and Its Clinical Applications. Front Oncol 2021; 11:654428. [PMID: 34381705 PMCID: PMC8350729 DOI: 10.3389/fonc.2021.654428] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 06/28/2021] [Indexed: 01/11/2023] Open
Abstract
Breast cancer (BC) is the most frequent cancer among women worldwide and is the leading cause of cancer-related deaths in women. Cancer cells with stem cell-like features and tumor-initiating potential contribute to drug resistance, tumor recurrence, and metastasis. To achieve better clinical outcomes, it is crucial to eradicate both bulk BC cells and breast cancer stem cells (BCSCs). Salinomycin, a monocarboxylic polyether antibiotic isolated from Streptomyces albus, can precisely kill cancer stem cells (CSCs), particularly BCSCs, by various mechanisms, including apoptosis, autophagy, and necrosis. There is increasing evidence that salinomycin can inhibit cell proliferation, invasion, and migration in BC and reverse the immune-inhibitory microenvironment to prevent tumor growth and metastasis. Therefore, salinomycin is a promising therapeutic drug for BC. In this review, we summarize established mechanisms by which salinomycin protects against BC and discuss its future clinical applications.
Collapse
Affiliation(s)
- Hui Wang
- Laboratory of Tumor Molecular Biology, School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Hongyi Zhang
- Department of Breast Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yihao Zhu
- Laboratory of Tumor Molecular Biology, School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Zhonghang Wu
- Department of Scientific Research, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Chunhong Cui
- Laboratory of Tumor Molecular Biology, School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China.,Department of Scientific Research, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Fengfeng Cai
- Department of Breast Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
12
|
Erkisa M, Sariman M, Geyik OG, Geyik CG, Stanojkovic T, Ulukay E. Natural Products as a Promising Therapeutic Strategy to Target Cancer Stem Cells. Curr Med Chem 2021; 29:741-783. [PMID: 34182899 DOI: 10.2174/0929867328666210628131409] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 11/22/2022]
Abstract
Cancer is still a deadly disease, and its treatment desperately needs to be managed in a very sophisticated way through fast-developing novel strategies. Most of the cancer cases eventually develop into recurrencies, for which cancer stem cells (CSCs) are thought to be responsible. They are considered as a subpopulation of all cancer cells of tumor tissue with aberrant regulation of self-renewal, unbalanced proliferation, and cell death properties. Moreover, CSCs show a serious degree of resistance to chemotherapy or radiotherapy and immune surveillance as well. Therefore, new classes of drugs are rushing into the market each year, which makes the cost of therapy increase dramatically. Natural products are also becoming a new research area as a diverse chemical library to suppress CSCs. Some of the products even show promise in this regard. So, the near future could witness the introduction of natural products as a source of new chemotherapy modalities, which may result in the development of novel anticancer drugs. They could also be a reasonably-priced alternative to highly expensive current treatments. Nowadays, considering the effects of natural compounds on targeting surface markers, signaling pathways, apoptosis, and escape from immunosurveillance have been a highly intriguing area in preclinical and clinical research. In this review, we present scientific advances regarding their potential use in the inhibition of CSCs and the mechanisms by which they kill the CSCs.
Collapse
Affiliation(s)
- Merve Erkisa
- Molecular Cancer Research Center (ISUMKAM), Istinye University, Istanbul, Turkey
| | - Melda Sariman
- Molecular Cancer Research Center (ISUMKAM), Istinye University, Istanbul, Turkey
| | - Oyku Gonul Geyik
- Molecular Cancer Research Center (ISUMKAM), Istinye University, Istanbul, Turkey
| | - Caner Geyik Geyik
- Molecular Cancer Research Center (ISUMKAM), Istinye University, Istanbul, Turkey
| | - Tatjana Stanojkovic
- Experimental Oncology Deparment, Institute for Oncology and Radiology of Serbia, 11000 Belgrade, Pasterova 14. Serbia
| | - Engin Ulukay
- Molecular Cancer Research Center (ISUMKAM), Istinye University, Istanbul, Turkey
| |
Collapse
|
13
|
Lucero M, Thind J, Sandoval J, Senaati S, Jimenez B, Kandpal RP. Stem-like Cells from Invasive Breast Carcinoma Cell Line MDA-MB-231 Express a Distinct Set of Eph Receptors and Ephrin Ligands. Cancer Genomics Proteomics 2021; 17:729-738. [PMID: 33099474 DOI: 10.21873/cgp.20227] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND/AIM Breast cancer cell lines consist of bulk tumor cells and a small proportion of stem-like cells. While the bulk cells are known to express a distinct combination of Eph receptors and ephrin ligands, the transcript profiles of stem-like cells in these cell lines have not been adequately characterized. The aim of this study was to determine Eph receptor/ephrin ligand profiles of cancer stem cells specific to a triple negative breast carcinoma cell line. MATERIALS AND METHODS The normal breast cell line MCF10A and the invasive breast carcinoma cell line MDA-MB-231 were used to isolate CD24+/CD24- cell populations. The profiles of Eph receptors and ephrin ligands were determined by real-time PCR and the relative abundance in bulk and stem cells were compared. RESULTS Based on the mean ΔCT values, the descending order of abundance was as follows. Ephrin-A5 > EPHA2 > (EPHA8, EPHB2) > ephrin-B2 > (EPHA7, EPHB4, ephrin-A4) > ephrin-A3 > ephrin-A1 > (EPHB3, ephrin-B1) > EPHA4 > EPHA1 > EPHA10. EPHA6 and ephrin-A2 transcripts were not detectable in stem cells from either cell line. The expression of EPHA4, EPHA7, EPHA8, and ephrin-A5 in MDA-MB-231 stem cells was up-regulated by 12, 20, ~500, and 6.5-fold respectively. CONCLUSION The up-regulation of transcripts for EPHA8 and its cognate ligand, ephrin-A5, in the stem cells isolated from MDA-MB-231, suggest their involvement in the invasiveness of this cell line. Based on literature reports, we propose the role of EPHA8 and ephrin-A5 in MDA-MB-231 stem cells via the PI3K-AKT-mTOR pathway.
Collapse
Affiliation(s)
- Mariana Lucero
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA, U.S.A
| | - Jaspreet Thind
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA, U.S.A
| | - Jacqueline Sandoval
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA, U.S.A
| | - Shayan Senaati
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA, U.S.A
| | - Belinda Jimenez
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA, U.S.A
| | - Raj P Kandpal
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA, U.S.A.
| |
Collapse
|
14
|
Saghaeidehkordi A, Chen S, Yang S, Kaur K. Evaluation of a Keratin 1 Targeting Peptide-Doxorubicin Conjugate in a Mouse Model of Triple-Negative Breast Cancer. Pharmaceutics 2021; 13:661. [PMID: 34063098 PMCID: PMC8148172 DOI: 10.3390/pharmaceutics13050661] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/21/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
Chemotherapy is the main treatment for triple-negative breast cancer (TNBC), a subtype of breast cancer that is aggressive with a poor prognosis. While chemotherapeutics are potent, these agents lack specificity and are equally toxic to cancer and nonmalignant cells and tissues. Targeted therapies for TNBC treatment could lead to more safe and efficacious drugs. We previously engineered a breast cancer cell targeting peptide 18-4 that specifically binds cell surface receptor keratin 1 (K1) on breast cancer cells. A conjugate of peptide 18-4 and doxorubicin (Dox) containing an acid-sensitive hydrazone linker showed specific toxicity toward TNBC cells. Here, we report the in vivo evaluation of the K1 targeting peptide-Dox conjugate (PDC) in a TNBC cell-derived xenograft mouse model. Mice treated with the conjugate show significantly improved antitumor efficacy and reduced off-target toxicity compared to mice treated with Dox or saline. After six weekly treatments, on day 35, the mice treated with PDC (2.5 mg Dox equivalent/kg) showed significant reduction (1.5 times) in tumor volume compared to mice treated with Dox (2.5 mg/kg). The mice treated with the conjugate showed significantly higher (1.4 times) levels of Dox in tumors and lower (1.3-2.2 times) levels of Dox in other organs compared to mice treated with Dox. Blood collected at 15 min showed 3.6 times higher concentration of the drug (PDC and Dox) in mice injected with PDC compared to the drug (Dox) in mice injected with Dox. The study shows that the K1 targeting PDC is a promising novel modality for treatment of TNBC, with a favorable safety profile, and warrants further investigation of K1 targeting conjugates as TNBC therapeutics.
Collapse
Affiliation(s)
- Azam Saghaeidehkordi
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, CA 92618-1908, USA; (A.S.); (S.Y.)
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA;
| | - Sun Yang
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, CA 92618-1908, USA; (A.S.); (S.Y.)
| | - Kamaljit Kaur
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, CA 92618-1908, USA; (A.S.); (S.Y.)
| |
Collapse
|
15
|
Lv L, Shi Y, Wu J, Li G. Nanosized Drug Delivery Systems for Breast Cancer Stem Cell Targeting. Int J Nanomedicine 2021; 16:1487-1508. [PMID: 33654398 PMCID: PMC7914063 DOI: 10.2147/ijn.s282110] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/10/2021] [Indexed: 01/15/2023] Open
Abstract
Breast cancer stem cells (BCSCs), also known as breast cancer initiating cells, are reported to be responsible for the initiation, progression, therapeutic resistance, and relapse of breast cancer. Conventional therapeutic agents mainly kill the bulk of breast tumor cells and fail to eliminate BCSCs, even enhancing the fraction of BCSCs in breast tumors sometimes. Therefore, it is essential to develop specific and effective methods of eliminating BCSCs that will enhance the efficacy of killing breast tumor cells and thereby, increase the survival rates and quality of life of breast cancer patients. Despite the availability of an increasing number of anti-BCSC agents, their clinical translations are hindered by many issues, such as instability, low bioavailability, and off-target effects. Nanosized drug delivery systems (NDDSs) have the potential to overcome the drawbacks of anti-BCSC agents by providing site-specific delivery and enhancing of the stability and bioavailability of the delivered agents. In this review, we first briefly introduce the strategies and agents used against BCSCs and then highlight the mechanism of action and therapeutic efficacy of several state-of-the-art NDDSs that can be used to treat breast cancer by eliminating BCSCs.
Collapse
Affiliation(s)
- Li Lv
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Yonghui Shi
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China.,Department of Pharmacy, Zengcheng District People's Hospital of Guangzhou, Guangzhou, 511300, Guangdong, People's Republic of China
| | - Junyan Wu
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Guocheng Li
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| |
Collapse
|
16
|
Correia AS, Gärtner F, Vale N. Drug combination and repurposing for cancer therapy: the example of breast cancer. Heliyon 2021; 7:e05948. [PMID: 33490692 PMCID: PMC7810770 DOI: 10.1016/j.heliyon.2021.e05948] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 12/30/2022] Open
Abstract
Cancer is a set of extremely complex diseases, which are increasingly prominent today, as it affects and kills millions of people worldwide, being the subject of intense study both in its pathophysiology and therapy. Especially in women, breast cancer is still a cancer with a high incidence and mortality. Even though mortality rates for this type of cancer have declined in recent years, it remains challenging at the treatment level, especially the metastatic type. Due to all the impact on health, cancer therapy is the subject of costly and intense research. To enrich this therapy, as well as decrease its underlying high associated costs, drug repurposing and drug combinations are strategies that have been increasingly studied and addressed. As the name implies, drug repurposing presupposes giving new purposes to agents which, in this case, are approved for the therapy of other diseases (for example, cardiovascular or metabolic diseases), but are not approved for cancer therapy. Therefore, a better knowledge of these therapeutic modalities for breast cancer therapy is crucial for improved therapy. In this particular review, we will discuss some relevant aspects of cancer and, particularly, breast cancer and its therapy. Also, drug combination and repurposing will be highlighted, together with relevant examples. Despite some limitations that need to be overcome, these methodologies are extremely important and advantageous in combating several current problems of cancer therapy, namely in terms of costs and resistance to current therapeutic modalities. These approaches will be explored with a special focus on breast cancer.
Collapse
Affiliation(s)
- Ana Salomé Correia
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
- Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Fátima Gärtner
- Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
- Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
17
|
Ávalos-Moreno M, López-Tejada A, Blaya-Cánovas JL, Cara-Lupiañez FE, González-González A, Lorente JA, Sánchez-Rovira P, Granados-Principal S. Drug Repurposing for Triple-Negative Breast Cancer. J Pers Med 2020; 10:E200. [PMID: 33138097 PMCID: PMC7711505 DOI: 10.3390/jpm10040200] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive type of breast cancer which presents a high rate of relapse, metastasis, and mortality. Nowadays, the absence of approved specific targeted therapies to eradicate TNBC remains one of the main challenges in clinical practice. Drug discovery is a long and costly process that can be dramatically improved by drug repurposing, which identifies new uses for existing drugs, both approved and investigational. Drug repositioning benefits from improvements in computational methods related to chemoinformatics, genomics, and systems biology. To the best of our knowledge, we propose a novel and inclusive classification of those approaches whereby drug repurposing can be achieved in silico: structure-based, transcriptional signatures-based, biological networks-based, and data-mining-based drug repositioning. This review specially emphasizes the most relevant research, both at preclinical and clinical settings, aimed at repurposing pre-existing drugs to treat TNBC on the basis of molecular mechanisms and signaling pathways such as androgen receptor, adrenergic receptor, STAT3, nitric oxide synthase, or AXL. Finally, because of the ability and relevance of cancer stem cells (CSCs) to drive tumor aggressiveness and poor clinical outcome, we also focus on those molecules repurposed to specifically target this cell population to tackle recurrence and metastases associated with the progression of TNBC.
Collapse
Affiliation(s)
- Marta Ávalos-Moreno
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
| | - Araceli López-Tejada
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| | - Jose L. Blaya-Cánovas
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| | - Francisca E. Cara-Lupiañez
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| | - Adrián González-González
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| | - Jose A. Lorente
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- Department of Legal Medicine, School of Medicine—PTS—University of Granada, 18016 Granada, Spain
| | | | - Sergio Granados-Principal
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| |
Collapse
|
18
|
Wnt/β-Catenin Signaling Pathway as Chemotherapeutic Target in Breast Cancer: An Update on Pros and Cons. Clin Breast Cancer 2020; 20:361-370. [DOI: 10.1016/j.clbc.2020.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/14/2022]
|
19
|
Dalpiaz A, Paganetto G, Botti G, Pavan B. Cancer stem cells and nanomedicine: new opportunities to combat multidrug resistance? Drug Discov Today 2020; 25:1651-1667. [PMID: 32763499 DOI: 10.1016/j.drudis.2020.07.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/09/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022]
Abstract
'Multidrug resistance' (MDR) is a difficult challenge for cancer treatment. The combined role of cytochrome P450 enzymes (CYPs) and active efflux transporters (AETs) in cancer cells appears relevant in inducing MDR. Chemotherapeutic drugs can be substrates of both CYPs and AETs and CYP inducers or inhibitors can produce the same effects on AETs. In addition, a small subpopulation of cancer stem-like cells (CSCs) appears to survive conventional chemotherapy, leading to recurrent disease. Natural products appear efficacious against CSCs; their combinational treatments with standard chemotherapy are promising for cancer eradication, in particular when supported by nanotechnologies.
Collapse
Affiliation(s)
- Alessandro Dalpiaz
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Guglielmo Paganetto
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giada Botti
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Barbara Pavan
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
20
|
Sunilkumar D, Drishya G, Chandrasekharan A, Shaji SK, Bose C, Jossart J, Perry JJP, Mishra N, Kumar GB, Nair BG. Oxyresveratrol drives caspase-independent apoptosis-like cell death in MDA-MB-231 breast cancer cells through the induction of ROS. Biochem Pharmacol 2020; 173:113724. [DOI: 10.1016/j.bcp.2019.113724] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/15/2019] [Indexed: 12/23/2022]
|
21
|
Idrissou M, Judes G, Daures M, Sanchez A, El Ouardi D, Besse S, Degoul F, Penault-Llorca F, Bignon YJ, Bernard-Gallon D. TIP60 Inhibitor TH1834 Reduces Breast Cancer Progression in Xenografts in Mice. ACTA ACUST UNITED AC 2019; 23:457-459. [DOI: 10.1089/omi.2019.0126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Mouhamed Idrissou
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand, France
- INSERM—UMR 1240—Molecular Imaging and Theranostic Strategies (IMOST), Clermont-Ferrand, France
| | - Gaëlle Judes
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand, France
- INSERM—UMR 1240—Molecular Imaging and Theranostic Strategies (IMOST), Clermont-Ferrand, France
| | - Marine Daures
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand, France
- INSERM—UMR 1240—Molecular Imaging and Theranostic Strategies (IMOST), Clermont-Ferrand, France
| | - Anna Sanchez
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand, France
- INSERM—UMR 1240—Molecular Imaging and Theranostic Strategies (IMOST), Clermont-Ferrand, France
| | - Driss El Ouardi
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand, France
- INSERM—UMR 1240—Molecular Imaging and Theranostic Strategies (IMOST), Clermont-Ferrand, France
| | - Sophie Besse
- INSERM—UMR 1240—Molecular Imaging and Theranostic Strategies (IMOST), Clermont-Ferrand, France
| | - Françoise Degoul
- INSERM—UMR 1240—Molecular Imaging and Theranostic Strategies (IMOST), Clermont-Ferrand, France
| | - Frédérique Penault-Llorca
- INSERM—UMR 1240—Molecular Imaging and Theranostic Strategies (IMOST), Clermont-Ferrand, France
- Department of Biopathology, Centre Jean Perrin, Clermont-Ferrand, France
| | - Yves-Jean Bignon
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand, France
- INSERM—UMR 1240—Molecular Imaging and Theranostic Strategies (IMOST), Clermont-Ferrand, France
| | - Dominique Bernard-Gallon
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand, France
- INSERM—UMR 1240—Molecular Imaging and Theranostic Strategies (IMOST), Clermont-Ferrand, France
| |
Collapse
|
22
|
Small molecule HDAC inhibitors: Promising agents for breast cancer treatment. Bioorg Chem 2019; 91:103184. [PMID: 31408831 DOI: 10.1016/j.bioorg.2019.103184] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/11/2019] [Accepted: 08/04/2019] [Indexed: 12/15/2022]
Abstract
Breast cancer, a heterogeneous disease, is the most frequently diagnosed cancer and the second leading cause of cancer-related death among women worldwide. Recently, epigenetic abnormalities have emerged as an important hallmark of cancer development and progression. Given that histone deacetylases (HDACs) are crucial to chromatin remodeling and epigenetics, their inhibitors have become promising potential anticancer drugs for research. Here we reviewed the mechanism and classification of histone deacetylases (HDACs), association between HDACs and breast cancer, classification and structure-activity relationship (SAR) of HDACIs, pharmacokinetic and toxicological properties of the HDACIs, and registered clinical studies for breast cancer treatment. In conclusion, HDACIs have shown desirable effects on breast cancer, especially when they are used in combination with other anticancer agents. In the coming future, more multicenter and randomized Phase III studies are expected to be conducted pushing promising new therapies closer to the market. In addition, the design and synthesis of novel HDACIs are also needed.
Collapse
|
23
|
Scioli MG, Storti G, D'Amico F, Gentile P, Fabbri G, Cervelli V, Orlandi A. The Role of Breast Cancer Stem Cells as a Prognostic Marker and a Target to Improve the Efficacy of Breast Cancer Therapy. Cancers (Basel) 2019; 11:cancers11071021. [PMID: 31330794 PMCID: PMC6678191 DOI: 10.3390/cancers11071021] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/13/2019] [Accepted: 07/16/2019] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is the most common form of tumor in women and the leading cause of cancer-related mortality. Even though the major cellular burden in breast cancer is constituted by the so-called bulk tumor cells, another cell subpopulation named cancer stem cells (CSCs) has been identified. The latter have stem features, a self-renewal capacity, and the ability to regenerate the bulk tumor cells. CSCs have been described in several cancer types but breast cancer stem cells (BCSCs) were among the first to be identified and characterized. Therefore, many efforts have been put into the phenotypic characterization of BCSCs and the study of their potential as prognostic indicators and therapeutic targets. Many dysregulated pathways in BCSCs are involved in the epithelial-mesenchymal transition (EMT) and are found up-regulated in circulating tumor cells (CTCs), another important cancer cell subpopulation, that shed into the vasculature and disseminate along the body to give metastases. Conventional therapies fail at eliminating BCSCs because of their quiescent state that gives them therapy resistance. Based on this evidence, preclinical studies and clinical trials have tried to establish novel therapeutic regimens aiming to eradicate BCSCs. Markers useful for BCSC identification could also be possible therapeutic methods against BCSCs. New approaches in drug delivery combined with gene targeting, immunomodulatory, and cell-based therapies could be promising tools for developing effective CSC-targeted drugs against breast cancer.
Collapse
Affiliation(s)
- Maria Giovanna Scioli
- Anatomic Pathology Institute, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Roma, Italy
| | - Gabriele Storti
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Roma, Italy
| | - Federico D'Amico
- Anatomic Pathology Institute, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Roma, Italy
| | - Pietro Gentile
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Roma, Italy
| | - Giulia Fabbri
- Anatomic Pathology Institute, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Roma, Italy
| | - Valerio Cervelli
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Roma, Italy
| | - Augusto Orlandi
- Anatomic Pathology Institute, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Roma, Italy.
| |
Collapse
|
24
|
Atashzar MR, Baharlou R, Karami J, Abdollahi H, Rezaei R, Pourramezan F, Zoljalali Moghaddam SH. Cancer stem cells: A review from origin to therapeutic implications. J Cell Physiol 2019; 235:790-803. [PMID: 31286518 DOI: 10.1002/jcp.29044] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023]
Abstract
Cancer stem cells (CSCs), also known as tumor-initiating cells (TICs), are elucidated as cells that can perpetuate themselves via autorestoration. These cells are highly resistant to current therapeutic approaches and are the main reason for cancer recurrence. Radiotherapy has made a lot of contributions to cancer treatment. However, despite continuous achievements, therapy resistance and tumor recurrence are still prevalent in most patients. This resistance might be partly related to the existence of CSCs. In the present study, recent advances in the investigation of different biological properties of CSCs, such as their origin, markers, characteristics, and targeting have been reviewed. We have also focused our discussion on radioresistance and adaptive responses of CSCs and their related extrinsic and intrinsic influential factors. In summary, we suggest CSCs as the prime therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Mohammad Reza Atashzar
- Department of Immunology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Rasoul Baharlou
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.,Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Jafar Karami
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Abdollahi
- Department of Radiologic Sciences and Medical Physics, School of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ramazan Rezaei
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Pourramezan
- Department of Immunology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | | |
Collapse
|
25
|
Park HB, Kim YJ, Lee SM, Park JS, Kim KS. Dual Drug-Loaded Liposomes for Synergistic Efficacy in MCF-7 Breast Cancer Cells and Cancer Stem Cells. ACTA ACUST UNITED AC 2019. [DOI: 10.15616/bsl.2019.25.2.159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Hee-Bin Park
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Korea
| | - Yun-Ji Kim
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Korea
| | - Seong-Min Lee
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Korea
| | | | - Keun-Sik Kim
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Korea
| |
Collapse
|
26
|
Tyagi M, Patro BS. Salinomycin reduces growth, proliferation and metastasis of cisplatin resistant breast cancer cells via NF-kB deregulation. Toxicol In Vitro 2019; 60:125-133. [PMID: 31077746 DOI: 10.1016/j.tiv.2019.05.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/07/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023]
Abstract
Cisplatin (cis-diamminedichloro-platinum, CDDP), is a widely used platinum compound for various solid tumors including breast cancer as first line of therapy. However, its positive effects are limited due to acquired drug resistance and severe side effects in non-malignant tissue, especially due to dose-dependent nephro- and/or neuro-toxicity. Salinomycin is an antibiotic with coccidiostat effect and has shown anticancer efficacy against various cancer cells with selectivity in targeting cancer stem cells. In the present study, anticancer efficacy and mechanism of action of salinomycin in CDDP-resistant human breast cancer (MCF7DDP) cells has been examined. Initially, we generated CDDP-resistant cells by a new protocol followed by checking the anticancer efficacy of salinomycin through MTT, clonogenic, annexin-V/PI and sub-G1 assay. Our results demonstrated that salinomycin diminished both cell proliferation and metastatic migration of MCF7DDP cells. Salinomycin also induced mitochondrial dysfunction in CDDP-resistant breast cancer cells. The analysis of nuclear translocation of pro-survival transcription factors by western blotting showed a distinct role of p65 (NF-κB) in CDDP-mediated resistance in breast cancer. Salinomycin abrogated nuclear translocation of NF-κB proteins and also caused a concurrent reduction in NF-κB regulated expression of pro-survival proteins e.g., survivin, XIAP and BCL-2 in CDDP-resistant cells. These results suggest that a follow up treatment of salinomycin may be promising strategy against CDDP resistant breast cancer cells and metastasis and help in reducing CDDP-induced side effects.
Collapse
Affiliation(s)
- Mrityunjay Tyagi
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Birija Sankar Patro
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
27
|
Antoszczak M. A medicinal chemistry perspective on salinomycin as a potent anticancer and anti-CSCs agent. Eur J Med Chem 2019; 164:366-377. [DOI: 10.1016/j.ejmech.2018.12.057] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/20/2018] [Accepted: 12/24/2018] [Indexed: 01/30/2023]
|
28
|
Izawa Y, Kashii-Magaribuchi K, Yoshida K, Nosaka M, Tsuji N, Yamamoto A, Kuroyanagi K, Tono K, Tanihata M, Imanishi M, Onishi M, Sakiyama M, Inoue S, Takahashi R. Stem-like Human Breast Cancer Cells Initiate Vasculogenic Mimicry on Matrigel. Acta Histochem Cytochem 2018; 51:173-183. [PMID: 30647492 PMCID: PMC6328367 DOI: 10.1267/ahc.18041] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023] Open
Abstract
Vasculogenic mimicry (VM), referring to vasculogenic structures lined by tumor cells, can be distinguished from angiogenesis, and is responsible for the aggressiveness and metastatic potential of tumors. HCC1937/p53 cells were derived from triple-negative breast cancer (TNBC), and used to investigate the roles of breast cancer stem cells (CSCs) in the formation of VM. HCC1937/p53 cells formed mesh-like structures on matrigel culture in which expression of VM-related genes, vascular endothelial (VE)-cadherin, matrix metalloproteinase (MMP)-2 and MMP-9 was confirmed by droplet digital polymerase chain reaction (PCR). In immunofluorescence microscopy, aldehyde dehydrogenase (ALDH)1A3+ cells with properties of CSCs or progenitors and GATA binding protein 3 (GATA3)+ cells with more differentiated characteristics were localized in the bridging region and aggregated region of VM structures, respectively. In fluorescence-activated cell sorting analysis, ALDH+ cells, considered to be a subpopulation of CSCs sorted by the aldefluor assay, exhibited marked VM formation on matrigel in 24 hr, whereas ALDH− cells did not form VM, indicating possible roles of CSCs in VM formation. The stem-like cancer cells resistant to p53-induced apoptosis, which expressed a high rate of ALDH1A3 and Sex-determining region Y (SRY)-box binding protein-2 (Sox-2), completed VM formation much faster than the control. These findings may provide clues to elucidate the significance of VM formed by treatment-resistant CSCs in the metastatic potential and poor prognosis associated with TNBC.
Collapse
Affiliation(s)
- Yuki Izawa
- Graduate School of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | | | - Kana Yoshida
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Mayu Nosaka
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Nanami Tsuji
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Ai Yamamoto
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Kana Kuroyanagi
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Kanoko Tono
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Misato Tanihata
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Moe Imanishi
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Momoka Onishi
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Mayu Sakiyama
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Sana Inoue
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Rei Takahashi
- Graduate School of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| |
Collapse
|
29
|
Yang F, Wang F, Liu Y, Wang S, Li X, Huang Y, Xia Y, Cao C. Sulforaphane induces autophagy by inhibition of HDAC6-mediated PTEN activation in triple negative breast cancer cells. Life Sci 2018; 213:149-157. [DOI: 10.1016/j.lfs.2018.10.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 02/09/2023]
|
30
|
Palomeras S, Ruiz-Martínez S, Puig T. Targeting Breast Cancer Stem Cells to Overcome Treatment Resistance. Molecules 2018; 23:E2193. [PMID: 30200262 PMCID: PMC6225226 DOI: 10.3390/molecules23092193] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 12/15/2022] Open
Abstract
Despite advances in breast cancer diagnosis and treatment, many patients still fail therapy, resulting in disease progression, recurrence, and reduced overall survival. Historically, much focus has been put on the intrinsic subtyping based in the presence (or absence) of classical immunohistochemistry (IHC) markers such as estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-related protein (HER2). However, it is widely understood that tumors are composed of heterogeneous populations of cells with a hierarchical organization driven by cancer stem cells (CSCs). In breast tumors, this small population of cells displaying stem cell properties is known as breast CSCs (BCSCs). This rare population exhibit a CD44⁺/CD24-/low phenotype with high ALDH activity (ALDH⁺), and possesses higher tolerability to chemotherapy, hormone therapy, and radiotherapy and is able to reproduce the bulk of the tumor after reduction of cell populations sensitive to first-line therapy leading to disease relapse. In this review, we present special attention to BCSCs with future directions in the establishment of a therapy targeting this population. Drugs targeting the main BCSCs signaling pathways undergoing clinical trials are also summarized.
Collapse
Affiliation(s)
- Sònia Palomeras
- New Therapeutic Targets Laboratory (TargetsLab) Oncology Unit, Department of Medical Sciences, University of Girona, Girona Institute for Biomedical Research, Emili Grahit 77, Girona 17003, Spain.
| | - Santiago Ruiz-Martínez
- New Therapeutic Targets Laboratory (TargetsLab) Oncology Unit, Department of Medical Sciences, University of Girona, Girona Institute for Biomedical Research, Emili Grahit 77, Girona 17003, Spain.
| | - Teresa Puig
- New Therapeutic Targets Laboratory (TargetsLab) Oncology Unit, Department of Medical Sciences, University of Girona, Girona Institute for Biomedical Research, Emili Grahit 77, Girona 17003, Spain.
| |
Collapse
|
31
|
O'Conor CJ, Chen T, González I, Cao D, Peng Y. Cancer stem cells in triple-negative breast cancer: a potential target and prognostic marker. Biomark Med 2018; 12:813-820. [PMID: 29902924 DOI: 10.2217/bmm-2017-0398] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive disease with poor outcome, and lacks targeted therapy. Recent studies suggest that cancer stem cells play an important role in tumorigenesis and tumor biology of TNBC. Both CD44+/CD24- and ALDH1+ breast cancer stem cells are enriched in TNBC and may contribute to the propensity of TNBC for chemotherapy resistance and tumor metastasis. There is new evidence to support the evaluation of cancer stem cells in TNBC for diagnostic purposes. Targeting cancer stem cells may also be a promising, novel strategy for the treatment of TNBC. This review highlights the current understanding of breast cancer stem cells in TNBC, with focus on CD44+/CD24- and ALDH1+ breast cancer stem cells. It is our hope that this work provides insight into the potential role of cancer stem cells in the prognostication and therapeutic targeting of TNBC.
Collapse
Affiliation(s)
- Christopher J O'Conor
- Department of Pathology & Immunology, Washington University in St Louis, St Louis, MO 63110, USA
| | - Tiffany Chen
- Department of Pathology & Immunology, Washington University in St Louis, St Louis, MO 63110, USA
| | - Iván González
- Department of Pathology & Immunology, Washington University in St Louis, St Louis, MO 63110, USA
| | - Dengfeng Cao
- Department of Pathology & Immunology, Washington University in St Louis, St Louis, MO 63110, USA
| | - Yan Peng
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
32
|
Garmpis N, Damaskos C, Garmpi A, Kalampokas E, Kalampokas T, Spartalis E, Daskalopoulou A, Valsami S, Kontos M, Nonni A, Kontzoglou K, Perrea D, Nikiteas N, Dimitroulis D. Histone Deacetylases as New Therapeutic Targets in Triple-negative Breast Cancer: Progress and Promises. Cancer Genomics Proteomics 2018; 14:299-313. [PMID: 28870998 DOI: 10.21873/cgp.20041] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 02/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) lacks expression of estrogen receptor (ER), progesterone receptor (PR) and HER2 gene. It comprises approximately 15-20% of breast cancers (BCs). Unfortunately, TNBC's treatment continues to be a clinical problem because of its relatively poor prognosis, its aggressiveness and the lack of targeted therapies, leaving chemotherapy as the mainstay of treatment. It is essential to find new therapies against TNBC, in order to surpass the resistance and the invasiveness of already existing therapies. Given the fact that epigenetic processes control both the initiation and progression of TNBC, there is an increasing interest in the mechanisms, molecules and signaling pathways that participate at the epigenetic modulation of genes expressed in carcinogenesis. The acetylation of histone proteins provokes the transcription of genes involved in cell growth, and the expression of histone deacetylases (HDACs) is frequently up-regulated in many malignancies. Unfortunately, in the field of BC, HDAC inhibitors have shown limited effect as single agents. Nevertheless, their use in combination with kinase inhibitors, autophagy inhibitors, ionizing radiation, or two HDAC inhibitors together is currently being evaluated. HDAC inhibitors such as suberoylanilidehydroxamic acid (SAHA), sodium butyrate, mocetinostat, panobinostat, entinostat, YCW1 and N-(2-hydroxyphenyl)-2-propylpentanamide have shown promising therapeutic outcomes against TNBC, especially when they are used in combination with other anticancer agents. More studies concerning HDAC inhibitors in breast carcinomas along with a more accurate understanding of the TNBC's pathobiology are required for the possible identification of new therapeutic strategies.
Collapse
Affiliation(s)
- Nikolaos Garmpis
- Second Department of Propedeutic Surgery, Laiko General Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Christos Damaskos
- Second Department of Propedeutic Surgery, Laiko General Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece.,N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Anna Garmpi
- Internal Medicine Department, Laiko General Hospital, University of Athens Medical School, Athens, Greece
| | | | - Theodoros Kalampokas
- Assisted Conception Unit, Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleftherios Spartalis
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Afrodite Daskalopoulou
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Serena Valsami
- Blood Transfusion Department, Aretaieion Hospital, Medical School, National and Kapodistrian Athens University, Athens, Greece
| | - Michael Kontos
- First Department of Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Afroditi Nonni
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Kontzoglou
- Second Department of Propedeutic Surgery, Laiko General Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Despina Perrea
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Nikiteas
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Dimitroulis
- Second Department of Propedeutic Surgery, Laiko General Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| |
Collapse
|
33
|
Roulston GDR, Burt CL, Kettyle LMJ, Matchett KB, Keenan HL, Mulgrew NM, Ramsey JM, Dougan C, McKiernan J, Grishagin IV, Mills KI, Thompson A. Low-dose salinomycin induces anti-leukemic responses in AML and MLL. Oncotarget 2018; 7:73448-73461. [PMID: 27612428 PMCID: PMC5341990 DOI: 10.18632/oncotarget.11866] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/15/2016] [Indexed: 11/25/2022] Open
Abstract
Development of anti-cancer drugs towards clinical application is costly and inefficient. Large screens of drugs, efficacious for non-cancer disease, are currently being used to identify candidates for repurposing based on their anti-cancer properties. Here, we show that low-dose salinomycin, a coccidiostat ionophore previously identified in a breast cancer screen, has anti-leukemic efficacy. AML and MLLr cell lines, primary cells and patient samples were sensitive to submicromolar salinomycin. Most strikingly, colony formation of normal hematopoietic cells was unaffected by salinomycin, demonstrating a lack of hemotoxicity at the effective concentrations. Furthermore, salinomycin treatment of primary cells resulted in loss of leukemia repopulation ability following transplantation, as demonstrated by extended recipient survival compared to controls. Bioinformatic analysis of a 17-gene signature identified and validated in primary MLLr cells, uncovered immunomodulatory pathways, hubs and protein interactions as potential transducers of low dose salinomycin treatment. Additionally, increased protein expression of p62/Sqstm1, encoded for by one of the 17 signature genes, demonstrates a role for salinomycin in aggresome/vesicle formation indicative of an autophagic response. Together, the data support the efficacy of salinomycin as an anti-leukemic at non-hemotoxic concentrations. Further investigation alone or in combination with other therapies is warranted for future clinical trial.
Collapse
Affiliation(s)
- Gary D R Roulston
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7AE, Northern Ireland, United Kingdom
| | - Charlotte L Burt
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7AE, Northern Ireland, United Kingdom
| | - Laura M J Kettyle
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7AE, Northern Ireland, United Kingdom
| | - Kyle B Matchett
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7AE, Northern Ireland, United Kingdom
| | - Heather L Keenan
- Cambridge University School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, CB2 0SP, United Kingdom
| | - Nuala M Mulgrew
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7AE, Northern Ireland, United Kingdom
| | - Joanne M Ramsey
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7AE, Northern Ireland, United Kingdom
| | - Caoifa Dougan
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7AE, Northern Ireland, United Kingdom
| | - John McKiernan
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7AE, Northern Ireland, United Kingdom
| | - Ivan V Grishagin
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7AE, Northern Ireland, United Kingdom
| | - Ken I Mills
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7AE, Northern Ireland, United Kingdom
| | - Alexander Thompson
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7AE, Northern Ireland, United Kingdom.,Division of Cancer and Stem Cells, School of Medicine, Wolfson Centre for Stem Cells, Tissue Engineering & Modelling (STEM), University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
34
|
I-7ab inhibited the growth of TNBC cells via targeting HDAC3 and promoting the acetylation of p53. Biomed Pharmacother 2018; 99:220-226. [DOI: 10.1016/j.biopha.2018.01.063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/29/2017] [Accepted: 01/11/2018] [Indexed: 11/24/2022] Open
|
35
|
Targeting the Epigenome as a Novel Therapeutic Approach for Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1026:287-313. [DOI: 10.1007/978-981-10-6020-5_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
36
|
Fedele P, Orlando L, Cinieri S. Targeting triple negative breast cancer with histone deacetylase inhibitors. Expert Opin Investig Drugs 2017; 26:1199-1206. [PMID: 28952409 DOI: 10.1080/13543784.2017.1386172] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Triple negative breast cancer (TNBC) is a heterogeneous disease characterized by poor outcomes, higher rates of relapse, lack of biomarkers for rational use of targeted treatments and insensitivity to current available treatments. Histone deacetylase inhibitors (HDACis) perform multiple cytotoxic actions and are emerging as promising multifunctional agents in TNBC. Areas covered: This review focuses on the challenges so far addressed in the targeted treatment of TNBC and explores the various mechanisms by which HDACis control cancer cell growth, tumor progression and metastases. Pivotal preclinical trials on HDACis like panobinostat, vorinostat, and entinostat show that these epigenetic agents exert an anti-proliferative effect on TNBC cells and control tumor growth by multiple mechanisms of action, including apoptosis and regulation of the epithelial to mesenchimal transition (EMT). Combination studies have reported the synergism of HDACis with other anticancer agents. Expert opinion: In recent years, treatment of TNBC has recorded a high number of failures in the development of targeted agents. HDACis alone or in combination strategies show promising activity in TNBC and could have implications for the future targeted treatment of TNBC patients. Future research should identify which agent synergizes better with HDACis and which patient will benefit more from these epigenetic agents.
Collapse
Affiliation(s)
- Palma Fedele
- a Medical Oncology & Breast Unit , "Antonio Perrino" Hospital , Brindisi , Italy
| | - Laura Orlando
- a Medical Oncology & Breast Unit , "Antonio Perrino" Hospital , Brindisi , Italy
| | - Saverio Cinieri
- a Medical Oncology & Breast Unit , "Antonio Perrino" Hospital , Brindisi , Italy
| |
Collapse
|
37
|
Lin Z, Zhang Z, Jiang X, Kou X, Bao Y, Liu H, Sun F, Ling S, Qin N, Jiang L, Yang Y. Mevastatin blockade of autolysosome maturation stimulates LBH589-induced cell death in triple-negative breast cancer cells. Oncotarget 2017; 8:17833-17848. [PMID: 28147319 PMCID: PMC5392290 DOI: 10.18632/oncotarget.14868] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/11/2017] [Indexed: 12/14/2022] Open
Abstract
Histone deacetylase inhibitors (HDACi) are promising anti-cancer agents, and combining a HDACi with other agents is an attractive therapeutic strategy in solid tumors. We report here that mevastatin increases HDACi LBH589-induced cell death in triple-negative breast cancer (TNBC) cells. Combination treatment inhibited autophagic flux by preventing Vps34/Beclin 1 complex formation and downregulating prenylated Rab7, an active form of the small GTPase necessary for autophagosome-lysosome fusion. This means that co-treatment with mevastatin and LBH589 activated LKB1/AMPK signaling and subsequently inhibited mTOR. Co-treatment also led to cell cycle arrest in G2/M phase and induced corresponding expression changes of proteins regulating the cell cycle. Co-treatment also increased apoptosis both in vitro and in vivo, and reduced tumor volumes in xenografted mice. Our results indicate that disruption of autophagosome-lysosome fusion likely underlies mevastatin-LBH589 synergistic anticancer effects. This study confirms the synergistic efficacy of, and demonstrates a potential therapeutic role for mevastatin plus LBH589 in targeting aggressive TNBC, and presents a novel therapeutic strategy for further clinical study. Further screening for novel autophagy modulators could be an efficient approach to enhance HDACi-induced cell death in solid tumors.
Collapse
Affiliation(s)
- Zhaohu Lin
- Department of Pharmacology and Biochemistry, School of Pharmacy Fudan University, Shanghai 201203, China.,Chemical Biology, Roche Pharmaceutical Research and Early Development, Roche Innovation Center Shanghai, Shanghai 201203, China
| | - Zhuqing Zhang
- Department of Pharmacology and Biochemistry, School of Pharmacy Fudan University, Shanghai 201203, China
| | - Xiaoxiao Jiang
- Department of Pharmacology and Biochemistry, School of Pharmacy Fudan University, Shanghai 201203, China
| | - Xinhui Kou
- Department of Pharmacology and Biochemistry, School of Pharmacy Fudan University, Shanghai 201203, China
| | - Yong Bao
- Department of Pharmacology and Biochemistry, School of Pharmacy Fudan University, Shanghai 201203, China
| | - Huijuan Liu
- Department of Pharmacology and Biochemistry, School of Pharmacy Fudan University, Shanghai 201203, China
| | - Fanghui Sun
- Department of Pharmacology and Biochemistry, School of Pharmacy Fudan University, Shanghai 201203, China
| | - Shuang Ling
- Interdisciplinary Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ning Qin
- Chemical Biology, Roche Pharmaceutical Research and Early Development, Roche Innovation Center Shanghai, Shanghai 201203, China
| | - Lan Jiang
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Yonghua Yang
- Department of Pharmacology and Biochemistry, School of Pharmacy Fudan University, Shanghai 201203, China
| |
Collapse
|
38
|
Manmuan S, Sakunrangsit N, Ketchart W. Salinomycin overcomes acquired tamoxifen resistance through AIB1 and inhibits cancer cell invasion in endocrine resistant breast cancer. Clin Exp Pharmacol Physiol 2017; 44:1042-1052. [PMID: 28656701 DOI: 10.1111/1440-1681.12806] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 01/09/2023]
Abstract
Salinomycin is a monocarboxylic polyether ionophore isolated from Streptomyces albus. It has been widely used as an antibiotic in veterinary medicine in poultry. A recent study demonstrated that salinomycin selectively inhibits human breast cancer stem cells; one possible mechanism of tamoxifen resistance. Our results show that salinomycin is effective in inhibiting MCF-7/LCC2 and MCF-7/LCC9 cell lines which are well-established endocrine resistant cells and has a synergistic effect in combination with tamoxifen using MTT proliferation assay. The inhibitory effect of salinomycin on the reduction of critical ER co-activator; amplified breast 1 (AIB1) mRNA and protein expression is overcoming tamoxifen resistance. Moreover, salinomycin significantly inhibits cell invasion in Matrigel invasion assay. The effect was mediated at least in part by the decrease of matrix metalopeptidase 9 (MMP-9) which is one critical enzyme facilitated in the cell invasion process. In conclusion, salinomycin should be developed as a novel agent used alone or in combination for endocrine-resistant breast cancer.
Collapse
Affiliation(s)
- Suwisit Manmuan
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nithidol Sakunrangsit
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Wannarasmi Ketchart
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
39
|
Venkatadri R, Iyer AKV, Kaushik V, Azad N. A novel resveratrol–salinomycin combination sensitizes ER-positive breast cancer cells to apoptosis. Pharmacol Rep 2017; 69:788-797. [DOI: 10.1016/j.pharep.2017.03.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 03/14/2017] [Accepted: 03/16/2017] [Indexed: 11/29/2022]
|
40
|
Potassium as a pluripotency-associated element identified through inorganic element profiling in human pluripotent stem cells. Sci Rep 2017; 7:5005. [PMID: 28694442 PMCID: PMC5504050 DOI: 10.1038/s41598-017-05117-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/24/2017] [Indexed: 12/20/2022] Open
Abstract
Despite their well-known function in maintaining normal cell physiology, how inorganic elements are relevant to cellular pluripotency and differentiation in human pluripotent stem cells (hPSCs) has yet to be systematically explored. Using total reflection X-ray fluorescence (TXRF) spectrometry and inductively coupled plasma mass spectrometry (ICP-MS), we analyzed the inorganic components of human cells with isogenic backgrounds in distinct states of cellular pluripotency. The elemental profiles revealed that the potassium content of human cells significantly differs when their cellular pluripotency changes. Pharmacological treatment that alters cell membrane permeability to potassium affected the maintenance and establishment of cellular pluripotency via multiple mechanisms in bona fide hPSCs and reprogrammed cells. Collectively, we report that potassium is a pluripotency-associated inorganic element in human cells and provide novel insights into the manipulation of cellular pluripotency in hPSCs by regulating intracellular potassium.
Collapse
|
41
|
Dewangan J, Srivastava S, Rath SK. Salinomycin: A new paradigm in cancer therapy. Tumour Biol 2017; 39:1010428317695035. [PMID: 28349817 DOI: 10.1177/1010428317695035] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The primary hurdle in the treatment of cancer is acquisition of resistance by the tumor cells toward multiple drugs and selectively targeting the cancer stem cells. This problem was overcome by the chemotherapeutic property of recently discovered drug salinomycin. Exact mechanism of action of salinomycin is not yet known, but there are multiple pathways by which salinomycin inhibits tumor growth. Salinomycin decreases the expression of adenosine triphosphate-binding cassette transporter in multidrug resistance cells and interferes with Akt signaling pathway, Wnt/β-catenin, Hedgehog, and Notch pathways of cancer progression. Salinomycin selectively targets cancer stem cells. The potential of salinomycin to eliminate both cancer stem cells and therapy-resistant cancer cells may characterize the compound as a novel and an efficient chemotherapeutic drug.
Collapse
Affiliation(s)
- Jayant Dewangan
- Genotoxicity Laboratory, Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sonal Srivastava
- Genotoxicity Laboratory, Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Srikanta Kumar Rath
- Genotoxicity Laboratory, Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
42
|
Wnt signaling in triple-negative breast cancer. Oncogenesis 2017; 6:e310. [PMID: 28368389 PMCID: PMC5520491 DOI: 10.1038/oncsis.2017.14] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/09/2017] [Accepted: 01/24/2017] [Indexed: 02/07/2023] Open
Abstract
Wnt signaling regulates a variety of cellular processes, including cell fate, differentiation, proliferation and stem cell pluripotency. Aberrant Wnt signaling is a hallmark of many cancers. An aggressive subtype of breast cancer, known as triple-negative breast cancer (TNBC), demonstrates dysregulation in canonical and non-canonical Wnt signaling. In this review, we summarize regulators of canonical and non-canonical Wnt signaling, as well as Wnt signaling dysfunction that mediates the progression of TNBC. We review the complex molecular nature of TNBC and the emerging therapies that are currently under investigation for the treatment of this disease.
Collapse
|
43
|
Evaluation of growth inhibitory response of Resveratrol and Salinomycin combinations against triple negative breast cancer cells. Biomed Pharmacother 2017; 89:1142-1151. [PMID: 28298074 DOI: 10.1016/j.biopha.2017.02.110] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/24/2017] [Accepted: 02/22/2017] [Indexed: 12/11/2022] Open
Abstract
Resveratrol (RSVL) a dietary phytochemical showed to enhance the efficacy of chemotherapeutic drugs. Recently, Salinomycin (SAL) has gained importance as cancer therapeutic value for breast cancer (BC), however, its superfluxious toxicity delimits the utility. Taking the advantage of RSVL, the therapeutic efficacy of RSVL and SAL combination was studied in vitro and in vivo system. Firstly, the synergistic combination dose of RSVL and SAL was calculated and further, the efficacy was examined by wound healing, and Western blots analysis. Further, in vivo study was performed to confirm the effect of colony formation and apoptosis detection by flow cytometry based assays. Further, the molecular mode of action was determined at both transcript and translational level by quantitative Real Time PCR combination in Ehrlich ascitic carcinoma model.The combination of IC20 (R20) of RSVL and IC10 (S10) dose of SAL showed best synergism (CI<1) with ∼5 fold dose advantage of SAL. Gene expression results at mRNA and protein level revealed that the unique combination of RSVL and SAL significantly inhibited epithelial mesenchymal transition (Fibronectin, Vimentin, N-Cadherin, and Slug); chronic inflammation (Cox2, NF-kB, p53), autophagy (Beclin and LC3) and apoptotic (Bax, Bcl-2) markers. Further, i n vivo study showed that low dose of SAL in combination with RSVL increased life span of Ehrlich ascitic mice. Overall, our study revealed that RSVL synergistically potentiated the anticancer potential of SAL against triple negative BC.
Collapse
|
44
|
Ahmed M, Chaudhari K, Babaei-Jadidi R, Dekker LV, Shams Nateri A. Concise Review: Emerging Drugs Targeting Epithelial Cancer Stem-Like Cells. Stem Cells 2017; 35:839-850. [DOI: 10.1002/stem.2579] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 01/03/2017] [Accepted: 01/07/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Mehreen Ahmed
- Cancer Genetics & Stem Cell Group; Nottingham United Kingdom
| | | | - Roya Babaei-Jadidi
- Cancer Genetics & Stem Cell Group; Nottingham United Kingdom
- Tumor & Vascular Biology Laboratories; Cancer Biology, Division of Cancer and Stem Cells, School of Medicine; Nottingham United Kingdom
| | - Lodewijk V. Dekker
- Division of Medicinal Chemistry and Structural Biology, School of Pharmacy; Centre for Biomolecular Science, University of Nottingham; Nottingham United Kingdom
| | | |
Collapse
|
45
|
Elevation of YAP promotes the epithelial-mesenchymal transition and tumor aggressiveness in colorectal cancer. Exp Cell Res 2017; 350:218-225. [DOI: 10.1016/j.yexcr.2016.11.024] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/23/2016] [Accepted: 11/29/2016] [Indexed: 02/08/2023]
|
46
|
Martin AR, Ronco C, Demange L, Benhida R. Hypoxia inducible factor down-regulation, cancer and cancer stem cells (CSCs): ongoing success stories. MEDCHEMCOMM 2017; 8:21-52. [PMID: 30108689 PMCID: PMC6071925 DOI: 10.1039/c6md00432f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/10/2016] [Indexed: 12/12/2022]
Abstract
In cancers, hypoxia inducible factor 1 (HIF-1) is an over-expressed transcription factor, which regulates a large set of genes involved in tumour vascularization, metastases, and cancer stem cells (CSCs) formation and self-renewal. This protein has been identified as a relevant target in oncology and several HIF-1 modulators are now marketed or in advanced clinical trials. The purpose of this review is to summarize the advances in the understanding of its regulation and its inhibition, from the medicinal chemist point of view. To this end, we selected in the recent literature relevant examples of "hit" compounds, including small-sized organic molecules, pseudopeptides and nano-drugs, exhibiting in vitro and/or in vivo both anti-HIF-1 and anti-tumour activities. Whenever possible, a particular emphasis has been dedicated to compounds that selectively target CSCs.
Collapse
Affiliation(s)
- Anthony R Martin
- Université Côte d'Azur , CNRS , Institut de Chimie de Nice UMR 7272 - 06108 Nice , France . ; ; ; Tel: +33 4 92076143
| | - Cyril Ronco
- Université Côte d'Azur , CNRS , Institut de Chimie de Nice UMR 7272 - 06108 Nice , France . ; ; ; Tel: +33 4 92076143
| | - Luc Demange
- Université Côte d'Azur , CNRS , Institut de Chimie de Nice UMR 7272 - 06108 Nice , France . ; ; ; Tel: +33 4 92076143
- UFR des Sciences Pharmaceutiques , Université Paris Descartes , Sorbonne Paris Cité , 4 avenue de l'Observatoire , Paris Fr-75006 , France
- UFR Biomédicale des Saints Pères , 45 rue des Saints Pères , Paris Fr-75006 , France
| | - Rachid Benhida
- Université Côte d'Azur , CNRS , Institut de Chimie de Nice UMR 7272 - 06108 Nice , France . ; ; ; Tel: +33 4 92076143
| |
Collapse
|
47
|
Polley E, Kunkel M, Evans D, Silvers T, Delosh R, Laudeman J, Ogle C, Reinhart R, Selby M, Connelly J, Harris E, Fer N, Sonkin D, Kaur G, Monks A, Malik S, Morris J, Teicher BA. Small Cell Lung Cancer Screen of Oncology Drugs, Investigational Agents, and Gene and microRNA Expression. J Natl Cancer Inst 2016; 108:djw122. [PMID: 27247353 PMCID: PMC6279282 DOI: 10.1093/jnci/djw122] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 02/29/2016] [Accepted: 03/23/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Small cell lung carcinoma (SCLC) is an aggressive, recalcitrant cancer, often metastatic at diagnosis and unresponsive to chemotherapy upon recurrence, thus it is challenging to treat. METHODS Sixty-three human SCLC lines and three NSCLC lines were screened for response to 103 US Food and Drug Administration-approved oncology agents and 423 investigational agents. The investigational agents library was a diverse set of small molecules that included multiple compounds targeting the same molecular entity. The compounds were screened in triplicate at nine concentrations with a 96-hour exposure time using an ATP Lite endpoint. Gene expression was assessed by exon array, and microRNA expression was derived by direct digital detection. Activity across the SCLC lines was associated with molecular characteristics using pair-wise Pearson correlations. RESULTS Results are presented for inhibitors of targets: BCL2, PARP1, mTOR, IGF1R, KSP/Eg5, PLK-1, AURK, and FGFR1. A relational map identified compounds with similar patterns of response. Unsupervised microRNA clustering resulted in three distinct SCLC subgroups. Associating drug response with micro-RNA expression indicated that lines most sensitive to etoposide and topotecan expressed high miR-200c-3p and low miR-140-5p and miR-9-5p. The BCL-2/BCL-XL inhibitors produced similar response patterns. Sensitivity to ABT-737 correlated with higher ASCL1 and BCL2. Several classes of compounds targeting nuclear proteins regulating mitosis produced a response pattern distinct from the etoposide response pattern. CONCLUSIONS Agents targeting nuclear kinases appear to be effective in SCLC lines. Confirmation of SCLC line findings in xenografts is needed. The drug and compound response, gene expression, and microRNA expression data are publicly available at http://sclccelllines.cancer.gov.
Collapse
Affiliation(s)
- Eric Polley
- Affiliations of authors:
Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD (DE, TS, RD, JL, CO, RR, MS, JC, EH, NF, AM); Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis (MK, GK, JM, BAT), Biometric Research Program, Division of Cancer Treatment and Diagnosis (EP, DS), and Cancer Therapy Evaluation Program (SM), National Cancer Institute, Rockville, MD
| | - Mark Kunkel
- Affiliations of authors:
Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD (DE, TS, RD, JL, CO, RR, MS, JC, EH, NF, AM); Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis (MK, GK, JM, BAT), Biometric Research Program, Division of Cancer Treatment and Diagnosis (EP, DS), and Cancer Therapy Evaluation Program (SM), National Cancer Institute, Rockville, MD
| | - David Evans
- Affiliations of authors:
Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD (DE, TS, RD, JL, CO, RR, MS, JC, EH, NF, AM); Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis (MK, GK, JM, BAT), Biometric Research Program, Division of Cancer Treatment and Diagnosis (EP, DS), and Cancer Therapy Evaluation Program (SM), National Cancer Institute, Rockville, MD
| | - Thomas Silvers
- Affiliations of authors:
Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD (DE, TS, RD, JL, CO, RR, MS, JC, EH, NF, AM); Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis (MK, GK, JM, BAT), Biometric Research Program, Division of Cancer Treatment and Diagnosis (EP, DS), and Cancer Therapy Evaluation Program (SM), National Cancer Institute, Rockville, MD
| | - Rene Delosh
- Affiliations of authors:
Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD (DE, TS, RD, JL, CO, RR, MS, JC, EH, NF, AM); Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis (MK, GK, JM, BAT), Biometric Research Program, Division of Cancer Treatment and Diagnosis (EP, DS), and Cancer Therapy Evaluation Program (SM), National Cancer Institute, Rockville, MD
| | - Julie Laudeman
- Affiliations of authors:
Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD (DE, TS, RD, JL, CO, RR, MS, JC, EH, NF, AM); Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis (MK, GK, JM, BAT), Biometric Research Program, Division of Cancer Treatment and Diagnosis (EP, DS), and Cancer Therapy Evaluation Program (SM), National Cancer Institute, Rockville, MD
| | - Chad Ogle
- Affiliations of authors:
Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD (DE, TS, RD, JL, CO, RR, MS, JC, EH, NF, AM); Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis (MK, GK, JM, BAT), Biometric Research Program, Division of Cancer Treatment and Diagnosis (EP, DS), and Cancer Therapy Evaluation Program (SM), National Cancer Institute, Rockville, MD
| | - Russell Reinhart
- Affiliations of authors:
Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD (DE, TS, RD, JL, CO, RR, MS, JC, EH, NF, AM); Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis (MK, GK, JM, BAT), Biometric Research Program, Division of Cancer Treatment and Diagnosis (EP, DS), and Cancer Therapy Evaluation Program (SM), National Cancer Institute, Rockville, MD
| | - Michael Selby
- Affiliations of authors:
Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD (DE, TS, RD, JL, CO, RR, MS, JC, EH, NF, AM); Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis (MK, GK, JM, BAT), Biometric Research Program, Division of Cancer Treatment and Diagnosis (EP, DS), and Cancer Therapy Evaluation Program (SM), National Cancer Institute, Rockville, MD
| | - John Connelly
- Affiliations of authors:
Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD (DE, TS, RD, JL, CO, RR, MS, JC, EH, NF, AM); Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis (MK, GK, JM, BAT), Biometric Research Program, Division of Cancer Treatment and Diagnosis (EP, DS), and Cancer Therapy Evaluation Program (SM), National Cancer Institute, Rockville, MD
| | - Erik Harris
- Affiliations of authors:
Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD (DE, TS, RD, JL, CO, RR, MS, JC, EH, NF, AM); Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis (MK, GK, JM, BAT), Biometric Research Program, Division of Cancer Treatment and Diagnosis (EP, DS), and Cancer Therapy Evaluation Program (SM), National Cancer Institute, Rockville, MD
| | - Nicole Fer
- Affiliations of authors:
Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD (DE, TS, RD, JL, CO, RR, MS, JC, EH, NF, AM); Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis (MK, GK, JM, BAT), Biometric Research Program, Division of Cancer Treatment and Diagnosis (EP, DS), and Cancer Therapy Evaluation Program (SM), National Cancer Institute, Rockville, MD
| | - Dmitriy Sonkin
- Affiliations of authors:
Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD (DE, TS, RD, JL, CO, RR, MS, JC, EH, NF, AM); Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis (MK, GK, JM, BAT), Biometric Research Program, Division of Cancer Treatment and Diagnosis (EP, DS), and Cancer Therapy Evaluation Program (SM), National Cancer Institute, Rockville, MD
| | - Gurmeet Kaur
- Affiliations of authors:
Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD (DE, TS, RD, JL, CO, RR, MS, JC, EH, NF, AM); Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis (MK, GK, JM, BAT), Biometric Research Program, Division of Cancer Treatment and Diagnosis (EP, DS), and Cancer Therapy Evaluation Program (SM), National Cancer Institute, Rockville, MD
| | - Anne Monks
- Affiliations of authors:
Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD (DE, TS, RD, JL, CO, RR, MS, JC, EH, NF, AM); Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis (MK, GK, JM, BAT), Biometric Research Program, Division of Cancer Treatment and Diagnosis (EP, DS), and Cancer Therapy Evaluation Program (SM), National Cancer Institute, Rockville, MD
| | - Shakun Malik
- Affiliations of authors:
Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD (DE, TS, RD, JL, CO, RR, MS, JC, EH, NF, AM); Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis (MK, GK, JM, BAT), Biometric Research Program, Division of Cancer Treatment and Diagnosis (EP, DS), and Cancer Therapy Evaluation Program (SM), National Cancer Institute, Rockville, MD
| | - Joel Morris
- Affiliations of authors:
Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD (DE, TS, RD, JL, CO, RR, MS, JC, EH, NF, AM); Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis (MK, GK, JM, BAT), Biometric Research Program, Division of Cancer Treatment and Diagnosis (EP, DS), and Cancer Therapy Evaluation Program (SM), National Cancer Institute, Rockville, MD
| | - Beverly A. Teicher
- Affiliations of authors:
Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD (DE, TS, RD, JL, CO, RR, MS, JC, EH, NF, AM); Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis (MK, GK, JM, BAT), Biometric Research Program, Division of Cancer Treatment and Diagnosis (EP, DS), and Cancer Therapy Evaluation Program (SM), National Cancer Institute, Rockville, MD
| |
Collapse
|
48
|
Pham PV, Le HT, Vu BT, Pham VQ, Le PM, Phan NLC, Trinh NV, Nguyen HTL, Nguyen ST, Nguyen TL, Phan NK. Targeting breast cancer stem cells by dendritic cell vaccination in humanized mice with breast tumor: preliminary results. Onco Targets Ther 2016; 9:4441-51. [PMID: 27499638 PMCID: PMC4959598 DOI: 10.2147/ott.s105239] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background Breast cancer (BC) is one of the leading cancers in women. Recent progress has enabled BC to be cured with high efficiency. However, late detection or metastatic disease often renders the disease untreatable. Additionally, relapse is the main cause of death in BC patients. Breast cancer stem cells (BCSCs) are considered to cause the development of BC and are thought to be responsible for metastasis and relapse. This study aimed to target BCSCs using dendritic cells (DCs) to treat tumor-bearing humanized mice models. Materials and methods NOD/SCID mice were used to produce the humanized mice by transplantation of human hematopoietic stem cells. Human BCSCs were injected into the mammary fat pad to produce BC humanized mice. Both hematopoietic stem cells and DCs were isolated from the human umbilical cord blood, and immature DCs were produced from cultured mononuclear cells. DCs were matured by BCSC-derived antigen incubation for 48 hours. Mature DCs were vaccinated to BC humanized mice with a dose of 106 cells/mice, and the survival percentage was monitored in both treated and untreated groups. Results The results showed that DC vaccination could target BCSCs and reduce the tumor size and prolong survival. Conclusion These results suggested that targeting BCSCs with DCs is a promising therapy for BC.
Collapse
Affiliation(s)
- Phuc Van Pham
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City
| | - Hanh Thi Le
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City
| | - Binh Thanh Vu
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City
| | - Viet Quoc Pham
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City
| | - Phong Minh Le
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City
| | - Nhan Lu-Chinh Phan
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City
| | - Ngu Van Trinh
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City
| | - Huyen Thi-Lam Nguyen
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City
| | - Sinh Truong Nguyen
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City
| | | | - Ngoc Kim Phan
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City
| |
Collapse
|
49
|
Dvorakova M, Vanek T. Histone deacetylase inhibitors for the treatment of cancer stem cells. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00297h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
HDAC inhibitors are a promising group of epigenetic drugs that show the ability to induce apoptosis in cancer stem cells.
Collapse
Affiliation(s)
- M. Dvorakova
- Laboratory of Plant Biotechnologies
- Institute of Experimental Botany
- Prague 6
- Czech Republic
| | - T. Vanek
- Laboratory of Plant Biotechnologies
- Institute of Experimental Botany
- Prague 6
- Czech Republic
| |
Collapse
|
50
|
Moselhy J, Srinivasan S, Ankem MK, Damodaran C. Natural Products That Target Cancer Stem Cells. Anticancer Res 2015; 35:5773-5788. [PMID: 26503998 PMCID: PMC7523548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The cancer stem cell model suggests that tumor initiation is governed by a small subset of distinct cells with stem-like character termed cancer stem cells (CSCs). CSCs possess properties of self-renewal and intrinsic survival mechanisms that contribute to resistance of tumors to most chemotherapeutic drugs. The failure to eradicate CSCs during the course of therapy is postulated to be the driving force for tumor recurrence and metastasis. Recent studies have focused on understanding the unique phenotypic properties of CSCs from various tumor types, as well as the signaling pathways that underlie self-renewal and drug resistance. Natural products (NPs) such as those derived from botanicals and food sources may modulate vital signaling pathways involved in the maintenance of CSC phenotype. The Wingless/Integrated (WNT), Hedgehog, Notch and PI3K/AKT/mTOR pathways have all been associated with quiescence and self-renewal of CSCs, as well as execution of CSC function including differentiation, multidrug resistance and metastasis. Recent studies evaluating NPs against CSC support the epidemiological evidence linking plant-based diets with reduced malignancy rates. This review covers the key aspects of NPs as modulators of CSC fate.
Collapse
Affiliation(s)
- Jim Moselhy
- Department of Urology, University of Louisville, Louisville, KY, U.S.A
| | | | - Murali K Ankem
- Department of Urology, University of Louisville, Louisville, KY, U.S.A
| | - Chendil Damodaran
- Department of Urology, University of Louisville, Louisville, KY, U.S.A.
| |
Collapse
|