1
|
Ubowski MM, VanSice R, Marriott M, Yacobucci MJ, Chablani L. Amplifying Immune Responses: Microparticulate Vaccine Approach Against Breast Cancer. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:149-162. [PMID: 38562650 PMCID: PMC10984203 DOI: 10.2147/bctt.s441368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/16/2024] [Indexed: 04/04/2024]
Abstract
Introduction The study focuses on evaluating the immune responses generated by a novel microparticulate murine breast cancer vaccine. Methods The methodology included the use of a co-culture model of dendritic cells (DCs), and T-cells to evaluate the immunotherapeutic responses generated by the vaccine. Results The study observed that the dendritic cells expressed significantly higher levels of MHC I, MHC II, CD 40, and CD 80 cell surface markers in the presence of the vaccine microparticles than the controls (p<0.05). This response was potentiated in the presence of an adjuvant, Poly (I:C). The study also demonstrated that the vaccine microparticles do not elicit inflammatory (TNF-alpha, IFN-gamma, IL-2, and IL-12) or immunosuppressive (IL-10) cytokine production when compared to the control. Discussion In conclusion, the study established the role of DCs in stimulating the cancer vaccine's adaptive immune responses.
Collapse
Affiliation(s)
| | - Ryan VanSice
- Wegmans School of Pharmacy, St. John Fisher University, Rochester, NY, 14618, USA
| | - Morgan Marriott
- Wegmans School of Pharmacy, St. John Fisher University, Rochester, NY, 14618, USA
| | | | - Lipika Chablani
- Wegmans School of Pharmacy, St. John Fisher University, Rochester, NY, 14618, USA
| |
Collapse
|
2
|
Yi M, Li T, Niu M, Mei Q, Zhao B, Chu Q, Dai Z, Wu K. Exploiting innate immunity for cancer immunotherapy. Mol Cancer 2023; 22:187. [PMID: 38008741 PMCID: PMC10680233 DOI: 10.1186/s12943-023-01885-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/23/2023] [Indexed: 11/28/2023] Open
Abstract
Immunotherapies have revolutionized the treatment paradigms of various types of cancers. However, most of these immunomodulatory strategies focus on harnessing adaptive immunity, mainly by inhibiting immunosuppressive signaling with immune checkpoint blockade, or enhancing immunostimulatory signaling with bispecific T cell engager and chimeric antigen receptor (CAR)-T cell. Although these agents have already achieved great success, only a tiny percentage of patients could benefit from immunotherapies. Actually, immunotherapy efficacy is determined by multiple components in the tumor microenvironment beyond adaptive immunity. Cells from the innate arm of the immune system, such as macrophages, dendritic cells, myeloid-derived suppressor cells, neutrophils, natural killer cells, and unconventional T cells, also participate in cancer immune evasion and surveillance. Considering that the innate arm is the cornerstone of the antitumor immune response, utilizing innate immunity provides potential therapeutic options for cancer control. Up to now, strategies exploiting innate immunity, such as agonists of stimulator of interferon genes, CAR-macrophage or -natural killer cell therapies, metabolic regulators, and novel immune checkpoint blockade, have exhibited potent antitumor activities in preclinical and clinical studies. Here, we summarize the latest insights into the potential roles of innate cells in antitumor immunity and discuss the advances in innate arm-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ming Yi
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Qi Mei
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
| | - Bin Zhao
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| | - Zhijun Dai
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China.
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
3
|
Le Naour J, Thierry S, Scuderi SA, Boucard-Jourdin M, Liu P, Bonnin M, Pan Y, Perret C, Zhao L, Mao M, Renoux C, Pérez-Lanzón M, Martin B, Kepp O, Kroemer G, Werlé B. A Chemically Defined TLR3 Agonist with Anticancer Activity. Oncoimmunology 2023; 12:2227510. [PMID: 37389102 PMCID: PMC10305499 DOI: 10.1080/2162402x.2023.2227510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/01/2023] Open
Abstract
Toll-like receptor 3 (TLR3) agonists such as polyinosinic:polycytidylic acid (poly(I:C)) have immunostimulatory effects that can be taken advantage of to induce anticancer immune responses in preclinical models. In addition, poly(I:C) has been introduced into clinical trials to demonstrate its efficacy as an adjuvant and to enhance the immunogenicity of locally injected tumors, thus reverting resistance to PD-L1 blockade in melanoma patients. Here, we report the pharmacokinetic, pharmacodynamic, mechanistic and toxicological profile of a novel TLR3 agonist, TL-532, a chemically synthesized double-stranded RNA that is composed by blocks of poly(I:C) and poly(A:U) (polyadenylic - polyuridylic acid). In preclinical models, we show that TL-532 is bioavailable after parenteral injection, has an acceptable toxicological profile, and stimulates the production of multiple chemokines and interleukins that constitute pharmacodynamic markers of its immunostimulatory action. When given at a high dose, TL-532 monotherapy reduced the growth of bladder cancers growing on mice. In addition, in immunodeficient mice lacking formylpeptide receptor-1 (FPR1), TL-532 was able to restore the response of orthotopic subcutaneous fibrosarcoma to immunogenic chemotherapy. Altogether, these findings may encourage further development of TL-532 as an immunotherapeutic anticancer agent.
Collapse
Affiliation(s)
- Julie Le Naour
- Centre de Recherche des Cordeliers, Equipe Labellisée Par la Ligue Contre le Cancer, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | | | - Sarah Adriana Scuderi
- Centre de Recherche des Cordeliers, Equipe Labellisée Par la Ligue Contre le Cancer, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | | | - Peng Liu
- Centre de Recherche des Cordeliers, Equipe Labellisée Par la Ligue Contre le Cancer, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | | | - Yuhong Pan
- Centre de Recherche des Cordeliers, Equipe Labellisée Par la Ligue Contre le Cancer, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | | | - Liwei Zhao
- Centre de Recherche des Cordeliers, Equipe Labellisée Par la Ligue Contre le Cancer, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | - Misha Mao
- Centre de Recherche des Cordeliers, Equipe Labellisée Par la Ligue Contre le Cancer, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | | | - María Pérez-Lanzón
- Centre de Recherche des Cordeliers, Equipe Labellisée Par la Ligue Contre le Cancer, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | | | - Oliver Kepp
- Centre de Recherche des Cordeliers, Equipe Labellisée Par la Ligue Contre le Cancer, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe Labellisée Par la Ligue Contre le Cancer, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | | |
Collapse
|
4
|
Yan H, Lin G, Liu Z, Gu F, Zhang Y. Nano-adjuvants and immune agonists promote antitumor immunity of peptide amphiphiles. Acta Biomater 2023; 161:213-225. [PMID: 36858163 DOI: 10.1016/j.actbio.2023.02.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/04/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023]
Abstract
Immunostimulatory cues play an important role in priming antitumor immunity and promoting the efficacy of subunit cancer vaccines. However, the clinical use of many immunostimulatory agents is often hampered by their inefficient in vivo delivery which may decrease immune response to the vaccination. To promote vaccine efficacy, we develop vaccine formulations which integrate three key elements: (1) a nano-adjuvant formulated by conjugating an agonistic anti-CD40 monoclonal antibody (αCD40) to the surface of a polyIC-loaded lipid nanoparticle, (2) a peptide amphiphile containing an optimized CD8+ T-cell epitope that derived from a melanoma antigen gp100, (3) an agonistic anti-4-1BB monoclonal antibody (α4-1BB) that boosts the efficacy of vaccinations. In a syngeneic mouse model of melanoma, the vaccine formulations enhanced innate immunity and activated multiple innate immune signaling pathways within draining lymph nodes, as well as promoted antigen-specific immune responses and reduced immunosuppression in the tumor microenvironment, leading to profound tumor growth inhibition and prolonged survival. Thus, our vaccine formulations represent an attractive strategy to stimulate antitumor immunity and control tumor progression. STATEMENT OF SIGNIFICANCE: The clinical use of many immunostimulatory agents is often hampered by their inefficient in vivo delivery which may decrease immune response to the vaccination. To promote the antitumor immunity of subunit vaccines, we develop novel vaccine formulations that integrate multifunctional modalities including (1) a nano-adjuvant containing anti-CD40 monoclonal antibody (αCD40) and TLR3 agonist which activate innate immunity through diverse signaling pathways, (2) a peptide amphiphile containing an optimized CD8+ T-cell epitope from tumor antigen, (3) an anti-4-1BB monoclonal antibody (α4-1BB) that boosts the efficacy of vaccinations. In this study, our vaccine formulations stimulate superior antitumor immunity and control tumor progression. The above nano-engineered platform and immunogenic biomacromolecules can be further applied to other T-cell-inducing vaccines.
Collapse
Affiliation(s)
- Huan Yan
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, PR China
| | - Guibin Lin
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, PR China
| | - Zhanyan Liu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, PR China
| | - Fei Gu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, PR China
| | - Yuan Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
5
|
Tommasi C, Pellegrino B, Diana A, Palafox Sancez M, Orditura M, Scartozzi M, Musolino A, Solinas C. The Innate Immune Microenvironment in Metastatic Breast Cancer. J Clin Med 2022; 11:jcm11205986. [PMID: 36294305 PMCID: PMC9604853 DOI: 10.3390/jcm11205986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/27/2022] [Accepted: 10/09/2022] [Indexed: 11/30/2022] Open
Abstract
The immune system plays a fundamental role in neoplastic disease. In the era of immunotherapy, the adaptive immune response has been in the spotlight whereas the role of innate immunity in cancer development and progression is less known. The tumor microenvironment influences the terminal differentiation of innate immune cells, which can explicate their pro-tumor or anti-tumor effect. Different cells are able to recognize and eliminate no self and tumor cells: macrophages, natural killer cells, monocytes, dendritic cells, and neutrophils are, together with the elements of the complement system, the principal players of innate immunity in cancer development and evolution. Metastatic breast cancer is a heterogeneous disease from the stromal, immune, and biological point of view and requires deepened exploration to understand different patient outcomes. In this review, we summarize the evidence about the role of innate immunity in breast cancer metastatic sites and the potential targets for optimizing the innate response as a novel treatment opportunity.
Collapse
Affiliation(s)
- Chiara Tommasi
- Medical Oncology and Breast Unit, University Hospital of Parma, 43126 Parma, Italy
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- GOIRC (Gruppo Oncologico Italiano di Ricerca Clinica), 43126 Parma, Italy
- Correspondence:
| | - Benedetta Pellegrino
- Medical Oncology and Breast Unit, University Hospital of Parma, 43126 Parma, Italy
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- GOIRC (Gruppo Oncologico Italiano di Ricerca Clinica), 43126 Parma, Italy
| | - Anna Diana
- Medical Oncology Unit, Ospedale del Mare, 80147 Naples, Italy
| | - Marta Palafox Sancez
- Tumor Heterogeneity, Metastasis and Resistance Laboratory, University of Basel, 4001 Basel, Switzerland
| | - Michele Orditura
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Mario Scartozzi
- Medical Oncology Department, University of Cagliari, 09042 Cagliari, Italy
| | - Antonino Musolino
- Medical Oncology and Breast Unit, University Hospital of Parma, 43126 Parma, Italy
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- GOIRC (Gruppo Oncologico Italiano di Ricerca Clinica), 43126 Parma, Italy
| | - Cinzia Solinas
- Medical Oncology Department, University of Cagliari, 09042 Cagliari, Italy
| |
Collapse
|
6
|
Li S, Li F, Xu L, Liu X, Zhu X, Gao W, Shen X. TLR2 agonist promotes myeloid-derived suppressor cell polarization via Runx1 in hepatocellular carcinoma. Int Immunopharmacol 2022; 111:109168. [PMID: 35998504 DOI: 10.1016/j.intimp.2022.109168] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/24/2022] [Accepted: 08/12/2022] [Indexed: 11/19/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) play a critical role in maintaining the tumor immune microenvironment; thus, the promotion of MDSC polarization will improve immunotherapies for cancers. However, the mechanisms involved in controlling MDSC polarization in hepatocellular carcinoma remain largely unclear. In this study, we found that injection of Pam3CSK4 attenuated the process of tumor growth, along with reduction of MDSC and recovery of T cell function. Moreover, Pam3CSK4 promoted MDSC polarization by targeting Runx1. Runx1 inhibitor reversed the therapeutic effect of Pam3CSK4 by increasing tumor size and weight and decreasing the survival rate of tumor mice. In addition, targeting Runx1 reduced the expression of CD11c, F4/80, CD80/CD86 and MHC-II in MDSC after Pam3CSK4 stimulation in vivo and in vitro. MDSC also exhibited consistent changes with increasing reactive oxygen species (ROS) production after Pam3CSK4 and Ro5-3335 treatment. RNA sequence data revealed that tfrc, steap3, and gclm were up-regulated in the Pam3CSK4/Ro5-3335 group compared with Pam3CSK4 treatment alone, suggesting that the regulatory effect of TLR2 and Runx1 on MDSC might act through the ferroptosis pathway. Overall, our study has identified a critical role for TLR2 and Runx1 in regulating the differentiation and function of MDSCs and has provided a new mechanism of controlling MDSC polarization during HCC immunotherapy.
Collapse
Affiliation(s)
- Shinan Li
- Institute for Translation Medicine, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China; Institute for Translation Medicine, Jinzhou Medical University, Jinzhou, China
| | - Fujie Li
- Institute for Translation Medicine, Jinzhou Medical University, Jinzhou, China
| | - Lijie Xu
- Institute for Translation Medicine, Jinzhou Medical University, Jinzhou, China
| | - Xinying Liu
- Institute for Translation Medicine, Jinzhou Medical University, Jinzhou, China
| | - Xiaoxu Zhu
- Institute for Translation Medicine, Jinzhou Medical University, Jinzhou, China
| | - Wanlin Gao
- Institute for Translation Medicine, Jinzhou Medical University, Jinzhou, China
| | - Xiaokun Shen
- Institute for Translation Medicine, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China; Institute for Translation Medicine, Jinzhou Medical University, Jinzhou, China.
| |
Collapse
|
7
|
Immunosuppressive cells in cancer: mechanisms and potential therapeutic targets. J Hematol Oncol 2022; 15:61. [PMID: 35585567 PMCID: PMC9118588 DOI: 10.1186/s13045-022-01282-8] [Citation(s) in RCA: 186] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/03/2022] [Indexed: 02/08/2023] Open
Abstract
Immunotherapies like the adoptive transfer of gene-engineered T cells and immune checkpoint inhibitors are novel therapeutic modalities for advanced cancers. However, some patients are refractory or resistant to these therapies, and the mechanisms underlying tumor immune resistance have not been fully elucidated. Immunosuppressive cells such as myeloid-derived suppressive cells, tumor-associated macrophages, tumor-associated neutrophils, regulatory T cells (Tregs), and tumor-associated dendritic cells are critical factors correlated with immune resistance. In addition, cytokines and factors secreted by tumor cells or these immunosuppressive cells also mediate the tumor progression and immune escape of cancers. Thus, targeting these immunosuppressive cells and the related signals is the promising therapy to improve the efficacy of immunotherapies and reverse the immune resistance. However, even with certain success in preclinical studies or in some specific types of cancer, large perspectives are unknown for these immunosuppressive cells, and the related therapies have undesirable outcomes for clinical patients. In this review, we comprehensively summarized the phenotype, function, and potential therapeutic targets of these immunosuppressive cells in the tumor microenvironment.
Collapse
|
8
|
Evolution and Targeting of Myeloid Suppressor Cells in Cancer: A Translational Perspective. Cancers (Basel) 2022; 14:cancers14030510. [PMID: 35158779 PMCID: PMC8833347 DOI: 10.3390/cancers14030510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Immunotherapy is achieving impressive results in the treatment of several cancers. While the main strategies aim to re-invigorate the specific lymphocyte anti-tumor response, many studies underline that altered myeloid cell frequency and functions can dramatically interfere with the responsiveness to cancer therapies. Therefore, many novel strategies targeting TAMs and MDSCs in combination with classical treatments are under continuous evolution at both pre-clinical and clinical levels, showing encouraging results. Herein, we depict a comprehensive overview of myeloid cell generation and function in a cancer setting, and the most relevant strategies for their targeting that are currently in clinical use or under pre-clinical development. Abstract In recent years, the immune system has emerged as a critical regulator of tumor development, progression and dissemination. Advanced therapeutic approaches targeting immune cells are currently under clinical use and improvement for the treatment of patients affected by advanced malignancies. Among these, anti-PD1/PD-L1 and anti-CTLA4 immune checkpoint inhibitors (ICIs) are the most effective immunotherapeutic drugs at present. In spite of these advances, great variability in responses to therapy exists among patients, probably due to the heterogeneity of both cancer cells and immune responses, which manifest in diverse forms in the tumor microenvironment (TME). The variability of the immune profile within TME and its prognostic significance largely depend on the frequency of the infiltrating myeloid cells, which often represent the predominant population, characterized by high phenotypic heterogeneity. The generation of heterogeneous myeloid populations endowed with tumor-promoting activities is typically promoted by growing tumors, indicating the sequential levels of myeloid reprogramming as possible antitumor targets. This work reviews the current knowledge on the events governing protumoral myelopoiesis, analyzing the mechanisms that drive the expansion of major myeloid subsets, as well as their functional properties, and highlighting recent translational strategies for clinical developments.
Collapse
|
9
|
Ye Y, Xu C, Chen F, Liu Q, Cheng N. Targeting Innate Immunity in Breast Cancer Therapy: A Narrative Review. Front Immunol 2021; 12:771201. [PMID: 34899721 PMCID: PMC8656691 DOI: 10.3389/fimmu.2021.771201] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/08/2021] [Indexed: 01/07/2023] Open
Abstract
Although breast cancer has been previously considered "cold" tumors, numerous studies are currently conducted to explore the great potentials of immunotherapies in improving breast cancer patient outcomes. In addition to the focus on stimulating adaptive immunity for antitumor responses, growing evidence showed the importance of triggering host innate immunity to eradicate established tumors and/or control tumor metastasis of breast cancer. In this review, we first briefly introduce the breast tumor immune microenvironment. We also discuss innate immune targets and pathways and mechanisms of their synergy with the adaptive antitumor response and other treatment strategies. Lastly, we review clinical trials targeting innate immune pathways for breast cancer therapies.
Collapse
Affiliation(s)
- Yanqi Ye
- Zenomics. Inc. Magnify at California NanoSystems Institute, Los Angeles, CA, United States
| | - Chun Xu
- School of Dentistry, The University of Queensland, Brisbane, QLD, Australia
| | - Fengqian Chen
- School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Qi Liu
- School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Ning Cheng
- Department of Otolaryngology - Head and Neck Surgery, University of California at San Francisco, San Francisco, CA, United States
| |
Collapse
|
10
|
Li K, Shi H, Zhang B, Ou X, Ma Q, Chen Y, Shu P, Li D, Wang Y. Myeloid-derived suppressor cells as immunosuppressive regulators and therapeutic targets in cancer. Signal Transduct Target Ther 2021; 6:362. [PMID: 34620838 PMCID: PMC8497485 DOI: 10.1038/s41392-021-00670-9] [Citation(s) in RCA: 296] [Impact Index Per Article: 98.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/21/2021] [Accepted: 06/01/2021] [Indexed: 02/05/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogenic population of immature myeloid cells with immunosuppressive effects, which undergo massive expansion during tumor progression. These cells not only support immune escape directly but also promote tumor invasion via various non-immunological activities. Besides, this group of cells are proved to impair the efficiency of current antitumor strategies such as chemotherapy, radiotherapy, and immunotherapy. Therefore, MDSCs are considered as potential therapeutic targets for cancer therapy. Treatment strategies targeting MDSCs have shown promising outcomes in both preclinical studies and clinical trials when administrated alone, or in combination with other anticancer therapies. In this review, we shed new light on recent advances in the biological characteristics and immunosuppressive functions of MDSCs. We also hope to propose an overview of current MDSCs-targeting therapies so as to provide new ideas for cancer treatment.
Collapse
Affiliation(s)
- Kai Li
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, China
| | - Houhui Shi
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, China
| | - Benxia Zhang
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, China
| | - Xuejin Ou
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, China
| | - Qizhi Ma
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, China
| | - Yue Chen
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, China
| | - Pei Shu
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, China
| | - Dan Li
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, and Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Yongsheng Wang
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, China. .,Clinical Trial Center, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
11
|
Shi H, Li K, Ni Y, Liang X, Zhao X. Myeloid-Derived Suppressor Cells: Implications in the Resistance of Malignant Tumors to T Cell-Based Immunotherapy. Front Cell Dev Biol 2021; 9:707198. [PMID: 34336860 PMCID: PMC8317971 DOI: 10.3389/fcell.2021.707198] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/21/2021] [Indexed: 02/05/2023] Open
Abstract
T lymphocytes function as major players in antigen-mediated cytotoxicity and have become powerful tools for exploiting the immune system in tumor elimination. Several types of T cell-based immunotherapies have been prescribed to cancer patients with durable immunological response. Such strategies include immune checkpoint inhibitors, adoptive T cell therapy, cancer vaccines, oncolytic virus, and modulatory cytokines. However, the majority of cancer patients still failed to take the advantage of these kinds of treatments. Currently, extensive attempts are being made to uncover the potential mechanism of immunotherapy resistance, and myeloid-derived suppressor cells (MDSCs) have been identified as one of vital interpretable factors. Here, we discuss the immunosuppressive mechanism of MDSCs and their contributions to failures of T cell-based immunotherapy. Additionally, we summarize combination therapies to ameliorate the efficacy of T cell-based immunotherapy.
Collapse
Affiliation(s)
- Houhui Shi
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Kai Li
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Yanghong Ni
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Xiao Liang
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Arora R, Malla WA, Tyagi A, Mahajan S, Sajjanar B, Tiwari AK. Canine Parvovirus and Its Non-Structural Gene 1 as Oncolytic Agents: Mechanism of Action and Induction of Anti-Tumor Immune Response. Front Oncol 2021; 11:648873. [PMID: 34012915 PMCID: PMC8127782 DOI: 10.3389/fonc.2021.648873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/30/2021] [Indexed: 12/15/2022] Open
Abstract
The exploration into the strategies for the prevention and treatment of cancer is far from complete. Apart from humans, cancer has gained considerable importance in animals because of increased awareness towards animal health and welfare. Current cancer treatment regimens are less specific towards tumor cells and end up harming normal healthy cells. Thus, a highly specific therapeutic strategy with minimal side effects is the need of the hour. Oncolytic viral gene therapy is one such specific approach to target cancer cells without affecting the normal cells of the body. Canine parvovirus (CPV) is an oncolytic virus that specifically targets and kills cancer cells by causing DNA damage, caspase activation, and mitochondrial damage. Non-structural gene 1 (NS1) of CPV, involved in viral DNA replication is a key mediator of cytotoxicity of CPV and can selectively cause tumor cell lysis. In this review, we discuss the oncolytic properties of Canine Parvovirus (CPV or CPV2), the structure of the NS1 protein, the mechanism of oncolytic action as well as role in inducing an antitumor immune response in different tumor models.
Collapse
Affiliation(s)
- Richa Arora
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Waseem Akram Malla
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Arpit Tyagi
- GB Pant University of Agriculture and Technology, Pantnagar, India
| | - Sonalika Mahajan
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Basavaraj Sajjanar
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Ashok Kumar Tiwari
- Division of Biological Standardisation, ICAR-Indian Veterinary Research Institute, Izatnagar, India.,ICAR - Central Avian Research Institute, Izatnagar, India
| |
Collapse
|
13
|
Zhou H, Jiang M, Yuan H, Ni W, Tai G. Dual roles of myeloid-derived suppressor cells induced by Toll-like receptor signaling in cancer. Oncol Lett 2020; 21:149. [PMID: 33552267 PMCID: PMC7798029 DOI: 10.3892/ol.2020.12410] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 12/03/2020] [Indexed: 12/16/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are one of the major components of the tumor microenvironment (TME), and are the main mediators of tumor-induced immunosuppression. Recent studies have reported that the survival, differentiation and immunosuppressive activity of MDSCs are affected by the Toll-like receptor (TLR) signaling pathway. However, the regulatory effect of TLR signaling on MDSCs remains controversial. TLR-induced MDSC can acquire different immunosuppressive activities to influence the immune response that can be either beneficial or detrimental to cancer immunotherapy. The present review summarizes the effects of TLR signals on the number, phenotype and inhibitory activity of MDSCs, and their role in cancer immunotherapy, which cannot be ignored if effective cancer immunotherapies are to be developed for the immunosuppression of the TME.
Collapse
Affiliation(s)
- Hongyue Zhou
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Mengyu Jiang
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hongyan Yuan
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Weihua Ni
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Guixiang Tai
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
14
|
Pakkala S, Higgins K, Chen Z, Sica G, Steuer C, Zhang C, Zhang G, Wang S, Hossain MS, Nazha B, Beardslee T, Khuri FR, Curran W, Lonial S, Waller EK, Ramalingam S, Owonikoko TK. Durvalumab and tremelimumab with or without stereotactic body radiation therapy in relapsed small cell lung cancer: a randomized phase II study. J Immunother Cancer 2020; 8:jitc-2020-001302. [PMID: 33428583 PMCID: PMC7754662 DOI: 10.1136/jitc-2020-001302] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2020] [Indexed: 12/18/2022] Open
Abstract
Background Immune checkpoint blockade (ICB) targeting programmed cell death protein 1 and cytotoxic T lymphocyte-associated protein 4 has achieved modest clinical activity as salvage therapy in relapsed small cell lung cancer (SCLC). We conducted this signal-finding study to assess the efficacy of ICB with or without radiation in relapsed SCLC. Methods Patients with relapsed SCLC and ≤2 previous lines of therapy were randomized to (1) arm A: durvalumab (D) 1500 mg/tremelimumab (T) 75 mg (intravenously every 4 weeks without stereotactic body radiation therapy (SBRT)) or (2) arm B: immune-sensitizing SBRT to one selected tumor site (9 Gy × 3 fractions) followed by D/T. Treatment continued until progression or a maximum of 12 months. The co-primary endpoints of the study were overall response rate (ORR) and progression-free survival (PFS). We evaluated circulating lymphocyte repertoire in serial peripheral blood samples and tumor infiltrating lymphocytes (TILs) from on-treatment biopsies as pharmacodynamic markers. Results Eighteen patients were randomized to arms A and B (n=9 each): median age 70 years; 41.2% women. The median PFS and ORR were 2.1 months and 0% in arm A and 3.3 months and 28.6% in arm B. The median overall survival (OS) was 2.8 months in arm A and 5.7 months in arm B (p=0.3772). Pooled efficacy of D/T±SBRT in 15 Response evaluation criteria in solid tumors (RECIST) evaluable patients across both arms showed the best ORR in terms of partial response in 13.3%, stable disease in 26.6% and progressive disease in 60.0%; the overall median PFS and OS were 2.76 and 3.9 months. The most common adverse events were grade 1 fatigue (66%) and grade 1 elevated amylase (56%) in arm A, and grade 1 fatigue (56%) and pain (44%) in arm B. There was a significant increase in activated CD8(+)ICOS+ T cells (p=0.048) and a reduction in naïve T cells (p=0.0454) in peripheral blood following treatment, along with a significant amount of activated CD8+ICOS+ T cells in TILs from responders. Conclusions The D/T combination with and without SBRT was safe but did not show sufficient efficacy signal in relapsed SCLC. Changes in peripheral blood lymphocyte and TILs were consistent with an immunologic response. Trial registration number NCT02701400.
Collapse
Affiliation(s)
- Suchita Pakkala
- Hematology and Medical Oncology, Emory University Winship Cancer Institute, Atlanta, Georgia, USA
| | - Kristin Higgins
- Department of Radiation Oncology, Emory University, Atlanta, Georgia, USA
| | - Zhengjia Chen
- Hematology and Medical Oncology, Emory University Winship Cancer Institute, Atlanta, Georgia, USA
| | - Gabriel Sica
- Pathology, Emory University Winship Cancer Institute, Atlanta, Georgia, USA
| | - Conor Steuer
- Hematology and Medical Oncology, Emory University Winship Cancer Institute, Atlanta, Georgia, USA
| | - Chao Zhang
- Biostatistics, Emory University Winship Cancer Institute, Atlanta, Georgia, USA
| | - Guojing Zhang
- Hematology and Medical Oncology, Emory University Winship Cancer Institute, Atlanta, Georgia, USA
| | - Shuhua Wang
- Hematology and Medical Oncology, Emory University Winship Cancer Institute, Atlanta, Georgia, USA
| | - Mohammad S Hossain
- Hematology and Medical Oncology, Emory University Winship Cancer Institute, Atlanta, Georgia, USA
| | - Bassel Nazha
- Hematology and Medical Oncology, Emory University Winship Cancer Institute, Atlanta, Georgia, USA
| | - Tyler Beardslee
- Hematology and Medical Oncology, Emory University Winship Cancer Institute, Atlanta, Georgia, USA
| | - Fadlo R Khuri
- Hematology and Medical Oncology, Emory University Winship Cancer Institute, Atlanta, Georgia, USA
| | - Walter Curran
- Department of Radiation Oncology, Emory University, Atlanta, Georgia, USA
| | - Sagar Lonial
- Hematology and Medical Oncology, Emory University Winship Cancer Institute, Atlanta, Georgia, USA
| | - Edmund K Waller
- Hematology and Medical Oncology, Emory University Winship Cancer Institute, Atlanta, Georgia, USA
| | - Suresh Ramalingam
- Hematology and Medical Oncology, Emory University Winship Cancer Institute, Atlanta, Georgia, USA
| | - Taofeek K Owonikoko
- Hematology and Medical Oncology, Emory University Winship Cancer Institute, Atlanta, Georgia, USA
| |
Collapse
|
15
|
Gordon B, Gadi VK. The Role of the Tumor Microenvironment in Developing Successful Therapeutic and Secondary Prophylactic Breast Cancer Vaccines. Vaccines (Basel) 2020; 8:vaccines8030529. [PMID: 32937885 PMCID: PMC7565925 DOI: 10.3390/vaccines8030529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/09/2020] [Accepted: 09/13/2020] [Indexed: 12/12/2022] Open
Abstract
Breast cancer affects roughly one in eight women over their lifetime and is a leading cause of cancer-related death in women. While outcomes have improved in recent years, prognosis remains poor for patients who present with either disseminated disease or aggressive molecular subtypes. Cancer immunotherapy has revolutionized the treatment of several cancers, with therapeutic vaccines aiming to direct the cytotoxic immune program against tumor cells showing particular promise. However, these results have yet to translate to breast cancer, which remains largely refractory from such approaches. Recent evidence suggests that the breast tumor microenvironment (TME) is an important and long understudied barrier to the efficacy of therapeutic vaccines. Through an improved understanding of the complex and biologically diverse breast TME, it may be possible to advance new combination strategies to render breast carcinomas sensitive to the effects of therapeutic vaccines. Here, we discuss past and present efforts to advance therapeutic vaccines in the treatment of breast cancer, the molecular mechanisms through which the TME contributes to the failure of such approaches, as well as the potential means through which these can be overcome.
Collapse
Affiliation(s)
- Benjamin Gordon
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL 60612, USA
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, IL 60612, USA
- Correspondence:
| | - Vijayakrishna K. Gadi
- Division of Hematology and Oncology, University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA;
| |
Collapse
|
16
|
Sun B, Hyun H, Li LT, Wang AZ. Harnessing nanomedicine to overcome the immunosuppressive tumor microenvironment. Acta Pharmacol Sin 2020; 41:970-985. [PMID: 32424240 PMCID: PMC7470849 DOI: 10.1038/s41401-020-0424-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer immunotherapy has received extensive attention due to its ability to activate the innate or adaptive immune systems of patients to combat tumors. Despite a few clinical successes, further endeavors are still needed to tackle unresolved issues, including limited response rates, development of resistance, and immune-related toxicities. Accumulating evidence has pinpointed the tumor microenvironment (TME) as one of the major obstacles in cancer immunotherapy due to its detrimental impacts on tumor-infiltrating immune cells. Nanomedicine has been battling with the TME in the past several decades, and the experience obtained could be exploited to improve current paradigms of immunotherapy. Here, we discuss the metabolic features of the TME and its influence on different types of immune cells. The recent progress in nanoenabled cancer immunotherapy has been summarized with a highlight on the modulation of immune cells, tumor stroma, cytokines and enzymes to reverse the immunosuppressive TME.
Collapse
Affiliation(s)
- Bo Sun
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Hyesun Hyun
- Laboratory of Nano and Translational Medicine, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Lian-Tao Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China
| | - Andrew Z Wang
- Laboratory of Nano and Translational Medicine, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
17
|
Di S, Zhou M, Pan Z, Sun R, Chen M, Jiang H, Shi B, Luo H, Li Z. Combined Adjuvant of Poly I:C Improves Antitumor Effects of CAR-T Cells. Front Oncol 2019; 9:241. [PMID: 31058074 PMCID: PMC6481273 DOI: 10.3389/fonc.2019.00241] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 03/18/2019] [Indexed: 01/24/2023] Open
Abstract
Chimeric antigen receptor modified T cells (CAR-T) therapy is an emerging immunotherapy against malignancies. However, only limited success was obtained in solid tumors. Polyinosinic-polycytidylic acid (poly I:C), ligand of TLR3, mediates innate immune and adaptive immune and shows broad antitumor effect on many types of cancer. In the present study, we combined EGFRvIII-targeted CAR-T cells with poly I:C treatment and evaluated the synergic antitumor effect in vitro and in immunocompetent mice bearing subcutaneous colon or orthotopic breast cancer xenografts. Poly I:C significantly promoted more IL-2 and IFN γ production as well as higher lytic activity of CAR-T cells. Upon systemic administration in vivo, CAR-T cells obviously suppressed tumor growth, and poly I:C significantly enhanced the suppression. Further study showed that poly I:C exerted antitumor effect dependent on type I IFNs. In addition, poly I:C decreased myeloid-derived suppressor cells (MDSC) number in peripheral blood and spleen, and attenuated the immunosuppressive activity of MDSC on proliferation and cytolytic function of CAR-T. Depletion of MDSC with anti-Gr1 Ab further increased the antitumor effect of CAR-T cells plus poly I:C treatment. In conclusion, CAR-T treatment combined with intratumoral delivery of poly I:C resulted in synergistic antitumor activity. We thus provide a rationale to translate this immunotherapeutic strategy to solid tumors.
Collapse
Affiliation(s)
- Shengmeng Di
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Min Zhou
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zeyan Pan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ruixin Sun
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Muhua Chen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hua Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bizhi Shi
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hong Luo
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zonghai Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,CARsgen Therapeutics, Shanghai, China
| |
Collapse
|
18
|
The TLR3 Agonist Poly Inosinic:Cytidylic Acid Significantly Augments the Therapeutic Activity of an Anti-CD7 Immunotoxin for Human T-cell Leukaemia. Biomedicines 2019; 7:biomedicines7010013. [PMID: 30781517 PMCID: PMC6466153 DOI: 10.3390/biomedicines7010013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/07/2019] [Accepted: 02/12/2019] [Indexed: 12/14/2022] Open
Abstract
We have previously shown that antibody-dependent cellular cytotoxicity (ADCC) cooperates with immunotoxin (IT)-mediated killing of human leukaemia cells in an severe combined immunodeficient (SCID) mouse model of human T-cell acute lymphoblastic leukaemia (SCID-HSB-2 mice), but not in an equivalent non-obese diabetic (NOD)/SCID mouse model. In these earlier studies, we reasoned that diminished ADCC due to the functional deficit in natural killer (NK) cell activity in NOD/SCID mice resulted in a failure of effective perforin/granzyme-mediated cytotoxicity necessary for the delivery of the augmentative effect. Poly-inosinic-cytidylic acid [poly (I:C)] is a synthetic dsRNA toll-like receptor 3 (TLR3) agonist that possesses a number of biological properties that includes the in vivo activation of NK cells. We show here that intravenous (i.v.) injection of SCID mice with [poly (I:C)] results in characteristic time-related changes in serum interleukin 2 (IL-2), IL-12, and interferon γ (INFγ) cytokine levels that are consistent with TLR3 driven activation of SCID mouse NK cells. Concomitantly, there are changes in the expression levels of CD2, CD16/32 (FcγRII/RIII), CD161 (NK1.1), and F4/80 in the bulk splenocyte population. These observed changes correlate with an increase in the in vitro lytic capabilities of putative NK cells from within the splenocyte population of [poly (I:C)] treated SCID mice. We demonstrate that the in vivo activation of NK cells with [poly (I:C)] in SCID mice bearing disseminated human T-cell leukaemia xenografts resulted in a significant improvement in the therapeutic activity exerted by an intact murine monoclonal antibody against human CD7. This was also seen for a saporin-based immunotoxin constructed with the same intact antibody (HB2-SAPORIN), but not with an F(ab’)2 derivative of the same antibody or of an IT constructed with the same F(ab’)2 HB2 antibody derivative. This study further demonstrates the previously reported reinforcing role of ADCC for the therapeutic activity of IT in an SCID mouse model of human T-ALL and the potential to significantly boost this further with [poly (I:C)]. Our study provides the rationale to justify the exploration of the clinical utility of IT based therapeutics in combination with TLR3 agonists, such as [poly (I:C)], for the treatment of haematological, and possibly other, malignancies.
Collapse
|
19
|
Self-Assembled, Adjuvant/Antigen-Based Nanovaccine Mediates Anti-Tumor Immune Response against Melanoma Tumor. Polymers (Basel) 2018; 10:polym10101063. [PMID: 30960988 PMCID: PMC6404041 DOI: 10.3390/polym10101063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/21/2018] [Accepted: 09/23/2018] [Indexed: 01/20/2023] Open
Abstract
Malignant melanoma is a highly aggressive type of cancer that requires radical treatment strategies to inhibit the cancer cell progression and metastasis. In recent years, preclinical research and clinical trials on melanoma treatment have been considerably focused on the adjuvant-based immunotherapy for enhancing the immune response of innate immune cells against cancer cells. However, the clinical outcome of these adjuvant-based treatments is inadequate due to an improper delivery system for these immune activators to reach the target site. Hence, we developed a vaccine formulation containing tumor lysate protein (TL) and poly I:C (PIC) complexed with positively charged poly (sorbitol-co-polyethylenimine (PEI) (PSPEI). The resulting ionic PSPEI-polyplexed antigen/adjuvant (PAA) (PSPEI-PAA) nanocomplexes were stable at the physiological condition, are non-toxic, and have enhanced intracellular uptake of antigen and adjuvant in immature dendritic cells leading to dendritic cell maturation. In the murine B16F10 tumor xenograft model, PSPEI-PAA nanocomplexes significantly suppressed tumor growth and did not exhibit any noticeable sign of toxicity. The level of matured dendritic cells (CD80+/CD86+ cells) in the tumor draining lymph node of PSPEI-PAA treated tumor mice were enhanced and therefore CD8+ T cells infiltration in the tumor were enriched. Additionally, the cytotoxic T lymphocytes (CTLs) assay involving co-culturing of splenocytes isolated from the PSPEI-PAA-treated mice with that of B16F10 cells significantly revealed enhanced cancer killing by the TL-reactivated CTLs compared to untreated control mice bearing tumor. Therefore, we strongly believe that PSPEI-PAA nanocomplexes could be an efficient antigen/adjuvant delivery system and enhance the antitumor immune response against melanoma tumor in the future clinical trials.
Collapse
|
20
|
Genetic screen in myeloid cells identifies TNF-α autocrine secretion as a factor increasing MDSC suppressive activity via Nos2 up-regulation. Sci Rep 2018; 8:13399. [PMID: 30194424 PMCID: PMC6128861 DOI: 10.1038/s41598-018-31674-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/22/2018] [Indexed: 12/26/2022] Open
Abstract
The suppressive microenvironment of tumors remains one of the limiting factors for immunotherapies. In tumors, the function of effector T cells can be inhibited by cancer cells as well as myeloid cells including tumor associated macrophages and myeloid-derived suppressor cells (MDSC). A better understanding of how myeloid cells inhibit T cell function will guide the design of therapeutic strategies to increase anti-tumor responses. We have previously reported the in vitro differentiation of MDSC from immortalized mouse hematopoietic progenitors and characterized the impact of retinoic acid and 3-deazaneplanocin A on MDSC development and function. We describe here the effect of these compounds on MDSC transcriptome and identify genes and pathway affected by the treatment. In order to accelerate the investigation of gene function in MDSC suppressive activity, we developed protocols for CRISPR/Cas9-mediated gene editing in MDSC. Through screening of 217 genes, we found that autocrine secretion of TNF-α contributes to MDSC immunosuppressive activity through up-regulation of Nos2. The approach described here affords the investigation of gene function in myeloid cells such as MDSC with unprecedented ease and throughput.
Collapse
|
21
|
Nakano T, Yamamura ET, Fujita H, Sone T, Asano K. Novel methods for nucleotide length control in double-stranded polyinosinic-polycytidylic acid production using uneven length components. Biosci Biotechnol Biochem 2018; 82:1889-1901. [PMID: 30079840 DOI: 10.1080/09168451.2018.1501264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polyinosinic-polycytidylic acid (PIC), a double-stranded RNA that induces innate immunity in mammals, is a candidate immunopotentiator for pharmaceuticals. The potency and adverse effects of PIC are strongly correlated with the nucleotide length, and the inability to precisely control the length in PIC production limits its practical use. Length extension during the annealing process is the major factor underlying the lack of control, but tuning the annealing conditions is insufficient to resolve this issue. In this study, we developed a novel method to produce accurate nucleotide length PIC at an industrial scale. The length extension was significantly suppressed by the assembly of multiple short polyinosinic acid molecules with one long polycytidylic acid molecule. A newly developed PIC, uPIC100-400, demonstrated a reproducible length and better storage stability than that of corresponding evenly structured PIC. Human dsRNA receptors exhibited equivalent responsiveness to uPIC100-400 and the evenly structured PIC with the same length.
Collapse
Affiliation(s)
- Tetsuo Nakano
- a Technical research laboratories , Kyowa Hakko Bio Co., Ltd ., Hofu , Japan.,b Graduate school of agriculture , Hokkaido University , Sapporo , Japan
| | - Ei-Tora Yamamura
- a Technical research laboratories , Kyowa Hakko Bio Co., Ltd ., Hofu , Japan
| | - Hiroshi Fujita
- a Technical research laboratories , Kyowa Hakko Bio Co., Ltd ., Hofu , Japan
| | - Teruo Sone
- b Graduate school of agriculture , Hokkaido University , Sapporo , Japan
| | - Kozo Asano
- b Graduate school of agriculture , Hokkaido University , Sapporo , Japan
| |
Collapse
|
22
|
Gilfillan CB, Kuhn S, Baey C, Hyde EJ, Yang J, Ruedl C, Ronchese F. Clec9A + Dendritic Cells Are Not Essential for Antitumor CD8 + T Cell Responses Induced by Poly I:C Immunotherapy. THE JOURNAL OF IMMUNOLOGY 2018; 200:2978-2986. [PMID: 29507107 DOI: 10.4049/jimmunol.1701593] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/01/2018] [Indexed: 12/31/2022]
Abstract
In the steady state, tumors harbor several populations of dendritic cells (DCs) and myeloid cells that are key regulators of the intratumoral immune environment. Among these cells, migratory CD103+ cross-presenting DCs are thought to be critical for tumor-specific CTL responses and tumor resistance. However, it is unclear whether this prominent role also extends to immunotherapy. We used a murine orthotopic mammary tumor model, as well as Clec9A-diphtheria toxin receptor mice that can be depleted of the specialized cross-presenting CD8α+ and CD103+ DC1 subsets, to investigate the role of these DCs in immunotherapy. Treatment with monosodium urate crystals and mycobacteria at the tumor site delayed tumor growth and required DC1s for efficacy. In contrast, treatment with poly I:C was equally effective regardless of DC1 depletion. Neither treatment affected myeloid-derived suppressor cell numbers in the spleen or tumor. Similar experiments using subcutaneous B16 melanoma tumors in BATF3-knockout mice confirmed that CD103+ DCs were not necessary for successful poly I:C immunotherapy. Nevertheless, adaptive immune responses were essential for the response to poly I:C, because mice depleted of CD8+ T cells or all DC subsets were unable to delay tumor growth. In vivo experiments showed that DC1 and DC2 subsets were able to take up tumor Ags, with DC2s making up the larger proportion of lymph node DCs carrying tumor material. Both DC subsets were able to cross-present OVA to OT-I T cells in vitro. Thus, immunotherapy with poly I:C enables multiple DC subsets to cross-present tumor Ag for effective antitumor immune responses.
Collapse
Affiliation(s)
- Connie B Gilfillan
- Malaghan Institute of Medical Research, Wellington 6021, New Zealand.,University of Otago, Wellington, Wellington 6021, New Zealand; and
| | - Sabine Kuhn
- Malaghan Institute of Medical Research, Wellington 6021, New Zealand
| | - Camille Baey
- Malaghan Institute of Medical Research, Wellington 6021, New Zealand
| | - Evelyn J Hyde
- Malaghan Institute of Medical Research, Wellington 6021, New Zealand
| | - Jianping Yang
- Malaghan Institute of Medical Research, Wellington 6021, New Zealand
| | - Christiane Ruedl
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Franca Ronchese
- Malaghan Institute of Medical Research, Wellington 6021, New Zealand;
| |
Collapse
|
23
|
De Waele J, Marcq E, Van Audenaerde JR, Van Loenhout J, Deben C, Zwaenepoel K, Van de Kelft E, Van der Planken D, Menovsky T, Van den Bergh JM, Willemen Y, Pauwels P, Berneman ZN, Lardon F, Peeters M, Wouters A, Smits EL. Poly(I:C) primes primary human glioblastoma cells for an immune response invigorated by PD-L1 blockade. Oncoimmunology 2017; 7:e1407899. [PMID: 29399410 DOI: 10.1080/2162402x.2017.1407899] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/31/2017] [Accepted: 11/17/2017] [Indexed: 02/08/2023] Open
Abstract
Prognosis of glioblastoma remains dismal, underscoring the need for novel therapies. Immunotherapy is generating promising results, but requires combination strategies to unlock its full potential. We investigated the immunomodulatory capacities of poly(I:C) on primary human glioblastoma cells and its combinatorial potential with programmed death ligand (PD-L) blockade. In our experiments, poly(I:C) stimulated expression of both PD-L1 and PD-L2 on glioblastoma cells, and a pro-inflammatory secretome, including type I interferons (IFN) and chemokines CXCL9, CXCL10, CCL4 and CCL5. IFN-β was partially responsible for the elevated PD-1 ligand expression on these cells. Moreover, real-time PCR and chloroquine-mediated blocking experiments indicated that poly(I:C) triggered Toll-like receptor 3 to elicit its effect. Cocultures of poly(I:C)-treated glioblastoma cells with peripheral blood mononuclear cells enhanced lymphocytic activation (CD69, IFN-γ) and cytotoxic capacity (CD107a, granzyme B). Additional PD-L1 blockade further propagated immune activation. Besides activating immunity, poly(I:C)-treated glioblastoma cells also doubled the attraction of CD8+ T cells, and to a lesser extent CD4+ T cells, via a mechanism which included CXCR3 and CCR5 ligands. Our results indicate that by triggering glioblastoma cells, poly(I:C) primes the tumor microenvironment for an immune response. Secreted cytokines allow for immune activation while chemokines attract CD8+ T cells to the front, which are postulated as a prerequisite for effective PD-1/PD-L1 blockade. Accordingly, additional blockade of the concurrently elevated tumoral PD-L1 further reinforces the immune activation. In conclusion, our data proposes poly(I:C) treatment combined with PD-L1 blockade to invigorate the immune checkpoint inhibition response in glioblastoma.
Collapse
Affiliation(s)
- Jorrit De Waele
- Center for Oncological Research, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Elly Marcq
- Center for Oncological Research, University of Antwerp, Wilrijk, Antwerp, Belgium
| | | | - Jinthe Van Loenhout
- Center for Oncological Research, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Christophe Deben
- Center for Oncological Research, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Karen Zwaenepoel
- Department of Pathology, Antwerp University Hospital, Edegem, Antwerp, Belgium
| | - Erik Van de Kelft
- Department of Neurosurgery, AZ Nikolaas, Sint-Niklaas, East Flanders, Belgium
| | | | - Tomas Menovsky
- Department of Neurosurgery, Antwerp University Hospital, Edegem, Antwerp, Belgium
| | | | - Yannick Willemen
- Laboratory of Experimental Hematology, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Patrick Pauwels
- Center for Oncological Research, University of Antwerp, Wilrijk, Antwerp, Belgium.,Department of Pathology, Antwerp University Hospital, Edegem, Antwerp, Belgium
| | - Zwi N Berneman
- Laboratory of Experimental Hematology, University of Antwerp, Wilrijk, Antwerp, Belgium.,Department of Hematology, Antwerp University Hospital, Edegem, Antwerp, Belgium
| | - Filip Lardon
- Center for Oncological Research, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Marc Peeters
- Center for Oncological Research, University of Antwerp, Wilrijk, Antwerp, Belgium.,Department of Oncology, Multidisciplinary Oncological Center Antwerp, Antwerp University Hospital, Antwerp, Edegem, Belgium
| | - An Wouters
- Center for Oncological Research, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Evelien Lj Smits
- Center for Oncological Research, University of Antwerp, Wilrijk, Antwerp, Belgium.,Laboratory of Experimental Hematology, University of Antwerp, Wilrijk, Antwerp, Belgium
| |
Collapse
|
24
|
Chesson CB, Zloza A. Nanoparticles: augmenting tumor antigen presentation for vaccine and immunotherapy treatments of cancer. Nanomedicine (Lond) 2017; 12:2693-2706. [PMID: 29098928 PMCID: PMC5704090 DOI: 10.2217/nnm-2017-0254] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/18/2017] [Indexed: 02/08/2023] Open
Abstract
The major goal of immunity is maintaining host survival. Toward this, immune cells recognize and eliminate targets that pose a danger. Primarily, these are external invaders (pathogens) and internal invaders (cancers). Their recognition relies on distinguishing foreign components (antigens) from self-antigens. Since cancer cells are the host's own cells that are harmfully altered, they are difficult to distinguish from normal self. Furthermore, the antigens least resembling the host are often sequestered in parts of the tumor least accessible to immune responses. Therefore, to sufficiently boost immunity, these tumor antigens must be exposed to the immune system. Toward this, nanoparticles provide an innovating means of tumor antigen presentation and are destined to become an integral part of cancer immunotherapy.
Collapse
Affiliation(s)
- Charles B Chesson
- Section of Surgical Oncology Research, Division of Surgical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, The State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Andrew Zloza
- Section of Surgical Oncology Research, Division of Surgical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, The State University of New Jersey, New Brunswick, NJ 08903, USA
| |
Collapse
|
25
|
Forghani P, Petersen CT, Waller EK. Activation of VIP signaling enhances immunosuppressive effect of MDSCs on CMV-induced adaptive immunity. Oncotarget 2017; 8:81873-81879. [PMID: 29137229 PMCID: PMC5669855 DOI: 10.18632/oncotarget.20704] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/14/2017] [Indexed: 12/27/2022] Open
Abstract
Vasoactive intestinal peptide (VIP) is recognized as a potent anti-inflammatory factor which affects both the innate and adaptive arms of the immune system. These effects include, but are not limited to, inhibition of T cell proliferation and disruption of immune homeostasis. Myeloid-derived suppressor cells (MDSC) are an immune regulatory cell type that has been described in settings of cancer and infectious disease._Here we demonstrate a reduced circulating monocytic MDSCs in the VIP -/-vs. wild type MCMV. VIP-/- MDSCs secretes less NO upon stimulation with LPS and interferon that relatively lose the ability to suppress T cells activation in vitro compared to wild type MDSCs._Considering the importance of VIP in immunomodulation, the possible effect of VIP in the suppressive function of MDSC populations following CMV infection remains unknown. We describe the possible role of VIP in the regulation of anti-CMV activity of T cells through the activation of MDSCs.
Collapse
Affiliation(s)
- Parvin Forghani
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Christopher T Petersen
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Edmund K Waller
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
26
|
Wang M, Zhang C, Song Y, Wang Z, Wang Y, Luo F, Xu Y, Zhao Y, Wu Z, Xu Y. Mechanism of immune evasion in breast cancer. Onco Targets Ther 2017; 10:1561-1573. [PMID: 28352189 PMCID: PMC5359138 DOI: 10.2147/ott.s126424] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Breast cancer (BC) is the most common malignant tumor among women, with high morbidity and mortality. Its onset, development, metastasis, and prognosis vary among individuals due to the interactions between tumors and host immunity. Many diverse mechanisms have been associated with BC, with immune evasion being the most widely studied to date. Tumor cells can escape from the body’s immune response, which targets abnormal components and foreign bodies, using different approaches including modification of surface antigens and modulation of the surrounding environment. In this review, we summarize the mechanisms and factors that impact the immunoediting process and analyze their functions in detail.
Collapse
Affiliation(s)
| | - Changwang Zhang
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yongxi Song
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | | | | | | | - Yi Zhao
- Department of Breast Surgery
| | - Zhonghua Wu
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | | |
Collapse
|
27
|
Chen J, Ye Y, Liu P, Yu W, Wei F, Li H, Yu J. Suppression of T cells by myeloid-derived suppressor cells in cancer. Hum Immunol 2016; 78:113-119. [PMID: 27939507 DOI: 10.1016/j.humimm.2016.12.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 01/18/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a population of immature myeloid cells defined by their immunosuppression. Elevated levels of certain soluble cytokines in tumor microenvironment, such as IL-6 and IL-10, contribute to the recruitment and accumulation of tumor-associated MDSCs. In turn, MDSCs secret IL-6 and IL-10 and form a positive self-feedback to promote self-expansion. MDSCs also release other soluble cytokines such as TGF-β and chemokines to exert their suppressive function by induction of regulatory T cells. Exhaustion of some amino acids by MDSCs with many secretory enzymes or membrane transporters as well as their metabolites leads to blockage of T cells development. The interaction of membrane molecules on MDSCs and T cells leads inactivation and apoptosis of T cells. There may be one or some dominant mechanism(s) by which MDSCs impair the immune system in different tumor microenvironment. Thus, it is important to identify the subpopulations of MDSCs and clarify the dominant mechanism(s) through which MDSCs inhibit antitumor immunity in order to establish a more individual immunotherapy by eliminating MDSCs-mediated suppression. Currently studies concentrated on therapeutic strategies targeting MDSCs have obtained promising results. However, more studies are needed to demonstrate their clinical safety and efficacy.
Collapse
Affiliation(s)
- Jieying Chen
- Department of Immunology, National Clinical Research Center of Cancer, Tianjin Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Yingnan Ye
- Department of Immunology, National Clinical Research Center of Cancer, Tianjin Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Pengpeng Liu
- Cancer Molecular Diagnostic Core, National Clinical Research Center of Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Wenwen Yu
- Department of Immunology, National Clinical Research Center of Cancer, Tianjin Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Feng Wei
- Department of Immunology, National Clinical Research Center of Cancer, Tianjin Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Hui Li
- Department of Immunology, National Clinical Research Center of Cancer, Tianjin Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Jinpu Yu
- Department of Immunology, National Clinical Research Center of Cancer, Tianjin Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; Cancer Molecular Diagnostic Core, National Clinical Research Center of Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
| |
Collapse
|
28
|
Zhang X, Pei Z, Chen J, Ji C, Xu J, Zhang X, Wang J. Exosomes for Immunoregulation and Therapeutic Intervention in Cancer. J Cancer 2016; 7:1081-7. [PMID: 27326251 PMCID: PMC4911875 DOI: 10.7150/jca.14866] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 04/26/2016] [Indexed: 02/06/2023] Open
Abstract
Exosomes, as a subset of extracellular vesicles, function as a mode of intercellular communication and molecular transfer, and facilitate the direct extracellular transfer of proteins, lipids, and miRNAs/mRNAs/DNAs between cells. Cancers have adapted exosomes and related microvesicles as a pathway that can suppress the immune system and establish a fertile local and distant environment to support neoplastic growth, invasion, and metastasis; these tumor-derived exosomes affect immunoregulation mechanisms, including immune activation and immune suppression. Immune cell-derived exosomes can modulate the immune response in cancer, which supports the belief that these membranous vesicles are immunotherapeutic reagents. In this review, we discuss the recent advances in the cancer immunotherapy, roles of exosomes in cancer, immunoregulation of tumor-derived exosomes, and immunomodulation by immune cell-derived exosomes. The topics covered here highlight novel insights into the development of efficient exosome-based cancer vaccines for cancer therapeutic intervention.
Collapse
Affiliation(s)
- Xuan Zhang
- 1. Scientific Research Center, Shanghai Public Health Clinical Center, 2901 Caolang Road, Jinshan District, Shanghai 201508, China
| | - Zenglin Pei
- 1. Scientific Research Center, Shanghai Public Health Clinical Center, 2901 Caolang Road, Jinshan District, Shanghai 201508, China
| | - Jinyun Chen
- 2. Departments of Epidemiology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 770030, USA
| | - Chunxia Ji
- 1. Scientific Research Center, Shanghai Public Health Clinical Center, 2901 Caolang Road, Jinshan District, Shanghai 201508, China
| | - Jianqing Xu
- 1. Scientific Research Center, Shanghai Public Health Clinical Center, 2901 Caolang Road, Jinshan District, Shanghai 201508, China
| | - Xiaoyan Zhang
- 1. Scientific Research Center, Shanghai Public Health Clinical Center, 2901 Caolang Road, Jinshan District, Shanghai 201508, China
| | - Jin Wang
- 1. Scientific Research Center, Shanghai Public Health Clinical Center, 2901 Caolang Road, Jinshan District, Shanghai 201508, China
| |
Collapse
|
29
|
Poly (I:C) enhances the anti-tumor activity of canine parvovirus NS1 protein by inducing a potent anti-tumor immune response. Tumour Biol 2016; 37:12089-12102. [PMID: 27209409 DOI: 10.1007/s13277-016-5093-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/15/2016] [Indexed: 12/26/2022] Open
Abstract
The canine parvovirus NS1 (CPV2.NS1) protein selectively induces apoptosis in the malignant cells. However, for an effective in vivo tumor treatment strategy, an oncolytic agent also needs to induce a potent anti-tumor immune response. In the present study, we used poly (I:C), a TLR3 ligand, as an adjuvant along with CPV2.NS1 to find out if the combination can enhance the oncolytic activity by inducing a potent anti-tumor immune response. The 4T1 mammary carcinoma cells were used to induce mammary tumor in Balb/c mice. The results suggested that poly (I:C), when given along with CPV2.NS1, not only significantly reduced the tumor growth but also augmented the immune response against tumor antigen(s) as indicated by the increase in blood CD4+ and CD8+ counts and infiltration of immune cells in the tumor tissue. Further, blood serum analysis of the cytokines revealed that Th1 cytokines (IFN-γ and IL-2) were significantly upregulated in the treatment group indicating activation of cell-mediated immune response. The present study reports the efficacy of CPV2.NS1 along with poly (I:C) not only in inhibiting the mammary tumor growth but also in generating an active anti-tumor immune response without any visible toxicity. The results of our study may help in developing CPV2.NS1 and poly (I: C) combination as a cancer therapeutic regime to treat various malignancies.
Collapse
|
30
|
Gupta SK, Tiwari AK, Gandham RK, Sahoo AP. Combined administration of the apoptin gene and poly (I:C) induces potent anti-tumor immune response and inhibits growth of mouse mammary tumors. Int Immunopharmacol 2016; 35:163-173. [PMID: 27064544 DOI: 10.1016/j.intimp.2016.03.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/25/2016] [Accepted: 03/28/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Many viral proteins exhibit selective cytotoxicity for tumor cells without affecting the normal diploid cells. The apoptin protein of chicken infectious anemia virus is one of such proteins, which has been shown to kill tumor cells specifically. However, an effective cancer treatment strategy also requires assistance from the immune system. Recently, poly (I:C) has been shown to be an effective cancer vaccine adjuvant. AIM In this study, we assessed the anti-tumor potential of apoptin gene transfer alone and in combination with poly (I:C) in a 4T1 mouse mammary tumor model. METHODS 4T1 cells were used to induce mammary tumor in Balb/c mice. Mice bearing tumors were divided into 6 groups, and each group received six intratumoral injections during a period of one month. After the last immunization, the animals were sacrificed, and peripheral blood, spleen, lungs, liver, heart, kidney and tumor tissues were collected for immunological, molecular and pathological analysis. RESULTS We report that intratumoral administration of apoptin plasmid along with poly (I:C) not only significantly inhibited the growth of mammary tumor, but also induced a potent anti-tumor immune response as indicated by the increase in blood CD4+, CD8+ cells and infiltration of immune cells in the tumor tissue. Further, blood serum analysis of the cytokines revealed increased secretion of Th1 cytokines (IFN-γ and IL-2). CONCLUSIONS The results of our study demonstrate that the inclusion of poly (I:C) significantly enhanced the anti-tumor activity of apoptin mainly by inducing a potent anti-tumor immune response. Therefore, we report the use of apoptin and poly (I:C) combination as a novel and powerful strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Shishir Kumar Gupta
- Molecular Biology Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP, India.
| | - Ashok K Tiwari
- Molecular Biology Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP, India.
| | - Ravi Kumar Gandham
- Molecular Biology Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP, India
| | - A P Sahoo
- Molecular Biology Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP, India
| |
Collapse
|
31
|
Re-polarizing Myeloid-derived Suppressor Cells (MDSCs) with Cationic Polymers for Cancer Immunotherapy. Sci Rep 2016; 6:24506. [PMID: 27074905 PMCID: PMC4830950 DOI: 10.1038/srep24506] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/31/2016] [Indexed: 01/28/2023] Open
Abstract
Our evolving understandings of cell-material interactions provide insights for using polymers to modulate cell behaviour that may lead to therapeutic applications. It is known that in certain cancers, myeloid-derived suppressor cells (MDSCs) play vital roles in promoting tumour progression, chiefly because of their ‘alternatively activated’ (or M2) phenotype that orchestrates immunosuppression. In this study, we demonstrated that two cationic polymers – cationic dextran (C-dextran) and polyethyleneimine (PEI) – could directly remodel these cells into an anti-tumour, ‘classically activated’ (or M1) phenotype, thereby stimulating these cells to express tumouricidal cytokines, reactivating the T cell functions, and prolonging the lifespan of the mice model. Our investigations with knock-out mice further indicate that the functions of these cationic polymers require the involvement of toll-like receptor 4-mediated signalling. Taken together, our study suggests that these cationic polymers can effectively and directly re-polarize MDSCs from an immunosuppressive characteristic to an anti-tumour phenotype, leading to successful restoration of immune surveillance in the tumour microenvironment and elimination of tumour cells. Our findings may have immediate impact on further development of polymer-based therapeutics for cancer immunotherapy.
Collapse
|
32
|
De Vlaeminck Y, González-Rascón A, Goyvaerts C, Breckpot K. Cancer-Associated Myeloid Regulatory Cells. Front Immunol 2016; 7:113. [PMID: 27065074 PMCID: PMC4810015 DOI: 10.3389/fimmu.2016.00113] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/14/2016] [Indexed: 12/25/2022] Open
Abstract
Myeloid cells are critically involved in the pathophysiology of cancers. In the tumor microenvironment (TME), they comprise tumor-associated macrophages (TAMs), neutrophils (TANs), dendritic cells, and myeloid-derived suppressor cells, which are further subdivided into a monocytic subset and a granulocytic subset. Some of these myeloid cells, in particular TAMs and TANs, are divided into type 1 or type 2 cells, according to the paradigm of T helper type 1 or type 2 cells. Type 1-activated cells are generally characterized as cells that aid tumor rejection, while all other myeloid cells are shown to favor tumor progression. Moreover, these cells are often at the basis of resistance to various therapies. Much research has been devoted to study the biology of myeloid cells. This endeavor has proven to be challenging, as the markers used to categorize myeloid cells in the TME are not restricted to particular subsets. Also from a functional and metabolic point of view, myeloid cells share many features. Finally, myeloid cells are endowed with a certain level of plasticity, which further complicates studying them outside their environment. In this article, we challenge the exclusive use of cell markers to unambiguously identify myeloid cell subsets in the TME. We further propose to divide myeloid cells into myeloid regulatory or stimulatory cells according to their pro- or antitumor function, because we contend that for therapeutic purposes it is not targeting the cell subsets but rather targeting their protumor traits; hence, myeloid regulatory cells will push antitumor immunotherapy to the next level.
Collapse
Affiliation(s)
- Yannick De Vlaeminck
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel , Brussels , Belgium
| | - Anna González-Rascón
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium; Centro de Investigación en Alimentación y Desarrollo, Hermosillo, Mexico
| | - Cleo Goyvaerts
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel , Brussels , Belgium
| | - Karine Breckpot
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel , Brussels , Belgium
| |
Collapse
|
33
|
Zoledronic acid induces dose-dependent increase of antigen-specific CD8 T-cell responses in combination with peptide/poly-IC vaccine. Vaccine 2016; 34:1275-81. [PMID: 26828454 DOI: 10.1016/j.vaccine.2016.01.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 01/06/2016] [Accepted: 01/17/2016] [Indexed: 01/26/2023]
Abstract
Zoledronic acid (ZA) is used for treating osteoporosis and for preventing skeletal fractures in cancer patients suffering from myeloma and prostate cancer. It is also reported to directly induce cancer cell apoptosis and indirectly modulate T-cell immune response as an antitumor agent. In this study, the effect of ZA following peptide/polyinosinic-polycytidylic acid (poly-IC) vaccination was investigated in a murine tumor model. The combination of ZA with peptide/poly-IC vaccine showed a synergistic effect on the induction of antigen-specific CD8 T-cell response. Three consecutive intravenous administrations of ZA was defined to induce the highest CD8 T-cell response. Further, total splenocyte counts and antigen-specific CD8 T-cell response gradually increased depending on the dose of ZA. In tumor-bearing mice, ZA showed a dose-dependent decrease of growth and prolonged survival. Treatment with ZA only decreased the number of CD11b(+)Gr1(+) myeloid cells in blood. Our results demonstrate that the use of ZA could improve antitumor immune responses induced by the peptide/poly-IC vaccine.
Collapse
|