1
|
Hussain QM, Al-Hussainy AF, Sanghvi G, Roopashree R, Kashyap A, Anand DA, Panigrahi R, Shavazi N, Taher SG, Alwan M, Jawad M, Mushtaq H. Dual role of miR-155 and exosomal miR-155 in tumor angiogenesis: implications for cancer progression and therapy. Eur J Med Res 2025; 30:393. [PMID: 40383762 PMCID: PMC12087080 DOI: 10.1186/s40001-025-02618-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/18/2025] [Indexed: 05/20/2025] Open
Abstract
Tumor angiogenesis facilitates cancer progression by supporting tumor growth and metastasis. MicroRNA-155 (miR-155) plays a pivotal role in regulating angiogenesis through both direct effects on tumor and endothelial cells and indirect modulation via exosomal communication. This review highlights miR-155's pro-angiogenic influence on endothelial cell behavior and tumor microenvironment remodeling. Additionally, exosomal miR-155 enhances intercellular communication, promoting vascularization in several cancers. Emerging therapeutic strategies include miR-155 inhibition using antagomirs, exosome-mediated delivery systems, and modulation of pathways such as JAK2/STAT3 and TGF-β/SMAD2. Targeting miR-155 represents a promising approach to hinder tumor angiogenesis and improve cancer therapy outcomes.
Collapse
Affiliation(s)
| | | | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, Gujarat, 360003, India
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Aditya Kashyap
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| | - D Alex Anand
- Department of Biomedical, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Rajashree Panigrahi
- Department of Microbiology, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Nargiz Shavazi
- Department of Obstetrics and Gynecology, Samarkand State Medical University, Samarkand, Uzbekistan
| | - Sada Ghalib Taher
- College of Dentistry, University of Thi-Qar, Thi-Qar, 64001, Iraq
- National University of Science and Technology, Thi-Qar, Iraq
| | - Mariem Alwan
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | - Mahmood Jawad
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | | |
Collapse
|
2
|
Saeed MM, Ma X, Fu X, Ullah I, Ali T, Bai C, Liu Y, Dong C, Cui X. RACGAP1 and MKI67 are potential prognostic biomarker in hepatocellular carcinoma caused by HBV/HCV via lactylation. Front Oncol 2025; 15:1537084. [PMID: 40421085 PMCID: PMC12104089 DOI: 10.3389/fonc.2025.1537084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 04/09/2025] [Indexed: 05/28/2025] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) is recognized as the prime and lethal form of liver cancer caused by the hepatitis B virus (HBV) and hepatitis C virus (HCV) globally. Lactate is an end product of glycolysis that influences epigenetic expression through histone lactylation. While MKI67 and RACGAP1 play crucial roles in HBV- and HCV-related HCC. However, the role of lactylation-related genes (LRGs) effects in this context remains unclear. This study innovatively explored the role of LRGs in HBV/HCV-associated HCC, identifying novel biomarkers for diagnosis and prognosis. Methods The present study used various online databases for analysis, and the findings were validated via immunohistochemical (IHC) analysis of HCC patient samples (n=60). Results We identified six signature LRGs (ALB, G6PD, HMGA1, MKI67, RACGAP1, and RFC4) possess prognostic potential, correlation with immune infiltration, and lactylation-related pathways, providing novel insights into tumor microenvironment (TME) of HCC. Moreover, MKI67 and RACGAP1 were significantly associated with HBV- and HCV-related HCC. IHC confirmed these findings, with high expression of MKI67 and RACGAP1 was significantly linked with HBV/HCV-associated HCC compared to non-viral HCC. The expression is also significantly associated with key clinical variables. Conclusion Our results suggest that MKI67 and RACGAP1 could serve as promising biomarkers for detecting and predicting HCC caused by HBV/HCV via lactylation, opening a new direction for immune-targeted therapies.
Collapse
Affiliation(s)
- Muhammad Muddasar Saeed
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xinying Ma
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xinyu Fu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ikram Ullah
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Tanveer Ali
- Basics discipline of Integrated Traditional Chinese and Western Medicine, Dalian Medical University, Dalian, China
| | - Changchuan Bai
- Dalian Traditional Chinese Medicine Hospital, Dalian, China
| | - Ying Liu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Chengyong Dong
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaonan Cui
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
3
|
Wen X, Shen J, Lin H, Lin D, Chen M, Sechi LA, De Miglio MR, Zeng D. Disulfidptosis, a novel regulated cell death to predict survival and therapeutic response in kidney renal clear cell carcinoma. Discov Oncol 2025; 16:589. [PMID: 40263130 PMCID: PMC12014891 DOI: 10.1007/s12672-025-01994-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/18/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Metabolic regulation of cell death has become a potential therapeutic target for kidney renal clear cell carcinoma (KIRC), which is distinguished by notable heterogeneity and significant immune infiltration. Disulfidptosis, a recently identified form of cell death, has gained prominence in antitumor immunity. This research aims to investigate the correlation between disulfidptosis and prognosis of KIRC, while also exploring the possibility of predicting therapeutic response by disulfidptosis-associated genes (DAGs). METHODS We sourced clinical data and RNA sequence of KIRC from the Cancer Genome Atlas Database. Employing unsupervised clustering based on 23 DAGs, we further identified key differentially expressed genes (DEGs) between clusters to construct a DAG prognostic signature. A nomogram was developed and validated to predict clinical outcome of KIRC. Finally, we examined immune cell infiltration, tumor mutational burden, immunotherapy response, and sensitivity to drugs in high and low-risk groups. RESULTS Two distinct KIRC patient clusters were successfully stratified using the 23-DAG-related prognostic signature, comprising 11 key genes. This resulted in a robust risk model with strong predictive accuracy for overall survival. The nomogram, incorporating DAG-based risk scores, age, and pM stage, exhibited excellent predictive performance. The high-risk group displayed increased immune cell infiltration and tumor mutational burden, while the low-risk group showed heightened sensitivity to immunotherapies and targeted treatments. CONCLUSION This study established a robust DAG-based risk model for KIRC, highlighting its significant correlation with the immune landscape and therapeutic responses. Novel disulfidptosis-related biomarkers revealed distinct immune profiles, drug sensitivities, and immunotherapy potentials among KIRC patients.
Collapse
Affiliation(s)
- Xiaofen Wen
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Jiaxin Shen
- Department of Hematology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Hui Lin
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Danxia Lin
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Minna Chen
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Leonardo Antonio Sechi
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy
- SC Microbiologia e Virologia, Azienda Ospedaliera Universitaria, 07100, Sassari, Italy
| | | | - De Zeng
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
4
|
Ke RS, Dai Y, Tu YL, Liu ZH, Huang KZ, Zhang FX. COLEC10: A potential tumor suppressor and prognostic biomarker in hepatocellular carcinoma through modulation of EMT and PI3K-AKT pathways. Open Life Sci 2025; 20:20220988. [PMID: 40026364 PMCID: PMC11868708 DOI: 10.1515/biol-2022-0988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/14/2024] [Accepted: 09/30/2024] [Indexed: 03/05/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a cancer with poor prognosis, underscoring the urgent need for enhanced detection and management. This study aimed to investigate the role of Collectin Subfamily Member 10 (COLEC10) in HCC, which was revealed to be associated with various diseases. Bioinformatics tools, including GEO, cBioPortal, and TCGA, were used to identify differentially expressed genes. The prognostic significance of COLEC10 was assessed in two patient cohorts, and its functional impact on Hep3B and SMMC7721 cells was evaluated through CCK-8 and Transwell assays. The underlying mechanisms of COLEC10 in HCC progression were explored using flow cytometry and western blot. COLEC10 was downregulated in HCC and associated with poorer overall survival and disease progression. The potential interaction of COLEC10, CCBE1, and FCN3 was predicted. COLEC10, CCBE1, and FCN3 were identified as prognostic indicators for HCC. Overexpression of COLEC10 inhibited the proliferation, migration, and invasion of HCC cells. COLEC10 overexpression induced G0/G1 cell cycle arrest and suppressed epithelial-mesenchymal transition (EMT), COLEC10 regulated protein expression in the Hedgehog pathway and phosphorylation of key proteins in the PI3K-AKT pathway. COLEC10 is an independent prognostic factor of HCC. COLEC10 regulates EMT, Hedgehog, and PI3K-AKT pathways, providing new ideas for targeted therapy of HCC.
Collapse
Affiliation(s)
- Rui-Sheng Ke
- Department of General Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, Fujian, China
| | - Yun Dai
- Endoscopic Diagnosis and Treatment Department, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, China
| | - Yan-ling Tu
- Department of Neurology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, 361001, China
| | - Zhao-Hui Liu
- Department of General Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, No. 55, Zhenhai Road, Siming District, Xiamen 361003, Fujian, China
| | - Kun-Zhai Huang
- Department of General Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, No. 55, Zhenhai Road, Siming District, Xiamen 361003, Fujian, China
| | - Fu-Xing Zhang
- Department of General Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, No. 55, Zhenhai Road, Siming District, Xiamen 361003, Fujian, China
| |
Collapse
|
5
|
Cochetti G, Guadagni L, Paladini A, Russo M, La Mura R, Vitale A, Saqer E, Mangione P, Esposito R, Gioè M, Pastore F, De Angelis L, Ricci F, Vannuccini G, Mearini E. An Evaluation of Serum miRNA in Renal Cell Carcinoma: A Systematic Review. Cancers (Basel) 2025; 17:816. [PMID: 40075664 PMCID: PMC11898939 DOI: 10.3390/cancers17050816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Background: In recent years, research has highlighted the importance of microRNAs (miRNAs) in the context of oncological diseases, including renal cell carcinoma (RCC). The aim of this systematic review of the literature was to analyze the main serum miRNAs involved in RCC and their potential diagnostic power. Methods: This systematic review was performed following the PROSPERO protocol CRD42024550709. Literature search strategies were developed composing strings with text words related to serum miRNA in RCC for PubMed, EMBASE and Clinicaltrial.gov. The studies enrolling adult populations with RCC and healthy controls measuring circulating miRNAs were included. Results: We found 500 records, and 26 papers were included after screening. Four studies found that miR-210, the most investigated miRNA, was overexpressed in RCC patients compared to controls, while one reported no statistical difference. The expression of some miRNAs was consistently lower in cases compared to healthy controls, such as miR-1-3p and miR-129-5p, while others (miR-221, miR-222, miR-224-5p and miR-1233) were consistently upregulated. Conclusions: Circulating miRNAs represent a promising avenue for the non-invasive diagnosis of RCC. Future research should focus on standardization, validation in larger cohorts and the development of multi-marker diagnostic panels to address these current limitations and pave the way for miRNA-based diagnostics in RCC.
Collapse
Affiliation(s)
| | | | - Alessio Paladini
- Urology Clinic, Department of Medicine and Surgery, Santa Maria della Misericordia Hospital, University of Perugia, 06129 Perugia, Italy; (G.C.); (L.G.); (M.R.); (R.L.M.); (A.V.); (E.S.); (P.M.); (R.E.); (M.G.); (F.P.); (L.D.A.); (F.R.); (G.V.); (E.M.)
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Wei Z, Kou Z, Luo Y, Cheng Y. DNA methyltransferase 3A: A prognostic biomarker and potential target for immunotherapy in gastric cancer. Medicine (Baltimore) 2025; 104:e41578. [PMID: 39960919 PMCID: PMC11835108 DOI: 10.1097/md.0000000000041578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 01/31/2025] [Indexed: 02/20/2025] Open
Abstract
DNA methyltransferase 3A (DNMT3A) has been associated with the occurrence or progression of various tumors, including gastric cancer. However, the role of DNMT3A in the efficacy of immune-cell infiltration in the tumor microenvironment and immunotherapy in gastric cancer remains less explored. DNMT3A expression level was analyzed using TIMER 2.0, Sangerbox 3.0, and The Cancer Genome Atlas database and further verified by immunohistochemical staining and RT-qPCR. The UALCAN, chi-square test, and Kaplan-Meier plotter databases were performed to assess the correlation of DNMT3A with clinicopathological characteristics and prognosis. The GeneMANIA database, STRING database, and R package were used to construct a DNMT3A co-expression gene network. Gene set enrichment analysis was used to identify the signaling pathways related to DNMT3A expression. The correlations between DNMT3A and cancer immune infiltrates were investigated using TIMER 2.0, Sangerbox 3.0, Kaplan-Meier Plotter, R package, and TISIDB databases. The TISIDB database and R package were used to construct the correlation between DNMT3A and immunomodulators and Immune cell Proportion Score. The association of DNMT3A expression with tumor mutational burden (TMB), microsatellite instability, and tumor dryness was evaluated using the TMB function of the R package, TIMER 2.0. Finally, the biological function of DNMT3A in gastric cancer cells was further assessed by CCK-8, cloning formation, and transwell assay. DNMT3A expression was remarkably upregulated in gastric cancer. The high expression of DNMT3A was associated with poor clinical features and poor survival in patients with gastric cancer. Moreover, gene set enrichment analyses showed that DNMT3A and its related genes were involved in various pathways that promoted cancer occurrence and progression by influencing the tumor microenvironment. Finally, DNMT3A was significantly related to tumor-infiltrating immune cells, immunomodulators, TMB, microsatellite instability, and immune checkpoints in gastric cancer. Moreover, knockdown of DNMT3A reduced the proliferation and migration of gastric cancer cells. Our findings highlight the potential of DNMT3A as a prognosis biomarker and an immunotherapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Zijie Wei
- College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
| | - Ziqian Kou
- College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
| | - Yun Luo
- College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
| | - Yu Cheng
- College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
| |
Collapse
|
7
|
Huang L, Wang D, Xu M, Qian D, Cao Y, Wu X, Ming L, Tang J, Huang Z, Yin Y, Zhou L. Mixed radiation with different doses induces CCL17 to recruit CD8 +T cell to exert anti-tumor effects in non-small cell lung cancer. Front Immunol 2025; 15:1508007. [PMID: 39877375 PMCID: PMC11772420 DOI: 10.3389/fimmu.2024.1508007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/23/2024] [Indexed: 01/31/2025] Open
Abstract
Background Different doses of radiotherapy (RT) exert diverse effects on tumor immunity, although the precise irradiation method remains unknown. This study sought to elucidate the influence of combining different doses of RT with immune checkpoint inhibitors (ICIs) on the infiltration of CD8+T cells within tumors, thereby augmenting the anti-tumor response. Methods Constructing a mouse model featuring bilateral lung cancer tumors subjected to high and low dose irradiation, the analysis of RNA transcriptome sequencing data and immunohistochemical validation for tumors exposed to various dosages guided the selection of the optimal low-dose irradiation scheme. Subsequently, upon the integration of immune checkpoint inhibitors (ICIs) therapy, the infiltration of immune cells within the tumor was ascertained via immunohistochemistry (IHC) and flow cytometry (FCM). Finally, through bioinformatics analysis and experimental verification, potential strategies to bolster the anti-tumor immune response were investigated. Results In comparison to the administration of 20Gy alone to the primary tumor, supplementing with 6Gy directed at the abscopal tumor produces a more pronounced abscopal response. The synergy of 20Gy, 6Gy, and ICIs markedly boosts the efficiency of ICIs. According to the findings from IHC and FCM studies, the triple therapy group exhibits a heightened infiltration of immune cells into the tumor, largely attributable to the augmented expression of CCL17 within the tumor under these irradiation regimens, which subsequently draws CD8+ T cells to infiltrate the tumor site, exerting cytotoxic effects. Conclusion Our study shows that the combined application of 20Gy and 6Gy can enhance the infiltration of tumor CD8+T cells in mice and improve the effectiveness of immunotherapy.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/radiation effects
- CD8-Positive T-Lymphocytes/metabolism
- Lung Neoplasms/immunology
- Lung Neoplasms/radiotherapy
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Lung Neoplasms/therapy
- Mice
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/radiotherapy
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/therapy
- Carcinoma, Non-Small-Cell Lung/pathology
- Chemokine CCL17/metabolism
- Chemokine CCL17/immunology
- Chemokine CCL17/genetics
- Immune Checkpoint Inhibitors/pharmacology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/radiation effects
- Lymphocytes, Tumor-Infiltrating/metabolism
- Humans
- Cell Line, Tumor
- Female
- Disease Models, Animal
- Dose-Response Relationship, Radiation
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Liuying Huang
- Department of Radiation Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Duo Wang
- Department of Radiation Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Muchen Xu
- Department of Radiation Oncology, The Fourth Affiliated Hospital of Soochow University, Suzhou, China
| | - Danqi Qian
- Department of Radiation Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yulin Cao
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiaohan Wu
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Liang Ming
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Junhui Tang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Zhaohui Huang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yuan Yin
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Leyuan Zhou
- Department of Radiation Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
- Department of Radiation Oncology, The Fourth Affiliated Hospital of Soochow University, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| |
Collapse
|
8
|
Zhang C, Li Y, Dong Y, Chen W, Yu C. Prediction of miRNA-disease associations based on PCA and cascade forest. BMC Bioinformatics 2024; 25:386. [PMID: 39701957 DOI: 10.1186/s12859-024-05999-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND As a key non-coding RNA molecule, miRNA profoundly affects gene expression regulation and connects to the pathological processes of several kinds of human diseases. However, conventional experimental methods for validating miRNA-disease associations are laborious. Consequently, the development of efficient and reliable computational prediction models is crucial for the identification and validation of these associations. RESULTS In this research, we developed the PCACFMDA method to predict the potential associations between miRNAs and diseases. To construct a multidimensional feature matrix, we consider the fusion similarities of miRNA and disease and miRNA-disease pairs. We then use principal component analysis(PCA) to reduce data complexity and extract low-dimensional features. Subsequently, a tuned cascade forest is used to mine the features and output prediction scores deeply. The results of the 5-fold cross-validation using the HMDD v2.0 database indicate that the PCACFMDA algorithm achieved an AUC of 98.56%. Additionally, we perform case studies on breast, esophageal and lung neoplasms. The findings revealed that the top 50 miRNAs most strongly linked to each disease have been validated. CONCLUSIONS Based on PCA and optimized cascade forests, we propose the PCACFMDA model for predicting undiscovered miRNA-disease associations. The experimental results demonstrate superior prediction performance and commendable stability. Consequently, the PCACFMDA is a potent instrument for in-depth exploration of miRNA-disease associations.
Collapse
Affiliation(s)
- Chuanlei Zhang
- Artificial Intelligence, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yubo Li
- Artificial Intelligence, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yinglun Dong
- Artificial Intelligence, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Wei Chen
- Computer Science, China University of Mining and Technology, Xuzhou, 221116, China
| | - Changqing Yu
- Electronic Information, Xijing University, Xi'an, 710123, China.
| |
Collapse
|
9
|
Kalligosfyri PM, Cimmino W, Normanno N, Cinti S. Enzyme-Assisted Electrochemical Point-of-Care Test for miRNA Detection in Liquid Biopsy. Anal Chem 2024; 96:19202-19206. [PMID: 39602323 DOI: 10.1021/acs.analchem.4c04127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
In the personalized medicine era, affordable and portable devices for quicker cancer monitoring, even in remote areas, are crucial. To address this need, we have developed an enzyme-assisted electrochemical point-of-care (POC) test for application toward liquid biopsy. In particular, miR-200a-5p has been taken into account as the model target due to its correlation for triple negative breast cancer (TNBC) prognosis. The proposed platform has been conceived as signal-ON, and the detection architecture is based on the presence of a duplex-specific nuclease (DSN) that is selective for DNA-RNA heteroduplexes. When the miRNA is recognized by an ad-hoc designed DNA probe, the DSN enzyme enables for the isothermal target recycling and signal enhancement, which is essential for detecting the miRNA trace in biofluids. Introducing a methylene blue (MB) modification on the DNA probe, a single miRNA strand is capable of triggering multiple DSN cleavage circles, increasing the free MB and thus the electrochemical signal recorded. All the optimization studies have been carried out using a screen-printed strip, resulting in a dynamic range comprised between 0.1 pM and 100 nM and a detection limit down to the fM level. A satisfactory selectivity was highlighted by interrogating the system toward random miRNA target mixtures, and the platform was also tested in spiked commercial serum samples.
Collapse
Affiliation(s)
| | - Wanda Cimmino
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy
| | - Nicola Normanno
- IRCCS Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori", 47014 Meldola, Italy
| | - Stefano Cinti
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
10
|
Liu Z, Yang X, Chen S, Jia W, Qian Y, Zhang M, Fang T, Liu H, Yang H. Tumor suppressor ACER1 correlates with prognosis and Immune Infiltration in head and neck squamous cell carcinoma. Sci Rep 2024; 14:28039. [PMID: 39543336 PMCID: PMC11564793 DOI: 10.1038/s41598-024-78663-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is notorious for poor prognoses, and effective biomarkers are urgently needed for early diagnosis of HNSCC patients. We investigate the role of alkaline ceramidase 1 (ACER1) and its relationship with immune infiltration in HNSCC. The differential expression and clinical prognostic significance of ACER1 in HNSCC patients are explored using bioinformatics methods and verified in human HNSCC samples. Genetic mutation, DNA methylation and drug sensitivity linked with ACER1 are examined. The potential biological function of ACER1 co-expression genes is assessed, and a series of functional assays are performed on ACER1in vitro. The results comprehensively reveal a relationship between ACER1 and immune infiltration in HNSCC patients. ACER1 expression is significantly downregulated in HNSCC tissues and closely correlated with better prognoses for HNSCC patients, and this prognostic significance is determined by distinct clinical characteristics. Genetic alteration and promoter hypomethylation of ACER1 are involved in progression of HNSCC, and ACER1 expression is significantly related to several drug sensitivities. Functional analysis shows that ACER1 co-expression genes are mainly enriched in the sphingolipid signaling pathway associated with inhibition of tumorigenesis, leading to better prognoses for HNSCC patients. In vitro, ACER1 overexpression inhibits proliferation and migration, induces apoptosis, and promotes adhesion of Fadu and SCC9 cells. In addition, high ACER1 expression is closely linked with infiltration levels of immune cells, and strongly associated with biomarkers of immune cells in HNSCC, suggesting the important role of ACER1 in regulating tumor immunity in HNSCC patients. In summary, ACER1 may be a useful indicator for diagnosis and prognosis, and may regulate immune infiltration in HNSCC patients, thus promising targeted immunotherapy for HNSCC.
Collapse
Affiliation(s)
- Zhixin Liu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology, Jinan, Shandong, China
| | - Xiaoqi Yang
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology, Jinan, Shandong, China
| | - Shuai Chen
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology, Jinan, Shandong, China
| | - Wenming Jia
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology, Jinan, Shandong, China
| | - Ye Qian
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology, Jinan, Shandong, China
| | - Minfa Zhang
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology, Jinan, Shandong, China
- Department of Otolaryngology/Head and Neck Surgery, Institute of Otolaryngology, Affiliated Hospital of Binzhou Medical University,, Binzhou, Shandong, China
| | - Tianhe Fang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Heng Liu
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology, Jinan, Shandong, China.
| | - Hui Yang
- Department of Radiology, Qilu Hospital of Shandong University, Jinan,Shandong, China.
| |
Collapse
|
11
|
Bose GS, Jindal S, Landage KG, Jindal A, Mahale MP, Kulkarni AP, Mittal S. SMAR1 and p53-regulated lncRNA RP11-431M3.1 enhances HIF1A translation via miR-138 in colorectal cancer cells under oxidative stress. FEBS J 2024; 291:4696-4713. [PMID: 39240540 DOI: 10.1111/febs.17253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/16/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024]
Abstract
Eukaryotic cells respond to stress by altering coding and non-coding gene expression programs. Alongside many approaches and regulatory mechanisms, long non-coding RNAs (lncRNA) are finding a significant place in gene regulation, suggesting an involvement in various cellular processes and pathophysiology. LncRNAs are regulated by many transcription factors, including SMAR1 and p53, which are tumor suppressor genes. SMAR1 inhibits cancer cell metastasis and invasion and is also known to inhibit apoptosis during low-dose stress in coordination with p53. Data mining analysis suggested that these tumor suppressor genes might coregulate the lncRNA RP11-431M3.1 in colon cancer cells. Importantly, RP11-431M3.1 expression was found to be negatively correlated with patient survival rates in a number of cancers. Oxidative stress occurs when an imbalance in the body is caused by reactive oxygen species (ROS). This imbalance is known to be important in the development/pathogenesis of colon cancer. We are researching the role and control of this lncRNA in HCT116 cells under conditions of oxidative stress. We observed a dose-dependent differential expression of lncRNA upon H2O2 treatment and found that p53 and SMAR1 bind differentially to the promoter in response to the dose of stress inducer used. RP11-431M3.1 was observed to sponge miR-138 which has an important target gene, hypoxia-inducible factor (HIF1A). miR-138 was observed to bind differentially to RP11-431M3.1 and HIF1A RNA depending on the dose of oxidative stress. Furthermore, the knockdown of RP11-431M3.1 decreased the migration and proliferation of colon cancer cells. Our results suggest a previously undescribed regulatory mechanism through which RP11-431M3.1 is transcriptionally regulated by SMAR1 and p53, target HIF1A through miR-138, and highlight its potential as a therapeutic and diagnostic marker for cancer.
Collapse
Affiliation(s)
- Ganesh Suraj Bose
- Department of Biotechnology, Savitribai Phule Pune University, India
| | - Shruti Jindal
- Department of Biotechnology, Savitribai Phule Pune University, India
| | | | - Aarzoo Jindal
- Department of Biotechnology, Savitribai Phule Pune University, India
| | | | | | - Smriti Mittal
- Department of Biotechnology, Savitribai Phule Pune University, India
| |
Collapse
|
12
|
Feng H, Ke C, Zou Q, Zhu Z, Liu T. Prediction of Potential miRNA-Disease Associations Based on a Masked Graph Autoencoder. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:1874-1885. [PMID: 38954583 DOI: 10.1109/tcbb.2024.3421924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Biomedical evidence has demonstrated the relevance of microRNA (miRNA) dysregulation in complex human diseases, and determining the relationship between miRNAs and diseases can aid in the early detection and prevention of diseases. Traditional biological experimental methods have the disadvantages of high cost and low efficiency, which are well compensated by computational methods. However, many computational methods have the challenge of excessively focusing on the neighbor relationship, ignoring the structural information of the graph, and belittling the redundant information of the graph structure. This study proposed a computational model based on a graph-masking autoencoder named MGAEMDA. MGAEMDA is an asymmetric framework in which the encoder maps partially observed graphs into latent representations. The decoder reconstructs the masked structural information based on the edge and node levels and combines it with linear matrices to obtain the result. The empirical results on the two datasets reveal that the MGAEMDA model performs better than its counterparts. We also demonstrated the predictive performance of MGAEMDA using a case study of four diseases, and all the top 30 predicted miRNAs were validated in the database, providing further evidence of the excellent performance of the model.
Collapse
|
13
|
Gan S, Macalinao DG, Shahoei SH, Tian L, Jin X, Basnet H, Bibby C, Muller JT, Atri P, Seffar E, Chatila W, Karacay A, Chanda P, Hadjantonakis AK, Schultz N, Brogi E, Bale TA, Moss NS, Murali R, Pe'er D, Massagué J. Distinct tumor architectures and microenvironments for the initiation of breast cancer metastasis in the brain. Cancer Cell 2024; 42:1693-1712.e24. [PMID: 39270646 DOI: 10.1016/j.ccell.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 12/15/2023] [Accepted: 08/20/2024] [Indexed: 09/15/2024]
Abstract
Brain metastasis, a serious complication of cancer, hinges on the initial survival, microenvironment adaptation, and outgrowth of disseminated cancer cells. To understand the early stages of brain colonization, we investigated two prevalent sources of cerebral relapse, triple-negative (TNBC) and HER2+ (HER2BC) breast cancers. Using mouse models and human tissue samples, we found that these tumor types colonize the brain, with a preference for distinctive tumor architectures, stromal interfaces, and autocrine programs. TNBC models tend to form perivascular sheaths with diffusive contact with astrocytes and microglia. In contrast, HER2BC models tend to form compact spheroids driven by autonomous tenascin C production, segregating stromal cells to the periphery. Single-cell transcriptomics of the tumor microenvironment revealed that these architectures evoke differential Alzheimer's disease-associated microglia (DAM) responses and engagement of the GAS6 receptor AXL. The spatial features of the two modes of brain colonization have relevance for leveraging the stroma to treat brain metastasis.
Collapse
Affiliation(s)
- Siting Gan
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Danilo G Macalinao
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sayyed Hamed Shahoei
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lin Tian
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Xin Jin
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province 310024, China; Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province 310024, China
| | - Harihar Basnet
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Catherine Bibby
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - James T Muller
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Pranita Atri
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Evan Seffar
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Walid Chatila
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ali Karacay
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Pharto Chanda
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nikolaus Schultz
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Edi Brogi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tejus A Bale
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nelson S Moss
- Department of Neurological Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Rajmohan Murali
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dana Pe'er
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Joan Massagué
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
14
|
Zhang D, Li L, Ma F. Integrative analyses identified gap junction beta-2 as a prognostic biomarker and therapeutic target for breast cancer. CANCER INNOVATION 2024; 3:e128. [PMID: 38948248 PMCID: PMC11212300 DOI: 10.1002/cai2.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/17/2023] [Accepted: 02/01/2024] [Indexed: 07/02/2024]
Abstract
Background Increasing evidence has shown that connexins are involved in the regulation of tumor development, immune escape, and drug resistance. This study investigated the gene expression patterns, prognostic values, and potential mechanisms of connexins in breast cancer. Methods We conducted a comprehensive analysis of connexins using public gene and protein expression databases and clinical samples from our institution. Connexin mRNA expressions in breast cancer and matched normal tissues were compared, and multiomics studies were performed. Results Gap junction beta-2 mRNA was overexpressed in breast cancers of different pathological types and molecular subtypes, and its high expression was associated with poor prognosis. The tumor membrane of the gap junction beta-2 mutated group was positive, and the corresponding protein was expressed. Somatic mutation and copy number variation of gap junction beta-2 are rare in breast cancer. The gap junction beta-2 transcription level in the p110α subunit of the phosphoinositide 3-kinase mutant subgroup was higher than that in the wild-type subgroup. Gap junction beta-2 was associated with the phosphoinositide 3-kinase-Akt signaling pathway, extracellular matrix-receptor interaction, focal adhesion, and proteoglycans in cancer. Furthermore, gap junction beta-2 overexpression may be associated with phosphoinositide 3-kinase and histone deacetylase inhibitor resistance, and its expression level correlated with infiltrating CD8+ T cells, macrophages, neutrophils, and dendritic cells. Conclusions Gap junction beta-2 may be a promising therapeutic target for targeted therapy and immunotherapy and may be used to predict breast cancer prognosis.
Collapse
Affiliation(s)
- Di Zhang
- Department of Medical OncologyQilu Hospital of Shandong UniversityJinanChina
- Department of Medical OncologyQilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Department of Medical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Lixi Li
- Department of Medical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Fei Ma
- Department of Medical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
15
|
Ware AP, Satyamoorthy K, Paul B. CmirC update 2024: a multi-omics database for clustered miRNAs. Funct Integr Genomics 2024; 24:133. [PMID: 39085735 PMCID: PMC11291601 DOI: 10.1007/s10142-024-01410-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
Clustered miRNAs consist of two or more miRNAs transcribed together and may coordinately regulate gene expression. Differential expression of clustered miRNAs is found to be controlled by crosstalk of genetic or epigenetic mechanisms. It has been demonstrated that clustered miRNA expression patterns greatly impact cancer cell progression. With the CmirC initiative, we initially developed a comprehensive database to identify copy number variation (CNV) driven clustered miRNAs in cancer. Now, we extended the analysis and identified three miRNAs, mir-96, mir-183, and mir-21, were found to be significantly upregulated in 17 cancer types. Further, CmirC is now upgraded to determine the impact of changes in the DNA methylation status at clustered miRNAs by utilizing The Cancer Genomic Atlas (TCGA) cancer datasets. We examined specific methylation datasets from 9,639 samples, pinpointing 215,435 methylation sites and 27,949 CpG islands with miRNA cluster information. The integrated analysis identified 34 clusters exhibiting differentially methylated CpG sites across 14 cancer types. Furthermore, we determined that CpG islands in the promoter region of 20 miRNA clusters could play a regulatory role. Along with ensuring a straightforward and convenient user experience, CmirC has been updated with improved data browsing and analysis functionalities, as well as enabled hyperlinks to literature and miR-cancer databases. The enhanced version of CmirC is anticipated to play an important role in providing information on the regulation of clustered miRNA expression, and their targeted oncogenes and tumor suppressors. The newly updated version of CmirC is available at https://slsdb.manipal.edu/cmirclust/ .
Collapse
Affiliation(s)
- Akshay Pramod Ware
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
- Institute of Cardiovascular Regeneration, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, Frankfurt Am Main, 60590, Germany
| | - Kapaettu Satyamoorthy
- SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara (SDM) University, Manjushree Nagar, Sattur, Dharwad, Karnataka, 580009, India
| | - Bobby Paul
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
16
|
Causin RL, Polezi MR, Freitas AJAD, Calfa S, Altei WF, Dias JO, Laus AC, Pessôa-Pereira D, Komoto TT, Evangelista AF, Souza CDP, Reis RM, Marques MMC. EV-miRNAs from breast cancer patients of plasma as potential prognostic biomarkers of disease recurrence. Heliyon 2024; 10:e33933. [PMID: 39104474 PMCID: PMC11298852 DOI: 10.1016/j.heliyon.2024.e33933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Background Extracellular vesicles (EVs), ubiquitously released by blood cells, facilitate intercellular communication. In cancer, tumor-derived EVs profoundly affect the microenvironment, promoting tumor progression and raising the risk of recurrence. These EVs contain miRNAs (EV-miRNAs), promising cancer biomarkers. Characterizing plasma EVs and identifying EV-miRNAs associated with breast cancer recurrence are crucial aspects of cancer research since they allow us to discover new biomarkers that are effective for understanding tumor biology and for being used for early detection, disease monitoring, or approaches to personalized medicine. This study aimed to characterize plasma EVs in breast cancer (BC) patients and identify EV-miRNAs associated with BC recurrence. Methods This retrospective observational study included 24 BC patients divided into recurrence (n= 11) and non-recurrence (n= 13) groups. Plasma EVs were isolated and characterized. Total RNA from EVs was analyzed for miRNA expression using NanoString's nCounter® miRNA Expression Assays panel. MicroRNA target prediction used mirDIP, and pathway interactions were assessed via Reactome. Results A stronger presence of circulating EVs was found to be linked with a less favorable prognosis (p = 0.0062). We discovered a distinct signature of EV-miRNAs, notably including miR-19a-3p and miR-130b-3p, which are significantly associated with breast cancer recurrence. Furthermore, miR-19a-3p and miR-130b-3p were implicated in the regulation of PTEN and MDM4, potentially contributing to breast cancer progression.A notable association emerged, indicating a high concentration of circulating EVs predicts poor prognosis (p = 0.0062). Our study found a distinct EV-miRNA signature involving miR-19a-3p and miR-130b-3p, strongly associated with disease recurrence. We also presented compelling evidence for their regulatory roles in PTEN and MDM4 genes, contributing to BC development. Conclusion This study revealed that increased plasma EV concentration is associated with BC recurrence. The prognostic significance of EVs is closely tied to the unique expression profiles of miR-19a-3p and miR-130b-3p. These findings underscore the potential of EV-associated miRNAs as valuable indicators for BC recurrence, opening new avenues for diagnosis and treatment exploration.
Collapse
Affiliation(s)
- Rhafaela Lima Causin
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, 14784-400, Brazil
| | - Mariana Regatieri Polezi
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, 14784-400, Brazil
| | | | - Stéphanie Calfa
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, 14784-400, Brazil
| | - Wanessa Fernanda Altei
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, 14784-400, Brazil
- Radiation Oncology Department, Barretos Cancer Hospital, Barretos, São Paulo, 14784-400, Brazil
| | - Júlia Oliveira Dias
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, 14784-400, Brazil
| | - Ana Carolina Laus
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, 14784-400, Brazil
| | - Danielle Pessôa-Pereira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, 14784-400, Brazil
| | - Tatiana Takahasi Komoto
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, 14784-400, Brazil
| | - Adriane Feijó Evangelista
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, 14784-400, Brazil
- Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Manguinhos, Rio de Janeiro, 21040-361, Brazil
| | | | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, 14784-400, Brazil
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, 4710-057, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, 4710-057, Portugal
| | | |
Collapse
|
17
|
Fang Y, Wang Y, Ma H, Guo Y, Xu R, Chen X, Chen X, Lv Y, Li P, Gao Y. TFAP2A downregulation mediates tumor-suppressive effect of miR-8072 in triple-negative breast cancer via inhibiting SNAI1 transcription. Breast Cancer Res 2024; 26:103. [PMID: 38890750 PMCID: PMC11186287 DOI: 10.1186/s13058-024-01858-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) represents a highly aggressive subset of breast malignancies characterized by its challenging clinical management and unfavorable prognosis. While TFAP2A, a member of the AP-2 transcription factor family, has been implicated in maintaining the basal phenotype of breast cancer, its precise regulatory role in TNBC remains undefined. METHODS In vitro assessments of TNBC cell growth and migratory potential were conducted using MTS, colony formation, and EdU assays. Quantitative PCR was employed to analyze mRNA expression levels, while Western blot was utilized to evaluate protein expression and phosphorylation status of AKT and ERK. The post-transcriptional regulation of TFAP2A by miR-8072 and the transcriptional activation of SNAI1 by TFAP2A were investigated through luciferase reporter assays. A xenograft mouse model was employed to assess the in vivo growth capacity of TNBC cells. RESULTS Selective silencing of TFAP2A significantly impeded the proliferation and migration of TNBC cells, with elevated TFAP2A expression observed in breast cancer tissues. Notably, TNBC patients exhibiting heightened TFAP2A levels experienced abbreviated overall survival. Mechanistically, TFAP2A was identified as a transcriptional activator of SNAI1, a crucial regulator of epithelial-mesenchymal transition (EMT) and cellular proliferation, thereby augmenting the oncogenic properties of TFAP2A in TNBC. Moreover, miR-8072 was unveiled as a negative regulator of TFAP2A, exerting potent inhibitory effects on TNBC cell growth and migration. Importantly, the tumor-suppressive actions mediated by the miR-8072/TFAP2A axis were intricately associated with the attenuation of AKT/ERK signaling cascades and the blockade of EMT processes. CONCLUSIONS Our findings unravel the role and underlying molecular mechanism of TFAP2A in driving tumorigenesis of TNBC. Targeting the TFAP2A/SNAI1 pathway and utilizing miR-8072 as a suppressor represent promising therapeutic strategies for treating TNBC.
Collapse
Affiliation(s)
- Yujie Fang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Yali Wang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Hongning Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
- Central Laboratory of People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Yuqi Guo
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Rongrong Xu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xixi Chen
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuehua Chen
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ye Lv
- Oncology Department of Cancer Hospital, General Hospital, Ningxia Medical University, Yinchuan, China.
| | - Pu Li
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yujing Gao
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China.
- National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
18
|
Lu P, Jiang J. AE-RW: Predicting miRNA-disease associations by using autoencoder and random walk on miRNA-gene-disease heterogeneous network. Comput Biol Chem 2024; 110:108085. [PMID: 38754260 DOI: 10.1016/j.compbiolchem.2024.108085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/04/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024]
Abstract
Since scientific investigations have demonstrated that aberrant expression of miRNAs brings about the incidence of numerous intricate diseases, precise determination of miRNA-disease relationships greatly contributes to the advancement of human medical progress. To tackle the issue of inefficient conventional experimental approaches, numerous computational methods have been proposed to predict miRNA-disease association with enhanced accuracy. However, constructing miRNA-gene-disease heterogeneous network by incorporating gene information has been relatively under-explored in existing computational techniques. Accordingly, this paper puts forward a technique to predict miRNA-disease association by applying autoencoder and implementing random walk on miRNA-gene-disease heterogeneous network(AE-RW). Firstly, we integrate association information and similarities between miRNAs, genes, and diseases to construct a miRNA-gene-disease heterogeneous network. Subsequently, we consolidate two network feature representations extracted independently via an autoencoder and a random walk procedure. Finally, deep neural network(DNN) are utilized to conduct association prediction. The experimental results demonstrate that the AE-RW model achieved an AUC of 0.9478 through 5-fold CV on the HMDD v3.2 dataset, outperforming the five most advanced existing models. Additionally, case studies were implemented for breast and lung cancer, further validated the superior predictive capabilities of our model.
Collapse
Affiliation(s)
- Pengli Lu
- School of Computer and Communication, Lanzhou University of Technology, Lanzhou, 730050, Gansu, PR China.
| | - Jicheng Jiang
- School of Computer and Communication, Lanzhou University of Technology, Lanzhou, 730050, Gansu, PR China.
| |
Collapse
|
19
|
Iqbal S, Karim MR, Mohammad S, Mathiyalagan R, Morshed MN, Yang DC, Bae H, Rupa EJ, Yang DU. Multiomics Analysis of the PHLDA Gene Family in Different Cancers and Their Clinical Prognostic Value. Curr Issues Mol Biol 2024; 46:5488-5510. [PMID: 38921000 PMCID: PMC11201736 DOI: 10.3390/cimb46060328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
The PHLDA (pleckstrin homology-like domain family) gene family is popularly known as a potential biomarker for cancer identification, and members of the PHLDA family have become considered potentially viable targets for cancer treatments. The PHLDA gene family consists of PHLDA1, PHLDA2, and PHLDA3. The predictive significance of PHLDA genes in cancer remains unclear. To determine the role of pleckstrin as a prognostic biomarker in human cancers, we conducted a systematic multiomics investigation. Through various survival analyses, pleckstrin expression was evaluated, and their predictive significance in human tumors was discovered using a variety of online platforms. By analyzing the protein-protein interactions, we also chose a collection of well-known functional protein partners for pleckstrin. Investigations were also carried out on the relationship between pleckstrins and other cancers regarding mutations and copy number alterations. The cumulative impact of pleckstrin and their associated genes on various cancers, Gene Ontology (GO), and pathway analyses were used for their evaluation. Thus, the expression profiles of PHLDA family members and their prognosis in various cancers may be revealed by this study. During this multiomics analysis, we found that among the PHLDA family, PHLDA1 may be a therapeutic target for several cancers, including kidney, colon, and brain cancer, while PHLDA2 can be a therapeutic target for cancers of the colon, esophagus, and pancreas. Additionally, PHLDA3 may be a useful therapeutic target for ovarian, renal, and gastric cancer.
Collapse
Affiliation(s)
- Safia Iqbal
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea; (S.I.); (M.R.K.); (M.N.M.); (D.-C.Y.)
| | - Md. Rezaul Karim
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea; (S.I.); (M.R.K.); (M.N.M.); (D.-C.Y.)
| | - Shahnawaz Mohammad
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea; (S.M.); (R.M.)
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea; (S.M.); (R.M.)
| | - Md. Niaj Morshed
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea; (S.I.); (M.R.K.); (M.N.M.); (D.-C.Y.)
| | - Deok-Chun Yang
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea; (S.I.); (M.R.K.); (M.N.M.); (D.-C.Y.)
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea;
| | - Hyocheol Bae
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea;
| | - Esrat Jahan Rupa
- College of Korean Medicine, Woosuk University, Wanju-gun 55338, Jeollabuk-do, Republic of Korea
| | - Dong Uk Yang
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea; (S.I.); (M.R.K.); (M.N.M.); (D.-C.Y.)
| |
Collapse
|
20
|
Liu J, Yu Y, Li M, Wu Y, Chen W, Liu G, Liu L, Lin J, Peng C, Sun W, Wu X, Chen X. PMBC: a manually curated database for prognostic markers of breast cancer. Database (Oxford) 2024; 2024:baae033. [PMID: 38748636 PMCID: PMC11095525 DOI: 10.1093/database/baae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/21/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024]
Abstract
Breast cancer is notorious for its high mortality and heterogeneity, resulting in different therapeutic responses. Classical biomarkers have been identified and successfully commercially applied to predict the outcome of breast cancer patients. Accumulating biomarkers, including non-coding RNAs, have been reported as prognostic markers for breast cancer with the development of sequencing techniques. However, there are currently no databases dedicated to the curation and characterization of prognostic markers for breast cancer. Therefore, we constructed a curated database for prognostic markers of breast cancer (PMBC). PMBC consists of 1070 markers covering mRNAs, lncRNAs, miRNAs and circRNAs. These markers are enriched in various cancer- and epithelial-related functions including mitogen-activated protein kinases signaling. We mapped the prognostic markers into the ceRNA network from starBase. The lncRNA NEAT1 competes with 11 RNAs, including lncRNAs and mRNAs. The majority of the ceRNAs in ABAT belong to pseudogenes. The topology analysis of the ceRNA network reveals that known prognostic RNAs have higher closeness than random. Among all the biomarkers, prognostic lncRNAs have a higher degree, while prognostic mRNAs have significantly higher closeness than random RNAs. These results indicate that the lncRNAs play important roles in maintaining the interactions between lncRNAs and their ceRNAs, which might be used as a characteristic to prioritize prognostic lncRNAs based on the ceRNA network. PMBC renders a user-friendly interface and provides detailed information about individual prognostic markers, which will facilitate the precision treatment of breast cancer. PMBC is available at the following URL: http://www.pmbreastcancer.com/.
Collapse
Affiliation(s)
- Jiabei Liu
- School of Automation, Guangdong University of Technology, 100 Outer Ring West Road, Guangzhou University City, Panyu District, Guangzhou 510006, China
| | - Yiyi Yu
- School of Automation, Guangdong University of Technology, 100 Outer Ring West Road, Guangzhou University City, Panyu District, Guangzhou 510006, China
| | - Mingyue Li
- School of Automation, Guangdong University of Technology, 100 Outer Ring West Road, Guangzhou University City, Panyu District, Guangzhou 510006, China
| | - Yixuan Wu
- School of Automation, Guangdong University of Technology, 100 Outer Ring West Road, Guangzhou University City, Panyu District, Guangzhou 510006, China
| | - Weijun Chen
- School of Automation, Guangdong University of Technology, 100 Outer Ring West Road, Guangzhou University City, Panyu District, Guangzhou 510006, China
| | - Guanru Liu
- School of Automation, Guangdong University of Technology, 100 Outer Ring West Road, Guangzhou University City, Panyu District, Guangzhou 510006, China
| | - Lingxian Liu
- School of Automation, Guangdong University of Technology, 100 Outer Ring West Road, Guangzhou University City, Panyu District, Guangzhou 510006, China
| | - Jiechun Lin
- School of Automation, Guangdong University of Technology, 100 Outer Ring West Road, Guangzhou University City, Panyu District, Guangzhou 510006, China
| | - Chujun Peng
- School of Automation, Guangdong University of Technology, 100 Outer Ring West Road, Guangzhou University City, Panyu District, Guangzhou 510006, China
| | - Weijun Sun
- School of Automation, Guangdong University of Technology, 100 Outer Ring West Road, Guangzhou University City, Panyu District, Guangzhou 510006, China
- Guangdong Key Laboratory of IoT Information Technology, Guangdong University of Technology, 100 Outer Ring West Road, Guangzhou University City, Panyu District, Guangzhou 510006, China
| | - Xiaoli Wu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 100 Outer Ring West Road, Guangzhou University City, Panyu District, Guangzhou 510006, China
| | - Xin Chen
- School of Automation, Guangdong University of Technology, 100 Outer Ring West Road, Guangzhou University City, Panyu District, Guangzhou 510006, China
| |
Collapse
|
21
|
Jin T, Park KS, Nam SE, Lim SH, Kim JH, Noh WC, Yoo YB, Park WS, Yun IJ. CTLA4 expression profiles and their association with clinical outcomes of breast cancer: a systemic review. Ann Surg Treat Res 2024; 106:263-273. [PMID: 38725802 PMCID: PMC11076949 DOI: 10.4174/astr.2024.106.5.263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/16/2024] [Accepted: 03/03/2024] [Indexed: 05/12/2024] Open
Abstract
Purpose The cytotoxic T-lymphocyte-associated protein 4 (CTLA4) is involved in the progression of various cancers, but its biological roles in breast cancer (BRCA) remain unclear. Therefore, we performed a systematic multiomic analysis to expound on the prognostic value and underlying mechanism of CTLA4 in BRCA. Methods We assessed the effect of CTLA4 expression on BRCA using a variety of bioinformatics platforms, including Oncomine, GEPIA, UALCAN, PrognoScan database, Kaplan-Meier plotter, and R2: Kaplan-Meier scanner. Results CTLA4 was highly expressed in BRCA tumor tissue compared to normal tissue (P < 0.01). The CTLA4 messenger RNA levels in BRCA based on BRCA subtypes of Luminal, human epidermal growth factor receptor 2, and triple-negative BRCA were considerably higher than in normal tissues (P < 0.001). However, the overexpression of CTLA4 was associated with a better prognosis in BRCA (P < 0.001) and was correlated with clinicopathological characteristics including age, T stage, estrogen receptors, progesterone receptors, and prediction analysis of microarray 50 (P < 0.01). The infiltration of multiple immune cells was associated with increased CTLA4 expression in BRCA (P < 0.001). CTLA4 was highly enriched in antigen binding, immunoglobulin complexes, lymphocyte-mediated immunity, and cytokine-cytokine receptor interaction. Conclusion This study provides suggestive evidence of the prognostic role of CTLA4 in BRCA, which may be a therapeutic target for BRCA. Furthermore, CTLA4 may influence BRCA prognosis through antigen binding, immunoglobulin complexes, lymphocyte-mediated immunity, and cytokine-cytokine receptor interaction. These findings help us understand how CTLA4 plays a role in BRCA and set the stage for more research.
Collapse
Affiliation(s)
- TongYi Jin
- Department of Surgery, Konkuk University School of Medicine, Seoul, Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| | - Kyoung Sik Park
- Department of Surgery, Konkuk University School of Medicine, Seoul, Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
- Department of Surgery, Konkuk University Medical Center, Seoul, Korea
| | - Sang Eun Nam
- Department of Surgery, Konkuk University School of Medicine, Seoul, Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
- Department of Surgery, Konkuk University Medical Center, Seoul, Korea
| | - Seung Hwan Lim
- Department of Surgery, Konkuk University School of Medicine, Seoul, Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
- Department of Surgery, Konkuk University Medical Center, Seoul, Korea
| | - Jong Hyun Kim
- Department of Surgery, Konkuk University School of Medicine, Seoul, Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
- Department of Surgery, Konkuk University Medical Center, Seoul, Korea
| | - Woo Chul Noh
- Department of Surgery, Konkuk University School of Medicine, Seoul, Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
- Department of Surgery, Konkuk University Medical Center, Seoul, Korea
| | - Young Bum Yoo
- Department of Surgery, Konkuk University School of Medicine, Seoul, Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
- Department of Surgery, Konkuk University Medical Center, Seoul, Korea
| | - Won Seo Park
- Department of Surgery, Kyung Hee University School of Medicine, Seoul, Korea
| | - Ik Jin Yun
- Department of Surgery, Konkuk University School of Medicine, Seoul, Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
- Department of Surgery, Konkuk University Medical Center, Seoul, Korea
| |
Collapse
|
22
|
Ouyang D, Liang Y, Wang J, Li L, Ai N, Feng J, Lu S, Liao S, Liu X, Xie S. HGCLAMIR: Hypergraph contrastive learning with attention mechanism and integrated multi-view representation for predicting miRNA-disease associations. PLoS Comput Biol 2024; 20:e1011927. [PMID: 38652712 PMCID: PMC11037542 DOI: 10.1371/journal.pcbi.1011927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/19/2024] [Indexed: 04/25/2024] Open
Abstract
Existing studies have shown that the abnormal expression of microRNAs (miRNAs) usually leads to the occurrence and development of human diseases. Identifying disease-related miRNAs contributes to studying the pathogenesis of diseases at the molecular level. As traditional biological experiments are time-consuming and expensive, computational methods have been used as an effective complement to infer the potential associations between miRNAs and diseases. However, most of the existing computational methods still face three main challenges: (i) learning of high-order relations; (ii) insufficient representation learning ability; (iii) importance learning and integration of multi-view embedding representation. To this end, we developed a HyperGraph Contrastive Learning with view-aware Attention Mechanism and Integrated multi-view Representation (HGCLAMIR) model to discover potential miRNA-disease associations. First, hypergraph convolutional network (HGCN) was utilized to capture high-order complex relations from hypergraphs related to miRNAs and diseases. Then, we combined HGCN with contrastive learning to improve and enhance the embedded representation learning ability of HGCN. Moreover, we introduced view-aware attention mechanism to adaptively weight the embedded representations of different views, thereby obtaining the importance of multi-view latent representations. Next, we innovatively proposed integrated representation learning to integrate the embedded representation information of multiple views for obtaining more reasonable embedding information. Finally, the integrated representation information was fed into a neural network-based matrix completion method to perform miRNA-disease association prediction. Experimental results on the cross-validation set and independent test set indicated that HGCLAMIR can achieve better prediction performance than other baseline models. Furthermore, the results of case studies and enrichment analysis further demonstrated the accuracy of HGCLAMIR and unconfirmed potential associations had biological significance.
Collapse
Affiliation(s)
- Dong Ouyang
- Peng Cheng Laboratory, Shenzhen, China
- School of Biomedical Engineering, Guangdong Medical University, Dongguan, China
| | - Yong Liang
- Peng Cheng Laboratory, Shenzhen, China
- Pazhou Laboratory (Huangpu), Guangzhou, China
| | - Jinfeng Wang
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou, China
| | - Le Li
- School of Computer Science and Engineering, Faculty of Innovation Engineering, Macau University of Science and Technology, Macau, China
| | - Ning Ai
- School of Computer Science and Engineering, Faculty of Innovation Engineering, Macau University of Science and Technology, Macau, China
| | - Junning Feng
- School of Computer Science and Engineering, Faculty of Innovation Engineering, Macau University of Science and Technology, Macau, China
| | - Shanghui Lu
- School of Computer Science and Engineering, Faculty of Innovation Engineering, Macau University of Science and Technology, Macau, China
| | - Shuilin Liao
- School of Computer Science and Engineering, Faculty of Innovation Engineering, Macau University of Science and Technology, Macau, China
| | - Xiaoying Liu
- Computer Engineering Technical College, Guangdong Polytechnic of Science and Technology, Zhuhai, China
| | - Shengli Xie
- Guangdong-HongKong-Macao Joint Laboratory for Smart Discrete Manufacturing, Guangzhou, China
| |
Collapse
|
23
|
Gan Y, Kang Y, Zhong R, You J, Chen J, Li L, Chen J, Chen L. Cancer testis antigen MAGEA3 in serum and serum-derived exosomes serves as a promising biomarker in lung adenocarcinoma. Sci Rep 2024; 14:7573. [PMID: 38555374 PMCID: PMC10981702 DOI: 10.1038/s41598-024-58003-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/25/2024] [Indexed: 04/02/2024] Open
Abstract
Cancer testis antigen (CTA) Melanoma Antigen Gene A3 (MAGEA3) were overexpressed in multiple tumor types, but the expression pattern of MAGEA3 in the serum of lung adenocarcinoma (LUAD) remains unclear. Clinically derived serum and serum exosome samples were used to assess the mRNA expression of MAGEA3 and MAGEA4 by qRT-PCR, and serum MAGEA3 and MAGEA4 protein expression were evaluated by ELISA in total 133 healthy volunteers' and 289 LUAD patients' serum samples. An analysis of the relationship of the mRNA and protein expression of MAGEA3 and MAGEA4 with clinicopathologic parameters was performed and the diagnostic value of MAGEA3 and MAGEA4 was plotted on an ROC curve. In addition, the correlation of MAGEA3 mRNA with infiltrating immune cells was investigated through TIMER, the CIBERSORT algorithm and the TISIDB database. Expression of serum and serum exosome MAGEA3 and MAGEA4 mRNA were significantly higher in LUAD patients than in healthy donors. MAGEA3 mRNA associated with tumor diameter, TMN stage, and NSE in LUAD serum samples, and MAGEA3 mRNA correlated with N stage in serum-derived exosomes, possessing areas under the curve (AUC) of 0.721 and 0.832, respectively. Besides, serum MAGEA3 protein levels were elevated in LUAD patients, and were closely related to stage and NSE levels, possessing AUC of 0.781. Further analysis signified that the expression of MAGEA3 mRNA was positive correlation with neutrophil, macrophages M2, dendritic cells resting, and eosinophilic, but negatively correlated with B cells, plasma cells, CD8 + T cells, CD4 + T cells, Th17 cells, macrophages and dendritic cells. Collectively, our results suggested that the MAGEA3 expression in mRNA and protein were upregulated in LUAD, and MAGEA3 could be used as a diagnostic biomarker and immunotherapy target for LUAD patients.
Collapse
Affiliation(s)
- Yuhan Gan
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Yanli Kang
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Ruifang Zhong
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Jianbin You
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Jiahao Chen
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Ling Li
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Jinhua Chen
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China.
| | - Liangyuan Chen
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China.
| |
Collapse
|
24
|
Zhang WF, Ruan CW, Wu JB, Wu GL, Wang XG, Chen HJ. Limonin inhibits the stemness of cancer stem-like cells derived from colorectal carcinoma cells potentially via blocking STAT3 signaling. World J Clin Oncol 2024; 15:317-328. [PMID: 38455137 PMCID: PMC10915944 DOI: 10.5306/wjco.v15.i2.317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/06/2023] [Accepted: 01/08/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Limonin is one of the most abundant active ingredients of Tetradium ruticarpum. It exerts antitumor effects on several kinds of cancer cells. However, whether limonin exerts antitumor effects on colorectal cancer (CRC) cells and cancer stem-like cells (CSCs), a subpopulation responsible for a poor prognosis, is unclear. AIM To evaluate the effects of limonin on CSCs derived from CRC cells. METHODS CSCs were collected by culturing CRC cells in serum-free medium. The cytotoxicity of limonin against CSCs and parental cells (PCs) was determined by cholecystokinin octapeptide-8 assay. The effects of limonin on stemness were detected by measuring stemness hallmarks and sphere formation ability. RESULTS As expected, limonin exerted inhibitory effects on CRC cell behaviors, including cell proliferation, migration, invasion, colony formation and tumor formation in soft agar. A relatively low concentration of limonin decreased the expression stemness hallmarks, including Nanog and β-catenin, the proportion of aldehyde dehydrogenase 1-positive CSCs, and the sphere formation rate, indicating that limonin inhibits stemness without presenting cytotoxicity. Additionally, limonin treatment inhibited invasion and tumor formation in soft agar and in nude mice. Moreover, limonin treatment significantly inhibited the phosphorylation of STAT3 at Y705 but not S727 and did not affect total STAT3 expression. Inhibition of Nanog and β-catenin expression and sphere formation by limonin was obviously reversed by pretreatment with 2 μmol/L colievlin. CONCLUSION Taken together, these results indicate that limonin is a promising compound that targets CSCs and could be used to combat CRC recurrence and metastasis.
Collapse
Affiliation(s)
- Wei-Feng Zhang
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- Department of Anorectal Section, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China
| | - Cheng-Wei Ruan
- Department of Anorectal Section, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China
| | - Jun-Bo Wu
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- Department of Colorectal Surgery, Hengyang Central Hospital, Hengyang 421000, Hunan Province, China
| | - Guo-Liang Wu
- The First College for Clinical Medicine, Nanjing University Of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Xiao-Gan Wang
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Hong-Jin Chen
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
25
|
Ying F, Chen X, Lv L. Glycerol kinase enzyme is a prognostic predictor in esophageal carcinoma and is associated with immune cell infiltration. Sci Rep 2024; 14:3922. [PMID: 38365953 PMCID: PMC10873286 DOI: 10.1038/s41598-024-54425-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/13/2024] [Indexed: 02/18/2024] Open
Abstract
The influence of lipid metabolism on tumorigenesis and progression has garnered significant attention. However, the role of Glycerol Kinase (GK), a key enzyme in glycerol metabolism, in Esophageal Carcinoma (ESCA) remains unclear. To further elucidate the relationship between GK and ESCA, we investigated GK expression levels using database information. Controlled studies employing immunohistochemistry were conducted on clinical ESCA tumor samples and normal specimens, confirming GK's elevated expression in ESCA. Analysis of The Cancer Genome Atlas (TCGA) data via Kaplan-Meier (KM) survival plots revealed that increased GK expression correlates with poorer ESCA patient outcomes, particularly in overall survival (OS) and disease-specific survival (DSS). Multiple regression analysis indicated that elevated GK expression is an independent risk factor affecting ESCA prognosis. Statistical analysis of prognostic data from clinical samples further corroborated this finding. Moreover, there appears to be a significant correlation between GK expression and immune infiltration, specifically involving certain T and B lymphocytes. In conclusion, elevated GK expression in ESCA is strongly linked to poor prognosis and increased immune cell infiltration, highlighting its potential as an independent prognostic biomarker and a viable therapeutic target.
Collapse
Affiliation(s)
- Fei Ying
- Department of Gastroenterology, Xianju People's Hospital, NO.53 North East Road, Xianju County, Taizhou, Zhejiang Province, China
| | - Xuyong Chen
- Department of Gastroenterology, Xianju People's Hospital, NO.53 North East Road, Xianju County, Taizhou, Zhejiang Province, China
| | - Lihong Lv
- Department of Gastroenterology, Xianju People's Hospital, NO.53 North East Road, Xianju County, Taizhou, Zhejiang Province, China.
| |
Collapse
|
26
|
Aguiar Freitas AJ, Nunes CR, Mano MS, Causin RL, Calfa S, de Oliveira MA, Vidigal Santana IV, Pádua Souza CD, Chiquitelli Marques MM. Circulating microRNAs as potential biomarkers in triple-negative breast cancer: a translational research study of the NACATRINE trial. Future Oncol 2024; 20:25-38. [PMID: 38131283 DOI: 10.2217/fon-2023-0886] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Liquid biopsy is increasingly vital in monitoring neoadjuvant breast cancer treatment. This study collected plasma samples at three time points from participants in the Neoadjuvant Carboplatin in Triple Negative Breast Cancer (NACATRINE), analyzing miRNA expression with NanoString's nCounter® Human v3 miRNA assay. In the carboplatin arm, four ct-miRNAs exhibited dynamic changes linked to pathologic complete response, with a combined area under the curve of 0.811. Similarly, the non-carboplatin arm featured four ct-miRNAs with an area under the curve of 0.843. These findings underscore the potential of ct-miRNAs as personalized tools in breast cancer treatment, assisting in predicting treatment response and assessing the risk of relapse. Integrating ct-miRNA analysis into clinical practice can optimize decisions and enhance patient outcomes.
Collapse
Affiliation(s)
- Ana Julia Aguiar Freitas
- Barretos Cancer Hospital, Molecular Oncology Research Center Barretos, São Paulo, BR - 14784-400, Brazil
| | - Caroline Rocha Nunes
- Barretos Cancer Hospital, Molecular Oncology Research Center Barretos, São Paulo, BR - 14784-400, Brazil
| | - Max Senna Mano
- Grupo Oncoclínicas São Paulo, São Paulo, BR - 04538-132, Brazil
| | - Rhafaela Lima Causin
- Barretos Cancer Hospital, Molecular Oncology Research Center Barretos, São Paulo, BR - 14784-400, Brazil
| | - Stéphanie Calfa
- Barretos Cancer Hospital, Molecular Oncology Research Center Barretos, São Paulo, BR - 14784-400, Brazil
| | - Marco Antonio de Oliveira
- Barretos Cancer Hospital, Nucleus of Epidemiology & Biostatistics Barretos, São Paulo, BR - 14784-400, Brazil
| | | | | | | |
Collapse
|
27
|
Chen L, Yang D, Huang F, Xu W, Luo X, Mei L, He Y. NPM3 as an Unfavorable Prognostic Biomarker Involved in Oncogenic Pathways of Lung Adenocarcinoma via MYC Translational Activation. Comb Chem High Throughput Screen 2024; 27:203-213. [PMID: 37114782 DOI: 10.2174/1386207326666230419080531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 02/01/2023] [Accepted: 02/23/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND The nucleoplasmin/nucleophosmin (NPM) family was previously regarded as a critical regulator during disease development, and its mediation in carcinogenesis has achieved intensive attention recently. However, the clinical importance and functional mechanism of NPM3 in lung adenocarcinoma (LUAD) have not been reported yet. OBJECTIVE This study aimed to investigate the role and clinical significance of NPM3 in the development and progression of LUAD, including the underlying mechanisms. METHODS The expression of NPM3 in pan-cancer was analyzed via GEPIA. The effect of NPM3 on prognosis was analyzed by the Kaplan-Meier plotter and the PrognoScan database. In vitro, cell transfection, RT-qPCR, CCK-8 assay, and wound healing assay were employed to examine the role of NPM3 in A549 and H1299 cells. Gene set enrichment analysis (GSEA) was performed using the R software package to analyze the tumor hallmark pathway and KEGG pathway of NPM3. The transcription factors of NPM3 were predicted based on the ChIP-Atlas database. Dual-luciferase reporter assay was applied to verify the transcriptional regulatory factor of the NPM3 promoter region. RESULTS The NPM3 expression was found to be markedly higher in the LUAD tumor group than the normal group and to be positively correlated with poor prognosis, tumor stages, and radiation therapy. In vitro, the knockdown of NPM3 greatly inhibited the proliferation and migration of A549 and H1299 cells. Mechanistically, GSEA predicted that NPM3 activated the oncogenic pathways. Further, the NPM3 expression was found to be positively correlated with cell cycle, DNA replication, G2M checkpoint, HYPOXIA, MTORC1 signaling, glycolysis, and MYC targets. Besides, MYC targeted the promoter region of NPM3 and contributed to the enhanced expression of NPM3 in LUAD. CONCLUSION The overexpression of NPM3 is an unfavorable prognostic biomarker participating in oncogenic pathways of LUAD via MYC translational activation and it contributes to tumor progression. Thus, NPM3 could be a novel target for LUAD therapy.
Collapse
Affiliation(s)
- Long Chen
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Demeng Yang
- Faculty of College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Fen Huang
- Department of Operating Room, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Weicai Xu
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Xiaopan Luo
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Lili Mei
- Medical School, Kunming University of Science and Technology, Kunming, 6505041, China
| | - Ying He
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
28
|
Patel K, Rao DM, Sundersingh S, Velusami S, Rajkumar T, Nair B, Pandey A, Chatterjee A, Mani S, Gowda H. MicroRNA Expression Profile in Early-Stage Breast Cancers. Microrna 2024; 13:71-81. [PMID: 37873952 DOI: 10.2174/0122115366256479231003064842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND Breast cancer is one of the leading causes of cancer deaths in women. Early diagnosis offers the best hope for a cure. Ductal carcinoma in situ is considered a precursor of invasive ductal carcinoma of the breast. In this study, we carried out microRNA sequencing from 7 ductal carcinoma in situ (DCIS), 6 infiltrating ductal carcinomas (IDC Stage IIA) with paired normal, and 5 unpaired normal breast tissue samples. METHODS We have deployed miRge for microRNA analysis, DESeq for differential expression analysis, and Cytoscape for competing endogenous RNA network investigation. RESULTS Here, we identified 76 miRNAs that were differentially expressed in DCIS and IDC. Additionally, we provide preliminary evidence of miR-365b-3p and miR-7-1-3p being overexpressed, and miR-6507-5p, miR-487b-3p, and miR-654-3p being downregulated in DCIS relative to normal breast tissue. We also identified a miRNA miR-766-3p that was overexpressed in earlystage IDCs. The overexpression of miR-301a-3p in DCIS and IDC was confirmed in 32 independent breast cancer tissue samples. CONCLUSION Higher expression of miR-301a-3p is associated with poor overall survival in The Cancer Genome Atlas Breast Cancer (TCGA-BRCA) dataset, indicating that it may be associated with DCIS at high risk of progressing to IDC and warrants deeper investigation.
Collapse
MESH Headings
- Humans
- Female
- MicroRNAs/genetics
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Breast Neoplasms/mortality
- Gene Expression Regulation, Neoplastic/genetics
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/pathology
- Middle Aged
- Neoplasm Staging
- Gene Expression Profiling
- Biomarkers, Tumor/genetics
- Transcriptome/genetics
Collapse
Affiliation(s)
- Krishna Patel
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 691001, India
| | - Deva Magendhra Rao
- Department of Molecular Oncology, Cancer Institute (WIA), Chennai 600036, India
| | | | - Sridevi Velusami
- Department of Surgical Oncology, Cancer Institute (WIA), Chennai, India
| | | | - Bipin Nair
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 691001, India
| | - Akhilesh Pandey
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore 560029, India
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Technology Park, Bangalore 560066 India
- Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Samson Mani
- Department of Molecular Oncology, Cancer Institute (WIA), Chennai 600036, India
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 691001, India
- Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| |
Collapse
|
29
|
Jonas K, Prinz F, Ferracin M, Krajina K, Deutsch A, Madl T, Rinner B, Slaby O, Klec C, Pichler M. MiR-4646-5p Acts as a Tumor-Suppressive Factor in Triple Negative Breast Cancer and Targets the Cholesterol Transport Protein GRAMD1B. Noncoding RNA 2023; 10:2. [PMID: 38250802 PMCID: PMC10801495 DOI: 10.3390/ncrna10010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/11/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
MicroRNAs (miRNAs) are crucial post-transcriptional regulators of gene expression, and their deregulation contributes to many aspects of cancer development and progression. Thus, miRNAs provide insight into oncogenic mechanisms and represent promising targets for new therapeutic approaches. A type of cancer that is still in urgent need of improved treatment options is triple negative breast cancer (TNBC). Therefore, we aimed to characterize a novel miRNA with a potential role in TNBC. Based on a previous study, we selected miR-4646-5p, a miRNA with a still unknown function in breast cancer. We discovered that higher expression of miR-4646-5p in TNBC patients is associated with better survival. In vitro assays showed that miR-4646-5p overexpression reduces growth, proliferation, and migration of TNBC cell lines, whereas inhibition had the opposite effect. Furthermore, we found that miR-4646-5p inhibits the tube formation ability of endothelial cells, which may indicate anti-angiogenic properties. By whole transcriptome analysis, we not only observed that miR-4646-5p downregulates many oncogenic factors, like tumor-promoting cytokines and migration- and invasion-related genes, but were also able to identify a direct target, the GRAM domain-containing protein 1B (GRAMD1B). GRAMD1B is involved in cellular cholesterol transport and its knockdown phenocopied the growth-reducing effects of miR-4646-5p. We thus conclude that GRAMD1B may partly contribute to the diverse tumor-suppressive effects of miR-4646-5p in TNBC.
Collapse
Affiliation(s)
- Katharina Jonas
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (K.J.)
- Research Unit for Non-Coding RNA and Genome Editing, Medical University of Graz, 8010 Graz, Austria
| | - Felix Prinz
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (K.J.)
- Research Unit for Non-Coding RNA and Genome Editing, Medical University of Graz, 8010 Graz, Austria
| | - Manuela Ferracin
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Katarina Krajina
- Translational Oncology, II. Med Clinics Hematology and Oncology, 86156 Augsburg, Germany
| | - Alexander Deutsch
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Tobias Madl
- Division of Molecular Biology & Biochemistry, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Beate Rinner
- Department for Biomedical Research, Medical University of Graz, 8036 Graz, Austria
| | - Ondrej Slaby
- Department of Biology, Faculty of Medicine and Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Christiane Klec
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (K.J.)
- Research Unit for Non-Coding RNA and Genome Editing, Medical University of Graz, 8010 Graz, Austria
| | - Martin Pichler
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (K.J.)
- Research Unit for Non-Coding RNA and Genome Editing, Medical University of Graz, 8010 Graz, Austria
- Translational Oncology, II. Med Clinics Hematology and Oncology, 86156 Augsburg, Germany
| |
Collapse
|
30
|
Zhang Y, Shi M, Qian Y, Wang H, Zhang X, He J, Jiang B, Chen Y, Mao X. (Eu-MOF)-derived Smart luminescent sensing for Ultrasensitive on-site detection of MiR-892b. Anal Chim Acta 2023; 1284:341990. [PMID: 37996164 DOI: 10.1016/j.aca.2023.341990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
MicroRNAs (miRNAs) are important biomacromolecules used as biomarkers for the diagnosis of several diseases. However, current detection strategies are limited by expensive equipment and complicated procedures. Here, we develop a portable, sensitive, and stable (Eu-MOF)-based sensing platform to detect miRNA via smartphone. The Eu-MOF absorbs the carboxyfluorescein (FAM)-tagged probe DNA (pDNA) to generate hybrid pDNA@Eu-MOF, which can efficiently quench the fluorescence of FAM through a photoinduced electron transfer (PET) process. When integrated with a smartphone, the nonemissive pDNA@ Eu-MOF hybrid could be utilized as a portable and sensitive platform to sense miRNA (miR-892b) with a detection limit of 0.32 pM, which could be even distinguished by the naked eye. Moreover, this system demonstrates high selectivity for identifying miRNA family members with single-base mismatches. Furthermore, the expression levels of miRNA in cancer cell samples could be analyzed accurately. Therefore, the proposed method offers a promising guideline for the design of MOF-based sensing strategies and expands their potential applications for diagnostic purposes.
Collapse
Affiliation(s)
- Yuchi Zhang
- School of Environment Science, Nanjing Xiaozhuang University, Nanjing, Jiangsu, 211171, PR China
| | - Mengqin Shi
- Key Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River in Anhui of Anhui Provincial Education Department, College of Resources and Environment, Anqing Normal University, Anqing, 246011, PR China
| | - Yin Qian
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, PR China
| | - Haiying Wang
- School of Environment Science, Nanjing Xiaozhuang University, Nanjing, Jiangsu, 211171, PR China
| | - Xinzhe Zhang
- Key Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River in Anhui of Anhui Provincial Education Department, College of Resources and Environment, Anqing Normal University, Anqing, 246011, PR China
| | - Jinpeng He
- Key Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River in Anhui of Anhui Provincial Education Department, College of Resources and Environment, Anqing Normal University, Anqing, 246011, PR China
| | - Binbin Jiang
- Anhui Key Laboratory of Photoelectric-Magnetic Functional Materials, Anhui Key Laboratory of Functional Coordination Compounds College of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, PR China
| | - Yanmei Chen
- Key Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River in Anhui of Anhui Provincial Education Department, College of Resources and Environment, Anqing Normal University, Anqing, 246011, PR China
| | - Xiaoxia Mao
- Key Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River in Anhui of Anhui Provincial Education Department, College of Resources and Environment, Anqing Normal University, Anqing, 246011, PR China; Anhui Key Laboratory of Photoelectric-Magnetic Functional Materials, Anhui Key Laboratory of Functional Coordination Compounds College of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, PR China.
| |
Collapse
|
31
|
Kim HR, Seo CW, Kim J. The value of CDC42 effector protein 2 as a novel prognostic biomarker in liver hepatocellular carcinoma: a comprehensive data analysis. Osong Public Health Res Perspect 2023; 14:451-467. [PMID: 38204425 PMCID: PMC10788419 DOI: 10.24171/j.phrp.2023.0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/18/2023] [Accepted: 11/14/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND The prognostic significance of CDC42 effector protein 2 (CDC42EP2) and its association with tumor-infiltrating immune cells (TIICs) have not been explored in liver hepatocellular carcinoma (LIHC). This study aims to assess the potential prognostic value of CDC42EP2 by conducting a comprehensive analysis of online databases pertaining to LIHC. METHODS We evaluated the potential of CDC42EP2 as a prognostic biomarker by utilizing online databases such as TIMER, GEPIA2, KM, OSlihc, HPA, and LinkedOmics. RESULTS In LIHC, we observed that the mRNA and protein expression of CDC42EP2 were upregulated compared to normal tissues. Upregulated CDC42EP2 expression was associated with a worse prognosis based on the clinicopathological characteristics of patients with LIHC. Furthermore, CDC42EP2 was positively associated with TIICs. In the co-expression and functional enrichment analyses of CDC42EP2, 11,416 genes showed positive associations with CDC42EP2 while 8,008 genes showed negative associations. CDC42EP2-related co-expression genes were involved in protein localization to the endoplasmic reticulum, translational initiation, and RNA catabolic processes in gene set enrichment analysis-Gene Ontology (GSEAGO), and regulated the ribosome, spliceosome, and primary immune deficiency in the GSEAKyoto Encyclopedia of Genes and Genomes (KEGG) pathway. In a survival map, 23 and 17 genes that exhibited positive associations with CDC42EP2 showed a significant hazard ratio (HR) for overall survival and disease-free survival, respectively. CONCLUSION Our findings demonstrated that CDC42EP2 is a novel prognostic biomarker and a potential tumor immune therapeutic target in patients with LIHC.
Collapse
Affiliation(s)
- Hye-Ran Kim
- Department of Biomedical Laboratory Science, Dong-Eui Institute of Technology, Busan, Republic of Korea
| | - Choong Won Seo
- Department of Biomedical Laboratory Science, Dong-Eui Institute of Technology, Busan, Republic of Korea
| | - Jongwan Kim
- Department of Biomedical Laboratory Science, Dong-Eui Institute of Technology, Busan, Republic of Korea
| |
Collapse
|
32
|
Nakahara R, Aki S, Sugaya M, Hirose H, Kato M, Maeda K, Sakamoto DM, Kojima Y, Nishida M, Ando R, Muramatsu M, Pan M, Tsuchida R, Matsumura Y, Yanai H, Takano H, Yao R, Sando S, Shibuya M, Sakai J, Kodama T, Kidoya H, Shimamura T, Osawa T. Hypoxia activates SREBP2 through Golgi disassembly in bone marrow-derived monocytes for enhanced tumor growth. EMBO J 2023; 42:e114032. [PMID: 37781951 PMCID: PMC10646561 DOI: 10.15252/embj.2023114032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Bone marrow-derived cells (BMDCs) infiltrate hypoxic tumors at a pre-angiogenic state and differentiate into mature macrophages, thereby inducing pro-tumorigenic immunity. A critical factor regulating this differentiation is activation of SREBP2-a well-known transcription factor participating in tumorigenesis progression-through unknown cellular mechanisms. Here, we show that hypoxia-induced Golgi disassembly and Golgi-ER fusion in monocytic myeloid cells result in nuclear translocation and activation of SREBP2 in a SCAP-independent manner. Notably, hypoxia-induced SREBP2 activation was only observed in an immature lineage of bone marrow-derived cells. Single-cell RNA-seq analysis revealed that SREBP2-mediated cholesterol biosynthesis was upregulated in HSCs and monocytes but not in macrophages in the hypoxic bone marrow niche. Moreover, inhibition of cholesterol biosynthesis impaired tumor growth through suppression of pro-tumorigenic immunity and angiogenesis. Thus, our findings indicate that Golgi-ER fusion regulates SREBP2-mediated metabolic alteration in lineage-specific BMDCs under hypoxia for tumor progression.
Collapse
Affiliation(s)
- Ryuichi Nakahara
- Division of Nutriomics and Oncology, RCASTThe University of TokyoTokyoJapan
- Department of Chemistry and Biotechnology, Graduate School of EngineeringThe University of TokyoTokyoJapan
| | - Sho Aki
- Division of Nutriomics and Oncology, RCASTThe University of TokyoTokyoJapan
- Department of Chemistry and Biotechnology, Graduate School of EngineeringThe University of TokyoTokyoJapan
| | - Maki Sugaya
- Division of Nutriomics and Oncology, RCASTThe University of TokyoTokyoJapan
| | - Haruka Hirose
- Department of Systems Biology, Graduate School of MedicineNagoya UniversityNagoyaJapan
- Present address:
Department of Computational and Systems Biology, Medical Research InstituteTokyo Medical and Dental UniversityTokyoJapan
| | - Miki Kato
- Division of Nutriomics and Oncology, RCASTThe University of TokyoTokyoJapan
| | - Keisuke Maeda
- Division of Nutriomics and Oncology, RCASTThe University of TokyoTokyoJapan
| | - Daichi M Sakamoto
- Department of Chemistry and Biotechnology, Graduate School of EngineeringThe University of TokyoTokyoJapan
| | - Yasuhiro Kojima
- Department of Systems Biology, Graduate School of MedicineNagoya UniversityNagoyaJapan
| | - Miyuki Nishida
- Division of Nutriomics and Oncology, RCASTThe University of TokyoTokyoJapan
| | - Ritsuko Ando
- Division of Nutriomics and Oncology, RCASTThe University of TokyoTokyoJapan
| | - Masashi Muramatsu
- Division of Molecular and Vascular Biology, IRDAKumamoto UniversityKumamotoJapan
| | - Melvin Pan
- Division of Nutriomics and Oncology, RCASTThe University of TokyoTokyoJapan
| | - Rika Tsuchida
- Division of Nutriomics and Oncology, RCASTThe University of TokyoTokyoJapan
| | | | - Hideyuki Yanai
- Department of Inflammology, RCASTThe University of TokyoTokyoJapan
| | - Hiroshi Takano
- Department of Cell BiologyJapanese Foundation for Cancer ResearchTokyoJapan
| | - Ryoji Yao
- Department of Cell BiologyJapanese Foundation for Cancer ResearchTokyoJapan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, Graduate School of EngineeringThe University of TokyoTokyoJapan
- Department of Bioengineering, Graduate School of EngineeringThe University of TokyoTokyoJapan
| | - Masabumi Shibuya
- Institute of Physiology and MedicineJobu UniversityTakasakiJapan
| | - Juro Sakai
- Division of Metabolic Medicine, RCASTThe University of TokyoTokyoJapan
- Division of Molecular Physiology and Metabolism, Graduate School of MedicineTohoku UniversitySendaiJapan
| | - Tatsuhiko Kodama
- Division of Nutriomics and Oncology, RCASTThe University of TokyoTokyoJapan
| | - Hiroyasu Kidoya
- Department of Signal Transduction, RIMDOsaka UniversityOsakaJapan
- Department of Integrative Vascular Biology, Faculty of Medical SciencesUniversity of FukuiFukuiJapan
| | - Teppei Shimamura
- Department of Systems Biology, Graduate School of MedicineNagoya UniversityNagoyaJapan
- Present address:
Department of Computational and Systems Biology, Medical Research InstituteTokyo Medical and Dental UniversityTokyoJapan
| | - Tsuyoshi Osawa
- Division of Nutriomics and Oncology, RCASTThe University of TokyoTokyoJapan
- Department of Chemistry and Biotechnology, Graduate School of EngineeringThe University of TokyoTokyoJapan
| |
Collapse
|
33
|
Wang Z, Zhang N, Zhang M, Jiang Y, Ng AS, Bridges E, Zhang W, Zeng X, Luo Q, Liang J, Győrffy B, Hublitz P, Liang Z, Fischer R, Kerr D, Harris AL, Cai S. GTP Cyclohydrolase Drives Breast Cancer Development and Promotes EMT in an Enzyme-Independent Manner. Cancer Res 2023; 83:3400-3413. [PMID: 37463466 DOI: 10.1158/0008-5472.can-22-3471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/27/2023] [Accepted: 07/14/2023] [Indexed: 07/20/2023]
Abstract
GTP cyclohydrolase (GCH1) is the rate-limiting enzyme for tetrahydrobiopterin (BH4) biosynthesis. The catalysis of BH4 biosynthesis is tightly regulated for physiological neurotransmission, inflammation, and vascular tone. Paradoxically, BH4 has emerged as an oncometabolite regulating tumor growth, but the effects on tumor development remain controversial. Here, we found that GCH1 potentiated the growth of triple-negative breast cancer (TNBC) and HER2+ breast cancer and transformed nontumor breast epithelial cells. Independent of BH4 production, GCH1 protein induced epithelial-to-mesenchymal transition by binding to vimentin (Vim), which was mediated by HSP90. Conversely, GCH1 ablation impaired tumor growth, suppressed Vim in TNBC, and inhibited EGFR/ERK signaling while activating the p53 pathway in estrogen receptor-positive tumor cells. GCH1 deficiency increases tumor cell sensitivity to HSP90 inhibition and endocrine treatments. In addition, high GCH1 correlated with poor breast cancer survival. Together, this study reveals an enzyme-independent oncogenic role of GCH1, presenting it as a potential target for therapeutic development. SIGNIFICANCE GTP cyclohydrolase functions as an oncogene in breast cancer and binds vimentin to induce epithelial-to-mesenchymal transition independently of its enzyme activity, which confers targetable vulnerabilities for developing breast cancer treatment strategies.
Collapse
Affiliation(s)
- Zijing Wang
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Sichuan University-Oxford University Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Nan Zhang
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Sichuan University-Oxford University Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Miao Zhang
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- School of Acupuncture and Moxibustion, Fujian University of Traditional Chinese Medicine, China
| | - Yao Jiang
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Aik Seng Ng
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Esther Bridges
- Molecular Oncology Laboratories, University Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Wei Zhang
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Xin Zeng
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Qi Luo
- Xiamen Cancer Hospital, Xiamen First Hospital, Xiamen University, Fujian, China
| | - Jiabien Liang
- Xiamen Cancer Hospital, Xiamen First Hospital, Xiamen University, Fujian, China
| | - Balázs Győrffy
- TTK Cancer Biomarker Research Group, Institute of Enzymology, and Semmelweis University Department Bioinformatics and Department of Paediatrics, Budapest, Hungary
| | - Philip Hublitz
- Genome Engineering Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Zhu Liang
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
| | - Roman Fischer
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
| | - David Kerr
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Adrian L Harris
- Molecular Oncology Laboratories, University Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Shijie Cai
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
34
|
Guan X, Pavani KC, Chunduru J, Broeckx BJG, Van Soom A, Peelman L. Hsa-miR-665 Is a Promising Biomarker in Cancer Prognosis. Cancers (Basel) 2023; 15:4915. [PMID: 37894282 PMCID: PMC10605552 DOI: 10.3390/cancers15204915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Biomarkers are biomolecules used to identify or predict the presence of a specific disease or condition. They play an important role in early diagnosis and may be crucial for treatment. MicroRNAs (miRNAs), a group of small non-coding RNAs, are more and more regarded as promising biomarkers for several reasons. Dysregulation of miRNAs has been linked with development of several diseases, including many different types of cancer, and abnormal levels can be present in early stages of tumor development. Because miRNAs are stable molecules secreted and freely circulating in blood and urine, they can be sampled with little or no invasion. Here, we present an overview of the current literature, focusing on the types of cancers for which dysregulation of miR-665 has been associated with disease progression, recurrence, and/or prognosis. It needs to be emphasized that the role of miR-665 sometimes seems ambiguous, in the sense that it can be upregulated in one cancer type and downregulated in another and can even change during the progression of the same cancer. Caution is thus needed before using miR-665 as a biomarker, and extrapolation between different cancer types is not advisable. Moreover, more detailed understanding of the different roles of miR-665 will help in determining its potential as a diagnostic and prognostic biomarker.
Collapse
Affiliation(s)
- Xuefeng Guan
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium; (X.G.); (B.J.G.B.)
| | - Krishna Chaitanya Pavani
- Department of Internal Medicine, Reproduction and Population Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (K.C.P.); (A.V.S.)
- Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Gent, Belgium
| | - Jayendra Chunduru
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA;
| | - Bart J. G. Broeckx
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium; (X.G.); (B.J.G.B.)
| | - Ann Van Soom
- Department of Internal Medicine, Reproduction and Population Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (K.C.P.); (A.V.S.)
| | - Luc Peelman
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium; (X.G.); (B.J.G.B.)
| |
Collapse
|
35
|
Jonas K, Prinz F, Ferracin M, Krajina K, Pasculli B, Deutsch A, Madl T, Rinner B, Slaby O, Klec C, Pichler M. MiR-4649-5p acts as a tumor-suppressive microRNA in triple negative breast cancer by direct interaction with PIP5K1C, thereby potentiating growth-inhibitory effects of the AKT inhibitor capivasertib. Breast Cancer Res 2023; 25:119. [PMID: 37803350 PMCID: PMC10559525 DOI: 10.1186/s13058-023-01716-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/20/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Triple negative breast cancer (TNBC) is a particularly aggressive and difficult-to-treat subtype of breast cancer that requires the development of novel therapeutic strategies. To pave the way for such developments it is essential to characterize new molecular players in TNBC. MicroRNAs (miRNAs) constitute interesting candidates in this regard as they are frequently deregulated in cancer and contribute to numerous aspects of carcinogenesis. METHODS AND RESULTS Here, we discovered that miR-4649-5p, a miRNA yet uncharacterized in breast cancer, is associated with better overall survival of TNBC patients. Ectopic upregulation of the otherwise very low endogenous expression levels of miR-4646-5p significantly decreased the growth, proliferation, and migration of TNBC cells. By performing whole transcriptome analysis and physical interaction assays, we were able to identify the phosphatidylinositol phosphate kinase PIP5K1C as a direct target of miR-4649-5p. Downregulation or pharmacologic inhibition of PIP5K1C phenocopied the growth-reducing effects of miR-4649-5p. PIP5K1C is known to play an important role in migration and cell adhesion, and we could furthermore confirm its impact on downstream PI3K/AKT signaling. Combinations of miR-4649-5p upregulation and PIP5K1C or AKT inhibition, using the pharmacologic inhibitors UNC3230 and capivasertib, respectively, showed additive growth-reducing effects in TNBC cells. CONCLUSION In summary, miR-4649-5p exerts broad tumor-suppressive effects in TNBC and shows potential for combined therapeutic approaches targeting the PIP5K1C/PI3K/AKT signaling axis.
Collapse
Affiliation(s)
- Katharina Jonas
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Research Unit for Non-Coding RNA and Genome Editing in Cancer, Medical University of Graz, Graz, Austria
| | - Felix Prinz
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Research Unit for Non-Coding RNA and Genome Editing in Cancer, Medical University of Graz, Graz, Austria
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Katarina Krajina
- Translational Oncology, II. Med Clinics Hematology and Oncology, Augsburg, Germany
| | - Barbara Pasculli
- Fondazione IRCCS Casa Sollievo della Sofferenza Laboratorio di Oncologia, San Giovanni Rotondo, FG, Italy
| | - Alexander Deutsch
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Tobias Madl
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Beate Rinner
- Department for Biomedical Research, Medical University of Graz, Graz, Austria
| | - Ondrej Slaby
- Department of Biology, Faculty of Medicine and Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Christiane Klec
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Research Unit for Non-Coding RNA and Genome Editing in Cancer, Medical University of Graz, Graz, Austria
| | - Martin Pichler
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria.
- Research Unit for Non-Coding RNA and Genome Editing in Cancer, Medical University of Graz, Graz, Austria.
- Translational Oncology, II. Med Clinics Hematology and Oncology, Augsburg, Germany.
| |
Collapse
|
36
|
Telkoparan-Akillilar P, Cevik D. Identification of differentially expressed miRNAs and mRNAs associated with the regulation of breast cancer via in silico and in vitro methods. Cytotechnology 2023; 75:363-379. [PMID: 37655273 PMCID: PMC10465466 DOI: 10.1007/s10616-023-00583-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/20/2023] [Indexed: 09/02/2023] Open
Abstract
miRNA expressions are altered during development of breast cancer (BC). The aim of this study is to identify novel cancer-related miRNAs and pathways to understand the mechanisms of BC subtypes. GSE59247 dataset was downloaded from gene expression omnibus (GEO) database and analyzed with GEO2R software. The differential miRNA expressions in BC cells were evaluated by miRNome PCR array. Venn diagram was used to reveal co-differentially expressed miRNAs between GSE59247 dataset and miRNome array. Clinical prognostic significance of selected miRNAs was evaluated via Kaplan Meier curve. KEGG pathway enrichment analysis was performed to find miRNA targets and results were validated by TNM plot analysis and q-RT-PCR. TargetScan database was used to predict the association of miRNAs and 3'-untranslated regions of target genes and their expressions were visualized by human protein atlas database. Venn diagram analysis showed overlap of 11 miRNAs from in silico and in vitro analysis. KEGG analysis revealed 'Lysine Degradation Pathway' as the most significantly enriched targeted pathway. q-RT-PCR results confirmed that Lysine degradation pathway related genes SETD7, SETDB2, EHHADH, SETMAR, KMT2A and SUV39H2 were differentially expressed in BC cells. Target prediction analysis identified binding sites between miR-1323-5p and 3'-UTR of SETD7, miR-129-5p and 3'-UTR of EHHADH and miR-628-5p and 3'-UTR of SETDB2 mRNA. Notably, miR-1323-5p, miR-129-5p, and miR-628-5p are differentially expressed in BC and they bind to 3'UTR of critical genes of Lysine degradation pathway, namely SETD7, SETDB2 and EHHADH. These miRNAs might serve as potential diagnostic and prognostic biomarkers for progression.
Collapse
Affiliation(s)
- Pelin Telkoparan-Akillilar
- Department of Medical Biology, Faculty of Medicine, Yuksek Ihtisas University, No.18A, 1505. Street, Ankara, 06530 Turkey
| | - Dilek Cevik
- Department of Medical Biology, Faculty of Medicine, Yuksek Ihtisas University, No.18A, 1505. Street, Ankara, 06530 Turkey
| |
Collapse
|
37
|
Palma GBH, Kaur M. miRNA-128 and miRNA-223 regulate cholesterol-mediated drug resistance in breast cancer. IUBMB Life 2023; 75:743-764. [PMID: 37070323 DOI: 10.1002/iub.2726] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/24/2023] [Indexed: 04/19/2023]
Abstract
BACKGROUND Breast cancer is the second most common malignancy worldwide and 70% of all breast cancer cases are estrogen receptor-positive (ER+). Endocrine therapy, Tamoxifen (TAM), is a popular treatment for ER+ breast cancer patients; however, despite its success in reducing breast cancer mortality, cancer drug resistance remains a significant challenge. A major contributor to this resistance is the dysregulation of cholesterol homeostasis, where breast cancer cells have elevated cholesterol levels. MicroRNAs (miRNAs) are master regulators of cholesterol-related and cancer drug resistance pathways, and their aberrant expression often confers resistance. Therefore, we aimed to investigate the roles of miRNA-128 and miRNA-223 in cholesterol-mediated TAM resistance. METHODS Three breast cancer cell lines were treated with a combination of 1 μM TAM and 10 μM of a cholesterol depleting agent (Acetyl Plumbagin: AP) following transfection with a miR-128 inhibitor or a miR-223 mimic. Cell viability and cholesterol levels were assessed using an MTT assay and fluorescence staining, respectively. In addition, expression levels of several genes and proteins involved in cancer drug resistance and cholesterol homeostasis were also assessed using RT-qPCR and western blotting. RESULTS The combination treatment with altered miRNA expression led to reduced cell viability due to a reduction in free cholesterol and lipid rafts in MCF-7, MDA-MB-231, and long-term estrogen-deprived cells (resistant breast cancer cells). Moreover, reduced miR-128 expression was favoured in all breast cancer cell lines as this alteration lowered the expression of genes involved in cholesterol synthesis and transport, drug resistance, and cell signalling. CONCLUSIONS Investigating the gene expression profiles in different breast cancer cell lines was important to elucidate further the molecular mechanisms involved in miRNA-regulated cholesterol homeostasis and cancer drug resistance. Therefore, our findings demonstrated that miR-128 and miR-223 could be potential targets in reducing TAM resistance through the depletion of excess cholesterol.
Collapse
Affiliation(s)
| | - Mandeep Kaur
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
38
|
Yang X, Zhang J, Ma J, Huang J, Wang Y, Wang P, Wang F, Tang X. GPER governs the immune infiltration of gastric cancer and activates the NF-κB/ROS/Apoptosis pathway in gastric mucosal epithelium. Int Immunopharmacol 2023; 122:110641. [PMID: 37487261 DOI: 10.1016/j.intimp.2023.110641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/04/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND Gastric cancer (GC) is with high mortality and morbidity. The GC morbidity of males is twice as high as that of females. G-protein estrogen receptor (GPER) bears on this phenomenon. METHODS Networks and experiments assessed the GPER expression in different validity and content. The evidence-based practice involved accessing the clinical relevance of GPER by UALCAN and Kaplan-Meier plotter. Enrichment analyses contributed to guide further experimental validations. Activation of the NF-κB/ROS/Apoptosis pathway was analyzed by WB, immunofluorescence (IF), microplate reader and flow cytometry. TISIDB and TIMER identified the immune infiltration investigations, with credibility boosted by the Kaplan-Meier plotter. RESULTS The appraisers revealed that GPER significantly decreased in GC at both gene and protein levels with highly approved prognosis value (P < 0.05). GPER was a significant fate determinant governing the inner part of gastric glands. NF-κB pathway and the following ROS in gastric cells were activated after MNU stimulation (20 μM, 24 h), and the GPER antagonist G15 strengthened the effect of MNU. Furthermore, GPER expression positively correlated with immune cells and various immune markers in GC patients, with highly approved clinical relevance. For example, type-2 helper cells enriched GC patients had a lower survival rate in the GPER-high expression group (P < 0.05). CONCLUSION We demonstrated that GPER governs the GC progression by activating the NF-κB/ROS/Apoptosis pathway in gastric cells and regulating the immune environment around them.
Collapse
Affiliation(s)
- Xuefei Yang
- Department of Integration of Chinese and Western Medicine, Peking University Health Science Center (xiyuan), Beijing, China; Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China; Department of Gastroenterology, Peking University Traditional Chinese Medicine Clinical Medical School (Xiyuan), Beijing, China
| | - Jiaqi Zhang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Ma
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinke Huang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yifan Wang
- Department of Integration of Chinese and Western Medicine, Peking University Health Science Center (xiyuan), Beijing, China; Department of Gastroenterology, Peking University Traditional Chinese Medicine Clinical Medical School (Xiyuan), Beijing, China
| | - Ping Wang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengyun Wang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Xudong Tang
- Department of Integration of Chinese and Western Medicine, Peking University Health Science Center (xiyuan), Beijing, China; Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China; Department of Gastroenterology, Peking University Traditional Chinese Medicine Clinical Medical School (Xiyuan), Beijing, China..
| |
Collapse
|
39
|
Fang ZX, Hou YY, Wu Z, Wu BX, Deng Y, Wu HT, Liu J. Immune responses of six-transmembrane epithelial antigen of the prostate 4 functions as a novel biomarker in gastric cancer. World J Clin Oncol 2023; 14:297-310. [PMID: 37700807 PMCID: PMC10494559 DOI: 10.5306/wjco.v14.i8.297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/19/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND Immune cells play an important role in regulating the behavior of tumor cells. According to emerging evidence, six-transmembrane epithelial antigen of the prostate 4 (STEAP4) performs a crucial part in tumor microenvironmental immune response and tumorigenesis, and serves as the potential target for cellular and antibody immunotherapy. However, the immunotherapeutic role of STEAP4 in gastric cancer (GC) remains unclear. AIM To investigate the expression of STEAP4 in GC and its relationship with immune infiltrating cells, and explore the potential value of STEAP4 as an immune prognostic indicator in GC. METHODS The expression level of STEAP4 was characterized by immunohistochemistry in tumors and adjacent non-cancerous samples in 96 GC patients. Tumor Immune Estimation Resource was used to study the correlation between STEAP4 and tumor immune infiltration level and immune infiltration gene signature. R package was used to analyze the relationship between STEAP4 expression and immune and stromal scores in GC (GSE62254) by the ESTIMATE algorithm, and Kaplan-Meier Plotter and Gene Expression Profiling Interactive Analysis were applied to analyze the effect of STEAP4 on clinical prognosis. RESULTS Immunohistochemistry analysis showed that STEAP4 expression was higher in GC tissues than in adjacent tissues, and STEAP4 expression was positively correlated with the clinical stage of GC. In GC, the expression of STEAP4 was positively correlated with the infiltration levels of B cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells. The expression level of STEAP4 was strongly correlated with most of the immune markers. In addition, STEAP4 expression was inversely correlated with tumor purity, but correlated with stromal score (r = 0.43, P < 0.001), immune score (r = 0.29, P < 0.001) and estimate score (r = 0.39, P < 0.001). Moreover, stromal, immune, and estimate scores were higher in the STEAP4 high expression group, whereas tumor purity was higher in the STEAP4 Low expression group. The relationship between STEAP4 expression and prognosis of patients with GC was further investigated, and the results showed that high STEAP4 expression was associated with poor overall survival and disease-free survival. In addition, Kaplan-Meier Plotter showed that high expression of STEAP4 was significantly correlated with poor survival of patients with GC. CONCLUSION The current findings suggest an oncogenic role for STEAP4 in GC, with significantly high levels being associated with poor prognosis. Investigation of the GC tumor microenvironment suggests the potential function of STEAP4 is connected with the infiltration of diverse immune cells, which may contribute to the regulation of the tumor microenvironment. In conclusion, STEAP4 may serve as a potential therapeutic target for GC to improve the immune infiltration, as well as serve as a prognostic biomarker for judging the prognosis and immune infiltration status of GC.
Collapse
Affiliation(s)
- Ze-Xuan Fang
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yan-Yu Hou
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Zheng Wu
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Bing-Xuan Wu
- Department of General Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yu Deng
- Department of General Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Hua-Tao Wu
- Department of General Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Jing Liu
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| |
Collapse
|
40
|
Wen Y, Wang Y, Huang Y, Liu Z, Hui C. PLVAP protein expression correlated with microbial composition, clinicopathological features, and prognosis of patients with stomach adenocarcinoma. J Cancer Res Clin Oncol 2023; 149:7139-7153. [PMID: 36884119 DOI: 10.1007/s00432-023-04607-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/27/2023] [Indexed: 03/09/2023]
Abstract
PURPOSE Plasmalemma vesicle-associated protein (PLVAP) is involved in many immune‑related signals; however, its role in stomach adenocarcinoma (STAD) remains to be elucidated. This study investigated PLVAP expression in tumor tissues and defined the value in STAD patients. METHODS A total of 96 patient paraffin-embedded STAD specimens and 30 paraffin-embedded adjacent non-tumor specimens from the Ninth Hospital of Xi'an were consecutively recruited in analyses. All RNA‑sequence data were available from the Cancer Genome Atlas database (TCGA). PLVAP protein expression was detected using immunohistochemistry. Microbial community analysis was performed by 16S rRNA gene sequencing using Illumina MiSeq. PLVAP mRNA expression was explored with the Tumor Immune Estimation Resource (TIMER), GEPIA, and UALCAN databases. The effect of PLVAP mRNA on prognosis was analyzed via GEPIA, and Kaplan-Meier plotter database. GeneMANIA and STRING databases were used to predict gene/protein interactions and functions. The relationships between PLVAP mRNA expression and tumor-infiltrated immune cells were analyzed via the TIMER and GEPIA databases. RESULTS Significantly elevated transcriptional and proteomic PLVAP expressions were found in STAD samples. Increased PLVAP protein and mRNA expression were significantly associated with advanced clinicopathological parameters and correlated with shorter disease-free survival (DFS) and overall survival (OS) in TCGA (P < 0.001). The microbiota in the PLVAP-rich (3+) group was significantly different from that in the PLVAP-poor (1+) group (P < 0.05). The results from TIMER showed that high PLVAP mRNA expression had significant positive correlations with CD4 + T cell (r = 0.42, P < 0.001). CONCLUSION PLVAP is a potential biomarker to predict the prognosis of patients with STAD, and the high level of PLVAP protein expression was closely related to bacteria. The relative abundance of Fusobacteriia was positvely associated with the level of PLVAP. In conclusion, positive staining for PLVAP was useful for predicting the poor prognosis of STAD with Fusobacteriia infection.
Collapse
Affiliation(s)
- Yuting Wen
- Department of Pathology, The Ninth Hospital Affiliated to Xi'an Jiaotong University Medical College, Xi'an, 710054, Shaanxi, China
| | - Yi Wang
- Department of Pathology, The Ninth Hospital Affiliated to Xi'an Jiaotong University Medical College, Xi'an, 710054, Shaanxi, China
| | - Yao Huang
- Department of Oncology, The Ninth Hospital Affiliated to Xi'an Jiaotong University Medical College, No. 151, East Section of South Second Ring Road, Beilin District, Xi'an, 710054, Shaanxi, China.
| | - Zhe Liu
- Department of Pathology, The Ninth Hospital Affiliated to Xi'an Jiaotong University Medical College, Xi'an, 710054, Shaanxi, China
| | - Chan Hui
- Department of Pathology, The Ninth Hospital Affiliated to Xi'an Jiaotong University Medical College, Xi'an, 710054, Shaanxi, China
| |
Collapse
|
41
|
Wang J, Zhang X, You Z, Meng Y, Fan X, Qiao G, Pang D. RNA atlas and competing endogenous RNA regulation in tissue-derived exosomes from luminal B and triple-negative breast cancer patients. Front Oncol 2023; 13:1113115. [PMID: 37483500 PMCID: PMC10361514 DOI: 10.3389/fonc.2023.1113115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/26/2023] [Indexed: 07/25/2023] Open
Abstract
Background Luminal B and triple-negative breast cancer (TNBC) are malignant subtypes of breast cancer (BC), which can be attributed to the multifaceted roles of tissue-derived exosomes (T-exos). Competing endogenous RNA (ceRNA) networks can regulate gene expression post-transcriptionally. Methods RNAs in T-exos from luminal B BC (n=8) and TNBC (n=8) patients were compared with those from persons with benign breast disease (n=8). The differentially expressed (DE) mRNA, microRNA (miRNA), and long noncoding RNA (lncRNA) target genes were annotated using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) to reveal the relevant biological processes.The ceRNA networks were constructed to show distinct regulation, and the mRNAs involved were annotated. The miRNAs involved in the ceRNA networks were screened with the Kaplan-Meier Plotter database to identify dysregulated ceRNAs with prognostic power. Results In total, 802 DE mRNAs, 441 DE lncRNAs, and 104 DE miRNAs were identified in luminal B BC T-exos, while 1699 DE mRNAs, 590 DE lncRNAs, and 277 DE miRNAs were identified in TNBC T-exos. Gene annotation revealed that the RAS-MAPK pathway was the primary biological process in luminal B BC T-exos, while endocrine system development and growth were the main processes in TNBC T-exos. Survival analysis established seven survival-related lncRNA/miRNA/mRNA regulations in luminal B BC T-exos, and nineteen survival-related lncRNA/miRNA/mRNA regulations in TNBC T-exos. Conclusion In addition to survival-related ceRNA regulations, ceRNA regulation of RAS-MAPK in luminal B and endocrine system development and growth regulation in TNBC might contribute to the tumorigenesis of BC.
Collapse
Affiliation(s)
- Ji Wang
- Medical Translational Research Institute, Guangzhou KingMed Center for Clinical Laboratory Co., Ltd, Guangzhou, China
- Department of Breast Surgery, Yantai Yuhuangding Hospital, Yantai, China
| | - Xianyu Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Zilong You
- Medical Translational Research Institute, Guangzhou KingMed Center for Clinical Laboratory Co., Ltd, Guangzhou, China
| | - Yuhuan Meng
- Medical Translational Research Institute, Guangzhou KingMed Center for Clinical Laboratory Co., Ltd, Guangzhou, China
| | - Xijie Fan
- Medical Translational Research Institute, Guangzhou KingMed Center for Clinical Laboratory Co., Ltd, Guangzhou, China
| | - Guangdong Qiao
- Department of Breast Surgery, Yantai Yuhuangding Hospital, Yantai, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
42
|
Wang J, Liu D, Xie Y. GHRL as a prognostic biomarker correlated with immune infiltrates and progression of precancerous lesions in gastric cancer. Front Oncol 2023; 13:1142017. [PMID: 37469414 PMCID: PMC10353738 DOI: 10.3389/fonc.2023.1142017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/12/2023] [Indexed: 07/21/2023] Open
Abstract
Objective Ghrelin is a protein that regulate appetite and energy balance in the human body, which is encoded by the ghrelin prepropeptide gene (GHRL). GHRL is linked with carcinogenesis and immune regulation. However, the correlation of GHRL to prognosis and tumor-infiltrating lymphocytes in gastric cancer (GC) remains unclear. Methods In this study, we assessed the transcriptional expression, prognosis, and different clinicopathological features about GHRL and the correlation between GHRL and tumor infiltration immune cells in GC patients based on the data published in the following databases: TIMER, GEPIA, GEO, STRING, UALCAN, TISIDB, and Kaplan-Meier Plotter. Furthermore, R software analysis for GC Correa' cascade was also provided. Finally, GHRL expression in GC tissues was assayed using quantitative real-time polymerase chain reaction and immunohistochemistry. Results We found that GHRL expression in GC samples was lower than in normal samples and verified by quantitative PCR (qPCR) and immunohistochemistry. However, sample type, cancer stage, and worse survival were correlated to high GHRL expression. We also found that the expression of GHRL in dysplasia was significantly lower than that in CNAG and in GC. High GHRL expression was connected with immunomodulators, chemokines, and infiltrating levels of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells in GC. Conclusions GHRL is a prognostic biomarker for GC patients, and it is correlated with progression of precancerous lesions in GC. It might lead to poor prognosis by regulating tumor immune microenvironment. Studies are important to explore therapeutic targeting GHRL in the future.
Collapse
|
43
|
Ghufran SM, Sharma P, Roy B, Jaiswal S, Aftab M, Sengupta S, Ghose S, Biswas S. Transcriptome wide functional analysis of HBx expressing human hepatocytes stimulated with endothelial cell cross-talk. Genomics 2023; 115:110642. [PMID: 37209778 PMCID: PMC7615065 DOI: 10.1016/j.ygeno.2023.110642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Identification of genes dysregulated during the hepatitis B virus (HBV)-host cell interaction adds to the understanding of underlying molecular mechanisms and aids in discovering effective therapies to improve prognosis in hepatitis B virus (HBV)-infected individuals. Through bioinformatics analyses of transcriptomics data, this study aimed to identify potential genes involved in the cross-talk of human hepatocytes expressing the HBV viral protein HBx with endothelial cells. Transient transfection of HBV viral gene X (HBx) was performed in THLE2 cells using pcDNA3 constructs. Through mRNA Sequencing (RNA Seq) analysis, differentially expressed genes (DEGs) were identified. THLE2 cells transfected with HBx (THLE2x) were further treated with conditioned medium from cultured human umbilical vein derived endothelial cells (HUVEC-CM). Gene Ontology (GO) enrichment analysis revealed that interferon and cytokine signaling pathways were primarily enriched for the downregulated DEGs in THLE2x cells treated with HUVEC-CM. One significant module was selected following protein-protein interaction (PPI) network generation, and thirteen hub genes were identified from the module. The prognostic values of the hub genes were evaluated using Kaplan-Meier (KM) plotter, and three genes (IRF7, IFIT1, and IFITM1) correlated with poor disease specific survival (DSS) in HCC patients with chronic hepatitis. A comparison of the DEGs identified in HUVEC-stimulated THLE2x cells with four publicly available HBV-related HCC microarray datasets revealed that PLAC8 was consistently downregulated in all four HCC datasets as well as in HUVEC-CM treated THLE2x cells. KM plots revealed that PLAC8 correlated with worse relapse free survival and progression free survival in HCC patients with hepatitis B virus infection. This study provided molecular insights which may help develop a deeper understanding of HBV-host stromal cell interaction and open avenues for future research.
Collapse
Affiliation(s)
| | - Prachi Sharma
- Amity Institute of Molecular Medicine & Stem Cell Research, AUUP, Noida, India
| | - Bornika Roy
- Amity Institute of Molecular Medicine & Stem Cell Research, AUUP, Noida, India
| | - Shivani Jaiswal
- Amity Institute of Molecular Medicine & Stem Cell Research, AUUP, Noida, India
| | - Mehreen Aftab
- Division of Cellular and Molecular Oncology, National Institute of Cancer Prevention and Research, Noida, India
| | - Shinjinee Sengupta
- Amity Institute of Molecular Medicine & Stem Cell Research, AUUP, Noida, India
| | - Sampa Ghose
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India.
| | - Subhrajit Biswas
- Amity Institute of Molecular Medicine & Stem Cell Research, AUUP, Noida, India.
| |
Collapse
|
44
|
Qin L, Dong Z, Huang C, Liu H, Beebe J, Subramaniyan B, Hao Y, Liu Y, He Z, Liu JY, Zhang JT. Reversible promoter demethylation of PDGFD confers gemcitabine resistance through STAT3 activation and RRM1 upregulation. Cancer Lett 2023:216266. [PMID: 37321532 DOI: 10.1016/j.canlet.2023.216266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 05/19/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Drug resistance is a major problem in cancer treatment with traditional or targeted therapeutics. Gemcitabine is approved for several human cancers and the first line treatment for locally advanced or metastatic pancreatic ductal adenocarcinoma (PDAC). However, gemcitabine resistance frequently occurs and is a major problem in successful treatments of these cancers and the mechanism of gemcitabine resistance remains largely unknown. In this study, we identified 65 genes that had reversible methylation changes in their promoters in gemcitabine resistant PDAC cells using whole genome Reduced Representation Bisulfite Sequencing analyses. One of these genes, PDGFD, was further studied in detail for its reversible epigenetic regulation in expression and shown to contribute to gemcitabine resistance in vitro and in vivo via stimulating STAT3 signaling in both autocrine and paracrine manners to upregulate RRM1 expression. Analyses of TCGA datasets showed that PDGFD positively associates with poor outcome of PDAC patients. Together, we conclude that the reversible epigenetic upregulation plays an important role in gemcitabine resistance development and targeting PDGFD signaling alleviates gemcitabine resistance for PDAC treatment.
Collapse
Affiliation(s)
- Li Qin
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zizheng Dong
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Caoqinglong Huang
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Hao Liu
- Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, Guangdong, China
| | - Jenny Beebe
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Boopathi Subramaniyan
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Yangyang Hao
- Department of Molecular and Medical Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yunlong Liu
- Department of Molecular and Medical Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zhimin He
- Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, Guangdong, China
| | - Jing-Yuan Liu
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Jian-Ting Zhang
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA.
| |
Collapse
|
45
|
Ma J, Chen C, Fan Z, Zhang Y, Ji J, Wei D, Zhang F, Sun B, Huang P, Ren L. CircEGFR reduces the sensitivity of pirarubicin and regulates the malignant progression of triple-negative breast cancer via the miR-1299/EGFR axis. Int J Biol Macromol 2023:125295. [PMID: 37302631 DOI: 10.1016/j.ijbiomac.2023.125295] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/13/2023]
Abstract
Circular RNAs (circRNAs) have been found to be involved in cancer progression and chemotherapy sensitivity. However, the biological function of circRNAs in triple-negative breast cancer (TNBC) and its effect on the sensitivity to pirarubicin (THP) chemotherapy are still unclear. CircEGFR (hsa_circ_0080220) was screened and verified by bioinformatics analysis, proving it was highly expressed in TNBC cell lines, patient tissues, and plasma exosomes, and was associated with poor prognosis of patients. The expression level of circEGFR in patient tissue has potential diagnostic value to distinguish TNBC tissue from normal breast tissue. In vitro studies confirmed that overexpression of circEGFR promoted the proliferation, migration, invasion, and EMT of TNBC cells and decreased the sensitivity of THP treatment while silencing circEGFR showed the opposite effect. The circEGFR/miR-1299/EGFR pathway was cascaded and verified. CircEGFR regulated malignant progression of TNBC by regulating EGFR via sponging miR-1299. THP can inhibit the malignant phenotype of MDA-MB-231 cells by downregulating the expression of circEGFR. In vivo studies confirmed that overexpression of circEGFR can promote tumor growth and EMT and reduce tumor sensitivity to THP treatment. Silencing circEGFR inhibited the malignant progression of the tumor. These results revealed circEGFR is a promising biomarker for TNBC diagnosis, therapeutic and prognosis.
Collapse
Affiliation(s)
- Jiulong Ma
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Chen Chen
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Zhimin Fan
- General Surgery Center, Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yang Zhang
- Department of Rehabilitation Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiahua Ji
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Dexian Wei
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Fan Zhang
- General Surgery Center, Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Bo Sun
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Peng Huang
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Liqun Ren
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China.
| |
Collapse
|
46
|
Hao C, Sheng Z, Wang W, Feng R, Zheng Y, Xiao Q, Zhang B. Tumor-derived exosomal miR-148b-3p mediates M2 macrophage polarization via TSC2/mTORC1 to promote breast cancer migration and invasion. Thorac Cancer 2023; 14:1477-1491. [PMID: 37144254 PMCID: PMC10234784 DOI: 10.1111/1759-7714.14891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Emerging evidence has revealed that tumor-associated macrophages (TAMs) and exosomes play a crucial role in the microenvironment for tumor growth. However, the mechanisms through which exosomal miRNAs modulate TAMs and tumor development in breast cancer are not fully understood. METHODS We constructed a macrophage model and an indirect coculture system consist of breast cancer cells and macrophages. Exosomes were isolated from BC cells culture supernatant and identified by transmission electron microscopy, Western blot and Nanosight LM10 system. The expression of miR-148b-3p in exosomes was determined by qRT-PCR and the effect of exosomal miR-148b-3p on macrophage polarization was measured using qRT-PCR and ELISA. The proliferation, migration and invasion of BC cells were estimated by EdU, wound healing assay and transwell assay. We employed bioinformatics, luciferase reporter assay and Western blot to identify the target gene of miR-148b-3p. Western blot was used to clarify the mechanism of exosomal miR-148b-3p mediated the crosstalk between BC cells and M2 macrophages. RESULTS Cancer-derived exosomes could induce M2 polarization of macrophages, which promoted the migration and invasion of breast cancer cells. We found that exosomal miR-148b-3p was overexpressed in breast cancer cell-derived exosomes and correlated with lymph node metastasis, late tumor stage and worse prognosis. Upregulated miR-148b-3p expression in exosomes modulated macrophage polarization by targeting TSC2, which promoted the proliferation and might affect migration and invasion of breast cancer cells. Interestingly, we found that exosomal miR-148b-3p could induce M2 macrophage polarization via the TSC2/mTORC1 signaling pathway in breast cancer. CONCLUSION Overall, our study elucidated that miR-148b-3p could be transported by exosomes from breast cancer cells to surrounding macrophages and induced M2 polarization by targeting TSC2, providing novel insights for breast cancer therapy.
Collapse
Affiliation(s)
- Chong Hao
- Cheeloo College of MedicineShandong UniversityJinanChina
- Department of OncologyMaternal and Child Health Care Hospital of ZiboZiboChina
| | - Zhimei Sheng
- Department of PathologyAffiliated Hospital of Weifang Medical UniversityWeifangChina
| | - Wenhao Wang
- Department of Medical OncologyAffiliated Hospital of Weifang Medical UniversityWeifangChina
| | - Ruijun Feng
- Department of PathologyWeifang Medical UniversityWeifangChina
| | - Yuanhang Zheng
- Department of PathologyWeifang Medical UniversityWeifangChina
| | - Qinpei Xiao
- Department of PathologyWeifang Medical UniversityWeifangChina
| | - Baogang Zhang
- Department of PathologyAffiliated Hospital of Weifang Medical UniversityWeifangChina
- Department of PathologyWeifang Medical UniversityWeifangChina
| |
Collapse
|
47
|
Yu Y, Meng LL, Chen XY, Fan HN, Chen M, Zhang J, Zhu JS. m 6A reader YTHDF3 is associated with clinical prognosis, related RNA signatures and immunosuppression in gastric cancer. Cell Signal 2023; 108:110699. [PMID: 37149073 DOI: 10.1016/j.cellsig.2023.110699] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/24/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND YTHDF3 as a N6-methyladenosine (m6A) reader participates in the development and progression of multiple cancer types, however, the prognosis, molecular biology and immune infiltration of YTHDF3 in gastric cancer (GC) have not been investigated. METHODS The YTHDF3 expression profile and clinicopathological parameters of stomach adenocarcinoma (STAD) were downloaded from TCGA. The online websites and databases such as GEPIA2, cBioPortal, UALCAN, ImmuCellAl, xCell, TISIDB, GSCA were utilized for analysis of the association of YTHDF3 with STAD, including clinical prognosis, WGCNA and LASSO Cox regression analysis. Further functional assays such as RT-qPCR, Western blot, immunohistochemistry (IHC), immunofluorescence (IF), CCK-8, colony formation, EdU and Transwell assays were performed to determine the role of YTHDF3 in GC. RESULTS We found that YTHDF3 was upregulated in STAD tissue samples ascribed to its copy number amplification and associated with poor prognosis in patients with STAD. GO and KEGG analyses showed that YTHDF3-related differential genes were predominantly enriched in the proliferation, metabolism and immune signaling pathways. Knockdown of YTHDF3 repressed the growth and invasion of GC cells by inhibition of PI3K/AKT signaling. We then identified YTHDF3-related lncRNAs, miRNAs and mRNAs, and constructed their prognostic signatures in patients with STAD. Moreover, YTHDF3 associated with tumor immune infiltration such as CD8+ T cells, macrophages, Tregs, MHC molecules and chemokines, upregulated PD-L1 and CXCL1 and exerted a response to the immunotherapy in GC. CONCLUSIONS YTHDF3 upregulation indicates poor prognosis and promotes GC cell growth and invasion by activating PI3K/AKT pathway and regulating immune microenvironment. The established YTHDF3-related signatures highlight the association of YTHDF3 with the clinical prognosis and immune cell infiltration in GC.
Collapse
Affiliation(s)
- Yi Yu
- Department of Gastroenterology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Li-Li Meng
- Department of Pathology, Zhongshan Hospital, Fudan University, China
| | - Xiao-Yu Chen
- Department of Gastroenterology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Hui-Ning Fan
- Department of Gastroenterology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Ming Chen
- Department of Gastroenterology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jing Zhang
- Department of Gastroenterology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Jin-Shui Zhu
- Department of Gastroenterology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| |
Collapse
|
48
|
Xu Y, Xu J, Qiao R, Zhong H, Xia J, Zhong R. Loss of BLK expression as a potential predictor of poor prognosis and immune checkpoint blockade response in NSCLC and contribute to tumor progression. Transl Oncol 2023; 33:101671. [PMID: 37068401 PMCID: PMC10127141 DOI: 10.1016/j.tranon.2023.101671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/16/2023] [Accepted: 04/08/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Immune checkpoint blockade (ICB) has been proved to have significant anti-tumor effect in the clinical treatment of non-small cell lung cancer (NSCLC). Therefore, biomarkers predicting ICB response can provide better treatment for patients with NSCLC. METHODS Differential expression genes (DEGs) were identified by ImmuCellAI database. Copy number alteration (CNA) was analyzed by cBioPortal. The predicted efficiency of 4 genes on cancer immunotherapy was assessed by ROC analysis. The survival value of BLK was analyzed by Kaplan-Meier plotter and Prognoscan analysis. Clinical significance of BLK IHC-TMA score in NSCLC was also explored. The CCK-8 assay, wound healing assay, western blot assay in vitro and subcutaneous xenograft experiments in vivo were used for investigating the functions of BLK. The RNA-sequencing were performed to screen BLK regulated genes and conducted for GO/KEGG enrichment analysis. The transcriptional regulatory factor of BLK promoter region was predicted by ChIP-seq analysis. RESULTS 39 common DEGs between ICB Response (R) group and No Response (NR) group with NSCLC were identified, in which the CNA frequency of BLK deletion (> 6%) was found. The predicted efficiency of BLK on immunotherapy was performed best in NSCLC (AUC>0.7). Low expression of BLK was related to NSCLC with significantly poor prognosis. BLK overexpression can inhibit growth of NSCLC via activating apoptosis pathway, inhibiting the G2M checkpoint and Glycolysis pathway. The enrichment analysis indicated that BLK regulated genes related to oncogenic potential in NSCLC. Besides, BLK expression was inhibited via H3K27me3 modification in A549 and H1299 cells. BLK mRNA level was negatively correlated with methylation and positively correlated with the tumor purity in NSCLC. CONCLUSION Our study provides strong evidence that low expression of BLK may serve as a biomarker for poor prognosis in NSCLC, while response to ICB therapy and contributes to NSCLC tumor progression.
Collapse
Affiliation(s)
- Yingqi Xu
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No.241 Huaihai West Road, Shanghai 200030, China.
| | - Jianlin Xu
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No.241 Huaihai West Road, Shanghai 200030, China.
| | - Rong Qiao
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No.241 Huaihai West Road, Shanghai 200030, China.
| | - Hua Zhong
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No.241 Huaihai West Road, Shanghai 200030, China.
| | - Jinjing Xia
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No.241 Huaihai West Road, Shanghai 200030, China.
| | - Runbo Zhong
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No.241 Huaihai West Road, Shanghai 200030, China.
| |
Collapse
|
49
|
Cabello P, Torres-Ruiz S, Adam-Artigues A, Forés-Martos J, Martínez MT, Hernando C, Zazo S, Madoz-Gúrpide J, Rovira A, Burgués O, Rojo F, Albanell J, Lluch A, Bermejo B, Cejalvo JM, Eroles P. miR-146a-5p Promotes Angiogenesis and Confers Trastuzumab Resistance in HER2+ Breast Cancer. Cancers (Basel) 2023; 15:cancers15072138. [PMID: 37046799 PMCID: PMC10093389 DOI: 10.3390/cancers15072138] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/17/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Trastuzumab treatment has significantly improved the prognosis of HER2-positive breast cancer patients. Despite this, resistance to therapy still remains the main clinical challenge. In order to evaluate the implication of microRNAs in the trastuzumab response, we performed a microRNA array in parental and acquired trastuzumab-resistant HER2-positive breast cancer cell lines. Our results identified miR-146a-5p as the main dysregulated microRNA. Interestingly, high miR-146a-5p expression in primary tumor tissue significantly correlated with shorter disease-free survival in HER2-positive breast cancer patients. The gain- and loss-of-function of miR-146a-5p modulated the response to trastuzumab. Furthermore, the overexpression of miR-146a-5p increased migration and angiogenesis, and promoted cell cycle progression by reducing CDKN1A expression. Exosomes from trastuzumab-resistant cells showed a high level of miR-146a-5p expression compared with the parental cells. In addition, the co-culture with resistant cells’ exosomes was able to decrease in sensitivity and increase the migration capacities in trastuzumab-sensitive cells, as well as angiogenesis in HUVEC-2 cells. Collectively, these data support the role of miR-146a-5p in resistance to trastuzumab, and demonstrate that it can be transferred by exosomes conferring resistance properties to other cells.
Collapse
Affiliation(s)
- Paula Cabello
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- International University of Valencia—VIU, 46002 Valencia, Spain
| | | | | | | | - María Teresa Martínez
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Department of Medical Oncology, University Clinical Hospital of Valencia, 46010 Valencia, Spain
| | - Cristina Hernando
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Department of Medical Oncology, University Clinical Hospital of Valencia, 46010 Valencia, Spain
| | - Sandra Zazo
- Department of Pathology, Jiménez Díaz Foundation, 28040 Madrid, Spain
| | | | - Ana Rovira
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
- Department of Medical Oncology, Hospital del Mar, 08003 Barcelona, Spain
- Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
| | - Octavio Burgués
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
- Department of Pathology, University Clinical Hospital of Valencia, 46010 Valencia, Spain
| | - Federico Rojo
- Department of Pathology, Jiménez Díaz Foundation, 28040 Madrid, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
| | - Joan Albanell
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
- Department of Medical Oncology, Hospital del Mar, 08003 Barcelona, Spain
- Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
| | - Ana Lluch
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Department of Medical Oncology, University Clinical Hospital of Valencia, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
- Department of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Begoña Bermejo
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Department of Medical Oncology, University Clinical Hospital of Valencia, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
| | - Juan Miguel Cejalvo
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Department of Medical Oncology, University Clinical Hospital of Valencia, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
| | - Pilar Eroles
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
- Department of Physiology, University of Valencia, 46010 Valencia, Spain
- Department of Biotechnology, Polytechnic University of Valencia, 46022 Valencia, Spain
| |
Collapse
|
50
|
Barone I, Gelsomino L, Accattatis FM, Giordano F, Gyorffy B, Panza S, Giuliano M, Veneziani BM, Arpino G, De Angelis C, De Placido P, Bonofiglio D, Andò S, Giordano C, Catalano S. Analysis of circulating extracellular vesicle derived microRNAs in breast cancer patients with obesity: a potential role for Let-7a. J Transl Med 2023; 21:232. [PMID: 37004031 PMCID: PMC10064709 DOI: 10.1186/s12967-023-04075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND The incidence of obesity, a known risk factor for several metabolic and chronic diseases, including numerous malignancies, has risen sharply in the world. Various clinical studies demonstrate that excessive Body Mass Index (BMI) may worsen the incidence, prognosis, and mortality rates of breast cancer. Thus, understanding the link tying up obesity and breast cancer onset and progression is critically important, as it can impact patients' survival and quality of life. Recently, circulating extracellular vesicle (EV) derived miRNAs have attracted much attention for their diagnostic, prognostic and therapeutic potential in oncology research. Although the potential role of EV-derived miRNAs in the early detection of breast cancer has been repeatedly mentioned, screening of miRNAs packaged within serum EVs has not yet been reported in patients with obesity. METHODS Circulating EVs were isolated from normal weight (NW), and overweight/obese (OW/Ob) breast cancer patients and characterized by Transmission Electron Microscopy (TEM), Nanoparticle Tracking Analysis (NTA), and protein marker expression. Evaluation of EV-associated miRNAs was conducted in a screening (RNA-seq) and a validation (qRT-PCR) cohort. Bioinformatic analysis was performed to uncover significantly enriched biological processes, molecular functions and pathways. ROC and Kaplain-Meier survival analyses were used for clinical significance. RESULTS Comparison of serum EV-derived miRNAs from NW and OW/Ob patients detected seven differentially expressed miRNAs (let-7a-5p, miR-122-5p, miR-30d-5p, miR-126-3p, miR-27b-3p, miR-4772-3p, and miR-10a-5p) in the screening cohort. GO analysis revealed the enrichment of protein phosphorylation, intracellular signal transduction, signal transduction, and vesicle-mediated transport among the top biological processes. In addition, the target genes were significantly enriched in pathways related to PI3K/Akt, growth hormones, and insulin signalings, which are all involved in obesity-related diseases and/or breast cancer progression. In the validation cohort, qRT-PCR confirmed a significant down-regulation of EV-derived let-7a in the serum of OW/Ob breast cancer patients compared to NW patients. Let-7a levels also exhibited a negative correlation with BMI values. Importantly, decreased let-7a miRNA expression was associated with higher tumor grade and poor survival in patients with breast cancer. CONCLUSION These results suggest that serum-EV derived miRNAs may reflect a differential profile in relation to a patient's BMI, which, once validated in larger cohorts of patients, could provide insights into novel specific biomarkers and innovative targets to prevent the progression of obesity-mediated breast cancer.
Collapse
Affiliation(s)
- Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy.
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy.
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
| | - Felice Maria Accattatis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
| | - Francesca Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
| | - Balazs Gyorffy
- Departments of Bioinformatics and Pediatrics, Semmelweis University, 1094, Budapest, Hungary
- TTK Cancer Biomarker Research Group, 1117, Budapest, Hungary
| | - Salvatore Panza
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
| | - Mario Giuliano
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Bianca Maria Veneziani
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Grazia Arpino
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Carmine De Angelis
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Pietro De Placido
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy.
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy.
| |
Collapse
|