1
|
Zaraei SO, Dohle W, Anbar HS, El-Gamal R, Leblond B, Foster PA, Al-Tel TH, Potter BVL, El-Gamal MI. Synthesis, biological evaluation, and stability studies of raloxifene mono- and bis-sulfamates as dual-targeting agents. Bioorg Med Chem 2024; 101:117645. [PMID: 38401456 DOI: 10.1016/j.bmc.2024.117645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/26/2024]
Abstract
All three possible sulfamate derivatives of the selective estrogen receptor modulator Raloxifene (bis-sulfamate 7 and two mono-sulfamates 8-9) were synthesized and evaluated as inhibitors of the clinical drug target steroid sulfatase (STS), both in cell-free and in cell-based assays, and also as estrogen receptor (ER) modulators. Bis-sulfamate 7 was the most potent STS inhibitor with an IC50 of 12.2 nM in a whole JEG3 cell-based assay, with the two mono-sulfamates significantly weaker. The estrogen receptor-modulating activities of 7-9 showed generally lower affinities compared to Raloxifene HCl, diethylstilbestrol and other known ligands, with mono-sulfamate 8 being the best ligand (Ki of 1.5 nM) for ERα binding, although 7 had a Ki of 13 nM and both showed desirable antagonist activity. The antiproliferative activities of the sulfamate derivatives against the T-47D breast cancer cell line showed 7 as most potent (GI50 = 7.12 µM), comparable to that of Raloxifene. Compound 7 also showed good antiproliferative potency in the NCI-60 cell line panel with a GI50 of 1.34 µM against MDA-MB-231 breast cancer cells. Stability testing of 7-9 showed that bis-sulfamate 7 hydrolyzed by desulfamoylation at a surprisingly rapid rate, initially leading selectively to 8 and finally to Raloxifene 3 without formation of 9. The mechanisms of these hydrolysis reactions could be extensively rationalized. Conversion of Raloxifene (3) into its bis-sulfamate (7) thus produced a promising drug lead with nanomolar dual activity as an STS inhibitor and ERα antagonist, as a potential candidate for treatment of estrogen-dependent breast cancer.
Collapse
Affiliation(s)
- Seyed-Omar Zaraei
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Wolfgang Dohle
- Medicinal Chemistry and Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Hanan S Anbar
- Department of Pharmaceutical Sciences, Dubai Pharmacy College for Girls, Dubai 19099, United Arab Emirates
| | - Randa El-Gamal
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Bertrand Leblond
- Medicinal Chemistry, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Paul A Foster
- Institute of Metabolism and Systems Research, 2(nd) Floor IBR Tower, University of Birmingham, Birmingham B15 2TT, United Kingdom; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, United Kingdom
| | - Taleb H Al-Tel
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Barry V L Potter
- Medicinal Chemistry and Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom; Medicinal Chemistry, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom.
| | - Mohammed I El-Gamal
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
2
|
Wang J, Feng Y, Liu B, Xie W. Estrogen sulfotransferase and sulfatase in steroid homeostasis, metabolic disease, and cancer. Steroids 2024; 201:109335. [PMID: 37951289 PMCID: PMC10842091 DOI: 10.1016/j.steroids.2023.109335] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 11/13/2023]
Abstract
Sulfation and desulfation of steroids are opposing processes that regulate the activation, metabolism, excretion, and storage of steroids, which account for steroid homeostasis. Steroid sulfation and desulfation are catalyzed by cytosolic sulfotransferase and steroid sulfatase, respectively. By modifying and regulating steroids, cytosolic sulfotransferase (SULT) and steroid sulfatase (STS) are also involved in the pathophysiology of steroid-related diseases, such as hormonal dysregulation, metabolic disease, and cancer. The estrogen sulfotransferase (EST, or SULT1E1) is a typical member of the steroid SULTs. This review is aimed to summarize the roles of SULT1E1 and STS in steroid homeostasis and steroid-related diseases.
Collapse
Affiliation(s)
- Jingyuan Wang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ye Feng
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Endocrinology and Metabolic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Brian Liu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
3
|
Poutanen M, Hagberg Thulin M, Härkönen P. Targeting sex steroid biosynthesis for breast and prostate cancer therapy. Nat Rev Cancer 2023:10.1038/s41568-023-00609-y. [PMID: 37684402 DOI: 10.1038/s41568-023-00609-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/20/2023] [Indexed: 09/10/2023]
Affiliation(s)
- Matti Poutanen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.
- Turku Center for Disease Modelling, University of Turku, Turku, Finland.
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- FICAN West Cancer Center, University of Turku and Turku University Hospital, Turku, Finland.
| | - Malin Hagberg Thulin
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Pirkko Härkönen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- FICAN West Cancer Center, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
4
|
Chiu PF, Lin IC, Lu YL, Chang CN, Chan HY, Lin TS, Tsai KC, Hsieh YSY, Chen MJ, Lin MH, Liang PH. Design, structure-activity relationships, and enzyme kinetic studies of tricyclic and tetracyclic coumarin-based sulfamates as steroid sulfatase inhibitors. Bioorg Chem 2023; 138:106581. [PMID: 37172437 DOI: 10.1016/j.bioorg.2023.106581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/27/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
Inhibition of steroid sulfatase (STS) decreases estrogen production and thus, suppresses tumor proliferation. Inspired by irosustat, the first STS inhibitor in clinical trials, we explored twenty-one tricyclic and tetra-heterocyclic coumarin-based derivatives. Their STS enzyme kinetic parameters, docking models, and cytotoxicity toward breast cancer and normal cells were evaluated. Tricyclic derivative 9e and tetracyclic derivative 10c were the most promising irreversible inhibitors developed in this study, with KI of 0.05 and 0.4 nM, and kinact/KI ratios of 28.6 and 19.1 nM-1min-1 on human placenta STS, respectively.
Collapse
Affiliation(s)
- Pei-Fang Chiu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - I-Chun Lin
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yeh-Lin Lu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan; School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Chiao-Nien Chang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Hui-Yu Chan
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Tzung-Shen Lin
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Keng-Chang Tsai
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 112, Taipei
| | - Yves S Y Hsieh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm SE106 91, Sweden
| | - Mei-Jou Chen
- Department of Obstetrics and Gynecology and Livia Shangyu Wan Scholar, National Taiwan University Hospital, National Taiwan University, College of Medicine, Taipei 100, Taiwan
| | - Mei-Hsiang Lin
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
| | - Pi-Hui Liang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan.
| |
Collapse
|
5
|
Abstract
Cytochrome P450 aromatase (AROM) and steroid (estrone (E1)/dehydroepiandrosterone (DHEA)) sulfatase (STS) are the two key enzymes responsible for the biosynthesis of estrogens in human, and maintenance of the critical balance between androgens and estrogens. Human AROM, an integral membrane protein of the endoplasmic reticulum, is a member of the Fe-heme containing cytochrome P450 superfamily having a cysteine thiolate as the fifth Fe-coordinating ligand. It is the only enzyme known to catalyze the conversion of androgens with non-aromatic A-rings to estrogens characterized by the aromatic A-ring. Human STS, also an integral membrane protein of the endoplasmic reticulum, is a Ca2+-dependent enzyme that catalyzes the hydrolysis of sulfate esters of E1 and DHEA to yield the respective unconjugated steroids, the precursors of the most potent forms of estrogens and androgens, namely, 17β-estradiol (E2), 16α,17β-estriol (E3), testosterone (TST) and dihydrotestosterone (DHT). Expression of these steroidogenic enzymes locally within various organs and tissues of the endocrine, reproductive, and central nervous systems is the key for maintaining high levels of the reproductive steroids. Thus, the enzymes have been drug targets for the prevention and treatment of diseases associated with steroid hormone excesses, especially in breast and prostate malignancies and endometriosis. Both AROM and STS have been the subjects of vigorous research for the past six decades. In this article, we review the procedures of their extraction and purification from human term placenta are described in detail, along with the activity assays.
Collapse
Affiliation(s)
- Debashis Ghosh
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY, United States.
| |
Collapse
|
6
|
Augsten LV, Göethel G, Gauer B, Feiffer Charão M, von Poser G, Canto RFS, Arbo MD, Eifler-Lima VL, Garcia SC. Antiproliferative activity and toxicity evaluation of 1,2,3-triazole and 4-methyl coumarin hybrids in the MCF7 breast cancer cell line. RSC Med Chem 2023; 14:869-879. [PMID: 37252094 PMCID: PMC10211326 DOI: 10.1039/d3md00031a] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/28/2023] [Indexed: 12/31/2023] Open
Abstract
Four coumarin-triazole hybrids were selected from our in house library and screened for cytotoxic activity on A549 (lung cancer), HepG2 (liver cancer), J774A1 (mouse sarcoma macrophage), MCF7 (breast cancer), OVACAR (ovarian cancer), RAW (murine leukaemia macrophage), and SiHa (uterus carcinoma) and their in vitro toxicity was assessed on 3T3 (healthy fibroblasts) cell lines. SwissADME pharmacokinetic prediction was performed. Effects on ROS production, mitochondrial membrane potential, apoptosis/necrosis and DNA damage were evaluated. All of the hybrids have good pharmacokinetic predictions. Each of them showed cytotoxic activity against the MCF7 breast cancer cell line, with IC50 between 2.66 and 10.08 μM, lower than cisplatin (45.33 μM) for the same test. One can observe an order of reactivity from the most potent: LaSOM 186 > LaSOM 190 > LaSOM 185 > LaSOM 180, with a better selectivity index than the reference drug cisplatin and the precursor hymecromone, and caused cell death by apoptosis induction. Two compounds showed antioxidant activity in vitro and three disrupted the mitochondrial membrane potential. None of the hybrids caused genotoxic damage to healthy 3T3 cells. All hybrids showed potential for further optimization, mechanism elucidation, in vivo activity and toxicity tests.
Collapse
Affiliation(s)
- Lucas Volnei Augsten
- Laboratório de Síntese Orgânica Medicinal/LaSOM, Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul Av. Ipiranga 2752 Laboratório 705 Porto Alegre RS Brazil
| | - Gabriela Göethel
- Laboratório de Síntese Orgânica Medicinal/LaSOM, Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul Av. Ipiranga 2752 Laboratório 705 Porto Alegre RS Brazil
- Laboratório de Toxicologia (LATOX), Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
| | - Bruna Gauer
- Laboratório de Síntese Orgânica Medicinal/LaSOM, Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul Av. Ipiranga 2752 Laboratório 705 Porto Alegre RS Brazil
| | - Mariele Feiffer Charão
- Laboratório de Toxicologia (LATOX), Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
| | - Gilsane von Poser
- Laboratório de Farmacognosia, Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul Avenida Ipiranga 2752 - Santa Cecília CEP 90610-000 Porto Alegre RS Brazil
| | - Romulo F S Canto
- Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA) Rua Sarmento Leite, 245 Porto Alegre RS Brazil
| | - Marcelo Dutra Arbo
- Laboratório de Toxicologia (LATOX), Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
| | - Vera Lucia Eifler-Lima
- Laboratório de Síntese Orgânica Medicinal/LaSOM, Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul Av. Ipiranga 2752 Laboratório 705 Porto Alegre RS Brazil
| | - Solange Cristina Garcia
- Laboratório de Toxicologia (LATOX), Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
| |
Collapse
|
7
|
Ghosh D. Structures and Functions of Human Placental Aromatase and Steroid Sulfatase, Two Key Enzymes in Estrogen Biosynthesis. Steroids 2023; 196:109249. [PMID: 37207843 DOI: 10.1016/j.steroids.2023.109249] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/21/2023]
Abstract
Cytochrome P450 aromatase (AROM) and steroid sulfatase (STS) are the two key enzymes for the biosynthesis of estrogens in human, and maintenance of the critical balance between androgens and estrogens. Human AROM, an integral membrane protein of the endoplasmic reticulum, is a member of the cytochrome P450 superfamily. It is the only enzyme to catalyze the conversion of androgens with non-aromatic A-rings to estrogens characterized by the aromatic A-ring. Human STS, also an integral membrane protein of the endoplasmic reticulum, is a Ca2+-dependent enzyme that catalyzes the hydrolysis of sulfate esters of estrone and dehydroepiandrosterone to the unconjugated steroids, the precursors of the most potent forms of estrogens and androgens, namely, 17β-estradiol, 16α,17β-estriol, testosterone and dihydrotestosterone. Expression of these steroidogenic enzymes locally within organs and tissues of the endocrine, reproductive, and central nervous systems is the key for maintaining high levels of the reproductive steroids. The enzymes have been drug targets for the prevention and treatment of diseases associated with steroid hormone excesses, especially in breast, endometrial and prostate malignancies. Both enzymes have been the subjects of vigorous research for the past six decades. In this article, we review the important findings on their structure-function relationships, specifically, the work that began with unravelling of the closely guarded secrets, namely, the 3-D structures, active sites, mechanisms of action, origins of substrate specificity and the basis of membrane integration. Remarkably, these studies were conducted on the enzymes purified in their pristine forms from human placenta, the discarded and their most abundant source. The purification, assay, crystallization, and structure determination methodologies are described. Also reviewed are their functional quaternary organizations, post-translational modifications and the advancements made in the structure-guided inhibitor design efforts. Outstanding questions that still remain open are summarized in closing.
Collapse
Affiliation(s)
- Debashis Ghosh
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210.
| |
Collapse
|
8
|
Rižner TL, Romano A. Targeting the formation of estrogens for treatment of hormone dependent diseases-current status. Front Pharmacol 2023; 14:1155558. [PMID: 37188267 PMCID: PMC10175629 DOI: 10.3389/fphar.2023.1155558] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Local formation and action of estrogens have crucial roles in hormone dependent cancers and benign diseases like endometriosis. Drugs that are currently used for the treatment of these diseases act at the receptor and at the pre-receptor levels, targeting the local formation of estrogens. Since 1980s the local formation of estrogens has been targeted by inhibitors of aromatase that catalyses their formation from androgens. Steroidal and non-steroidal inhibitors have successfully been used to treat postmenopausal breast cancer and have also been evaluated in clinical studies in patients with endometrial, ovarian cancers and endometriosis. Over the past decade also inhibitors of sulfatase that catalyses the hydrolysis of inactive estrogen-sulfates entered clinical trials for treatment of breast, endometrial cancers and endometriosis, with clinical effects observed primarily in breast cancer. More recently, inhibitors of 17beta-hydroxysteroid dehydrogenase 1, an enzyme responsible for formation of the most potent estrogen, estradiol, have shown promising results in preclinical studies and have already entered clinical evaluation for endometriosis. This review aims to provide an overview of the current status of the use of hormonal drugs for the major hormone-dependent diseases. Further, it aims to explain the mechanisms behind the -sometimes- observed weak effects and low therapeutic efficacy of these drugs and the possibilities and the advantages of combined treatments targeting several enzymes in the local estrogen formation, or drugs acting with different therapeutic mechanisms.
Collapse
Affiliation(s)
- Tea Lanišnik Rižner
- Laboratory for Molecular Basis of Hormone-Dependent Diseases and Biomarkers, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Andrea Romano
- GROW Department of Gynaecology, Faculty of Health, Medicine and Life Sciences (FHML)/GROW-School for Oncology and Reproduction, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
9
|
Poirier D. Description of Chemical Synthesis, Nuclear Magnetic Resonance Characterization and Biological Activity of Estrane-Based Inhibitors/Activators of Steroidogenesis. Molecules 2023; 28:molecules28083499. [PMID: 37110733 PMCID: PMC10143840 DOI: 10.3390/molecules28083499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/08/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Steroid hormones play a crucial role in several aspects of human life, and steroidogenesis is the process by which hormones are produced from cholesterol using several enzymes that work in concert to obtain the appropriate levels of each hormone at the right time. Unfortunately, many diseases, such as cancer, endometriosis, and osteoporosis as examples, are caused by an increase in the production of certain hormones. For these diseases, the use of an inhibitor to block the activity of an enzyme and, in doing so, the production of a key hormone is a proven therapeutic strategy whose development continues. This account-type article focuses on seven inhibitors (compounds 1-7) and an activator (compound 8) of six enzymes involved in steroidogenesis, namely steroid sulfatase, aldo-keto reductase 1C3, types 1, 2, 3, and 12 of the 17β-hydroxysteroid dehydrogenases. For these steroid derivatives, three topics will be addressed: (1) Their chemical synthesis from the same starting material, estrone, (2) their structural characterization using nuclear magnetic resonance, and (3) their in vitro or in vivo biological activities. These bioactive molecules constitute potential therapeutic or mechanistic tools that could be used to better understand the role of certain hormones in steroidogenesis.
Collapse
Affiliation(s)
- Donald Poirier
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec Research Center-Université Laval, Québec, QC G1V 4G2, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
10
|
Ghosh D. Structure of human placental steroid sulfatase at 2.0 angstrom resolution: Catalysis, quaternary association, and a secondary ligand site. J Steroid Biochem Mol Biol 2023; 227:106228. [PMID: 36427797 DOI: 10.1016/j.jsbmb.2022.106228] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022]
Abstract
Human placental estrone (E1)/dehydroepiandrosterone (DHEA) sulfatase (human placental steroid sulfatase; hSTS) is an integral membrane protein of the endoplasmic reticulum. This Ca2+-dependent enzyme catalyzes the hydrolysis of sulfate esters of E1 and DHEA to yield the respective unconjugated steroids, which then act as precursors for the biosynthesis of 17β-estradiol (E2) and dihydrotestosterone (DHT), respectively, the most potent forms of estrogens and androgens. hSTS is a key enzyme for the local production of E2 and DHT in the breast and the prostate. The enzyme is known to be responsible for maintaining high levels of estrogens in the breast tumor cells. The crystal structure of hSTS purified from human placenta has previously been reported at 2.6 Å resolution. Here we present the structure of hSTS determined at the superior 2.0 Å resolution bringing new clarity to the atomic architecture of the active site. The molecular basis of catalysis and steroid-protein interaction are revisited in light of the new data. We also reexamine the enzyme's quaternary association and its implication on the membrane integration. A secondary ligand binding pocket at the intermolecular interface and adjacent to the active site access channel, buried into the gill of the mushroom-shaped molecule, has been identified. Its role as well as that of a phosphate ion bound to an exposed histidine side chain are examined from the structure-function perspective. Higher resolution data also aids in the tracing of an important loop missing in the previous structure.
Collapse
Affiliation(s)
- Debashis Ghosh
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
11
|
Mahapatra M, Mekap SK, Mal S, Sahoo J, Sahoo SK, Paidesetty SK. Coumaryl-sulfonamide moiety: Unraveling their synthetic strategy and specificity toward hCA IX/XII, facilitating anticancer drug development. Arch Pharm (Weinheim) 2023; 356:e2200508. [PMID: 36587981 DOI: 10.1002/ardp.202200508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 01/03/2023]
Abstract
Currently, cancer is the most grieving threat to society. The cancer-related death rate has had an ascending trend, despite the implementation of numerous treatment strategies or the discovery of an array of potent molecules against several pathways of cancer growth. The need of the hour is to prevent the multidrug resistance toll, and the current efforts have been bestowed upon a versatile small molecule scaffold, coumarin (benz[α]pyrone), a natural compound possessing interesting affinity toward the cancer target human carbonic anhydrase (hCA), focusing on hCA I, II, IX, and XII. Along with coumarin, the age-old known antibacterial drug sulfonamide, when conjugated at positions 3, 7, and 8 of coumarin either with a linker group or as a single entity, has been reported to enhance the affinity of coumarin toward the overexpressed enzymes in tumor cell lines. The sulfonamides have been listed as obsolete drugs due to the severe side effects caused by them; however, their affinity toward the hCA-zinc-binding core has attracted the attention of researchers. Hence, in the process of drug development, coumarin and sulfonamides have remained the choice of last resort. To unveil the synthetic strategy of coumarin-sulfonamide conjugation, their rationale for inhibiting cancer cells/enzymes, and their affinity toward various types of carcinoma have been the sole goal of the researchers. This review specifically focuses on the mechanism of action and the structure-activity relationship through synthetic strategies and the binding affinity of coumaryl-sulfonamide conjugates with the anticancer targets possessing the highest enzyme affinity, since 2008.
Collapse
Affiliation(s)
- Monalisa Mahapatra
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Suman K Mekap
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, R. Sitapur, Odisha, India
| | - Suvadeep Mal
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Jyotirmaya Sahoo
- School of Pharmacy, Arka Jain University, Jameshedpur, Jharkand, India
| | | | - Sudhir K Paidesetty
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| |
Collapse
|
12
|
Vitku J, Hill M, Kolatorova L, Kubala Havrdova E, Kancheva R. Steroid Sulfation in Neurodegenerative Diseases. Front Mol Biosci 2022; 9:839887. [PMID: 35281259 PMCID: PMC8904904 DOI: 10.3389/fmolb.2022.839887] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Steroid sulfation and desulfation participates in the regulation of steroid bioactivity, metabolism and transport. The authors focused on sulfation and desulfation balance in three neurodegenerative diseases: Alzheimer´s disease (AD), Parkinson´s disease (PD), and multiple sclerosis (MS). Circulating steroid conjugates dominate their unconjugated counterparts, but unconjugated steroids outweigh their conjugated counterparts in the brain. Apart from the neurosteroid synthesis in the central nervous system (CNS), most brain steroids cross the blood-brain barrier (BBB) from the periphery and then may be further metabolized. Therefore, steroid levels in the periphery partly reflect the situation in the brain. The CNS steroids subsequently influence the neuronal excitability and have neuroprotective, neuroexcitatory, antidepressant and memory enhancing effects. They also exert anti-inflammatory and immunoprotective actions. Like the unconjugated steroids, the sulfated ones modulate various ligand-gated ion channels. Conjugation by sulfotransferases increases steroid water solubility and facilitates steroid transport. Steroid sulfates, having greater half-lives than their unconjugated counterparts, also serve as a steroid stock pool. Sulfotransferases are ubiquitous enzymes providing massive steroid sulfation in adrenal zona reticularis and zona fasciculata.. Steroid sulfatase hydrolyzing the steroid conjugates is exceedingly expressed in placenta but is ubiquitous in low amounts including brain capillaries of BBB which can rapidly hydrolyze the steroid sulfates coming across the BBB from the periphery. Lower dehydroepiandrosterone sulfate (DHEAS) plasma levels and reduced sulfotransferase activity are considered as risk factors in AD patients. The shifted balance towards unconjugated steroids can participate in the pathophysiology of PD and anti-inflammatory effects of DHEAS may counteract the MS.
Collapse
Affiliation(s)
- Jana Vitku
- Department of Steroids and Proteofactors, Institute of Endocrinology, Prague, Czechia
- *Correspondence: Jana Vitku,
| | - Martin Hill
- Department of Steroids and Proteofactors, Institute of Endocrinology, Prague, Czechia
| | - Lucie Kolatorova
- Department of Steroids and Proteofactors, Institute of Endocrinology, Prague, Czechia
| | - Eva Kubala Havrdova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Radmila Kancheva
- Department of Steroids and Proteofactors, Institute of Endocrinology, Prague, Czechia
| |
Collapse
|
13
|
Armstrong CM, Gao AC. Dysregulated androgen synthesis and anti-androgen resistance in advanced prostate cancer. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2021; 9:292-300. [PMID: 34541028 PMCID: PMC8446765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Current therapies for treating castration resistant prostate cancer (CRPC) include abiraterone and enzalutamide which function by inhibiting androgen signaling by targeting androgen synthesis and antagonizing the androgen receptor (AR) respectively. While these therapies are initially beneficial, resistance inevitably develops. A number of pathways have been identified to contribute to CRPC progression and drug resistance. Among these is aberrant androgen signaling perpetuated by increased expression and activity of androgenic enzymes. While abiraterone inhibits the androgenic enzyme, CYP17A1, androgen synthesis inhibition by abiraterone is incomplete and sustained androgenesis persists, in part due to increased levels of AKR1C3 and steroid sulfatase (STS). Expression of both of these enzymes is increased in CRPC and is associated with resistance to anti-androgens. A number of studies have identified methods for targeting these enzymes. Indomethacin, a non-steroidal anti-inflammatory drug commonly used to treat inflammatory arthritis has been well established as an inhibitor of AKR1C3. Treatment of CRPC cells with indomethacin reduces cell growth and improves the response to enzalutamide and abiraterone. Similarly, STS inhibitors have been shown to reduce intracrine androgens and also reduce CRPC growth and enhance anti-androgen treatment. In this review, we provide an overview of androgen synthesis in CRPC and strategies aimed at inhibiting intracrine androgens.
Collapse
Affiliation(s)
- Cameron M Armstrong
- Department of Urology, University of California, DavisSacramento, CA 95817, USA
| | - Allen C Gao
- Department of Urology, University of California, DavisSacramento, CA 95817, USA
- Comprehensive Cancer Center, University of California, DavisSacramento, CA 95817, USA
- VA Northern California Health Care SystemSacramento, CA 95655, USA
| |
Collapse
|
14
|
Lespérance M, Roy J, Djiemeny Ngueta A, Maltais R, Poirier D. Synthesis of 16β-derivatives of 3-(2-bromoethyl)-estra-1,3,5(10)-trien-17β-ol as inhibitors of 17β-HSD1 and/or steroid sulfatase for the treatment of estrogen-dependent diseases. Steroids 2021; 172:108856. [PMID: 33945801 DOI: 10.1016/j.steroids.2021.108856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 12/26/2022]
Abstract
17β-Hydroxysteroid dehydrogenase type 1 (17β-HSD1) and steroid sulfatase (STS) are involved in the synthesis of the most potent estrogen in the human body, estradiol (E2). These enzymes are known to play a pivotal role in the progression of estrogen-dependent diseases, such as breast cancer and endometriosis. Therefore, the inhibition of 17β-HSD1 and/or STS represents a promising avenue to modulate the growth of estrogen-dependent tumors or lesions. We recently established the key role of a bromoethyl side chain added at the C3-position of a 16β-carbamoyl-benzyl-E2 nucleus to covalently inhibit 17β-HSD1. To extend the structure-activity relationship study to the C16β-position of this new selective irreversible inhibitor (PBRM), we synthesized a series of analog compounds by changing the nature of the C16β-side chain but keeping the 2-bromoethyl group at position C3. We determined their 17β-HSD1 inhibitions in T-47D cells (transformation of E1 into E2), but we did not obtain a stronger 17β-HSD1 inhibitor than PBRM. Compounds 16 and 17 were found to be more likely to bind to the catalytic site and showed a promising but moderate inhibitory activity with estimated IC50 values of 0.5 and 0.7 µM, respectively (about 10 times higher than PBRM). Interestingly, adding one or two sulfamate groups in the D-ring's surroundings did not significantly decrease compounds' potential to inhibit 17β-HSD1, but clearly improved their potential to inhibit STS. These results open the door to the development of a new family of steroid derivatives with dual (17β-HSD1 and STS) inhibiting actions.
Collapse
Affiliation(s)
- Maxime Lespérance
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec - Research Center (CHUL, T4), Québec, QC G1V4G2, Canada
| | - Jenny Roy
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec - Research Center (CHUL, T4), Québec, QC G1V4G2, Canada
| | - Adrien Djiemeny Ngueta
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec - Research Center (CHUL, T4), Québec, QC G1V4G2, Canada
| | - René Maltais
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec - Research Center (CHUL, T4), Québec, QC G1V4G2, Canada
| | - Donald Poirier
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec - Research Center (CHUL, T4), Québec, QC G1V4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC G1V0A6, Canada.
| |
Collapse
|
15
|
Ciupak O, Daśko M, Biernacki K, Rachon J, Masłyk M, Kubiński K, Martyna A, Demkowicz S. New potent steroid sulphatase inhibitors based on 6-(1-phenyl-1 H-1,2,3-triazol-4-yl)naphthalen-2-yl sulphamate derivatives. J Enzyme Inhib Med Chem 2021; 36:238-247. [PMID: 33322953 PMCID: PMC7744152 DOI: 10.1080/14756366.2020.1858820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In the present work, we report a new class of potent steroid sulphatase (STS) inhibitors based on 6-(1-phenyl-1H-1,2,3-triazol-4-yl)naphthalen-2-yl sulphamate derivatives. Within the set of new STS inhibitors, 6-(1-(1,2,3-trifluorophenyl)-1H-1,2,3-triazol-4-yl)naphthalen-2-yl sulphamate 3L demonstrated the highest activity in the enzymatic assay inhibiting the STS activity to 7.98% at 0.5 µM concentration. Furthermore, to verify whether the obtained STS inhibitors are able to pass through the cellular membrane effectively, cell line experiments have been carried out. We found that the lowest STS activities were measured in the presence of compound 3L (remaining STS activity of 5.22%, 27.48% and 99.0% at 100, 10 and 1 nM concentrations, respectively). The measured STS activities for Irosustat (used as a reference) were 5.72%, 12.93% and 16.83% in the same concentration range. Moreover, a determined IC50 value of 15.97 nM for 3L showed that this compound is a very promising candidate for further preclinical investigations.
Collapse
Affiliation(s)
- Olga Ciupak
- Department of Organic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Mateusz Daśko
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Karol Biernacki
- Department of Organic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Janusz Rachon
- Department of Organic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Maciej Masłyk
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Konrad Kubiński
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Aleksandra Martyna
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Sebastian Demkowicz
- Department of Organic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| |
Collapse
|
16
|
Foster PA. Steroid Sulphatase and Its Inhibitors: Past, Present, and Future. Molecules 2021; 26:2852. [PMID: 34064842 PMCID: PMC8151039 DOI: 10.3390/molecules26102852] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/22/2022] Open
Abstract
Steroid sulphatase (STS), involved in the hydrolysis of steroid sulphates, plays an important role in the formation of both active oestrogens and androgens. Since these steroids significantly impact the proliferation of both oestrogen- and androgen-dependent cancers, many research groups over the past 30 years have designed and developed STS inhibitors. One of the main contributors to this field has been Prof. Barry Potter, previously at the University of Bath and now at the University of Oxford. Upon Prof. Potter's imminent retirement, this review takes a look back at the work on STS inhibitors and their contribution to our understanding of sulphate biology and as potential therapeutic agents in hormone-dependent disease. A number of potent STS inhibitors have now been developed, one of which, Irosustat (STX64, 667Coumate, BN83495), remains the only one to have completed phase I/II clinical trials against numerous indications (breast, prostate, endometrial). These studies have provided new insights into the origins of androgens and oestrogens in women and men. In addition to the therapeutic role of STS inhibition in breast and prostate cancer, there is now good evidence to suggest they may also provide benefits in patients with colorectal and ovarian cancer, and in treating endometriosis. To explore the potential of STS inhibitors further, a number of second- and third-generation inhibitors have been developed, together with single molecules that possess aromatase-STS inhibitory properties. The further development of potent STS inhibitors will allow their potential therapeutic value to be explored in a variety of hormone-dependent cancers and possibly other non-oncological conditions.
Collapse
Affiliation(s)
- Paul A. Foster
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, UK; ; Tel.: +44-121-414-3776
- Centre for Endocrinology, Metabolism and Diabetes, University of Birmingham, Birmingham Health Partners, Birmingham B15 2TT, UK
| |
Collapse
|
17
|
Anbar HS, Isa Z, Elounais JJ, Jameel MA, Zib JH, Samer AM, Jawad AF, El-Gamal MI. Steroid sulfatase inhibitors: the current landscape. Expert Opin Ther Pat 2021; 31:453-472. [PMID: 33783295 DOI: 10.1080/13543776.2021.1910237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Steroid sulfatase (STS) enzyme is responsible for transforming the inactive sulfate metabolites of steroid sex hormones into the active free steroids. Both the deficiency and the over-expression of STS are associated with the pathophysiology of certain diseases. This article provides the readership with a comprehensive review about STS enzyme and its recently reported inhibitors.Areas covered: In the present article, we reviewed the structure, location, and substrates of STS enzyme, physiological functions of STS, and disease states related to over-expression or deficiency of STS enzyme. STS inhibitors reported during the last five years (2016-present) have been reviewed as well.Expert opinion: Irosustat is the most successful STS inhibitor drug candidate so far. It is currently under investigation in clinical trials for treatment of estrogen-dependent breast cancer. Non-steroidal sulfamate is the most favorable scaffold for STS inhibitor design. They can be beneficial for the treatment of hormone-dependent cancers and neurodegenerative disorders without significant estrogenic side effects. Moreover, dual-acting molecules (inhibitors of STS + another synergistic mechanism) can be therapeutically efficient.
Collapse
Affiliation(s)
- Hanan S Anbar
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Zahraa Isa
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Jana J Elounais
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Mariam A Jameel
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Joudi H Zib
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Aya M Samer
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Aya F Jawad
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Mohammed I El-Gamal
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates.,Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura, Egypt
| |
Collapse
|
18
|
A Targeted-Covalent Inhibitor of 17β-HSD1 Blocks Two Estrogen-Biosynthesis Pathways: In Vitro (Metabolism) and In Vivo (Xenograft) Studies in T-47D Breast Cancer Models. Cancers (Basel) 2021; 13:cancers13081841. [PMID: 33924352 PMCID: PMC8069897 DOI: 10.3390/cancers13081841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary 17β-Hydroxysteroid dehydrogenase type 1 (17β-HSD1) is responsible for the production of estrogens estradiol (E2) and 5-androsten-3β,17β-diol (5-diol). This enzyme is therefore a target of choice for the treatment of estrogen-dependent diseases such as breast cancer and endometriosis, by blocking estrogen biosynthesis. After we developed the first irreversible and non-estrogenic 17β-HSD1 inhibitor, a molecule named PBRM, our goal was to demonstrate its therapeutic potential. PBRM was able to block the formation of E2 and 5-diol in T-47D human breast cancer cells. When given orally to mice, PBRM was also able to block the tumor growth without any observed toxic effects. Thanks to its irreversible type of inhibition, PBRM retained its anti-tumor growth effect, even after reducing its frequency of administration to only once a week, a clear advantage over reversible inhibitors. These results strongly support the use of PBRM as a new approach in the treatment of breast cancer. Abstract 17β-Hydroxysteroid dehydrogenase type 1 (17β-HSD1) plays an important role in estrogen-dependent breast tumor growth. In addition to being involved in the production of estradiol (E2), the most potent estrogen in women, 17β-HSD1 is also responsible for the production of 5-androsten-3β,17β-diol (5-diol), a weaker estrogen than E2, but whose importance increases after menopause. 17β-HSD1 is therefore a target of choice for the treatment of estrogen-dependent diseases such as breast cancer and endometriosis. After we developed the first targeted-covalent (irreversible) and non-estrogenic inhibitor of 17β-HSD1, a molecule named PBRM, our goal was to demonstrate its therapeutic potential. Enzymatic assays demonstrated that estrone (E1) and dehydroepiandrosterone (DHEA) were transformed into E2 and 5-diol in T-47D human breast cancer cells, and that PBRM was able to block these transformations. Thereafter, we tested PBRM in a mouse tumor model (cell-derived T-47D xenografts). After treatment of ovariectomized (OVX) mice receiving E1 or DHEA, PBRM given orally was able to reduce the tumor growth at the control (OVX) level without any observed toxic effects. Thanks to its irreversible type of inhibition, PBRM retained its anti-tumor growth effect, even after reducing its frequency of administration to only once a week, a clear advantage over reversible inhibitors.
Collapse
|
19
|
Steroid hormones sulfatase inactivation extends lifespan and ameliorates age-related diseases. Nat Commun 2021; 12:49. [PMID: 33397961 PMCID: PMC7782729 DOI: 10.1038/s41467-020-20269-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 11/19/2020] [Indexed: 02/06/2023] Open
Abstract
Aging and fertility are two interconnected processes. From invertebrates to mammals, absence of the germline increases longevity. Here we show that loss of function of sul-2, the Caenorhabditis elegans steroid sulfatase (STS), raises the pool of sulfated steroid hormones, increases longevity and ameliorates protein aggregation diseases. This increased longevity requires factors involved in germline-mediated longevity (daf-16, daf-12, kri-1, tcer-1 and daf-36 genes) although sul-2 mutations do not affect fertility. Interestingly, sul-2 is only expressed in sensory neurons, suggesting a regulation of sulfated hormones state by environmental cues. Treatment with the specific STS inhibitor STX64, as well as with testosterone-derived sulfated hormones reproduces the longevity phenotype of sul-2 mutants. Remarkably, those treatments ameliorate protein aggregation diseases in C. elegans, and STX64 also Alzheimer’s disease in a mammalian model. These results open the possibility of reallocating steroid sulfatase inhibitors or derivates for the treatment of aging and aging related diseases. Sul-2 is a steroid sulfatase in c.elegans. Here the authors show that, in the absence of sul-2 enzymatic activity, worm lifespan is increased, and that chemical inhibition ameliorates symptoms of neurodegenerative disorders in worms and mice.
Collapse
|
20
|
Ragab FA, Eissa AAM, Fahim SH, Salem MA, Gamal MA, Nissan YM. Novel coumarin–pyrazoline hybrids: synthesis, cytotoxicity evaluation and molecular dynamics study. NEW J CHEM 2021. [DOI: 10.1039/d1nj02862f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel series of coumarin–pyrazoline hybrids 3a–f, 4a–c and 5a–c have been synthesized and tested for their antiproliferative activity against the breast cancer cell line MCF-7.
Collapse
Affiliation(s)
- Fatma A. Ragab
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, El-Kasr El-Eini Street, Cairo 11562, Egypt
| | - Amal A. M. Eissa
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, El-Kasr El-Eini Street, Cairo 11562, Egypt
| | - Samar H. Fahim
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, El-Kasr El-Eini Street, Cairo 11562, Egypt
| | - Mohammad Alaraby Salem
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
- School of Life and Medical Sciences, University of Hertfordshire hosted by Global Academic Foundation, New Administrative Capital, Cairo, Egypt
| | - Mona A. Gamal
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, El-Kasr El-Eini Street, Cairo 11562, Egypt
| | - Yassin M. Nissan
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, El-Kasr El-Eini Street, Cairo 11562, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| |
Collapse
|
21
|
Daśko M, Demkowicz S, Biernacki K, Ciupak O, Kozak W, Masłyk M, Rachon J. Recent progress in the development of steroid sulphatase inhibitors - examples of the novel and most promising compounds from the last decade. J Enzyme Inhib Med Chem 2020; 35:1163-1184. [PMID: 32363947 PMCID: PMC7241464 DOI: 10.1080/14756366.2020.1758692] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 01/08/2023] Open
Abstract
The purpose of this review article is to provide an overview of recent achievements in the synthesis of novel steroid sulphatase (STS) inhibitors. STS is a crucial enzyme in the biosynthesis of active hormones (including oestrogens and androgens) and, therefore, represents an extremely attractive molecular target for the development of hormone-dependent cancer therapies. The inhibition of STS may effectively reduce the availability of active hormones for cancer cells, causing a positive therapeutic effect. Herein, we report examples of novel STS inhibitors based on steroidal and nonsteroidal cores that contain various functional groups (e.g. sulphamate and phosphorus moieties) and halogen atoms, which may potentially be used in therapies for hormone-dependent cancers. The presented work also includes examples of multitargeting agents with STS inhibitory activities. Furthermore, the fundamental discoveries in the development of the most promising drug candidates exhibiting STS inhibitory activities are highlighted.
Collapse
Affiliation(s)
- Mateusz Daśko
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Sebastian Demkowicz
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Karol Biernacki
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Olga Ciupak
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Witold Kozak
- Department of Physical Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Maciej Masłyk
- Department of Molecular Biology, Faculty of Biotechnology and Environment Sciences, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Janusz Rachon
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| |
Collapse
|
22
|
Armstrong CM, Liu C, Liu L, Yang JC, Lou W, Zhao R, Ning S, Lombard AP, Zhao J, D'Abronzo LS, Evans CP, Li PK, Gao AC. Steroid Sulfatase Stimulates Intracrine Androgen Synthesis and is a Therapeutic Target for Advanced Prostate Cancer. Clin Cancer Res 2020; 26:6064-6074. [PMID: 32928794 DOI: 10.1158/1078-0432.ccr-20-1682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/24/2020] [Accepted: 09/09/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Most patients with prostate cancer receiving enzalutamide or abiraterone develop resistance. Clinical evidence indicates that serum levels of dehydroepiandrosterone sulfate (DHEAS) and biologically active DHEA remain in the high range despite antiandrogen treatment. The conversion of DHEAS into DHEA by steroid sulfatase (STS) may contribute to sustained intracrine androgen synthesis. Here, we determine the contribution of STS to treatment resistance and explore the potential of targeting STS to overcome resistance in prostate cancer. EXPERIMENTAL DESIGN STS expression was examined in patients and cell lines. In vitro, STS activity and expression were modulated using STS-specific siRNA or novel STS inhibitors (STSi). Cell growth, colony formation, androgen production, and gene expression were examined. RNA-sequencing analysis was conducted on VCaP cells treated with STSi. Mice were treated with STSis with or without enzalutamide to determine their effects in vivo. RESULTS STS is overexpressed in patients with castration-resistant prostate cancer (CRPC) and resistant cells. STS overexpression increases intracrine androgen synthesis, cell proliferation, and confers resistance to enzalutamide and abiraterone. Inhibition of STS using siRNA suppresses prostate cancer cell growth. Targeting STS activity using STSi inhibits STS activity, suppresses androgen receptor transcriptional activity, and reduces the growth of resistant C4-2B and VCaP prostate cancer cells. STSis significantly suppress resistant VCaP tumor growth, decrease serum PSA levels, and enhance enzalutamide treatment in vitro and in vivo. CONCLUSIONS These studies suggest that STS drives intracrine androgen synthesis and prostate cancer proliferation. Targeting STS represents a therapeutic strategy to treat CRPC and improve second-generation antiandrogen therapy.
Collapse
Affiliation(s)
- Cameron M Armstrong
- Department of Urologic Surgery, University of California, Davis, Sacramento, California
| | - Chengfei Liu
- Department of Urologic Surgery, University of California, Davis, Sacramento, California
| | - Liangren Liu
- Department of Urologic Surgery, University of California, Davis, Sacramento, California
| | - Joy C Yang
- Department of Urologic Surgery, University of California, Davis, Sacramento, California
| | - Wei Lou
- Department of Urologic Surgery, University of California, Davis, Sacramento, California
| | - Ruining Zhao
- Department of Urologic Surgery, University of California, Davis, Sacramento, California
| | - Shu Ning
- Department of Urologic Surgery, University of California, Davis, Sacramento, California
| | - Alan P Lombard
- Department of Urologic Surgery, University of California, Davis, Sacramento, California
| | - Jinge Zhao
- Department of Urologic Surgery, University of California, Davis, Sacramento, California
| | - Leandro S D'Abronzo
- Department of Urologic Surgery, University of California, Davis, Sacramento, California
| | - Christopher P Evans
- Department of Urologic Surgery, University of California, Davis, Sacramento, California.,UC Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, California
| | - Pui-Kai Li
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Allen C Gao
- Department of Urologic Surgery, University of California, Davis, Sacramento, California. .,UC Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, California.,VA Northern California Health Care System, Sacramento, California
| |
Collapse
|
23
|
Gadag S, Sinha S, Nayak Y, Garg S, Nayak UY. Combination Therapy and Nanoparticulate Systems: Smart Approaches for the Effective Treatment of Breast Cancer. Pharmaceutics 2020; 12:E524. [PMID: 32521684 PMCID: PMC7355786 DOI: 10.3390/pharmaceutics12060524] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer has become one of the biggest concerns for oncologists in the past few decades because of its unpredictable etiopathology and nonavailability of personalized translational medicine. The number of women getting affected by breast cancer has increased dramatically, owing to lifestyle and environmental changes. Besides, the development of multidrug resistance has become a challenge in the therapeutic management of breast cancer. Studies reveal that the use of monotherapy is not effective in the management of breast cancer due to high toxicity and the development of resistance. Combination therapies, such as radiation therapy with adjuvant therapy, endocrine therapy with chemotherapy, and targeted therapy with immunotherapy, are found to be effective. Thus, multimodal and combination treatments, along with nanomedicine, have emerged as a promising strategy with minimum side effects and drug resistance. In this review, we emphasize the multimodal approaches and recent advancements in breast cancer treatment modalities, giving importance to the current data on clinical trials. The novel treatment approach by targeted therapy, according to type, such as luminal, HER2 positive, and triple-negative breast cancer, are discussed. Further, passive and active targeting technologies, including nanoparticles, bioconjugate systems, stimuli-responsive, and nucleic acid delivery systems, including siRNA and aptamer, are explained. The recent research exploring the role of nanomedicine in combination therapy and the possible use of artificial intelligence in breast cancer therapy is also discussed herein. The complexity and dynamism of disease changes require the constant upgrading of knowledge, and innovation is essential for future drug development for treating breast cancer.
Collapse
Affiliation(s)
- Shivaprasad Gadag
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.G.); (S.S.)
| | - Shristi Sinha
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.G.); (S.S.)
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Sanjay Garg
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
| | - Usha Y. Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.G.); (S.S.)
| |
Collapse
|
24
|
Cofano F, Monticelli M, Ajello M, Zenga F, Marengo N, Di Perna G, Altieri R, Cassoni P, Bertero L, Melcarne A, Tartara F, Ducati A, Garbossa D. The Targeted Therapies Era Beyond the Surgical Point of View: What Spine Surgeons Should Know Before Approaching Spinal Metastases. Cancer Control 2020; 26:1073274819870549. [PMID: 31865766 PMCID: PMC6728684 DOI: 10.1177/1073274819870549] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the last few years, the treatment of spinal metastases has significantly
changed. This is due to the advancements in surgical technique, radiotherapy,
and chemotherapy which have enriched the multidisciplinary management. Above
all, the field of molecular biology of tumors is in continuous and prosperous
evolution. In this review, the molecular markers and new approaches that have
radically modified the chemotherapeutic strategy of the most common metastatic
neoplasms will be examined together with clinical and surgical implications. The
experience and skills of several different medical professionals are mandatory:
an interdisciplinary oncology team represents the winning strategy in the
treatment of patients with spinal metastases
Collapse
Affiliation(s)
- Fabio Cofano
- Dipartimento di Neuroscienze, Neurosurgery, Universita degli Studi di Torino, Torino, Italy
| | - Matteo Monticelli
- Dipartimento di Neuroscienze, Neurosurgery, Universita degli Studi di Torino, Torino, Italy
| | - Marco Ajello
- Dipartimento di Neuroscienze, Neurosurgery, Universita degli Studi di Torino, Torino, Italy
| | - Francesco Zenga
- Dipartimento di Neuroscienze, Neurosurgery, Universita degli Studi di Torino, Torino, Italy
| | - Nicola Marengo
- Dipartimento di Neuroscienze, Neurosurgery, Universita degli Studi di Torino, Torino, Italy
| | - Giuseppe Di Perna
- Dipartimento di Neuroscienze, Neurosurgery, Universita degli Studi di Torino, Torino, Italy
| | - Roberto Altieri
- Dipartimento di Neuroscienze, Neurosurgery, Universita degli Studi di Torino, Torino, Italy
| | - Paola Cassoni
- Dipartimento di Scienze Mediche, Pathology, Universita degli Studi di Torino, Torino, Italy
| | - Luca Bertero
- Dipartimento di Scienze Mediche, Pathology, Universita degli Studi di Torino, Torino, Italy
| | - Antonio Melcarne
- Dipartimento di Neuroscienze, Neurosurgery, Universita degli Studi di Torino, Torino, Italy
| | - Fulvio Tartara
- Azienda Ospedaliero-Universitaria di Parma, Special surgery, Neurosurgery, Torino, Italy
| | - Alessandro Ducati
- Dipartimento di Neuroscienze, Neurosurgery, Universita degli Studi di Torino, Torino, Italy
| | - Diego Garbossa
- Dipartimento di Neuroscienze, Neurosurgery, Universita degli Studi di Torino, Torino, Italy
| |
Collapse
|
25
|
Synthesis and in vitro evaluation of piperazinyl-ureido sulfamates as steroid sulfatase inhibitors. Eur J Med Chem 2019; 182:111614. [PMID: 31422224 DOI: 10.1016/j.ejmech.2019.111614] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/26/2019] [Accepted: 08/09/2019] [Indexed: 12/17/2022]
Abstract
Two new piperazinyl-ureido single ring aryl sulfamate-based inhibitor series were designed against the emerging oncology drug target steroid sulfatase (STS), for which there are existing potent steroidal and non-steroidal agents in clinical trials. 4-(Piperazinocarbonyl)aminosulfamates (5-31) were obtained by reacting 4-hydroxyarylamines with phenylchloroformate, subsequent sulfamoylation of the resulting hydroxyarylcarbamates and coupling of the product with 1-substituted piperazines. Pyrimidinyl-piperazinourea sulfamates (35-42) were synthesized by pyrimidine ring closure of 4-Boc-piperazine-1-carboxamidine with 3-(dimethylamino)propenones, deprotection and coupling with the sulfamoylated building block. Target ureidosulfamates 5-31 and 35-42 were evaluated both as STS inhibitors in vitro using a lysate of JEG-3 human placenta choriocarcinoma cell line and in a whole cell assay. SAR conclusions were drawn from both series. In series 35-42 the best inhibitory activity is related to the presence of a benzofuryl on the pyrimidine ring. In series 5-31 the best inhibitory activity was shown by the ureas bearing 4-chlorophenyl, 3,4-dichlorophenyl groups or aliphatic chains at the piperazino 4-nitrogen displaying IC50 in the 33-94 nM concentration range. Final optimization to the low nanomolar level was achieved through substitution of the arylsulfamate ring with halogens. Four halogenated arylsulfamates of high potency were achieved and two of these 19 and 20 had IC50 values of 5.1 and 8.8 nM respectively and are attractive for potential in vivo evaluation and further development. We demonstrate the optimization of this new series to low nanomolar potency, employing fluorine substitution, providing potent membrane permeant inhibitors with further development potential indicating piperazinyl-ureido aryl sulfamate derivatives as an attractive new class of STS inhibitors.
Collapse
|
26
|
Cornel KMC, Bongers MY, Kruitwagen RPFM, Romano A. Local estrogen metabolism (intracrinology) in endometrial cancer: A systematic review. Mol Cell Endocrinol 2019; 489:45-65. [PMID: 30326245 DOI: 10.1016/j.mce.2018.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 09/13/2018] [Accepted: 10/04/2018] [Indexed: 02/08/2023]
Abstract
Endometrial cancer (EC) is the most common malignancy of the female gynaecological tract and increased exposure to estrogens is a risk factor. EC cells are able to produce estrogens locally using precursors like, among others, adrenal steroids present in the serum. This is referred to as local estrogen metabolism (or intracrinology) and consists of a complex network of multiple enzymes. Particular relevant to the final generation of active estrogens in endometrial cells are: steroid sulfatase (STS), estrogen sulfotransferase (SULT1E1), aromatase (CYP19A1), 17β-hydroxysteroid dehydrogenase (HSD17B) type 1 and type 2. During the last decades, a plethora of studies explored the level of these enzymes in EC but contrasting data were reported, which generated vigorous debate and controversies. Several reviews attempted at clarifying some of the debated issues, but published reviews are based on investigator-defined bibliography selection and not on systematic analysis. Therefore, we performed a systematic review of the literature reporting about the level of STS, SULT1E1, CYP19A1, HSD17B1 and HSD17B2 in EC. Additional intracrine enzymes and networks (e.g., HSD17Bs other than types 1 and 2, aldo-keto reductases, progesterone and androgen metabolism) were non-systematically reviewed as well.
Collapse
Affiliation(s)
- K M C Cornel
- Department of Obstetrics and Gynaecology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, the Netherlands
| | - M Y Bongers
- Department of Obstetrics and Gynaecology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, the Netherlands; Department of Obstetrics and Gynaecology, Máxima Medical Centre, Veldhoven, the Netherlands
| | - R P F M Kruitwagen
- Department of Obstetrics and Gynaecology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, the Netherlands
| | - A Romano
- Department of Obstetrics and Gynaecology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, the Netherlands.
| |
Collapse
|
27
|
Poirier D, Roy J, Maltais R, Ayan D. Antisulfatase, Osteogenic, and Anticancer Activities of Steroid Sulfatase Inhibitor EO-33 in Mice. J Med Chem 2019; 62:5512-5521. [DOI: 10.1021/acs.jmedchem.9b00382] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Donald Poirier
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec—Research Center, Québec, Québec G1V 4G2, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Jenny Roy
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec—Research Center, Québec, Québec G1V 4G2, Canada
| | - René Maltais
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec—Research Center, Québec, Québec G1V 4G2, Canada
| | - Diana Ayan
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec—Research Center, Québec, Québec G1V 4G2, Canada
| |
Collapse
|
28
|
Dey P, Rathod M, De A. Targeting stem cells in the realm of drug-resistant breast cancer. BREAST CANCER-TARGETS AND THERAPY 2019; 11:115-135. [PMID: 30881110 PMCID: PMC6410754 DOI: 10.2147/bctt.s189224] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Since its first documentation, breast cancer (BC) has been a conundrum that ails millions of women every year. This cancer has been well studied by researchers all over the world, which has improved the patient outcome significantly. There are many diagnostic markers to identify the disease, but early detection and then subclassification of this cancer remain dubious. Even after the correct diagnosis, more than half the patients come back with a more aggressive and metastatic tumor. The underpinning mechanism that governs the resistance includes over-amplification of receptors, mutations in key gene targets, and activation of different signaling. A plethora of drugs have been devised that have shown promising results in clinical settings. However, in recent times, the role played by cancer stem cells in disease progression and their interaction in mediating the resistance to cellular insults have come into the limelight. As breast cancer stem cells (BCSCs) are dormant in nature, it is highly likely that they fail to directly respond to the cytotoxic drugs which are meant for ablating rapidly proliferating cells. Furthermore, the absence of well-characterized, drug-able surface markers to date, has limited the application of targeted therapies in complete eradication of the disease. In this review, our intent is to discuss versatile therapeutics in practice followed by discussing the upcoming therapy strategies in the pipeline for BC. Furthermore, we focus on the roles played by BCSCs in mediating the resistance, and therefore, the aspects of new therapeutics against BCSCs under development that may ease the burden in future has also been discussed.
Collapse
Affiliation(s)
- Pranay Dey
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India, .,Molecular Functional Imaging Lab, Homi Bhabha National Institute, Mumbai, India,
| | - Maitreyi Rathod
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India, .,Molecular Functional Imaging Lab, Homi Bhabha National Institute, Mumbai, India,
| | - Abhijit De
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India, .,Molecular Functional Imaging Lab, Homi Bhabha National Institute, Mumbai, India,
| |
Collapse
|
29
|
Kurogi K, Yoshihama M, Williams FE, Kenmochi N, Sakakibara Y, Suiko M, Liu MC. Identification of zebrafish steroid sulfatase and comparative analysis of the enzymatic properties with human steroid sulfatase. J Steroid Biochem Mol Biol 2019; 185:110-117. [PMID: 30118815 PMCID: PMC6289849 DOI: 10.1016/j.jsbmb.2018.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/11/2018] [Accepted: 08/08/2018] [Indexed: 11/19/2022]
Abstract
Steroid sulfatase (STS) plays an important role in the regulation of steroid hormones. Metabolism of steroid hormones in zebrafish has been investigated, but the action of steroid sulfatase remains unknown. In this study, a zebrafish sts was cloned, expressed, purified, and characterized in comparison with the orthologous human enzyme. Enzymatic assays demonstrated that similar to human STS, zebrafish Sts was most active in catalyzing the hydrolysis of estrone-sulfate and estradiol-sulfate, among five steroid sulfates tested as substrates. Kinetic analyses revealed that the Km values of zebrafish Sts and human STS differed with respective substrates, but the catalytic efficiency as reflected by the Vmax/Km appeared comparable, except for DHEA-sulfate with which zebrafish Sts appeared less efficient. While zebrafish Sts was catalytically active at 28 °C, the enzyme appeared more active at 37 °C and with similar Km values to those determined at 28 °C. Assays performed in the presence of different divalent cations showed that the activities of both zebrafish and human STSs were stimulated by Ca2+, Mg2+, and Mn2+, and inhibited by Zn+2 and Fe2+. EMATE and STX64, two known mammalian steroid sulafatase inhibitors, were shown to be capable of inhibiting the activity of zebrafish Sts. Collectively, the results obtained indicated that zebrafish Sts exhibited enzymatic characteristics comparable to the human STS, suggesting that the physiological function of STS may be conserved between zebrafish and humans.
Collapse
Affiliation(s)
- Katsuhisa Kurogi
- Department of Pharmacology, College of Pharmacy, University of Toledo Health Science Campus, Toledo, OH 43614, USA; Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Maki Yoshihama
- Department of Pharmacology, College of Pharmacy, University of Toledo Health Science Campus, Toledo, OH 43614, USA; Frontier Research Center, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Frederick E Williams
- Department of Pharmacology, College of Pharmacy, University of Toledo Health Science Campus, Toledo, OH 43614, USA
| | - Naoya Kenmochi
- Frontier Research Center, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Yoichi Sakakibara
- Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Masahito Suiko
- Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Ming-Cheh Liu
- Department of Pharmacology, College of Pharmacy, University of Toledo Health Science Campus, Toledo, OH 43614, USA.
| |
Collapse
|
30
|
Elmi A, McDonald ES, Mankoff D. Imaging Tumor Proliferation in Breast Cancer: Current Update on Predictive Imaging Biomarkers. PET Clin 2018; 13:445-457. [PMID: 30100082 DOI: 10.1016/j.cpet.2018.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Uncontrolled growth is a hallmark of cancer; imaging cell proliferation can provides an early indicator of therapeutic response. This capability is especially well-matched to the emerging cell cycle-specific chemotherapeutics with the goal of identifying patients that benefit from these treatments early in the course of treatment to guide personalized therapy. This article focuses on investigational cell proliferation imaging PET radiotracers to evaluate tumor proliferation in the setting of cell cycle-targeted chemotherapy and endocrine therapy for metastatic breast cancer.
Collapse
Affiliation(s)
- Azadeh Elmi
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Elizabeth S McDonald
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - David Mankoff
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
31
|
Cornel KMC, Delvoux B, Saya T, Xanthoulea S, Konings GFJ, Kruitwagen RPFM, Bongers MY, Kooreman L, Romano A. The sulfatase pathway as estrogen supply in endometrial cancer. Steroids 2018; 139:45-52. [PMID: 30217785 DOI: 10.1016/j.steroids.2018.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 08/10/2018] [Accepted: 09/06/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Contradictory results are reported about the level of steroid sulfatase (STS), estrogen sulfotransferase (SULT1E1; together, the sulfatase pathway) and aromatase (CYP19A1) in endometrial cancer (EC). The aim of this study was to explore the levels of these enzymes in a well-characterized cohort of EC patients and postmenopausal controls. MATERIALS AND METHODS Endometrial tissues from 31 EC patients (21 grade 1 and 10 grade 2-3) and 19 postmenopausal controls were collected. Levels of mRNA (RT-qPCR) and protein (immunohistochemistry) were determined. STS enzyme activity was measured by HPLC, whereas SULT1E1 enzyme activity was determined using a novel method based on liquid chromatography-mass spectrometry (LC-MS/MS). RESULTS No significant differences in STS, SULT1E1 mRNA or protein levels and STS:SULT1E1 ratio were found. STS enzyme activity and STS:SULT1E1 activity ratio were significantly decreased in ECs compared with controls. CYP19A1 mRNA levels were lower in ECs than in controls. CONCLUSION A novel highly sensitive and accurate protocol to assess SULT1E1 activity is presented. STS enzyme activity and the STS:SULT1E1 activity ratio seem to be lower in ECs than in controls. STS is an important route for estrogen supply in endometrial cells.
Collapse
Affiliation(s)
- K M C Cornel
- GROW-School for Oncology & Developmental Biology, Maastricht University, the Netherlands; Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, the Netherlands
| | - B Delvoux
- GROW-School for Oncology & Developmental Biology, Maastricht University, the Netherlands; Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, the Netherlands
| | - T Saya
- GROW-School for Oncology & Developmental Biology, Maastricht University, the Netherlands
| | - S Xanthoulea
- GROW-School for Oncology & Developmental Biology, Maastricht University, the Netherlands; Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, the Netherlands
| | - G F J Konings
- GROW-School for Oncology & Developmental Biology, Maastricht University, the Netherlands; Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, the Netherlands
| | - R P F M Kruitwagen
- GROW-School for Oncology & Developmental Biology, Maastricht University, the Netherlands; Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, the Netherlands
| | - M Y Bongers
- GROW-School for Oncology & Developmental Biology, Maastricht University, the Netherlands; Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, the Netherlands
| | - L Kooreman
- Department of Pathology, Maastricht University Medical Centre, the Netherlands
| | - A Romano
- GROW-School for Oncology & Developmental Biology, Maastricht University, the Netherlands; Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, the Netherlands.
| |
Collapse
|
32
|
Sang X, Han H, Poirier D, Lin SX. Steroid sulfatase inhibition success and limitation in breast cancer clinical assays: An underlying mechanism. J Steroid Biochem Mol Biol 2018; 183:80-93. [PMID: 29803725 DOI: 10.1016/j.jsbmb.2018.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/18/2018] [Accepted: 05/23/2018] [Indexed: 12/23/2022]
Abstract
Steroid sulfatase is detectable in most hormone-dependent breast cancers. STX64, an STS inhibitor, induced tumor reduction in animal assay. Despite success in phase І clinical trial, the results of phase II trial were not that significant. Breast Cancer epithelial cells (MCF-7 and T47D) were treated with two STS inhibitors (STX64 and EM1913). Cell proliferation, cell cycle, and the concentrations of estradiol and 5α-dihydrotestosterone were measured to determine the endocrinological mechanism of sulfatase inhibition. Comparisons were made with inhibitions of reductive 17β-hydroxysteroid dehydrogenases (17β-HSDs). Proliferation studies showed that DNA synthesis in cancer cells was modestly decreased (approximately 20%), accompanied by an up to 6.5% in cells in the G0/G1 phase and cyclin D1 expression reduction. The concentrations of estradiol and 5α-dihydrotestosterone were decreased by 26% and 3% respectively. However, supplementation of 5α-dihydrotestosterone produced a significant increase (approximately 35.6%) in the anti-proliferative effect of sulfatase inhibition. This study has clarified sex-hormone control by sulfatase in BC, suggesting that the different roles of estradiol and 5α-dihydrotestosterone can lead to a reduction in the effect of sulfatase inhibition when compared with 17β-HSD7 inhibition. This suggests that combined treatment of sulfatase inhibitors with 17β-HSD inhibitors such as the type7 inhibitor could hold promise for hormone-dependent breast cancer.
Collapse
Affiliation(s)
- Xiaoye Sang
- Laboratory of Molecular Endocrinology and Oncology, CHU de Quebec-Research Center (CHUL) and Laval University, 2705 Boulevard Laurier, Québec City, Québec, G1V4G2, Canada
| | - Hui Han
- Laboratory of Molecular Endocrinology and Oncology, CHU de Quebec-Research Center (CHUL) and Laval University, 2705 Boulevard Laurier, Québec City, Québec, G1V4G2, Canada; Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Donald Poirier
- Laboratory of Molecular Endocrinology and Oncology, CHU de Quebec-Research Center (CHUL) and Laval University, 2705 Boulevard Laurier, Québec City, Québec, G1V4G2, Canada
| | - Sheng-Xiang Lin
- Laboratory of Molecular Endocrinology and Oncology, CHU de Quebec-Research Center (CHUL) and Laval University, 2705 Boulevard Laurier, Québec City, Québec, G1V4G2, Canada.
| |
Collapse
|
33
|
Ganeshapillai D, Woo LWL, Thomas MP, Purohit A, Potter BVL. C-3- and C-4-Substituted Bicyclic Coumarin Sulfamates as Potent Steroid Sulfatase Inhibitors. ACS OMEGA 2018; 3:10748-10772. [PMID: 30320251 PMCID: PMC6173509 DOI: 10.1021/acsomega.8b01383] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/16/2018] [Indexed: 06/08/2023]
Abstract
Synthetic routes to potent bicyclic nonsteroidal sulfamate-based active-site-directed inhibitors of the enzyme steroid sulfatase (STS), an emerging target in the treatment of postmenopausal hormone-dependent diseases, including breast cancer, are described. Sulfamate analogs 9-27 and 28-46 of the core in vivo active two-ring coumarin template, modified at the 4- and 3-positions, respectively, were synthesized to expand structure-activity relationships. α-Alkylacetoacetates were used to synthesize coumarin sulfamate derivatives with 3-position modifications, and the bicyclic ring of other parent coumarins was primarily constructed via the Pechmann synthesis of hydroxyl coumarins. Compounds were examined for STS inhibition in intact MCF-7 breast cancer cells and in placental microsomes. Low nanomolar potency STS inhibitors were achieved, and some were found to inhibit the enzyme in MCF-7 cells ca. 100-500 more potently than the parent 4-methylcoumarin-7-O-sulfamate 3, with the best compounds close in potency to the tricyclic clinical drug Irosustat. 3-Hexyl-4-methylcoumarin-7-O-sulfamate 29 and 3-benzyl-4-methylcoumarin-7-O-sulfamate 41 were particularly effective inhibitors with IC50 values of 0.68 and 1 nM in intact MCF-7 cells and 8 and 32 nM for placental microsomal STS, respectively. They were docked into the STS active site for comparison with estrone 3-O-sulfamate and Irosustat, showing their sulfamate group close to the catalytic hydrated formylglycine residue and their pendant group lying between the hydrophobic sidechains of L103, F178, and F488. Such highly potent STS inhibitors expand the structure-activity relationship for these coumarin sulfamate-based agents that possess therapeutic potential and may be worthy of further development.
Collapse
Affiliation(s)
- Dharshini Ganeshapillai
- Medicinal
Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2
7AY, U.K.
| | - L. W. Lawrence Woo
- Medicinal
Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2
7AY, U.K.
| | - Mark P. Thomas
- Medicinal
Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2
7AY, U.K.
| | - Atul Purohit
- Section
of Investigative Medicine, Diabetes, Endocrinology & Metabolism, Imperial College London, 6th Floor, Commonwealth Building (6N2B), Hammersmith
Hospital, Du Cane Road, London W12 0NN, U.K.
| | - Barry V. L. Potter
- Medicinal
Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, U.K.
- Medicinal
Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2
7AY, U.K.
| |
Collapse
|
34
|
Konings G, Brentjens L, Delvoux B, Linnanen T, Cornel K, Koskimies P, Bongers M, Kruitwagen R, Xanthoulea S, Romano A. Intracrine Regulation of Estrogen and Other Sex Steroid Levels in Endometrium and Non-gynecological Tissues; Pathology, Physiology, and Drug Discovery. Front Pharmacol 2018; 9:940. [PMID: 30283331 PMCID: PMC6157328 DOI: 10.3389/fphar.2018.00940] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022] Open
Abstract
Our understanding of the intracrine (or local) regulation of estrogen and other steroid synthesis and degradation expanded in the last decades, also thanks to recent technological advances in chromatography mass-spectrometry. Estrogen responsive tissues and organs are not passive receivers of the pool of steroids present in the blood but they can actively modify the intra-tissue steroid concentrations. This allows fine-tuning the exposure of responsive tissues and organs to estrogens and other steroids in order to best respond to the physiological needs of each specific organ. Deviations in such intracrine control can lead to unbalanced steroid hormone exposure and disturbances. Through a systematic bibliographic search on the expression of the intracrine enzymes in various tissues, this review gives an up-to-date view of the intracrine estrogen metabolisms, and to a lesser extent that of progestogens and androgens, in the lower female genital tract, including the physiological control of endometrial functions, receptivity, menopausal status and related pathological conditions. An overview of the intracrine regulation in extra gynecological tissues such as the lungs, gastrointestinal tract, brain, colon and bone is given. Current therapeutic approaches aimed at interfering with these metabolisms and future perspectives are discussed.
Collapse
Affiliation(s)
- Gonda Konings
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Linda Brentjens
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Bert Delvoux
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | | | - Karlijn Cornel
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | | | - Marlies Bongers
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Roy Kruitwagen
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Sofia Xanthoulea
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Andrea Romano
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
35
|
Foster PA, Mueller JW. SULFATION PATHWAYS: Insights into steroid sulfation and desulfation pathways. J Mol Endocrinol 2018; 61:T271-T283. [PMID: 29764919 DOI: 10.1530/jme-18-0086] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 12/18/2022]
Abstract
Sulfation and desulfation pathways represent highly dynamic ways of shuttling, repressing and re-activating steroid hormones, thus controlling their immense biological potency at the very heart of endocrinology. This theme currently experiences growing research interest from various sides, including, but not limited to, novel insights about phospho-adenosine-5'-phosphosulfate synthase and sulfotransferase function and regulation, novel analytics for steroid conjugate detection and quantification. Within this review, we will also define how sulfation pathways are ripe for drug development strategies, which have translational potential to treat a number of conditions, including chronic inflammatory diseases and steroid-dependent cancers.
Collapse
Affiliation(s)
- Paul A Foster
- Institute of Metabolism and Systems Research (IMSR)University of Birmingham, Birmingham, UK
- Centre for EndocrinologyDiabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, UK
| | - Jonathan Wolf Mueller
- Institute of Metabolism and Systems Research (IMSR)University of Birmingham, Birmingham, UK
- Centre for EndocrinologyDiabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, UK
| |
Collapse
|
36
|
Potter BVL. SULFATION PATHWAYS: Steroid sulphatase inhibition via aryl sulphamates: clinical progress, mechanism and future prospects. J Mol Endocrinol 2018; 61:T233-T252. [PMID: 29618488 DOI: 10.1530/jme-18-0045] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 04/04/2018] [Indexed: 12/13/2022]
Abstract
Steroid sulphatase is an emerging drug target for the endocrine therapy of hormone-dependent diseases, catalysing oestrogen sulphate hydrolysis to oestrogen. Drug discovery, developing the core aryl O-sulphamate pharmacophore, has led to steroidal and non-steroidal drugs entering numerous clinical trials, with promising results in oncology and women's health. Steroidal oestrogen sulphamate derivatives were the first irreversible active-site-directed inhibitors and one was developed clinically as an oral oestradiol pro-drug and for endometriosis applications. This review summarizes work leading to the therapeutic concept of sulphatase inhibition, clinical trials executed to date and new insights into the mechanism of inhibition of steroid sulphatase. To date, the non-steroidal sulphatase inhibitor Irosustat has been evaluated clinically in breast cancer, alone and in combination, in endometrial cancer and in prostate cancer. The versatile core pharmacophore both imbues attractive pharmaceutical properties and functions via three distinct mechanisms of action, as a pro-drug, an enzyme active-site-modifying motif, likely through direct sulphamoyl group transfer, and as a structural component augmenting activity, for example by enhancing interactions at the colchicine binding site of tubulin. Preliminary new structural data on the Pseudomonas aeruginosa arylsulphatase enzyme suggest two possible sulphamate-based adducts with the active site formylglycine as candidates for the inhibition end product via sulphamoyl or sulphonylamine transfer, and a speculative choice is suggested. The clinical status of sulphatase inhibition is surveyed and how it might develop in the future. Also discussed are dual-targeting approaches, development of 2-substituted steroidal sulphamates and non-steroidal derivatives as multi-targeting agents for hormone-independent tumours, with other emerging directions.
Collapse
Affiliation(s)
- Barry V L Potter
- Medicinal Chemistry & Drug DiscoveryDepartment of Pharmacology, University of Oxford, Oxford, UK
| |
Collapse
|
37
|
Nussbaumer P. Challenging medicinal chemistry: ups and downs in a drug discovery project. MONATSHEFTE FUR CHEMIE 2018. [DOI: 10.1007/s00706-018-2194-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Tong CWS, Wu M, Cho WCS, To KKW. Recent Advances in the Treatment of Breast Cancer. Front Oncol 2018; 8:227. [PMID: 29963498 PMCID: PMC6010518 DOI: 10.3389/fonc.2018.00227] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/01/2018] [Indexed: 12/15/2022] Open
Abstract
Breast cancer (BC) is the most common malignancy in women. It is classified into a few major molecular subtypes according to hormone and growth factor receptor expression. Over the past few years, substantial advances have been made in the discovery of new drugs for treating BC. Improved understanding of the biologic heterogeneity of BC has allowed the development of more effective and individualized approach to treatment. In this review, we provide an update about the current treatment strategy and discuss the various emerging novel therapies for the major molecular subtypes of BC. A brief account of the clinical development of inhibitors of poly(ADP-ribose) polymerase, cyclin-dependent kinases 4 and 6, phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin pathway, histone deacetylation, multi-targeting tyrosine kinases, and immune checkpoints for personalized treatment of BC is included. However, no targeted drug has been approved for the most aggressive subtype-triple negative breast cancer (TNBC). Thus, we discuss the heterogeneity of TNBC and how molecular subtyping of TNBC may help drug discovery for this deadly disease. The emergence of drug resistance also poses threat to the successful development of targeted therapy in various molecular subtypes of BC. New clinical trials should incorporate advanced methods to identify changes induced by drug treatment, which may be associated with the upregulation of compensatory signaling pathways in drug resistant cancer cells.
Collapse
Affiliation(s)
- Christy W S Tong
- Faculty of Medicine, School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Mingxia Wu
- Faculty of Medicine, School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, Hong Kong
| | - Kenneth K W To
- Faculty of Medicine, School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
39
|
McNamara KM, Guestini F, Sauer T, Touma J, Bukholm IR, Lindstrøm JC, Sasano H, Geisler J. In breast cancer subtypes steroid sulfatase (STS) is associated with less aggressive tumour characteristics. Br J Cancer 2018; 118:1208-1216. [PMID: 29563635 PMCID: PMC5943586 DOI: 10.1038/s41416-018-0034-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The majority of breast cancer cases are steroid dependent neoplasms, with hormonal manipulation of either CYP19/aromatase or oestrogen receptor alpha axis being the most common therapy. Alternate pathways of steroid actions are documented, but their interconnections and correlations to BC subtypes and clinical outcome could be further explored. METHODS We evaluated selected steroid receptors (Androgen Receptor, Oestrogen Receptor alpha and Beta, Glucocorticoid Receptor) and oestrogen pathways (steroid sulfatase (STS), 17β-hydroxysteroid dehydrogenase 2 (17βHSD2) and aromatase) in a cohort of 139 BC cases from Norway. Using logistic and cox regression analysis, we examined interactions between these and clinical outcomes such as distant metastasis, local relapse and survival. RESULTS Our principal finding is an impact of STS expression on the risk for distant metastasis (p<0.001) and local relapses (p <0.001), HER2 subtype (p<0.015), and survival (p<0.001). The suggestion of a beneficial effect of alternative oestrogen synthesis pathways was strengthened by inverted, but non-significant findings for 17βHSD2. CONCLUSIONS Increased intratumoural metabolism of oestrogens through STS is associated with significantly lower incidence of relapse and/or distant metastasis and correspondingly improved prognosis. The enrichment of STS in the HER2 overexpressing subtype is intriguing, especially given the possible role of HER-2 over-expression in endocrine resistance.
Collapse
Affiliation(s)
- Keely M McNamara
- Department of Anatomic Pathology, School of Graduate Medicine, Tohoku University Japan, Sendai, Japan.
| | - Fouzia Guestini
- Department of Anatomic Pathology, School of Graduate Medicine, Tohoku University Japan, Sendai, Japan
| | - Torill Sauer
- Department of Pathology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Joel Touma
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Breast- and Endocrine Surgery, Akershus University Hospital, Lørenskog, Norway
| | - Ida Rashida Bukholm
- Department of Breast- and Endocrine Surgery, Akershus University Hospital, Lørenskog, Norway
| | - Jonas C Lindstrøm
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Helse Sør-Øst Health Services Research Centre, Akershus University Hospital, Lørenskog, Norway
| | - Hironobu Sasano
- Department of Anatomic Pathology, School of Graduate Medicine, Tohoku University Japan, Sendai, Japan
| | - Jürgen Geisler
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
| |
Collapse
|