1
|
La Merrill MA, Vandenberg LN, Smith MT, Goodson W, Browne P, Patisaul HB, Guyton KZ, Kortenkamp A, Cogliano VJ, Woodruff TJ, Rieswijk L, Sone H, Korach KS, Gore AC, Zeise L, Zoeller RT. Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification. Nat Rev Endocrinol 2020; 16:45-57. [PMID: 31719706 PMCID: PMC6902641 DOI: 10.1038/s41574-019-0273-8] [Citation(s) in RCA: 404] [Impact Index Per Article: 101.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/02/2019] [Indexed: 12/11/2022]
Abstract
Endocrine-disrupting chemicals (EDCs) are exogenous chemicals that interfere with hormone action, thereby increasing the risk of adverse health outcomes, including cancer, reproductive impairment, cognitive deficits and obesity. A complex literature of mechanistic studies provides evidence on the hazards of EDC exposure, yet there is no widely accepted systematic method to integrate these data to help identify EDC hazards. Inspired by work to improve hazard identification of carcinogens using key characteristics (KCs), we have developed ten KCs of EDCs based on our knowledge of hormone actions and EDC effects. In this Expert Consensus Statement, we describe the logic by which these KCs are identified and the assays that could be used to assess several of these KCs. We reflect on how these ten KCs can be used to identify, organize and utilize mechanistic data when evaluating chemicals as EDCs, and we use diethylstilbestrol, bisphenol A and perchlorate as examples to illustrate this approach.
Collapse
Affiliation(s)
- Michele A La Merrill
- Department of Environmental Toxicology, University of California, Davis, CA, USA.
| | - Laura N Vandenberg
- Department of Environmental Health Science, School of Public Health and Health Sciences, University of Masschusetts, Amherst, MA, USA
| | - Martyn T Smith
- School of Public Health, University of California, Berkeley, CA, USA
| | - William Goodson
- California Pacific Medical Center Research Institute, Sutter Hospital, San Francisco, CA, USA
| | - Patience Browne
- Environmental Directorate, Organisation for Economic Co-operation and Development, Paris, France
| | - Heather B Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Kathryn Z Guyton
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | | | - Vincent J Cogliano
- Office of the Science Advisor, United States Environmental Protection Agency, Washington, DC, USA
| | - Tracey J Woodruff
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Linda Rieswijk
- School of Public Health, University of California, Berkeley, CA, USA
- Institute of Data Science, Maastricht University, Maastricht, Netherlands
| | - Hideko Sone
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Ibaraki, Japan
| | - Kenneth S Korach
- Receptor Biology, Section Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Science, Durham, NC, USA
| | - Andrea C Gore
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX, USA
| | - Lauren Zeise
- Office of the Director, Office of Environmental Health Hazard Assessment of the California Environmental Protection Agency, Sacramento, CA, USA
| | - R Thomas Zoeller
- Biology Department, University of Masschusetts, Amherst, MA, USA
| |
Collapse
|
2
|
Ertuğrul B, Özener B, Pawłowski B. Prenatal exposure to oestrogens estimated by digit ratio (2d/4d) and breast size in young nulliparous women. Ann Hum Biol 2019; 47:81-84. [PMID: 31830808 DOI: 10.1080/03014460.2019.1699955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Digit ratio (2d/4d) in humans is commonly used as a proxy for the exposure to oestrogens and androgens in prenatal life. Masculinisation/feminisation in adults may be also related to digit ratio and therefore to the oestrogen/androgen ratio in prenatal life. It has been shown, for instance, that Waist-to-Hip ratio (WHR) and the amount and distribution of body fat are related to digit ratio in women. A species-specific, sexually dimorphic morphological trait in humans is also a pair of permanent breasts that develop during puberty, under the influence of oestrogens. Here we test if prenatal exposure to oestrogens (in relation to androgens), measured by digit ratio, may also be related to breast size in young, nulliparous women. 133 Turkish students (mean age 22.2) were measured. Breast size was calculated as the difference between breast and under-breast circumferences. We found that when controlling for body mass index (BMI), both right and left digit ratios correlate positively with breast size. This relationship is stronger for the digit ratio of the right hand, which confirms that this side is a better measure of sex differences. Thus, higher exposure to oestrogens in prenatal life is related with stronger expression of a sexually dimorphic trait, such as breast size, in adult women.
Collapse
Affiliation(s)
- Berna Ertuğrul
- Department of Anthropology, Sivas Cumhuriyet University, Sivas, Turkey
| | - Barış Özener
- Department of Anthropology, İstanbul University, İstanbul, Turkey
| | | |
Collapse
|
3
|
Cohn BA, La Merrill MA, Krigbaum NY, Wang M, Park JS, Petreas M, Yeh G, Hovey RC, Zimmermann L, Cirillo PM. In utero exposure to poly- and perfluoroalkyl substances (PFASs) and subsequent breast cancer. Reprod Toxicol 2019; 92:112-119. [PMID: 31323350 DOI: 10.1016/j.reprotox.2019.06.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 05/08/2019] [Accepted: 06/28/2019] [Indexed: 01/09/2023]
Abstract
We tested the hypothesis that maternal perinatal serum levels of poly and perfluoroalkyl substances (PFASs) predict risk for breast cancer in daughters in a 54-year follow-up of 9300 daughters born 1959-1967 in the Child Health and Development Studies pregnancy cohort. Total cholesterol and PFASs were measured in archived maternal perinatal serum for 102 daughter breast cancer cases diagnosed by age 52, and 310 controls matched on birth year and blood draw trimester. High maternal N-ethyl-perfluorooctane sulfonamido acetic acid (EtFOSAA), a precursor of perfluorooctane sulfonic acid (PFOS), in combination with high maternal total cholesterol predicted a 3.6-fold increased risk of breast cancer (pinteraction<0.05). Conversely, maternal PFOS was associated with decreased daughters' breast cancer risk. Predictions were robust to alternative modeling and independent of other maternal factors. Future generations continue to be exposed to ubiquitous, persistent PFASs. These findings are relevant to breast cancer prevention if confirmed experimentally and where possible, in additional epidemiology studies of internal doses of PFASs and other chemical mixtures especially during vulnerable windows in early life.
Collapse
Affiliation(s)
- Barbara A Cohn
- Child Health and Development Studies, Public Health Institute, Berkeley, CA, USA.
| | - Michele A La Merrill
- Department of Environmental Toxicology, Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Nickilou Y Krigbaum
- Child Health and Development Studies, Public Health Institute, Berkeley, CA, USA
| | - Miaomiao Wang
- Environmental Chemistry Laboratory, California Department of Toxic Substances Control, Berkeley, California, USA
| | - June-Soo Park
- Environmental Chemistry Laboratory, California Department of Toxic Substances Control, Berkeley, California, USA
| | - Myrto Petreas
- Environmental Chemistry Laboratory, California Department of Toxic Substances Control, Berkeley, California, USA
| | - Gregory Yeh
- Environmental Chemistry Laboratory, California Department of Toxic Substances Control, Berkeley, California, USA
| | - Russell C Hovey
- Department of Animal Science, University of California, Davis, CA, USA
| | - Lauren Zimmermann
- Child Health and Development Studies, Public Health Institute, Berkeley, CA, USA
| | - Piera M Cirillo
- Child Health and Development Studies, Public Health Institute, Berkeley, CA, USA
| |
Collapse
|
4
|
Al Jishi T, Sergi C. Current perspective of diethylstilbestrol (DES) exposure in mothers and offspring. Reprod Toxicol 2017; 71:71-77. [DOI: 10.1016/j.reprotox.2017.04.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 04/15/2017] [Accepted: 04/27/2017] [Indexed: 02/08/2023]
|
5
|
Sweeney MF, Hasan N, Soto AM, Sonnenschein C. Environmental endocrine disruptors: Effects on the human male reproductive system. Rev Endocr Metab Disord 2015; 16:341-57. [PMID: 26847433 PMCID: PMC4803593 DOI: 10.1007/s11154-016-9337-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Incidences of altered development and neoplasia of male reproductive organs have increased during the last 50 years, as shown by epidemiological data. These data are associated with the increased presence of environmental chemicals, specifically "endocrine disruptors," that interfere with normal hormonal action. Much research has gone into testing the effects of specific endocrine disrupting chemicals (EDCs) on the development of male reproductive organs and endocrine-related cancers in both in vitro and in vivo models. Efforts have been made to bridge the accruing laboratory findings with the epidemiological data to draw conclusions regarding the relationship between EDCs, altered development and carcinogenesis. The ability of EDCs to predispose target fetal and adult tissues to neoplastic transformation is best explained under the framework of the tissue organization field theory of carcinogenesis (TOFT), which posits that carcinogenesis is development gone awry. Here, we focus on the available evidence, from both empirical and epidemiological studies, regarding the effects of EDCs on male reproductive development and carcinogenesis of endocrine target tissues. We also critique current research methodology utilized in the investigation of EDCs effects and outline what could possibly be done to address these obstacles moving forward.
Collapse
Affiliation(s)
- M F Sweeney
- Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, 02111, USA
| | - N Hasan
- Program in Cell, Molecular & Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, 02111, USA
| | - A M Soto
- Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, 02111, USA
- Program in Cell, Molecular & Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, 02111, USA
- Department of Integrative Physiology & Pathobiology, Tufts University, 136 Harrison Ave, Boston, MA, 02111, USA
| | - C Sonnenschein
- Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, 02111, USA.
- Program in Cell, Molecular & Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, 02111, USA.
- Department of Integrative Physiology & Pathobiology, Tufts University, 136 Harrison Ave, Boston, MA, 02111, USA.
| |
Collapse
|
6
|
Stanko JP, Easterling MR, Fenton SE. Application of Sholl analysis to quantify changes in growth and development in rat mammary gland whole mounts. Reprod Toxicol 2014; 54:129-35. [PMID: 25463529 DOI: 10.1016/j.reprotox.2014.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 10/07/2014] [Accepted: 11/07/2014] [Indexed: 10/24/2022]
Abstract
Studies that utilize the rodent mammary gland (MG) as an endpoint for assessing the developmental toxicity of chemical exposures typically employ either basic dimensional measurements or developmental scoring of morphological characteristics as a means to quantify MG development. There are numerous means by which to report these developmental changes, leading to inconsistent translation across laboratories. The Sholl analysis is a method historically used for quantifying neuronal dendritic patterns. The present study describes the use of the Sholl analysis to quantify MG branching characteristics. Using this method, we were able to detect significant differences in branching density in MG of peripubertal female Sprague Dawley rats that had been exposed to vehicle or a potent estrogen. These data suggest the Sholl analysis can be an effective tool for quantitatively measuring an important characteristic of MG development and for examining associations between MG growth and density and adverse effects in the breast.
Collapse
Affiliation(s)
- Jason P Stanko
- National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, United States
| | | | - Suzanne E Fenton
- National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, United States.
| |
Collapse
|
7
|
Williams PT. Breast cancer mortality vs. exercise and breast size in runners and walkers. PLoS One 2013; 8:e80616. [PMID: 24349006 PMCID: PMC3857169 DOI: 10.1371/journal.pone.0080616] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 10/13/2013] [Indexed: 02/06/2023] Open
Abstract
Purpose Identify predictors of breast cancer mortality in women who exercised below (<7.5 metabolic equivalent hours/week, MET-hours/wk), at (7.5 to 12.5 MET-hours/wk), or above (≥12.5 MET-hours/wk) recommended levels. Methods Cox proportional hazard analyses of baseline pre-diagnosis MET-hours/wk vs. breast cancer mortality adjusted for follow-up age, race, baseline menopause, and estrogen and oral contraceptive use in 79,124 women (32,872 walkers, 46,252 runners) from the National Walkers' and Runners' Health Studies. Results One-hundred eleven women (57 walkers, 54 runners) died from breast cancer during the 11-year follow-up. The decline in mortality in women who exercised ≥7.5 MET-hours/wk was not different for walking and running (P = 0.34), so running and walking energy expenditures were combined. The risk for breast cancer mortality was 41.5% lower for ≥7.5 vs. <7.5 MET-hours/wk (HR: 0.585, 95%CI: 0.382 to 0.924, P = 0.02), which persisted when adjusted for BMI (HR: 0.584, 95%CI: 0.368 to 0.956, P = 0.03). Other than age and menopause, baseline bra cup size was the strongest predictor of breast cancer mortality, i.e., 57.9% risk increase per cup size when adjusted for MET-hours/wk and the other covariates (HR: 1.579, 95%CI: 1.268 to 1.966, P<0.0001), and 70.4% greater when further adjusted for BMI (HR: 1.704, 95%CI: 1.344 to 2.156, P = 10−5). Breast cancer mortality was 4.0-fold greater (HR: 3.980, 95%CI: 1.894 to 9.412, P = 0.0001) for C-cup, and 4.7-fold greater (HR: 4.668, 95%CI: 1.963 to 11.980, P = 0.0004) for ≥D-cup vs. A-cup when adjusted for BMI and other covariates. Adjustment for cup size and BMI did not eliminate the association between breast cancer mortality and ≥7.5 MET-hour/wk walked or run (HR: 0.615, 95%CI: 0.389 to 1.004, P = 0.05). Conclusion Breast cancer mortality decreased in association with both meeting the exercise recommendations and smaller breast volume.
Collapse
Affiliation(s)
- Paul T. Williams
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|