1
|
Tusman G, Scandurra AG, Böhm SH, Echeverría NI, Meschino G, Kremeier P, Sipmann FS. Noninvasive estimation of PaCO 2 from volumetric capnography in animals with injured lungs: an Artificial Intelligence approach. J Clin Monit Comput 2024:10.1007/s10877-024-01253-z. [PMID: 39725812 DOI: 10.1007/s10877-024-01253-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/08/2024] [Indexed: 12/28/2024]
Abstract
To investigate the feasibility of non-invasively estimating the arterial partial pressure of carbon dioxide (PaCO2) using a computational Adaptive Neuro-Fuzzy Inference System (ANFIS) model fed by noninvasive volumetric capnography (VCap) parameters. In 14 lung-lavaged pigs, we continuously measured PaCO2 with an optical intravascular catheter and VCap on a breath-by-breath basis. Animals were mechanically ventilated with fixed settings and subjected to 0 to 22 cmH2O of positive end-expiratory pressure steps. The resultant 8599 pairs of data points - one PaCO2 value matched with twelve Vcap and ventilatory parameters derived in one breath - fed the ANFIS model. The data was separated into 7370 data points for training the model (85%) and 1229 for testing (15%). The ANFIS analysis was repeated 10 independent times, randomly mixing the total data points. Bland-Altman plot (accuracy and precision), root mean square error (quality of prediction) and four-quadrant and polar plots concordance indexes (trending ability) between reference and estimated PaCO2 were analyzed. The Bland-Altman plot performed in 10 independent tested ANFIS models showed a mean bias between reference and estimated PaCO2 of 0.03 ± 0.03 mmHg, with limits of agreement of 2.25 ± 0.42 mmHg, and a root mean square error of 1.15 ± 0.06 mmHg. A good trending ability was confirmed by four quadrant and polar plots concordance indexes of 95.5% and 94.3%, respectively. In an animal lung injury model, the Adaptive Neuro-Fuzzy Inference System model fed by noninvasive volumetric capnography parameters can estimate PaCO2 with high accuracy, acceptable precision, and good trending ability.
Collapse
Affiliation(s)
- Gerardo Tusman
- Department of Anesthesiology, Hospital Privado de Comunidad, Mar del Plata, Buenos Aires, 7600, Argentina.
| | - Adriana G Scandurra
- Bioengineering Laboratory, Facultad de Ingeniería, ICYTE-CONICET, Universidad Nacional de, Mar del Plata, Argentina
| | - Stephan H Böhm
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, Rostock, Germany
| | - Noelia I Echeverría
- Bioengineering Laboratory, Facultad de Ingeniería, ICYTE-CONICET, Universidad Nacional de, Mar del Plata, Argentina
| | - Gustavo Meschino
- Bioengineering Laboratory, Facultad de Ingeniería, ICYTE-CONICET, Universidad Nacional de, Mar del Plata, Argentina
| | - P Kremeier
- Simulation Center for Mechanical Ventilation, Karlsruhe, Germany
| | - Fernando Suarez Sipmann
- Department of Critical Care, Hospital Universitario de La Princesa, Madrid, Spain
- CIBERES, Madrid, Spain
| |
Collapse
|
2
|
Ayadi A, Hammami I, Sahtout W, Baledant O. Improving arterial stiffness prediction with machine learning utilizing hemodynamics and biomechanical features derived from phase contrast magnetic resonance imaging. Proc Inst Mech Eng H 2024; 238:1120-1132. [PMID: 39533658 DOI: 10.1177/09544119241291191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Arterial stiffness has emerged as a prominent marker of risk for cardiovascular diseases. Few studies are interested in predicting symptomatic or asymptomatic arterial stiffness from hemodynamics and biomechanics parameters. Machine learning models can be used as an intelligent tool for arterial stiffness detection based on hemodynamic and biomechanical parameters. Indeed, in the case of arterial stiffness hemodynamics and biomechanics parameters present significant change, such as an increase in age, local wave velocity, arterial elastance, Young's modulus, reflected wave amplitude, decrease in arterial compliance, reflected wave arrival time, and reflection coefficient. This study aims to assess the impact of artificial intelligence using machine-learning algorithms for the detection of arterial stiffness. The ability of various machine-learning approaches can be investigated to predict wall stiffness in the carotid artery and to evaluate the risk of cardiovascular events. A mathematical model developed in previous work was used to determine hemodynamic and biomechanical parameters. Accuracy, sensitivity, and specificity are calculated to evaluate the performance of the proposed models. All used classifiers demonstrated high performance in predicting arterial stiffness, notably with the Support Vector Machine, Artificial Neural Network, and Decision Tree classifiers achieving exceptional accuracies of 100%. In this study, the potential of machine learning based on hemodynamic parameters for the prediction of symptomatic and asymptomatic arterial stiffness was demonstrated.
Collapse
Affiliation(s)
- Asma Ayadi
- Tunisian Center for Nuclear Sciences and Technology, Technopark Sidi Thabet, Sidi Thabet, Tunisia
- Research Laboratory on Energy and Matter for Nuclear Science Development (LR16CNSTN02), Ministry of Higher Education and Research, Tunisia, Tunis
| | - Imen Hammami
- Tunisian Center for Nuclear Sciences and Technology, Technopark Sidi Thabet, Sidi Thabet, Tunisia
- Research Laboratory on Energy and Matter for Nuclear Science Development (LR16CNSTN02), Ministry of Higher Education and Research, Tunisia, Tunis
| | - Wassila Sahtout
- Laboratory of Biophysics and Medical Technology Higher Institute of Biotechnology of Sfax University of Sfax, Sfax, Tunisia
| | - Olivier Baledant
- Department of Imaging and Biophysics University of Picardie Jules Verne CHU Amiens, Amiens, France
| |
Collapse
|
3
|
Cau R, Pisu F, Suri JS, Saba L. Addressing hidden risks: Systematic review of artificial intelligence biases across racial and ethnic groups in cardiovascular diseases. Eur J Radiol 2024; 183:111867. [PMID: 39637580 DOI: 10.1016/j.ejrad.2024.111867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Artificial intelligence (AI)-based models are increasingly being integrated into cardiovascular medicine. Despite promising potential, racial and ethnic biases remain a key concern regarding the development and implementation of AI models in clinical settings. OBJECTIVE This systematic review offers an overview of the accuracy and clinical applicability of AI models for cardiovascular diagnosis and prognosis across diverse racial and ethnic groups. METHOD A comprehensive literature search was conducted across four medical and scientific databases: PubMed, MEDLINE via Ovid, Scopus, and the Cochrane Library, to evaluate racial and ethnic disparities in cardiovascular medicine. RESULTS A total of 1704 references were screened, of which 11 articles were included in the final analysis. Applications of AI-based algorithms across different race/ethnic groups were varied and involved diagnosis, prognosis, and imaging segmentation. Among the 11 studies, 9 (82%) concluded that racial/ethnic bias existed, while 2 (18%) found no differences in the outcomes of AI models across various ethnicities. CONCLUSION Our results suggest significant differences in how AI models perform in cardiovascular medicine across diverse racial and ethnic groups. CLINICAL RELEVANCE STATEMENT The increasing integration of AI into cardiovascular medicine highlights the importance of evaluating its performance across diverse populations. This systematic review underscores the critical need to address racial and ethnic disparities in AI-based models to ensure equitable healthcare delivery.
Collapse
Affiliation(s)
- Riccardo Cau
- Department of Radiology, Azienda Ospedaliero Universitaria, Monserrato, Cagliari, Italy
| | - Francesco Pisu
- Department of Radiology, Azienda Ospedaliero Universitaria, Monserrato, Cagliari, Italy
| | - Jasjit S Suri
- Department of Radiology, Azienda Ospedaliero Universitaria, Monserrato, Cagliari, Italy
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, Monserrato, Cagliari, Italy.
| |
Collapse
|
4
|
Bhagawati M, Paul S, Mantella L, Johri AM, Gupta S, Laird JR, Singh IM, Khanna NN, Al-Maini M, Isenovic ER, Tiwari E, Singh R, Nicolaides A, Saba L, Anand V, Suri JS. Cardiovascular Disease Risk Stratification Using Hybrid Deep Learning Paradigm: First of Its Kind on Canadian Trial Data. Diagnostics (Basel) 2024; 14:1894. [PMID: 39272680 PMCID: PMC11393849 DOI: 10.3390/diagnostics14171894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND The risk of cardiovascular disease (CVD) has traditionally been predicted via the assessment of carotid plaques. In the proposed study, AtheroEdge™ 3.0HDL (AtheroPoint™, Roseville, CA, USA) was designed to demonstrate how well the features obtained from carotid plaques determine the risk of CVD. We hypothesize that hybrid deep learning (HDL) will outperform unidirectional deep learning, bidirectional deep learning, and machine learning (ML) paradigms. METHODOLOGY 500 people who had undergone targeted carotid B-mode ultrasonography and coronary angiography were included in the proposed study. ML feature selection was carried out using three different methods, namely principal component analysis (PCA) pooling, the chi-square test (CST), and the random forest regression (RFR) test. The unidirectional and bidirectional deep learning models were trained, and then six types of novel HDL-based models were designed for CVD risk stratification. The AtheroEdge™ 3.0HDL was scientifically validated using seen and unseen datasets while the reliability and statistical tests were conducted using CST along with p-value significance. The performance of AtheroEdge™ 3.0HDL was evaluated by measuring the p-value and area-under-the-curve for both seen and unseen data. RESULTS The HDL system showed an improvement of 30.20% (0.954 vs. 0.702) over the ML system using the seen datasets. The ML feature extraction analysis showed 70% of common features among all three methods. The generalization of AtheroEdge™ 3.0HDL showed less than 1% (p-value < 0.001) difference between seen and unseen data, complying with regulatory standards. CONCLUSIONS The hypothesis for AtheroEdge™ 3.0HDL was scientifically validated, and the model was tested for reliability and stability and is further adaptable clinically.
Collapse
Affiliation(s)
- Mrinalini Bhagawati
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong 793022, India
| | - Sudip Paul
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong 793022, India
| | - Laura Mantella
- Division of Cardiology, Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Amer M Johri
- Division of Cardiology, Department of Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Siddharth Gupta
- Department of Computer Science and Engineering, Bharati Vidyapeeth's College of Engineering, New Delhi 110063, India
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA 94574, USA
| | - Inder M Singh
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA
| | | | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON M5G 1N8, Canada
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, National Institute of The Republic of Serbia, University of Belgrade, 11001 Belgrade, Serbia
| | - Ekta Tiwari
- Department of Computer Science, Visvesvaraya National Institute of Technology (VNIT), Nagpur 440010, India
| | - Rajesh Singh
- Division of Research and Innovation, UTI, Uttaranchal University, Dehradun 248007, India
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia, Nicosia 2417, Cyprus
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, 40138 Cagliari, Italy
| | - Vinod Anand
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA
| | - Jasjit S Suri
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA
- Department of CE, Graphic Era Deemed to be University, Dehradun 248002, India
- Department of ECE, Idaho State University, Pocatello, ID 83209, USA
- University Center for Research & Development, Chandigarh University, Mohali 140413, India
- Symbiosis Institute of Technology, Nagpur Campus, Symbiosis International (Deemed University), Pune 412115, India
| |
Collapse
|
5
|
Bhagawati M, Paul S, Mantella L, Johri AM, Laird JR, Singh IM, Singh R, Garg D, Fouda MM, Khanna NN, Cau R, Abraham A, Al-Maini M, Isenovic ER, Sharma AM, Fernandes JFE, Chaturvedi S, Karla MK, Nicolaides A, Saba L, Suri JS. Deep learning approach for cardiovascular disease risk stratification and survival analysis on a Canadian cohort. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2024; 40:1283-1303. [PMID: 38678144 DOI: 10.1007/s10554-024-03100-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/02/2024] [Indexed: 04/29/2024]
Abstract
The quantification of carotid plaque has been routinely used to predict cardiovascular risk in cardiovascular disease (CVD) and coronary artery disease (CAD). To determine how well carotid plaque features predict the likelihood of CAD and cardiovascular (CV) events using deep learning (DL) and compare against the machine learning (ML) paradigm. The participants in this study consisted of 459 individuals who had undergone coronary angiography, contrast-enhanced ultrasonography, and focused carotid B-mode ultrasound. Each patient was tracked for thirty days. The measurements on these patients consisted of maximum plaque height (MPH), total plaque area (TPA), carotid intima-media thickness (cIMT), and intraplaque neovascularization (IPN). CAD risk and CV event stratification were performed by applying eight types of DL-based models. Univariate and multivariate analysis was also conducted to predict the most significant risk predictors. The DL's model effectiveness was evaluated by the area-under-the-curve measurement while the CV event prediction was evaluated using the Cox proportional hazard model (CPHM) and compared against the DL-based concordance index (c-index). IPN showed a substantial ability to predict CV events (p < 0.0001). The best DL system improved by 21% (0.929 vs. 0.762) over the best ML system. DL-based CV event prediction showed a ~ 17% increase in DL-based c-index compared to the CPHM (0.86 vs. 0.73). CAD and CV incidents were linked to IPN and carotid imaging characteristics. For survival analysis and CAD prediction, the DL-based system performs superior to ML-based models.
Collapse
Affiliation(s)
- Mrinalini Bhagawati
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong, India
| | - Sudip Paul
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong, India
| | - Laura Mantella
- Division of Cardiology, Department of Medicine, University of Toronto, Toronto, Canada
| | - Amer M Johri
- Division of Cardiology, Department of Medicine, Queen's University, Kingston, Canada
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, 94574, USA
| | - Inder M Singh
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA, 95661, USA
| | - Rajesh Singh
- Division of Research and Innovation, UTI, Uttaranchal University, Dehradun, India
| | - Deepak Garg
- School of Cowereter Science and Artificial Intelligence, SR University, Warangal, Telangana, 506371, India
| | - Mostafa M Fouda
- Department of ECE, Idaho State University, Pocatello, ID, 83209, USA
| | | | - Riccardo Cau
- Department of Radiology, Azienda Ospedaliero Universitaria, 40138, Cagliari, Italy
| | | | - Mostafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON, Canada
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, National Institute of The Republic of Serbia, University of Belgrade, 11001, Belgrade, Serbia
| | - Aditya M Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA, 22904, USA
| | | | - Seemant Chaturvedi
- Department of Neurology & Stroke Program, University of Maryland, Baltimore, MD, USA
| | - Mannudeep K Karla
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia Medical School, Nicosia, Cyprus
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, 40138, Cagliari, Italy
| | - Jasjit S Suri
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA, 95661, USA.
- Department of ECE, Idaho State University, Pocatello, ID, 83209, USA.
- Department of CE, Graphic Era Deemed to be University, 248002, Dehradun, India.
| |
Collapse
|
6
|
Cai Y, Cai YQ, Tang LY, Wang YH, Gong M, Jing TC, Li HJ, Li-Ling J, Hu W, Yin Z, Gong DX, Zhang GW. Artificial intelligence in the risk prediction models of cardiovascular disease and development of an independent validation screening tool: a systematic review. BMC Med 2024; 22:56. [PMID: 38317226 PMCID: PMC10845808 DOI: 10.1186/s12916-024-03273-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 01/23/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND A comprehensive overview of artificial intelligence (AI) for cardiovascular disease (CVD) prediction and a screening tool of AI models (AI-Ms) for independent external validation are lacking. This systematic review aims to identify, describe, and appraise AI-Ms of CVD prediction in the general and special populations and develop a new independent validation score (IVS) for AI-Ms replicability evaluation. METHODS PubMed, Web of Science, Embase, and IEEE library were searched up to July 2021. Data extraction and analysis were performed for the populations, distribution, predictors, algorithms, etc. The risk of bias was evaluated with the prediction risk of bias assessment tool (PROBAST). Subsequently, we designed IVS for model replicability evaluation with five steps in five items, including transparency of algorithms, performance of models, feasibility of reproduction, risk of reproduction, and clinical implication, respectively. The review is registered in PROSPERO (No. CRD42021271789). RESULTS In 20,887 screened references, 79 articles (82.5% in 2017-2021) were included, which contained 114 datasets (67 in Europe and North America, but 0 in Africa). We identified 486 AI-Ms, of which the majority were in development (n = 380), but none of them had undergone independent external validation. A total of 66 idiographic algorithms were found; however, 36.4% were used only once and only 39.4% over three times. A large number of different predictors (range 5-52,000, median 21) and large-span sample size (range 80-3,660,000, median 4466) were observed. All models were at high risk of bias according to PROBAST, primarily due to the incorrect use of statistical methods. IVS analysis confirmed only 10 models as "recommended"; however, 281 and 187 were "not recommended" and "warning," respectively. CONCLUSION AI has led the digital revolution in the field of CVD prediction, but is still in the early stage of development as the defects of research design, report, and evaluation systems. The IVS we developed may contribute to independent external validation and the development of this field.
Collapse
Affiliation(s)
- Yue Cai
- China Medical University, Shenyang, 110122, China
| | - Yu-Qing Cai
- China Medical University, Shenyang, 110122, China
| | - Li-Ying Tang
- China Medical University, Shenyang, 110122, China
| | - Yi-Han Wang
- China Medical University, Shenyang, 110122, China
| | - Mengchun Gong
- Digital Health China Co. Ltd, Beijing, 100089, China
| | - Tian-Ci Jing
- Smart Hospital Management Department, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Hui-Jun Li
- Shenyang Medical & Film Science and Technology Co. Ltd., Shenyang, 110001, China
- Enduring Medicine Smart Innovation Research Institute, Shenyang, 110001, China
| | - Jesse Li-Ling
- Institute of Genetic Medicine, School of Life Science, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610065, China
| | - Wei Hu
- Bayi Orthopedic Hospital, Chengdu, 610017, China
| | - Zhihua Yin
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, China.
| | - Da-Xin Gong
- Smart Hospital Management Department, the First Hospital of China Medical University, Shenyang, 110001, China.
- The Internet Hospital Branch of the Chinese Research Hospital Association, Beijing, 100006, China.
| | - Guang-Wei Zhang
- Smart Hospital Management Department, the First Hospital of China Medical University, Shenyang, 110001, China.
- The Internet Hospital Branch of the Chinese Research Hospital Association, Beijing, 100006, China.
| |
Collapse
|
7
|
Khanna NN, Singh M, Maindarkar M, Kumar A, Johri AM, Mentella L, Laird JR, Paraskevas KI, Ruzsa Z, Singh N, Kalra MK, Fernandes JFE, Chaturvedi S, Nicolaides A, Rathore V, Singh I, Teji JS, Al-Maini M, Isenovic ER, Viswanathan V, Khanna P, Fouda MM, Saba L, Suri JS. Polygenic Risk Score for Cardiovascular Diseases in Artificial Intelligence Paradigm: A Review. J Korean Med Sci 2023; 38:e395. [PMID: 38013648 PMCID: PMC10681845 DOI: 10.3346/jkms.2023.38.e395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/15/2023] [Indexed: 11/29/2023] Open
Abstract
Cardiovascular disease (CVD) related mortality and morbidity heavily strain society. The relationship between external risk factors and our genetics have not been well established. It is widely acknowledged that environmental influence and individual behaviours play a significant role in CVD vulnerability, leading to the development of polygenic risk scores (PRS). We employed the PRISMA search method to locate pertinent research and literature to extensively review artificial intelligence (AI)-based PRS models for CVD risk prediction. Furthermore, we analyzed and compared conventional vs. AI-based solutions for PRS. We summarized the recent advances in our understanding of the use of AI-based PRS for risk prediction of CVD. Our study proposes three hypotheses: i) Multiple genetic variations and risk factors can be incorporated into AI-based PRS to improve the accuracy of CVD risk predicting. ii) AI-based PRS for CVD circumvents the drawbacks of conventional PRS calculators by incorporating a larger variety of genetic and non-genetic components, allowing for more precise and individualised risk estimations. iii) Using AI approaches, it is possible to significantly reduce the dimensionality of huge genomic datasets, resulting in more accurate and effective disease risk prediction models. Our study highlighted that the AI-PRS model outperformed traditional PRS calculators in predicting CVD risk. Furthermore, using AI-based methods to calculate PRS may increase the precision of risk predictions for CVD and have significant ramifications for individualized prevention and treatment plans.
Collapse
Affiliation(s)
- Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
- Asia Pacific Vascular Society, New Delhi, India
| | - Manasvi Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
- Bennett University, Greater Noida, India
| | - Mahesh Maindarkar
- Asia Pacific Vascular Society, New Delhi, India
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
- School of Bioengineering Sciences and Research, Maharashtra Institute of Technology's Art, Design and Technology University, Pune, India
| | | | - Amer M Johri
- Department of Medicine, Division of Cardiology, Queen's University, Kingston, Canada
| | - Laura Mentella
- Department of Medicine, Division of Cardiology, University of Toronto, Toronto, Canada
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA, USA
| | | | - Zoltan Ruzsa
- Invasive Cardiology Division, University of Szeged, Szeged, Hungary
| | - Narpinder Singh
- Department of Food Science and Technology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | | | | | - Seemant Chaturvedi
- Department of Neurology & Stroke Program, University of Maryland, Baltimore, MD, USA
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, Cyprus
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA, USA
| | - Inder Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| | - Jagjit S Teji
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Mostafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON, Canada
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, National Institute of The Republic of Serbia, University of Belgrade, Beograd, Serbia
| | | | - Puneet Khanna
- Department of Anaesthesiology, AIIMS, New Delhi, India
| | - Mostafa M Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID, USA
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, Cagliari, Italy
| | - Jasjit S Suri
- Asia Pacific Vascular Society, New Delhi, India
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
- Department of Computer Engineering, Graphic Era Deemed to be University, Dehradun, India.
| |
Collapse
|
8
|
Zeng P, Zhang Q, Liang X, Zhang M, Luo D, Chen Z. Progress of Ultrasound Techniques in the Evaluation of Carotid Vulnerable Plaque Neovascularization. Cerebrovasc Dis 2023; 53:479-487. [PMID: 37812915 DOI: 10.1159/000534372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/25/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND The rupture and detachment of unstable plaques in the carotid artery can cause embolism in the cerebral artery, leading to acute cerebrovascular events. Intraplaque neovascularization (IPN) is a very important contributor to carotid plaque instability, and its evolution plays a key role in determining the outcome of vulnerable plaques. Ultrasound techniques, represented by contrast-enhanced ultrasound (CEUS) and superb microvascular imaging (SMI), are reported to be non-invasive, rapid, and effective techniques for the semi-quantitative or quantitative evaluation for IPN. Although ultrasound techniques have been widely applied in the detection of carotid plaque stability, it has been limited owing to the lack of unified IPN quantitative standards. SUMMARY This review summarizes the application and semi-quantitative/quantitative diagnostic standards of ultrasound techniques in evaluating IPN and looks forward to the prospects of the future research. With the development of novel techniques like artificial intelligence, ultrasound will offer appropriate selections for achieving more accuracy diagnosis. KEY MESSAGES A large number of studies have used CEUS and SMI to detect IPN and perform semi-quantitative grading to predict the occurrence of diseases such as stroke and to accurately assess drug efficacy based on rating changes. These studies have made great progress at this stage, but more accurate and intelligent quantitative imaging methods should become the future development goal.
Collapse
Affiliation(s)
- Penghui Zeng
- Institution of Medical Imaging, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institution of Medical Imaging, University of South China, Hengyang, China
- Medical Imaging Centre, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Qing Zhang
- Institution of Medical Imaging, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institution of Medical Imaging, University of South China, Hengyang, China
| | - Xiaowen Liang
- Institution of Medical Imaging, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institution of Medical Imaging, University of South China, Hengyang, China
| | - Min Zhang
- Department of Ultrasound, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Dan Luo
- Department of Ultrasound, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Zhiyi Chen
- Institution of Medical Imaging, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institution of Medical Imaging, University of South China, Hengyang, China
- Medical Imaging Centre, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
9
|
Chahine Y, Magoon MJ, Maidu B, del Álamo JC, Boyle PM, Akoum N. Machine Learning and the Conundrum of Stroke Risk Prediction. Arrhythm Electrophysiol Rev 2023; 12:e07. [PMID: 37427297 PMCID: PMC10326666 DOI: 10.15420/aer.2022.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/07/2023] [Indexed: 07/11/2023] Open
Abstract
Stroke is a leading cause of death worldwide. With escalating healthcare costs, early non-invasive stroke risk stratification is vital. The current paradigm of stroke risk assessment and mitigation is focused on clinical risk factors and comorbidities. Standard algorithms predict risk using regression-based statistical associations, which, while useful and easy to use, have moderate predictive accuracy. This review summarises recent efforts to deploy machine learning (ML) to predict stroke risk and enrich the understanding of the mechanisms underlying stroke. The surveyed body of literature includes studies comparing ML algorithms with conventional statistical models for predicting cardiovascular disease and, in particular, different stroke subtypes. Another avenue of research explored is ML as a means of enriching multiscale computational modelling, which holds great promise for revealing thrombogenesis mechanisms. Overall, ML offers a new approach to stroke risk stratification that accounts for subtle physiologic variants between patients, potentially leading to more reliable and personalised predictions than standard regression-based statistical associations.
Collapse
Affiliation(s)
- Yaacoub Chahine
- Division of Cardiology, University of Washington, Seattle, WA, US
| | - Matthew J Magoon
- Department of Bioengineering, University of Washington, Seattle, WA, US
| | - Bahetihazi Maidu
- Department of Mechanical Engineering, University of Washington, Seattle, WA, US
| | - Juan C del Álamo
- Department of Mechanical Engineering, University of Washington, Seattle, WA, US
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, US
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, US
| | - Patrick M Boyle
- Department of Bioengineering, University of Washington, Seattle, WA, US
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, US
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, US
| | - Nazem Akoum
- Division of Cardiology, University of Washington, Seattle, WA, US
- Department of Bioengineering, University of Washington, Seattle, WA, US
| |
Collapse
|
10
|
Johri AM, Singh KV, Mantella LE, Saba L, Sharma A, Laird JR, Utkarsh K, Singh IM, Gupta S, Kalra MS, Suri JS. Deep learning artificial intelligence framework for multiclass coronary artery disease prediction using combination of conventional risk factors, carotid ultrasound, and intraplaque neovascularization. Comput Biol Med 2022; 150:106018. [PMID: 36174330 DOI: 10.1016/j.compbiomed.2022.106018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 08/06/2022] [Accepted: 08/20/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Cardiovascular disease (CVD) is a major healthcare challenge and therefore early risk assessment is vital. Previous assessment techniques use either "conventional CVD risk calculators (CCVRC)" or machine learning (ML) paradigms. These techniques are ad-hoc, unreliable, not fully automated, and have variabilities. We, therefore, introduce AtheroEdge-MCDLAI (AE3.0DL) windows-based platform using multiclass Deep Learning (DL) system. METHODS Data was collected on 500 patients having both carotid ultrasound and corresponding coronary angiography scores (CAS), measured as stenosis in coronary arteries and considered as the gold standard. A total of 39 covariates were used, clubbed into three clusters, namely (i) Office-based: age, gender, body mass index, smoker, hypertension, systolic blood pressure, and diastolic blood pressure; (ii) Laboratory-based: Hyperlipidemia, hemoglobin A1c, and estimated glomerular filtration rate; and (iii) Carotid ultrasound image phenotypes: maximum plaque height, total plaque area, and intra-plaque neovascularization. Baseline characteristics for four classes (target labels) having significant (p < 0.0001) values were calculated using Chi-square and ANOVA. For handling the cohort's imbalance in the risk classes, AE3.0DL used the synthetic minority over-sampling technique (SMOTE). AE3.0DL used Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) DL models and the performance (accuracy and area-under-the-curve) was computed using 10-fold cross-validation (90% training, 10% testing) frameworks. AE3.0DL was validated and benchmarked. RESULTS The AE3.0DL using RNN and LSTM showed an accuracy and AUC (p < 0.0001) pairs as (95.00% and 0.98), and (95.34% and 0.99), respectively, and showed an improvement of 32.93% and 9.94% against CCVRC and ML, respectively. AE3.0DL runs in <1 s. CONCLUSION DL algorithms are a powerful paradigm for coronary artery disease (CAD) risk prediction and CVD risk stratification.
Collapse
Affiliation(s)
- Amer M Johri
- Department of Medicine, Division of Cardiology, Queen's University, Kingston, ON, Canada
| | | | - Laura E Mantella
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA, USA
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, USA
| | | | | | - Suneet Gupta
- Department of Computer Science, Bennett University, Gr. Noida, India
| | - Manudeep S Kalra
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | - Jasjit S Suri
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA, USA; Knowledge Engineering Center, Global Biomedical Technologies, Inc., Roseville, CA, USA.
| |
Collapse
|
11
|
Teji JS, Jain S, Gupta SK, Suri JS. NeoAI 1.0: Machine learning-based paradigm for prediction of neonatal and infant risk of death. Comput Biol Med 2022; 147:105639. [DOI: 10.1016/j.compbiomed.2022.105639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/01/2022] [Accepted: 05/01/2022] [Indexed: 11/29/2022]
|
12
|
Sonabend R, Bender A, Vollmer S. Avoiding C-hacking when evaluating survival distribution predictions with discrimination measures. Bioinformatics 2022; 38:4178-4184. [PMID: 35818973 PMCID: PMC9438958 DOI: 10.1093/bioinformatics/btac451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/17/2022] [Accepted: 07/11/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION In this article, we consider how to evaluate survival distribution predictions with measures of discrimination. This is non-trivial as discrimination measures are the most commonly used in survival analysis and yet there is no clear method to derive a risk prediction from a distribution prediction. We survey methods proposed in literature and software and consider their respective advantages and disadvantages. RESULTS Whilst distributions are frequently evaluated by discrimination measures, we find that the method for doing so is rarely described in the literature and often leads to unfair comparisons or 'C-hacking'. We demonstrate by example how simple it can be to manipulate results and use this to argue for better reporting guidelines and transparency in the literature. We recommend that machine learning survival analysis software implements clear transformations between distribution and risk predictions in order to allow more transparent and accessible model evaluation. AVAILABILITY AND IMPLEMENTATION The code used in the final experiment is available at https://github.com/RaphaelS1/distribution_discrimination.
Collapse
Affiliation(s)
| | - Andreas Bender
- Department of Statistics, LMU Munich, 80539 Bavaria, Germany
| | - Sebastian Vollmer
- Department of Computer Science, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany,Data Science and its Application, Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI), 67663 Kaiserslautern, Germany,Mathematics Institute, University of Warwick, CV4 7AL Coventry, UK
| |
Collapse
|
13
|
Cardiovascular Risk Stratification in Diabetic Retinopathy via Atherosclerotic Pathway in COVID-19/non-COVID-19 Frameworks using Artificial Intelligence Paradigm: A Narrative Review. Diagnostics (Basel) 2022; 12:diagnostics12051234. [PMID: 35626389 PMCID: PMC9140106 DOI: 10.3390/diagnostics12051234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 11/18/2022] Open
Abstract
Diabetes is one of the main causes of the rising cases of blindness in adults. This microvascular complication of diabetes is termed diabetic retinopathy (DR) and is associated with an expanding risk of cardiovascular events in diabetes patients. DR, in its various forms, is seen to be a powerful indicator of atherosclerosis. Further, the macrovascular complication of diabetes leads to coronary artery disease (CAD). Thus, the timely identification of cardiovascular disease (CVD) complications in DR patients is of utmost importance. Since CAD risk assessment is expensive for low-income countries, it is important to look for surrogate biomarkers for risk stratification of CVD in DR patients. Due to the common genetic makeup between the coronary and carotid arteries, low-cost, high-resolution imaging such as carotid B-mode ultrasound (US) can be used for arterial tissue characterization and risk stratification in DR patients. The advent of artificial intelligence (AI) techniques has facilitated the handling of large cohorts in a big data framework to identify atherosclerotic plaque features in arterial ultrasound. This enables timely CVD risk assessment and risk stratification of patients with DR. Thus, this review focuses on understanding the pathophysiology of DR, retinal and CAD imaging, the role of surrogate markers for CVD, and finally, the CVD risk stratification of DR patients. The review shows a step-by-step cyclic activity of how diabetes and atherosclerotic disease cause DR, leading to the worsening of CVD. We propose a solution to how AI can help in the identification of CVD risk. Lastly, we analyze the role of DR/CVD in the COVID-19 framework.
Collapse
|
14
|
Paraskevas KI, Saba L, Suri JS. Applications of Artificial Intelligence in Vascular Diseases. Angiology 2022; 73:597-598. [PMID: 35364002 DOI: 10.1177/00033197221087779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | - Luca Saba
- Department of Radiology, 97863Azienda Ospedaliera Universitaria Di Cagliari, Cagliari, Italy
| | - Jasjit S Suri
- Stroke Diagnosis and Monitoring Division, AtheroPointTM, Roseville, CA, USA
| |
Collapse
|
15
|
Suri JS, Bhagawati M, Paul S, Protogerou AD, Sfikakis PP, Kitas GD, Khanna NN, Ruzsa Z, Sharma AM, Saxena S, Faa G, Laird JR, Johri AM, Kalra MK, Paraskevas KI, Saba L. A Powerful Paradigm for Cardiovascular Risk Stratification Using Multiclass, Multi-Label, and Ensemble-Based Machine Learning Paradigms: A Narrative Review. Diagnostics (Basel) 2022; 12:722. [PMID: 35328275 PMCID: PMC8947682 DOI: 10.3390/diagnostics12030722] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/10/2022] [Accepted: 03/13/2022] [Indexed: 12/16/2022] Open
Abstract
Background and Motivation: Cardiovascular disease (CVD) causes the highest mortality globally. With escalating healthcare costs, early non-invasive CVD risk assessment is vital. Conventional methods have shown poor performance compared to more recent and fast-evolving Artificial Intelligence (AI) methods. The proposed study reviews the three most recent paradigms for CVD risk assessment, namely multiclass, multi-label, and ensemble-based methods in (i) office-based and (ii) stress-test laboratories. Methods: A total of 265 CVD-based studies were selected using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) model. Due to its popularity and recent development, the study analyzed the above three paradigms using machine learning (ML) frameworks. We review comprehensively these three methods using attributes, such as architecture, applications, pro-and-cons, scientific validation, clinical evaluation, and AI risk-of-bias (RoB) in the CVD framework. These ML techniques were then extended under mobile and cloud-based infrastructure. Findings: Most popular biomarkers used were office-based, laboratory-based, image-based phenotypes, and medication usage. Surrogate carotid scanning for coronary artery risk prediction had shown promising results. Ground truth (GT) selection for AI-based training along with scientific and clinical validation is very important for CVD stratification to avoid RoB. It was observed that the most popular classification paradigm is multiclass followed by the ensemble, and multi-label. The use of deep learning techniques in CVD risk stratification is in a very early stage of development. Mobile and cloud-based AI technologies are more likely to be the future. Conclusions: AI-based methods for CVD risk assessment are most promising and successful. Choice of GT is most vital in AI-based models to prevent the RoB. The amalgamation of image-based strategies with conventional risk factors provides the highest stability when using the three CVD paradigms in non-cloud and cloud-based frameworks.
Collapse
Affiliation(s)
- Jasjit S. Suri
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA
| | - Mrinalini Bhagawati
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong 793022, India; (M.B.); (S.P.)
| | - Sudip Paul
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong 793022, India; (M.B.); (S.P.)
| | - Athanasios D. Protogerou
- Research Unit Clinic, Laboratory of Pathophysiology, Department of Cardiovascular Prevention, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Petros P. Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, 11527 Athens, Greece;
| | - George D. Kitas
- Arthritis Research UK Centre for Epidemiology, Manchester University, Manchester 46962, UK;
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110020, India;
| | - Zoltan Ruzsa
- Department of Internal Medicines, Invasive Cardiology Division, University of Szeged, 6720 Szeged, Hungary;
| | - Aditya M. Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22903, USA;
| | - Sanjay Saxena
- Department of CSE, International Institute of Information Technology, Bhubaneswar 751003, India;
| | - Gavino Faa
- Department of Pathology, A.O.U., di Cagliari-Polo di Monserrato s.s., 09045 Cagliari, Italy;
| | - John R. Laird
- Cardiology Department, St. Helena Hospital, St. Helena, CA 94574, USA;
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Manudeep K. Kalra
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA;
| | - Kosmas I. Paraskevas
- Department of Vascular Surgery, Central Clinic of Athens, N. Iraklio, 14122 Athens, Greece;
| | - Luca Saba
- Department of Radiology, A.O.U., di Cagliari-Polo di Monserrato s.s., 09045 Cagliari, Italy;
| |
Collapse
|
16
|
Suri JS, Bhagawati M, Paul S, Protogeron A, Sfikakis PP, Kitas GD, Khanna NN, Ruzsa Z, Sharma AM, Saxena S, Faa G, Paraskevas KI, Laird JR, Johri AM, Saba L, Kalra M. Understanding the bias in machine learning systems for cardiovascular disease risk assessment: The first of its kind review. Comput Biol Med 2022; 142:105204. [PMID: 35033879 DOI: 10.1016/j.compbiomed.2021.105204] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 02/09/2023]
|
17
|
Konstantonis G, Singh KV, Sfikakis PP, Jamthikar AD, Kitas GD, Gupta SK, Saba L, Verrou K, Khanna NN, Ruzsa Z, Sharma AM, Laird JR, Johri AM, Kalra M, Protogerou A, Suri JS. Cardiovascular disease detection using machine learning and carotid/femoral arterial imaging frameworks in rheumatoid arthritis patients. Rheumatol Int 2022; 42:215-239. [PMID: 35013839 DOI: 10.1007/s00296-021-05062-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/29/2021] [Indexed: 12/31/2022]
Abstract
The study proposes a novel machine learning (ML) paradigm for cardiovascular disease (CVD) detection in individuals at medium to high cardiovascular risk using data from a Greek cohort of 542 individuals with rheumatoid arthritis, or diabetes mellitus, and/or arterial hypertension, using conventional or office-based, laboratory-based blood biomarkers and carotid/femoral ultrasound image-based phenotypes. Two kinds of data (CVD risk factors and presence of CVD-defined as stroke, or myocardial infarction, or coronary artery syndrome, or peripheral artery disease, or coronary heart disease) as ground truth, were collected at two-time points: (i) at visit 1 and (ii) at visit 2 after 3 years. The CVD risk factors were divided into three clusters (conventional or office-based, laboratory-based blood biomarkers, carotid ultrasound image-based phenotypes) to study their effect on the ML classifiers. Three kinds of ML classifiers (Random Forest, Support Vector Machine, and Linear Discriminant Analysis) were applied in a two-fold cross-validation framework using the data augmented by synthetic minority over-sampling technique (SMOTE) strategy. The performance of the ML classifiers was recorded. In this cohort with overall 46 CVD risk factors (covariates) implemented in an online cardiovascular framework, that requires calculation time less than 1 s per patient, a mean accuracy and area-under-the-curve (AUC) of 98.40% and 0.98 (p < 0.0001) for CVD presence detection at visit 1, and 98.39% and 0.98 (p < 0.0001) at visit 2, respectively. The performance of the cardiovascular framework was significantly better than the classical CVD risk score. The ML paradigm proved to be powerful for CVD prediction in individuals at medium to high cardiovascular risk.
Collapse
Affiliation(s)
- George Konstantonis
- Rheumatology Unit, National Kapodistrian University of Athens, Athens, Greece
| | | | - Petros P Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, Athens, Greece
| | - Ankush D Jamthikar
- Research Scientist, AtheroPoint™, USA, Roseville, CA, USA.,Visvesvaraya National Institute of Technology, Nagpur, India
| | - George D Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, UK.,Arthritis Research UK Epidemiology Unit, Manchester University, Manchester, M13, UK
| | - Suneet K Gupta
- Department of Computer Science, Bennett University, Gr. Noida, India
| | - Luca Saba
- Department of Radiology, University of Cagliari, Cagliari, Italy
| | - Kleio Verrou
- Department of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha Apollo Hospitals, New Delhi, India
| | - Zoltan Ruzsa
- Department of Internal Medicines, Invasive Cardiology Division, University of Szeged, Szeged, Hungary
| | - Aditya M Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA, USA
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, USA
| | - Amer M Johri
- Department of Medicine, Division of Cardiology, Queen's University, Kingston, ON, Canada
| | - Manudeep Kalra
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, USA
| | - Athanasios Protogerou
- Cardiovascular Prevention Unit, Department of Pathophysiology, National Kapodistrian University of Athens, Athens, Greece
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, 95661, USA.
| |
Collapse
|
18
|
Zarkowsky DS, Stonko DP. Artificial intelligence's role in vascular surgery decision-making. Semin Vasc Surg 2021; 34:260-267. [PMID: 34911632 DOI: 10.1053/j.semvascsurg.2021.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 12/28/2022]
Abstract
Artificial intelligence (AI) is the next great advance informing medical science. Several disciplines, including vascular surgery, use AI-based decision-making tools to improve clinical performance. Although applied widely, AI functions best when confronted with voluminous, accurate data. Consistent, predictable analytic technique selection also challenges researchers. This article contextualizes AI analyses within evidence-based medicine, focusing on "big data" and health services research, as well as discussing opportunities to improve data collection and realize AI's promise.
Collapse
Affiliation(s)
- Devin S Zarkowsky
- Division of Vascular Surgery and Endovascular Therapy, University of Colorado School of Medicine, 12615 E 17(th) Place, AO1, Aurora, CO, 80045.
| | - David P Stonko
- Department of Surgery, The Johns Hopkins Hospital, Baltimore, MD
| |
Collapse
|