1
|
Chen SY, Wang CT, Huang TH, Tsai JL, Wang HT, Yen YT, Tseng YL, Wu CL, Chang JM, Shiau AL. Advancing Lung Cancer Treatment with Combined c-Met Promoter-Driven Oncolytic Adenovirus and Rapamycin. Cells 2024; 13:1597. [PMID: 39329778 PMCID: PMC11430802 DOI: 10.3390/cells13181597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Lung cancer remains a formidable health challenge due to its high mortality and morbidity rates. Non-small cell lung cancer (NSCLC) constitutes approximately 85% of all lung cancer cases, with small cell lung cancer (SCLC) accounting for the remainder. Both NSCLC and SCLC cells express receptor tyrosine kinases, which may be overexpressed or mutated in lung cancer, leading to increased activation. The c-Met receptor tyrosine kinase, crucial for cell transformation and tumor growth, invasion, and metastasis, became the focus of our study. We used an E1B55KD-deleted, replication-selective oncolytic adenovirus (Ad.What), driven by the c-Met promoter, targeting lung cancer cells with c-Met overexpression, thus sparing normal cells. Previous studies have shown the enhanced antitumor efficacy of oncolytic adenoviruses when combined with chemotherapeutic agents. We explored combining rapamycin, a selective mTOR inhibitor with promising clinical trial outcomes for various cancers, with Ad.What. This combination increased infectivity by augmenting the expression of coxsackievirus and adenovirus receptors and αV integrin on cancer cells and induced autophagy. Our findings suggest that combining a c-Met promoter-driven oncolytic adenovirus with rapamycin could be an effective lung cancer treatment strategy, offering a targeted approach to exploit lung cancer cells' vulnerabilities, potentially marking a significant advancement in managing this deadly disease.
Collapse
Affiliation(s)
- Shih-Yao Chen
- Department of Nursing, College of Nursing, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan;
| | - Chung-Teng Wang
- Tong Yuan Diabetes Center, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (C.-T.W.); (C.-L.W.)
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Tang-Hsiu Huang
- Division of Chest Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Jeng-Liang Tsai
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hao-Tien Wang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yi-Ting Yen
- Division of Thoracic Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (Y.-T.Y.); (Y.-L.T.)
| | - Yau-Lin Tseng
- Division of Thoracic Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (Y.-T.Y.); (Y.-L.T.)
| | - Chao-Liang Wu
- Tong Yuan Diabetes Center, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (C.-T.W.); (C.-L.W.)
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Department of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 60002, Taiwan
| | - Jia-Ming Chang
- Thoracic Division, Department of Surgery, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 60002, Taiwan
- Institute of Molecular Biology, National Chung Cheng University, Chiayi 62102, Taiwan
| | - Ai-Li Shiau
- Tong Yuan Diabetes Center, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (C.-T.W.); (C.-L.W.)
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
2
|
Yu Y, Dong W, Shi Y, Wu R, Yu Q, Ye F, Zhou C, Dong X, Li X, Li Y, Li Z, Wu L, Pan Y, Shen H, Wu D, Xu Z, Wu J, Xu N, Qin Y, Zang A, Zhang J, Zhou J, Zhang X, Zhao Y, Li F, Wang H, Liu Q, Han Z, Li J, Lu S. A pooled analysis of clinical outcome in driver-gene negative non-small cell lung cancer patients with MET overexpression treated with gumarontinib. Ther Adv Med Oncol 2024; 16:17588359241264730. [PMID: 39091606 PMCID: PMC11292687 DOI: 10.1177/17588359241264730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/10/2024] [Indexed: 08/04/2024] Open
Abstract
Background MET overexpression represents the most MET aberration in advanced non-small-cell lung cancer (NSCLC). However, except MET exon 14 (METex14) skipping mutation was recognized as a clinical biomarker, the role of MET overexpression as a predictive factor to MET inhibitor is not clear. Objectives The purpose of the pooled analysis is to explore the safety and efficiency of gumarontinib, a highly selective oral MET inhibitor, in drive-gene negative NSCLC patients with MET overexpression. Design and methods NSCLC patients with MET overexpression [immunohistochemistry (IHC) ⩾3+ as determined by central laboratory] not carrying epidermal growth factor receptor mutation, METex14 skipping mutation or other known drive gene alternations who received Gumarontinib 300 mg QD from two single arm studies were selected and pooled for the analysis. The efficacy [objective response rate (ORR), disease control rate (DCR), duration of response, progression-free survival (PFS) and overall survival (OS)] and safety [treatment emergent adverse event (TEAE), treatment related AE (TRAE) and serious AE (SAE) were assessed. Results A total of 32 patients with MET overexpression were included in the analysis, including 12 treatment naïve patients who refused or were unsuitable for chemotherapy, and 20 pre-treated patients who received ⩾1 lines of prior systemic anti-tumour therapies. Overall, the ORR was 37.5% [95% confidence interval (CI): 21.1-56.3%], the DCR was 81.3% (95% CI: 63.6-92.8%), median PFS (mPFS) and median OS (mOS) were 6.9 month (95% CI: 3.6-9.7) and 17.0 month (95% CI: 10.3-not evaluable), respectively. The most common AEs were oedema (59.4%), hypoalbuminaemia (40.6%), alanine aminotransferase increased (31.3%). Conclusion Gumarontinib showed promising antitumour activity in driver-gene negative locally advanced or metastatic NSCLC patients with MET overexpression, which warranted a further clinical trial. Trial registration ClinicalTrials.gov identifier: NCT03457532; NCT04270591.
Collapse
Affiliation(s)
- Yongfeng Yu
- Department of Medical Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Dong
- Department of Respiratory Medicine, Hainan Cancer Hospital, Haikou, China
| | - Yanxia Shi
- Internal Medicine Department, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Rong Wu
- Second Medical Oncology Breast Tumors, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qitao Yu
- Department of Respiratory Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Feng Ye
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Fujian, China
| | - Chengzhi Zhou
- Department of Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingya Li
- Oncology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongsheng Li
- Internal Medicine-Oncology and Phase I Clinical Trial Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Zhen Li
- Internal Medicine 5, Linyi Cancer Hospital, Linyi, China
| | - Lin Wu
- Second Department of Thoracic Medicine, Hunan Cancer Hospital, Changsha, China
| | - Yueyin Pan
- Department of Oncology and Chemotherapy, Anhui Provincial Hospital, Hefei, China
| | - Hong Shen
- Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Dehua Wu
- Radiotherapy Department, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhongyuan Xu
- Nanfang Hospital National Drug Clinical Trial Institution, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinsheng Wu
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Nong Xu
- Internal Medicine-Oncology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yanru Qin
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University of Medicine, Zhengzhou, China
| | - Aimin Zang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, China
| | - Jingdong Zhang
- Gastroenterology Department, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Jianya Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaotao Zhang
- Radiotherapy Department, The Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, China
| | - Yanqiu Zhao
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Fugen Li
- Haihe Biopharma Co., Ltd, Shanghai, China
| | | | - Qi Liu
- Haihe Biopharma Co., Ltd, Shanghai, China
| | | | - Jin Li
- Department of Medical Oncology, Shanghai East Hospital, Tongji University, 150 Jimo Road, Pudong New Area, Shanghai 200123, China
| | - Shun Lu
- Department of Medical Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241 Huaihai West Road, Shanghai 200030, China
| |
Collapse
|
3
|
Masoumeh H, Tunay D, Demet ÖA, Samuray T, Hülya Y. Exploring of miR-155-5p, miR-181b-5p, and miR-454-3p Expressions in Circulating Cell-Free RNA: Insights from Peripheral Blood of Uveal Malignant Melanoma Patients. Biochem Genet 2024:10.1007/s10528-024-10849-8. [PMID: 38914847 DOI: 10.1007/s10528-024-10849-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 05/22/2024] [Indexed: 06/26/2024]
Abstract
The identification of novel non-invasive biomarkers is imperative for the early diagnosis and monitoring of malignant melanoma. The objective of this study is to examine the expression levels of miR-155-5p, miR-181b-5p, and miR-454-3p in circulating cell-free RNA obtained from plasma samples of the 72 uveal malignant melanoma patients and to compare these levels with those of 72 healthy controls. The analysis showed that the expression level of the miR-181b-5p has increased 9.25 fold, and expression level of miR-155-5p has increased 6.67 fold, and miR-454-3p expression level has increased 4.14 fold in the patient group compared with the levels in the healthy control group (p = 0.005). It was found that the high expression levels of the three miRNAs were statistically significant in patients compared with in the healthy control group. The statistical evaluations between miRNA expression levels and clinical data showed that miR-155-5p had significant association with radiation therapy (p = 0.040), and miR-454-3p showed a significant association with smoking and alcohol use respectively (p = 0.009, and p = 0.026). The significantly elevated expression levels of miR-181b-5p, miR-155-5p, and miR-454-3p in the circulating cell-free RNA of plasma from uveal melanoma patients, in comparison to those in the healthy control group, suggest the potential usefulness of these biomarkers for both early diagnosis and disease monitoring. However, more extensive and future studies are needed to use these molecules in early diagnosis and disease monitoring.
Collapse
Affiliation(s)
- Hassani Masoumeh
- Cancer Genetics Division, Oncology Institute, İstanbul University, Çapa-Fatih, 34093, Istanbul, Türkiye
| | - Doğan Tunay
- Cancer Genetics Division, Oncology Institute, İstanbul University, Çapa-Fatih, 34093, Istanbul, Türkiye
- Department of Medical Pathology, Faculty of Medicine, Istinye University, Cevizlibağ-Zeytinburnu, 34010, Istanbul, Türkiye
| | - Ödemiş Akdeniz Demet
- Cancer Genetics Division, Oncology Institute, İstanbul University, Çapa-Fatih, 34093, Istanbul, Türkiye
- Health Institutes of Türkiye, Türkiye Cancer Institute, Kadıköy, 34734, Istanbul, Türkiye
| | - Tuncer Samuray
- Department of Eye Diseases, Faculty of Medicine, İstanbul University, Çapa-Fatih, 34093, Istanbul, Türkiye
| | - Yazıcı Hülya
- Cancer Genetics Division, Oncology Institute, İstanbul University, Çapa-Fatih, 34093, Istanbul, Türkiye.
- Department of Medical Biology and Genetics, Faculty of Medicine, İstanbul Arel University, Merkez Efendi Mah, Eski Londra Asfalti.Cd., No 1/3, Cevizlibag, Zeytinburnu, 34010, Istanbul, Türkiye.
| |
Collapse
|
4
|
Thu YM, Suzawa K, Tomida S, Ochi K, Tsudaka S, Takatsu F, Date K, Matsuda N, Iwata K, Nakata K, Shien K, Yamamoto H, Okazaki M, Sugimoto S, Toyooka S. PAI-1 mediates acquired resistance to MET-targeted therapy in non-small cell lung cancer. PLoS One 2024; 19:e0300644. [PMID: 38758826 PMCID: PMC11101109 DOI: 10.1371/journal.pone.0300644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/03/2024] [Indexed: 05/19/2024] Open
Abstract
Mechanisms underlying primary and acquired resistance to MET tyrosine kinase inhibitors (TKIs) in managing non-small cell lung cancer remain unclear. In this study, we investigated the possible mechanisms acquired for crizotinib in MET-amplified lung carcinoma cell lines. Two MET-amplified lung cancer cell lines, EBC-1 and H1993, were established for acquired resistance to MET-TKI crizotinib and were functionally elucidated. Genomic and transcriptomic data were used to assess the factors contributing to the resistance mechanism, and the alterations hypothesized to confer resistance were validated. Multiple mechanisms underlie acquired resistance to crizotinib in MET-amplified lung cancer cell lines. In EBC-1-derived resistant cells, the overexpression of SERPINE1, the gene encoding plasminogen activator inhibitor-1 (PAI-1), mediated the drug resistance mechanism. Crizotinib resistance was addressed by combination therapy with a PAI-1 inhibitor and PAI-1 knockdown. Another mechanism of resistance in different subline cells of EBC-1 was evaluated as epithelial-to-mesenchymal transition with the upregulation of antiapoptotic proteins. In H1993-derived resistant cells, MEK inhibitors could be a potential therapeutic strategy for overcoming resistance with downstream mitogen-activated protein kinase pathway activation. In this study, we revealed the different mechanisms of acquired resistance to the MET inhibitor crizotinib with potential therapeutic application in patients with MET-amplified lung carcinoma.
Collapse
Affiliation(s)
- Yin Min Thu
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ken Suzawa
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shuta Tomida
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Kosuke Ochi
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shimpei Tsudaka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Fumiaki Takatsu
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Keiichi Date
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Naoki Matsuda
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuma Iwata
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kentaro Nakata
- Department of Surgery, Division of Cardiovascular and Thoracic Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Kazuhiko Shien
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiromasa Yamamoto
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Mikio Okazaki
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Seiichiro Sugimoto
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
5
|
Moghbeli M. PI3K/AKT pathway as a pivotal regulator of epithelial-mesenchymal transition in lung tumor cells. Cancer Cell Int 2024; 24:165. [PMID: 38730433 PMCID: PMC11084110 DOI: 10.1186/s12935-024-03357-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
Lung cancer, as the leading cause of cancer related deaths, is one of the main global health challenges. Despite various progresses in diagnostic and therapeutic methods, there is still a high rate of mortality among lung cancer patients, which can be related to the lack of clinical symptoms to differentiate lung cancer from the other chronic respiratory disorders in the early tumor stages. Most lung cancer patients are identified in advanced and metastatic tumor stages, which is associated with a poor prognosis. Therefore, it is necessary to investigate the molecular mechanisms involved in lung tumor progression and metastasis in order to introduce early diagnostic markers as well as therapeutic targets. Epithelial-mesenchymal transition (EMT) is considered as one of the main cellular mechanisms involved in lung tumor metastasis, during which tumor cells gain the metastatic ability by acquiring mesenchymal characteristics. Since, majority of the oncogenic signaling pathways exert their role in tumor cell invasion by inducing the EMT process, in the present review we discussed the role of PI3K/AKT signaling pathway in regulation of EMT process during lung tumor metastasis. It has been reported that the PI3K/AKT acts as an inducer of EMT process through the activation of EMT-specific transcription factors in lung tumor cells. MicroRNAs also exerted their inhibitory effects during EMT process by inhibition of PI3K/AKT pathway. This review can be an effective step towards introducing the PI3K/AKT pathway as a suitable therapeutic target to inhibit the EMT process and tumor metastasis in lung cancer patients.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Kasturi M, Mathur V, Gadre M, Srinivasan V, Vasanthan KS. Three Dimensional Bioprinting for Hepatic Tissue Engineering: From In Vitro Models to Clinical Applications. Tissue Eng Regen Med 2024; 21:21-52. [PMID: 37882981 PMCID: PMC10764711 DOI: 10.1007/s13770-023-00576-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 10/27/2023] Open
Abstract
Fabrication of functional organs is the holy grail of tissue engineering and the possibilities of repairing a partial or complete liver to treat chronic liver disorders are discussed in this review. Liver is the largest gland in the human body and plays a responsible role in majority of metabolic function and processes. Chronic liver disease is one of the leading causes of death globally and the current treatment strategy of organ transplantation holds its own demerits. Hence there is a need to develop an in vitro liver model that mimics the native microenvironment. The developed model should be a reliable to understand the pathogenesis, screen drugs and assist to repair and replace the damaged liver. The three-dimensional bioprinting is a promising technology that recreates in vivo alike in vitro model for transplantation, which is the goal of tissue engineers. The technology has great potential due to its precise control and its ability to homogeneously distribute cells on all layers in a complex structure. This review gives an overview of liver tissue engineering with a special focus on 3D bioprinting and bioinks for liver disease modelling and drug screening.
Collapse
Affiliation(s)
- Meghana Kasturi
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Vidhi Mathur
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Mrunmayi Gadre
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Varadharajan Srinivasan
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kirthanashri S Vasanthan
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
7
|
Sardari A, Usefi H. Machine learning-based meta-analysis of colorectal cancer and inflammatory bowel disease. PLoS One 2023; 18:e0290192. [PMID: 38134011 PMCID: PMC10745176 DOI: 10.1371/journal.pone.0290192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Colorectal cancer (CRC) is a major global health concern, resulting in numerous cancer-related deaths. CRC detection, treatment, and prevention can be improved by identifying genes and biomarkers. Despite extensive research, the underlying mechanisms of CRC remain elusive, and previously identified biomarkers have not yielded satisfactory insights. This shortfall may be attributed to the predominance of univariate analysis methods, which overlook potential combinations of variants and genes contributing to disease development. Here, we address this knowledge gap by presenting a novel multivariate machine-learning strategy to pinpoint genes associated with CRC. Additionally, we applied our analysis pipeline to Inflammatory Bowel Disease (IBD), as IBD patients face substantial CRC risk. The importance of the identified genes was substantiated by rigorous validation across numerous independent datasets. Several of the discovered genes have been previously linked to CRC, while others represent novel findings warranting further investigation. A Python implementation of our pipeline can be accessed publicly at https://github.com/AriaSar/CRCIBD-ML.
Collapse
Affiliation(s)
- Aria Sardari
- Department of Computer Science, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Hamid Usefi
- Department of Computer Science, Memorial University of Newfoundland, St. John’s, NL, Canada
- Department of Mathematics & Statistics, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
8
|
Brazel D, Nagasaka M. The development of amivantamab for the treatment of non-small cell lung cancer. Respir Res 2023; 24:256. [PMID: 37880647 PMCID: PMC10601226 DOI: 10.1186/s12931-023-02558-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/08/2023] [Indexed: 10/27/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) patients with sensitizing oncogenic driver mutations benefit from targeted therapies. Tyrosine kinase inhibitors are highly effective against classic sensitizing epidermal growth factor receptor (EGFR) mutations, such as exon 19 deletions and exon 21 L858R point mutations. Conversely, EGFR exon 20 insertions (exon20ins) are resistant to the traditional EGFR tyrosine kinase inhibitors (TKIs). In May 2021, the US Federal Drug Administration (FDA) provided accelerated approval to amivantamab (Rybrevant) in adults with locally advanced or metastatic NSCLC with EGFR exon20ins after treatment with platinum-based chemotherapy. Amivantamab was the first EGFR/MET bispecific antibody to be approved specifically for EGFR exon20ins where there was an unmet need. Furthermore, amivantamab is being evaluated in additional settings such as post osimertinib in sensitizing EGFR mutations as well as in MET altered NSCLC. Here we discuss amivantamab in regard to its mechanism of action, preclinical and clinical data, and clinical impact for patients with EGFR exon20ins NSCLC and beyond.
Collapse
Affiliation(s)
| | - Misako Nagasaka
- University of California Irvine Department of Medicine, Orange, CA, USA.
- Chao Family Comprehensive Cancer Center, Orange, CA, USA.
- St. Marianna University School of Medicine, Kawasaki, Japan.
| |
Collapse
|
9
|
Fu S, Bury LAD, Eum J, Wynshaw-Boris A. Autism-specific PTEN p.Ile135Leu variant and an autism genetic background combine to dysregulate cortical neurogenesis. Am J Hum Genet 2023; 110:826-845. [PMID: 37098352 PMCID: PMC10183467 DOI: 10.1016/j.ajhg.2023.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/22/2023] [Indexed: 04/27/2023] Open
Abstract
Alterations in cortical neurogenesis are implicated in neurodevelopmental disorders including autism spectrum disorders (ASDs). The contribution of genetic backgrounds, in addition to ASD risk genes, on cortical neurogenesis remains understudied. Here, using isogenic induced pluripotent stem cell (iPSC)-derived neural progenitor cells (NPCs) and cortical organoid models, we report that a heterozygous PTEN c.403A>C (p.Ile135Leu) variant found in an ASD-affected individual with macrocephaly dysregulates cortical neurogenesis in an ASD-genetic-background-dependent fashion. Transcriptome analysis at both bulk and single-cell level revealed that the PTEN c.403A>C variant and ASD genetic background affected genes involved in neurogenesis, neural development, and synapse signaling. We also found that this PTEN p.Ile135Leu variant led to overproduction of NPC subtypes as well as neuronal subtypes including both deep and upper layer neurons in its ASD background, but not when introduced into a control genetic background. These findings provide experimental evidence that both the PTEN p.Ile135Leu variant and ASD genetic background contribute to cellular features consistent with ASD associated with macrocephaly.
Collapse
Affiliation(s)
- Shuai Fu
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA
| | - Luke A D Bury
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jaejin Eum
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Anthony Wynshaw-Boris
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
10
|
Yu Y, Zhou J, Li X, Goto K, Min X, Nishino K, Cui J, Wu L, Sakakibara J, Shu Y, Dong X, Li L, Yoneshima Y, Zhou C, Li X, Zhang Y, Huang D, Zang A, Zhang W, Wang X, Zhang L, Bai C, Fang J, Cao L, Zhao Y, Yu Y, Shi M, Zhong D, Li F, Li M, Wu Q, Zhou J, Sun M, Lu S. Gumarontinib in patients with non-small-cell lung cancer harbouring MET exon 14 skipping mutations: a multicentre, single-arm, open-label, phase 1b/2 trial. EClinicalMedicine 2023; 59:101952. [PMID: 37096188 PMCID: PMC10121392 DOI: 10.1016/j.eclinm.2023.101952] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 04/26/2023] Open
Abstract
Background Approximately 3-4% of patients with non-small-cell lung cancer (NSCLC) have MET exon 14 (METex14) skipping mutations. We report primary results from the phase 2 stage of a phase 1b/2 study of gumarontinib, a selective, potent, oral MET inhibitor, in patients with METex14 skipping mutation-positive (METex14-positive) NSCLC. Methods The single-arm, multicentre, open-label, phase 2 stage of the GLORY study was conducted at 42 centres across China and Japan. Adults with locally advanced or metastatic METex14-positive NSCLC received oral gumarontinib 300 mg once daily in continuous 21-day cycles until disease progression, intolerable toxicity, or withdrawal of consent. Eligible patients had failed one or two prior lines of therapy (not including a MET inhibitor), were ineligible for/refused chemotherapy, and had no genetic alterations targetable with standard therapies. The primary endpoint was objective response rate in patients with a valid baseline tumour assessment, by blinded independent review. The study was registered at ClinicalTrials.gov (NCT04270591). Findings Between Aug 2, 2019 and Apr 28, 2021, 84 patients were enrolled and received gumarontinib (median follow-up 13.5 months [IQR 8.7-17.1]), at data cut-off (Apr 28, 2022) five patients whose METex14 status could not be confirmed by a central laboratory were excluded from the efficacy analysis. The objective response rate was 66% (95% CI 54-76) overall (n = 79), 71% (95% CI 55-83) in treatment-naïve patients (n = 44), and 60% (95% CI 42-76) in previously-treated patients (n = 35). The most common treatment-related adverse events (any grade) were oedema (67/84 patients, 80%) and hypoalbuminuria (32/84, 38%). Grade ≥3 treatment-emergent adverse events occurred in 45 (54%) patients. Treatment-related adverse events leading to permanent discontinuation occurred in 8% (7/84) of patients. Interpretation Gumarontinib monotherapy had durable antitumour activity with manageable toxicity in patients with locally advanced or metastatic METex14-positive NSCLC when used in first line or later. Funding Haihe Biopharma Co., Ltd. Supported in part by grants from the National Science and Technology Major Project of China for "Clinical Research of Gumarontinib, a highly selective MET inhibitor" (2018ZX09711002-011-003); the National Natural Science Foundation of China (82030045 to S.L. and 82172633 to YF.Y); Shanghai Municipal Science & Technology Commission Research Project (19411950500 to S.L.); Shanghai Shenkang Action Plan (16CR3005A to S.L.) and Shanghai Chest Hospital Project of Collaborative Innovation (YJXT20190105 to S.L.).
Collapse
Affiliation(s)
- Yongfeng Yu
- Department of Medical Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianya Zhou
- Respiratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xingya Li
- Oncology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Koichi Goto
- Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Xuhong Min
- Radiology Intervention Department, Anhui Chest Hospital, Hefei, China
| | - Kazumi Nishino
- Thoracic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Jiuwei Cui
- Oncology Department, The First Bethune Hospital of Jilin University, Changchun, China
| | - Lin Wu
- Second Department of Thoracic Medicine, Hunan Cancer Hospital, Changsha, China
| | - Jun Sakakibara
- Respiratory Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Yongqian Shu
- Oncology Department, Jiangsu Province Hospital, Nanjing, China
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Li
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yasuto Yoneshima
- Respiratory Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Chengzhi Zhou
- Oncology, The First Affiliate Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoling Li
- Thoracic Medicine, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yiping Zhang
- Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Dingzhi Huang
- Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Aimin Zang
- Medical Oncology, Affiliated Hospital of Hebei University, Baoding, China
| | - Wei Zhang
- Pneumology Department/Institute Office, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiuwen Wang
- Oncology, Qilu Hospital of Shandong University, Jinan, China
| | - Li Zhang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Chong Bai
- Pneumology Department, Changhai Hospital of Shanghai, Shanghai, China
| | - Jian Fang
- Thoracic Oncology Second Department, Beijing Cancer Hospital, Beijing, China
| | - Lejie Cao
- Pneumology Department, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Yanqiu Zhao
- Respiratory Department of Internal Medicine, Henan Cancer Hospital, Zhengzhou, China
| | - Yan Yu
- The Third Ward of Respiratory Medicine Department, Harbin Medical University Cancer Hospital, Harbin, China
| | - Meiqi Shi
- Oncology Department, Jiangsu Cancer Hospital, Nanjing, China
| | - Diansheng Zhong
- Internal Medicine-Oncology, Tianjin Medical University General Hospital, Tianjin, China
| | - Fugen Li
- Clinical Science Department, Haihe Biopharma Co., Ltd, Shanghai, China
| | - Meng Li
- Biostatistic and Data Science, Haihe Biopharma Co., Ltd, Shanghai, China
| | - Qiuxia Wu
- Clinical Science Department, Haihe Biopharma Co., Ltd, Shanghai, China
| | - Jun Zhou
- Clinical Science Department, Haihe Biopharma Co., Ltd, Shanghai, China
| | - Minghui Sun
- Clinical Science Department, Haihe Biopharma Co., Ltd, Shanghai, China
| | - Shun Lu
- Department of Medical Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Corresponding author. Department of Medical Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, Huaihai West Road, Shanghai 200030, China.
| |
Collapse
|
11
|
Pan C, Su Z, Xie H, Ning Y, Li S, Xiao H. Hsa_circ_0081069 facilitates tongue squamous cell carcinoma progression by modulating MAP2K4 expression via miR-634. Odontology 2023; 111:474-486. [PMID: 36181561 DOI: 10.1007/s10266-022-00746-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/09/2022] [Indexed: 01/10/2023]
Abstract
It has been demonstrated that circular RNA (circRNA) is involved in the progression of tongue squamous cell carcinoma (TSCC). The aim of this study was to investigate the intrinsic mechanism of circ_0081069 in TSCC progression. The expression levels of circ_00081069, miR-634, and mitogen-activated protein kinase kinase 4 (MAP2K4) in TSCC tissues and cells were detected by quantitative real-time PCR (qRT-PCR). Cell counting kit 8 assay, Edu assay, and flow cytometry assay were used to detect cell proliferation and cell cycle distribution. Transwell assay was used to detect cell migration and invasion abilities. Western blot analysis was performed to detect the protein expression. Dual-luciferase reporter assay was used to detect the targeting relationships of circ_0081069, miR-634 and MAP2K4. Immunohistochemical staining was used to measure MAP2K4-positive cells in tissues. The effect of circ_0081069 silencing on tumor formation in TSCC in vivo was explored by xenograft tumor assay. Circ_0081069 was highly expressed in TSCC tissues and cells. Silencing of circ_0081069 inhibited cell proliferation, cell cycle progress, cell migration and invasion in vitro, as well as hindered tumor growth in vivo. Mechanistically, circ_0081069 targeted miR-634 to negatively regulate miR-634 expression, and inhibition of miR-634 was able to weaken the inhibitory effect of circ_0081069 knockdown on proliferation, migration, and invasion of TSCC cells. MiR-634 targeted MAP2K4 and negatively regulated MAP2K4 expression, and overexpression of miR-634 inhibited TSCC cell proliferation, migration, and invasion, while co-overexpression of MAP2K4 was able to reverse the effects of miR-634 in TSCC cells. Circ_0081069 is involved in the regulation of proliferation, cycle progress, migration, and invasion of TSCC cells through the miR-634/MAP2K4 axis and has the potential to serve as a diagnostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Chao Pan
- Department of Endodontics, Changsha Stomatological Hospital, No. 389, Youyi Road, Tianxin District, Changsha City, 410008, Hunan Province, China
| | - Zhijian Su
- Department of Endodontics, Changsha Stomatological Hospital, No. 389, Youyi Road, Tianxin District, Changsha City, 410008, Hunan Province, China
| | - Honghui Xie
- Department of Endodontics, Changsha Stomatological Hospital, No. 389, Youyi Road, Tianxin District, Changsha City, 410008, Hunan Province, China
| | - Yanyang Ning
- Department of Endodontics, Changsha Stomatological Hospital, No. 389, Youyi Road, Tianxin District, Changsha City, 410008, Hunan Province, China
| | - Shuangjing Li
- Department of Endodontics, Changsha Stomatological Hospital, No. 389, Youyi Road, Tianxin District, Changsha City, 410008, Hunan Province, China
| | - Haibo Xiao
- Department of Endodontics, Changsha Stomatological Hospital, No. 389, Youyi Road, Tianxin District, Changsha City, 410008, Hunan Province, China.
| |
Collapse
|
12
|
Abe Y, Sano T, Tanaka N. The Role of PRMT5 in Immuno-Oncology. Genes (Basel) 2023; 14:678. [PMID: 36980950 PMCID: PMC10048035 DOI: 10.3390/genes14030678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy has caused a paradigm shift in cancer therapeutic strategy. However, this therapy only benefits a subset of patients. The difference in responses to ICIs is believed to be dependent on cancer type and its tumor microenvironment (TME). The TME is favorable for cancer progression and metastasis and can also help cancer cells to evade immune attacks. To improve the response to ICIs, it is crucial to understand the mechanism of how the TME is maintained. Protein arginine methyltransferase 5 (PRMT5) di-methylates arginine residues in its substrates and has essential roles in the epigenetic regulation of gene expression, signal transduction, and the fidelity of mRNA splicing. Through these functions, PRMT5 can support cancer cell immune evasion. PRMT5 is necessary for regulatory T cell (Treg) functions and promotes cancer stemness and the epithelial-mesenchymal transition. Specific factors in the TME can help recruit Tregs, tumor-associated macrophages, and myeloid-derived suppressor cells into tumors. In addition, PRMT5 suppresses antigen presentation and the production of interferon and chemokines, which are necessary to recruit T cells into tumors. Overall, PRMT5 supports an immunosuppressive TME. Therefore, PRMT5 inhibition would help recover the immune cycle and enable the immune system-mediated elimination of cancer cells.
Collapse
Affiliation(s)
| | | | - Nobuyuki Tanaka
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-Ku, Tokyo 113-8602, Japan
| |
Collapse
|
13
|
Design, synthesis, and biological evaluation of 2, 4-dichlorophenoxyacetamide chalcone hybrids as potential c-Met kinase inhibitors. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02986-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Altintas DM, Gallo S, Basilico C, Cerqua M, Bocedi A, Vitacolonna A, Botti O, Casanova E, Rancati I, Milanese C, Notari S, Gambardella G, Ricci G, Mastroberardino PG, Boccaccio C, Crepaldi T, Comoglio PM. The PSI Domain of the MET Oncogene Encodes a Functional Disulfide Isomerase Essential for the Maturation of the Receptor Precursor. Int J Mol Sci 2022; 23:ijms232012427. [PMID: 36293286 PMCID: PMC9604360 DOI: 10.3390/ijms232012427] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 11/29/2022] Open
Abstract
The tyrosine kinase receptor encoded by the MET oncogene has been extensively studied. Surprisingly, one extracellular domain, PSI, evolutionary conserved between plexins, semaphorins, and integrins, has no established function. The MET PSI sequence contains two CXXC motifs, usually found in protein disulfide isomerases (PDI). Using a scrambled oxidized RNAse enzymatic activity assay in vitro, we show, for the first time, that the MET extracellular domain displays disulfide isomerase activity, abolished by PSI domain antibodies. PSI domain deletion or mutations of CXXC sites to AXXA or SXXS result in a significant impairment of the cleavage of the MET 175 kDa precursor protein, abolishing the maturation of α and β chains, of, respectively, 50 kDa and 145 kDa, disulfide-linked. The uncleaved precursor is stuck in the Golgi apparatus and, interestingly, is constitutively phosphorylated. However, no signal transduction is observed as measured by AKT and MAPK phosphorylation. Consequently, biological responses to the MET ligand—hepatocyte growth factor (HGF)—such as growth and epithelial to mesenchymal transition, are hampered. These data show that the MET PSI domain is functional and is required for the maturation, surface expression, and biological functions of the MET oncogenic protein.
Collapse
Affiliation(s)
- Dogus Murat Altintas
- IFOM, FIRC Institute for Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
- Correspondence: (D.M.A.); (P.M.C.)
| | - Simona Gallo
- Department of Oncology, University of Turin, 10060 Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, Italy
| | | | - Marina Cerqua
- IFOM, FIRC Institute for Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Alessio Bocedi
- Department of Chemical Sciences and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Annapia Vitacolonna
- Department of Oncology, University of Turin, 10060 Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, Italy
| | - Orsola Botti
- IFOM, FIRC Institute for Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Elena Casanova
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, Italy
| | - Ilaria Rancati
- IFOM, FIRC Institute for Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Chiara Milanese
- IFOM, FIRC Institute for Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Sara Notari
- Department of Chemical Sciences and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Giorgia Gambardella
- Department of Chemical Sciences and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Giorgio Ricci
- Department of Chemical Sciences and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Pier Giorgio Mastroberardino
- IFOM, FIRC Institute for Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
- Department of Life, Health, and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Carla Boccaccio
- Department of Oncology, University of Turin, 10060 Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, Italy
| | - Tiziana Crepaldi
- Department of Oncology, University of Turin, 10060 Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, Italy
| | - Paolo Maria Comoglio
- IFOM, FIRC Institute for Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
- Correspondence: (D.M.A.); (P.M.C.)
| |
Collapse
|
15
|
Mulder EEAP, Verver D, van der Klok T, de Wijs CJ, van den Bosch TPP, De Herdt MJ, van der Steen B, Verhoef C, van der Veldt AAM, Grünhagen DJ, Koljenovic S. Mesenchymal-epithelial transition factor (MET) immunoreactivity in positive sentinel nodes from patients with melanoma. Ann Diagn Pathol 2022; 58:151909. [PMID: 35151198 DOI: 10.1016/j.anndiagpath.2022.151909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/17/2022] [Accepted: 01/30/2022] [Indexed: 11/01/2022]
Abstract
OBJECTIVE Patients with cutaneous melanoma and a positive sentinel node (SN) are currently eligible for adjuvant treatment with targeted therapy and immune checkpoint inhibitors. Near-infrared (NIR) fluorescence imaging could be an alternative and less invasive tool for SN biopsy to select patients for adjuvant treatment. One potential target for NIR is the mesenchymal-epithelial transition factor (MET). This study aimed to assess MET immunoreactivity in positive SNs and to evaluate its potential diagnostic, prognostic and therapeutic value. METHODS In this retrospective study, positive SN samples from patients with primary cutaneous melanoma were collected to assess MET immunoreactivity. To this end, paraffin-embedded SNs were stained for MET (monoclonal antibody D1C2). A 4-point Histoscore was used to determine cytoplasmic and membranous immunoreactivity (0 negative/1 weak/2 moderate/3 strong). Samples were considered positive when ≥10% of the cancer cells showed MET expression (staining intensity ≥1). Patient and clinicopathological characteristics were used for descriptive statistics, binary logistic regression, and survival analyses. RESULTS Positive MET immunohistochemistry was observed in 24 out of 37 samples (65%). No statistically significant associations were found between MET positivity and the following prognostic factors: Breslow thickness (P = 0.961), ulceration (P = 1.000), and SN tumor burden (P = 0.792). According to MET positivity, Kaplan-Meier curves showed no significant differences in survival. CONCLUSION This exploratory study found no evidence to support MET immunoreactivity in positive SNs as a possible diagnostic or prognostic indicator in patients with melanoma.
Collapse
Affiliation(s)
- Evalyn E A P Mulder
- Department of Surgical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands; Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
| | - Daniëlle Verver
- Department of Surgical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
| | | | - Calvin J de Wijs
- Department of Surgical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
| | | | - Maria J De Herdt
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
| | - Berdine van der Steen
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
| | - Cornelis Verhoef
- Department of Surgical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
| | - Astrid A M van der Veldt
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands; Department of Radiology & Nuclear Medicine, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
| | - Dirk J Grünhagen
- Department of Surgical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
| | | |
Collapse
|
16
|
Fang G, Zhang C, Liu Z, Peng Z, Tang M, Xue Q. MiR-144-3p inhibits the proliferation and metastasis of lung cancer A549 cells via targeting HGF. J Cardiothorac Surg 2022; 17:117. [PMID: 35568918 PMCID: PMC9107261 DOI: 10.1186/s13019-022-01861-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
Aim MicroRNAs have been confirmed as vital regulators in gene expression, which could affect multiple cancer cell biological behaviors. This study aims to elucidate the molecular mechanism of miR-144-3p in lung cancer cellular proliferation and metastasis. Methods MiR-144-3p expression in lung cancer tissues and cell lines was detected by qRT-PCR. HGF was predicted as the target gene of miR-144-3p using TargetScan and dual luciferase reporter assay. Immunohistochemistry and qRT-PCR were used to explore the impacts of HCF on lung cancer tissues and cell lines. Impacts of miR-144-3p and HGF on cancer cellular proliferation, migration and invasion were elucidated by CCK-8, Flow cytometry, Transwell invasion and Wound-healing assay. Moreover, nude mouse xenograft model was established to evaluate the effects of miR-144-3p on lung cancer cells. Results MiR-144-3p exhibited a reduction in both lung cancer tissues and cell lines. HGF was a direct target of miR-144-3p. In contrast to the miR-144-3p expression level, HGF showed a higher level in lung cancer tissues and cell lines. Overexpression miR-144-3p suppressed A549 and NCI-H1299 cell proliferation and metastasis, whereas this was reversed by HGF. MiR-144-3p exhibited an inhibitory effect on A549 cell-induced tumor growth of nude mice. Conclusions This study reveals miR-144-3p/HGF axis may be involved in the suppression of lung cancer cellular proliferation and development, and miR-144-3p may function as a potential therapeutic target in lung cancer treatment in the future.
Collapse
Affiliation(s)
- Guiju Fang
- Department of Respiratory Medicine, Ningde Municipal Hospital of Ningde Normal University, Ningde, 352100, People's Republic of China
| | - Canhui Zhang
- Department of Respiratory Medicine, Ningde Municipal Hospital of Ningde Normal University, Ningde, 352100, People's Republic of China
| | - Zhixin Liu
- Department of Respiratory Medicine, Ningde Municipal Hospital of Ningde Normal University, Ningde, 352100, People's Republic of China
| | - Zhiwen Peng
- Department of Respiratory Medicine, Ningde Municipal Hospital of Ningde Normal University, Ningde, 352100, People's Republic of China
| | - Meiyan Tang
- Department of Respiratory Medicine, Ningde Municipal Hospital of Ningde Normal University, Ningde, 352100, People's Republic of China
| | - Qing Xue
- Department of Respiratory Medicine, Ningde Municipal Hospital of Ningde Normal University, Ningde, 352100, People's Republic of China.
| |
Collapse
|
17
|
To KKW, Cho WCS. Mesenchymal Epithelial Transition Factor (MET): A Key Player in Chemotherapy Resistance and an Emerging Target for Potentiating Cancer Immunotherapy. Curr Cancer Drug Targets 2022; 22:269-285. [PMID: 35255791 DOI: 10.2174/1568009622666220307105107] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/10/2021] [Accepted: 01/10/2022] [Indexed: 11/22/2022]
Abstract
The MET protein is a cell surface receptor tyrosine kinase predominately expressed in epithelial cells. Upon binding of its only known ligand, hepatocyte growth factor (HGF), MET homodimerizes, phosphorylates, and stimulates intracellular signalling to drive cell proliferation. Amplification or hyperactivation of MET is frequently observed in various cancer types and it is associated with poor response to conventional and targeted chemotherapy. More recently, emerging evidence also suggests that MET/HGF signalling may play an immunosuppressive role and it could confer resistance to cancer immunotherapy. In this review, we summarized the preclinical and clinical evidence of MET's role in drug resistance to conventional chemotherapy, targeted therapy, and immunotherapy. Previous clinical trials investigating MET-targeted therapy in unselected or MET-overexpressing cancers yielded mostly unfavourable results. More recent clinical studies focusing on MET exon 14 alterations and MET amplification have produced encouraging treatment responses to MET inhibitor therapy. The translational relevance of MET inhibitor therapy to overcome drug resistance in cancer patients is discussed.
Collapse
Affiliation(s)
- Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| |
Collapse
|
18
|
Wang F, Gao Y, Zhou L, Chen J, Xie Z, Ye Z, Wang Y. USP30: Structure, Emerging Physiological Role, and Target Inhibition. Front Pharmacol 2022; 13:851654. [PMID: 35308234 PMCID: PMC8927814 DOI: 10.3389/fphar.2022.851654] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/04/2022] [Indexed: 12/22/2022] Open
Abstract
Ubiquitin-specific protease 30 (USP30) is a deubiquitinating enzyme (DUB) belonging to the USP subfamily, which was found localized in the mitochondrial outer membrane and peroxisomes owing to its unique transmembrane domain. Structural study revealed that USP30 employed a unique catalytic triad and molecular architecture to preferentially cleave the Lys6 linked ubiquitin chains. USP30 plays an essential role in several cellular events, such as the PINK1/Parkin-mediated mitophagy, pexophagy, BAX/BAK-dependent apoptosis, and IKKβ–USP30–ACLY-regulated lipogenesis/tumorigenesis, and is tightly regulated by post-translational modification including phosphorylation and mono-ubiquitination. Dysregulation of USP30 is associated with a range of physiological disorders, such as neurodegenerative disease, hepatocellular carcinoma, pulmonary disorders, and peroxisome biogenesis disorders. Nowadays, scientists and many biopharmaceutical companies are making much effort to explore USP30 inhibitors including natural compounds, phenylalanine derivatives, N-cyano pyrrolidines, benzosulphonamide, and other compounds. For the treatment of pulmonary disorders, the study in Mission Therapeutics of USP30 inhibitor is already in the pre-clinical stage. In this review, we will summarize the current knowledge of the structure, regulation, emerging physiological role, and target inhibition of USP30, hoping to prompt further investigation and understanding of it.
Collapse
|
19
|
The Emerging Role of c-Met in Carcinogenesis and Clinical Implications as a Possible Therapeutic Target. JOURNAL OF ONCOLOGY 2022; 2022:5179182. [PMID: 35069735 PMCID: PMC8776431 DOI: 10.1155/2022/5179182] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/15/2021] [Accepted: 12/29/2021] [Indexed: 02/08/2023]
Abstract
Background c-MET is a receptor tyrosine kinase receptor (RTK) for the hepatocyte growth factor (HGF). The binding of HGF to c-MET regulates several cellular functions: differentiation, proliferation, epithelial cell motility, angiogenesis, and epithelial-mesenchymal transition (EMT). Moreover, it is known to be involved in carcinogenesis. Comprehension of HGF-c-MET signaling pathway might have important clinical consequences allowing to predict prognosis, response to treatment, and survival rates based on its expression and dysregulation. Discussion. c-MET represents a useful molecular target for novel engineered drugs. Several clinical trials are underway for various solid tumors and the development of new specific monoclonal antibodies depends on the recent knowledge about the definite c-MET role in each different malignance. Recent clinical trials based on c-MET molecular targets result in good safety profile and represent a promising therapeutic strategy for solid cancers, in monotherapy or in combination with other target drugs. Conclusion The list of cell surface receptors crosslinking with the c-MET signaling is constantly growing, highlighting the importance of this pathway for personalized target therapy. Research on the combination of c-MET inhibitors with other drugs will hopefully lead to discovery of new effective treatment options.
Collapse
|
20
|
Desole C, Gallo S, Vitacolonna A, Vigna E, Basilico C, Montarolo F, Zuppini F, Casanova E, Miggiano R, Ferraris DM, Bertolotto A, Comoglio PM, Crepaldi T. Engineering, Characterization, and Biological Evaluation of an Antibody Targeting the HGF Receptor. Front Immunol 2021; 12:775151. [PMID: 34925346 PMCID: PMC8679783 DOI: 10.3389/fimmu.2021.775151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
The Hepatocyte growth factor (HGF) and its receptor (MET) promote several physiological activities such as tissue regeneration and protection from cell injury of epithelial, endothelial, neuronal and muscle cells. The therapeutic potential of MET activation has been scrutinized in the treatment of acute tissue injury, chronic inflammation, such as renal fibrosis and multiple sclerosis (MS), cardiovascular and neurodegenerative diseases. On the other hand, the HGF-MET signaling pathway may be caught by cancer cells and turned to work for invasion, metastasis, and drug resistance in the tumor microenvironment. Here, we engineered a recombinant antibody (RDO24) and two derived fragments, binding the extracellular domain (ECD) of the MET protein. The antibody binds with high affinity (8 nM) to MET ECD and does not cross-react with the closely related receptors RON nor with Semaphorin 4D. Deletion mapping studies and computational modeling show that RDO24 binds to the structure bent on the Plexin-Semaphorin-Integrin (PSI) domain, implicating the PSI domain in its binding to MET. The intact RDO24 antibody and the bivalent Fab2, but not the monovalent Fab induce MET auto-phosphorylation, mimicking the mechanism of action of HGF that activates the receptor by dimerization. Accordingly, the bivalent recombinant molecules induce HGF biological responses, such as cell migration and wound healing, behaving as MET agonists of therapeutic interest in regenerative medicine. In vivo administration of RDO24 in the murine model of MS, represented by experimental autoimmune encephalomyelitis (EAE), delays the EAE onset, mitigates the early clinical symptoms, and reduces inflammatory infiltrates. Altogether, these results suggest that engineered RDO24 antibody may be beneficial in multiple sclerosis and possibly other types of inflammatory disorders.
Collapse
Affiliation(s)
- Claudia Desole
- Department of Oncology, University of Turin, Candiolo, Italy
| | - Simona Gallo
- Department of Oncology, University of Turin, Candiolo, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Annapia Vitacolonna
- Department of Oncology, University of Turin, Candiolo, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Elisa Vigna
- Department of Oncology, University of Turin, Candiolo, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | | | - Francesca Montarolo
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | | | | | - Riccardo Miggiano
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy.,IXTAL srl, Novara, Italy
| | - Davide Maria Ferraris
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy.,IXTAL srl, Novara, Italy
| | | | | | - Tiziana Crepaldi
- Department of Oncology, University of Turin, Candiolo, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| |
Collapse
|
21
|
Terlecka P, Krawczyk P, Grenda A, Milanowski J. MET Gene Dysregulation as a Promising Therapeutic Target in Lung Cancer-A Review. J Pers Med 2021; 11:1370. [PMID: 34945842 PMCID: PMC8705301 DOI: 10.3390/jpm11121370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/20/2021] [Accepted: 12/13/2021] [Indexed: 11/23/2022] Open
Abstract
Several molecular abnormalities in the MET gene have been identified, including overexpression, amplification, point mutations, and "skipping mutation" in exon 14. Even though deregulated MET signaling occurs rarely in non-small cell lung cancer (NSCLC), it possesses tumorigenic activity. Since the discovery of the significant role played by MET dysregulations in resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKI), many clinical trials have been focused on mechanisms underlying this acquired resistance. Therefore, new therapeutic strategies are being considered in the personalized therapy of NSCLC patients carrying MET abnormalities. First, MET kinase inhibitors (tepotinib and capmatinib) have been shown to be effective in the first and subsequent lines of treatment in NSCLC patients with "skipping mutations" in exon 14 of MET gene. In this article, the authors show the role of MET signaling pathway alterations and describe the results of clinical trials with MET inhibitors in NSCLC patients.
Collapse
Affiliation(s)
- Paulina Terlecka
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland; (P.K.); (A.G.); (J.M.)
| | | | | | | |
Collapse
|
22
|
Fujimoto N, Matsuu-Matsuyama M, Nakashima M. Single neonatal irradiation induces long-term gene expression changes in the thyroid gland, which may be involved in the tumorigenesis. Sci Rep 2021; 11:23620. [PMID: 34880333 PMCID: PMC8655036 DOI: 10.1038/s41598-021-03012-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
Exposure to ionizing radiation in childhood has been recognized as a risk factor for thyroid cancer. We previously demonstrated that neonatal X-irradiation induced specific deformation of the thyroid follicles. Here, we further analyzed this model to understand the possible relationship with thyroid carcinogenesis. Wistar rats were subjected to cervical X-irradiation at different ages of 1–8 weeks old and at different doses of 1.5–12 Gy. For tumor promotion, rats were fed with an iodine-deficient diet (IDD). In cervically X-irradiated neonatal rats, the size of thyroid follicles decreased, accompanied by an increase in the number of TUNEL-positive cells. Fas and Lgals3 mRNA levels increased, while Mct8 and Lat4 expressions decreased. The co-administration of IDD induced the proliferation and the upregulation in Lgals3 expression, resulting in thyroid adenoma development at 28 weeks post-exposure. Our data demonstrated that single neonatal X-irradiation induced continuous apoptotic activity in the thyroid with the long-term alternation in Fas, Mct8, Lat4, and Lgals3 mRNA expressions. Some of these changes were similar to those induced by IDD, suggesting that neonatal X-irradiation may partially act as a thyroid tumor promoter. These radiation-induced thyroidal changes may be enhanced by the combined treatment with IDD, resulting in the early development of thyroid adenoma.
Collapse
Affiliation(s)
- Nariaki Fujimoto
- Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, Hiroshima, Japan.
| | - Mutsumi Matsuu-Matsuyama
- Tissue and Histopathology Section, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Masahiro Nakashima
- Tissue and Histopathology Section, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan.,Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
23
|
Liang H, Zhou D, Dai L, Zhang M, Gao Z, Mu X. A Novel c-Mesenchymal-Epithelial Transition Factor Intergenic Fusion Response to Crizotinib in a Chinese Patient With Lung Adenocarcinoma: A Case Report. Front Oncol 2021; 11:727662. [PMID: 34778041 PMCID: PMC8581303 DOI: 10.3389/fonc.2021.727662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/07/2021] [Indexed: 01/02/2023] Open
Abstract
Background The c-mesenchymal–epithelial transition factor (C-MET) is an oncogene encoding a tyrosine kinase receptor that plays an important role in tumor growth and metastasis. The National Comprehensive Cancer Network (NCCN) guidelines have approved carbatinib/crizotinib for advanced non-small cell lung cancer (NSCLC) patients with MET exon 14 skipping. Methods In June 2020, the Department of Respiratory and Critical Care Medicine of Peking University People’s Hospital admitted a 72-year-old male patient with lung adenocarcinoma (LADC) with a history of interstitial lung disease secondary to antineutrophil cytoplasmic antibody-associated vasculitis. Genetic examination by next-generation sequencing showed an intergenic fusion of MET, and crizotinib was administered on August 14, 2020. Follow-up showed that tumor volume was significantly reduced. However, crizotinib was discontinued in November 2020 because of the patient’s worsening interstitial lung disease, and CT scans showed continued partial response (PR) for 5 months. In April 2021, right lower lobe mass progressed, and disease progression was considered. Conclusion This was the first case of a patient with LADC with MET intergenic fusion who significantly benefited from crizotinib. Even after crizotinib was discontinued for 5 months, the patient continued exhibiting PR, suggesting that MET intergenic fusion may have carcinogenic activity in LADC and was sensitive to crizotinib.
Collapse
Affiliation(s)
- Hongge Liang
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Dexun Zhou
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Lin Dai
- Department of Pathology, Peking University People's Hospital, Beijing, China
| | - Moqin Zhang
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Zhancheng Gao
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Xinlin Mu
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| |
Collapse
|
24
|
Mou L, Tian X, Zhou B, Zhan Y, Chen J, Lu Y, Deng J, Deng Y, Wu Z, Li Q, Song Y, Zhang H, Chen J, Tian K, Ni Y, Pu Z. Improving Outcomes of Tyrosine Kinase Inhibitors in Hepatocellular Carcinoma: New Data and Ongoing Trials. Front Oncol 2021; 11:752725. [PMID: 34707994 PMCID: PMC8543014 DOI: 10.3389/fonc.2021.752725] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022] Open
Abstract
Targeted therapies such as oral tyrosine kinase inhibitors (TKIs) are the main therapeutic strategy effective for advanced hepatocellular carcinoma (HCC). Currently six tyrosine kinase inhibitors for HCC therapy have been approved. The newly approved first-line drug donafenib represent the major milestones in HCC therapeutics in recent years. However, drug resistance in HCC remains challenging due to random mutations in target receptors as well as downstream pathways. TKIs-based combinatorial therapies with immune checkpoint inhibitors such as PD-1/PD-L1 antibodies afford a promising strategy to further clinical application. Recent developments of nanoparticle-based TKI delivery techniques improve drug absorption and bioavailability, enhance efficient targeting delivery, prolonged circulation time, and reduce harmful side effects on normal tissues, which may improve the therapeutic efficacy of the TKIs. In this review, we summarize the milestones and recent progress in clinical trials of TKIs for HCC therapy. We also provide an overview of the novel nanoparticle-based TKI delivery techniques that enable efficient therapy.
Collapse
Affiliation(s)
- Lisha Mou
- Department of Hepatopancreatobiliary Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Xiaohe Tian
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- Rausser College of Natural Resources, University of California, Berkeley, Berkeley, CA, United States
| | - Bo Zhou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- College of Engineering, Boston University, Boston, MA, United States
| | - Yongqiang Zhan
- Department of Hepatopancreatobiliary Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Jiao Chen
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Ying Lu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Jing Deng
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Ying Deng
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- Faculty of Science, University of Waterloo, Waterloo, ON, Canada
| | - Zijing Wu
- Department of Hepatopancreatobiliary Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Qi Li
- Imaging Department, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Yi’an Song
- Imaging Department, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Hongyuan Zhang
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- The Faculty of Arts and Sciences, The University of British Columbia, Kelowna, BC, Canada
| | - Jinjun Chen
- Department of Hepatopancreatobiliary Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Kuifeng Tian
- Department of Hepatopancreatobiliary Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Yong Ni
- Department of Hepatopancreatobiliary Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Zuhui Pu
- Imaging Department, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| |
Collapse
|
25
|
miRNA-148a Enhances the Treatment Response of Patients with Rectal Cancer to Chemoradiation and Promotes Apoptosis by Directly Targeting c-Met. Biomedicines 2021; 9:biomedicines9101371. [PMID: 34680492 PMCID: PMC8533359 DOI: 10.3390/biomedicines9101371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 01/04/2023] Open
Abstract
Patients with locally advanced rectal cancer (LARC) who achieve a pathological complete response (pCR) to neoadjuvant chemoradiotherapy (NACRT) have an excellent prognosis, but only approximately 30% of patients achieve pCR. Therefore, identifying predictors of pCR is imperative. We employed a microRNA (miRNA) microarray to compare the miRNA profiles of patients with LARC who achieved pCR (pCR group, n = 5) with those who did not (non-pCR group, n = 5). The validation set confirmed that miRNA-148a was overexpressed in the pCR group (n = 11) compared with the non-pCR group (n = 40). Cell proliferation and clonogenic assays revealed that miRNA-148a overexpression radio-sensitized cancer cells and inhibited cellular proliferation, before and after irradiation (p < 0.01). Apoptosis assays demonstrated that miRNA-148a enhanced apoptosis before and after irradiation. Reporter assays revealed that c-Met was the direct target gene of miRNA-148a. An in vivo study indicated that miRNA-148a enhanced the irradiation-induced suppression of xenograft tumor growth (p < 0.01). miRNA-148a may be a biomarker of pCR following NACRT and can promote apoptosis and inhibit proliferation in CRC cells by directly targeting c-Met in vitro and enhancing tumor response to irradiation in vivo.
Collapse
|
26
|
Lahmann I, Griger J, Chen JS, Zhang Y, Schuelke M, Birchmeier C. Met and Cxcr4 cooperate to protect skeletal muscle stem cells against inflammation-induced damage during regeneration. eLife 2021; 10:57356. [PMID: 34350830 PMCID: PMC8370772 DOI: 10.7554/elife.57356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 08/04/2021] [Indexed: 12/15/2022] Open
Abstract
Acute skeletal muscle injury is followed by an inflammatory response, removal of damaged tissue, and the generation of new muscle fibers by resident muscle stem cells, a process well characterized in murine injury models. Inflammatory cells are needed to remove the debris at the site of injury and provide signals that are beneficial for repair. However, they also release chemokines, reactive oxygen species, as well as enzymes for clearance of damaged cells and fibers, which muscle stem cells have to withstand in order to regenerate the muscle. We show here that MET and CXCR4 cooperate to protect muscle stem cells against the adverse environment encountered during muscle repair. This powerful cyto-protective role was revealed by the genetic ablation of Met and Cxcr4 in muscle stem cells of mice, which resulted in severe apoptosis during early stages of regeneration. TNFα neutralizing antibodies rescued the apoptosis, indicating that TNFα provides crucial cell-death signals during muscle repair that are counteracted by MET and CXCR4. We conclude that muscle stem cells require MET and CXCR4 to protect them against the harsh inflammatory environment encountered in an acute muscle injury.
Collapse
Affiliation(s)
- Ines Lahmann
- Neurowissenschaftliches Forschungzentrum, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Developmental Biology/Signal Transduction Group, Max Delbrueck Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Joscha Griger
- Developmental Biology/Signal Transduction Group, Max Delbrueck Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Jie-Shin Chen
- Developmental Biology/Signal Transduction Group, Max Delbrueck Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Yao Zhang
- Developmental Biology/Signal Transduction Group, Max Delbrueck Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Markus Schuelke
- Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Carmen Birchmeier
- Neurowissenschaftliches Forschungzentrum, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Developmental Biology/Signal Transduction Group, Max Delbrueck Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| |
Collapse
|
27
|
Taghehchian N, Moghbeli M, Mashkani B, Abbaszadegan MR. The Level of Mesenchymal-Epithelial Transition Autophosphorylation is Correlated with Esophageal Squamous Cell Carcinoma Migration. IRANIAN BIOMEDICAL JOURNAL 2021; 25:243-54. [PMID: 34217156 PMCID: PMC8334392 DOI: 10.52547/ibj.25.4.243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 02/09/2021] [Indexed: 12/03/2022]
Abstract
Background The MET receptor is a critical member of cancer-associated receptor tyrosine kinases and plays an important role in different biological activities, including differentiation, migration, and cell proliferation. Methods In this study, novel MET inhibitors were introduced and applied on esophageal squamous carcinoma cell line KYSE-30, and the level of proliferation and migration, as well as the activated form of MET receptor protein were assessed in the examined cells. The human KYSE-30 cell line was cultured according to ATCC recommendations. The mRNA level of the MET gene was measured in the examined cell line using the quantitative RT-PCR assay. Cytotoxicity evaluation test was performed at different concentrations of heterocyclic anti-MET compounds (i.e. D1, D2, D5, D6, D7, and D8). Finally, the capability of these compounds in MET receptor inhibition was evaluated using the migration assay and Western blot. All experiments were performed in triplicate and repeated three times with similar results. Results Cell growth and proliferation were significantly inhibited (p ≤ 0.05) by all the above-mentioned compounds. Moreover, the majority of compounds significantly prevented the cell migration (p ≤ 0.05) and inhibited MET autophosphorylation. Interestingly, the level of phosphorylated MET was significantly correlated with KYSE-30 cell migration. Conclusion The obtained data introduced and confirmed the biological activities of the mentioned novel compounds in KYSE-30 cells and proposed that the therapeutic inhibition of MET with these compounds may be a powerful approach for inhibiting cancer cell migration and proliferation although some structural optimizations are needed to improve their inhibitory functions.
Collapse
Affiliation(s)
- Negin Taghehchian
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Baratali Mashkani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
28
|
Nisar M, Paracha RZ, Arshad I, Adil S, Zeb S, Hanif R, Rafiq M, Hussain Z. Integrated Analysis of Microarray and RNA-Seq Data for the Identification of Hub Genes and Networks Involved in the Pancreatic Cancer. Front Genet 2021; 12:663787. [PMID: 34262595 PMCID: PMC8273913 DOI: 10.3389/fgene.2021.663787] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer (PaCa) is the seventh most fatal malignancy, with more than 90% mortality rate within the first year of diagnosis. Its treatment can be improved the identification of specific therapeutic targets and their relevant pathways. Therefore, the objective of this study is to identify cancer specific biomarkers, therapeutic targets, and their associated pathways involved in the PaCa progression. RNA-seq and microarray datasets were obtained from public repositories such as the European Bioinformatics Institute (EBI) and Gene Expression Omnibus (GEO) databases. Differential gene expression (DE) analysis of data was performed to identify significant differentially expressed genes (DEGs) in PaCa cells in comparison to the normal cells. Gene co-expression network analysis was performed to identify the modules co-expressed genes, which are strongly associated with PaCa and as well as the identification of hub genes in the modules. The key underlaying pathways were obtained from the enrichment analysis of hub genes and studied in the context of PaCa progression. The significant pathways, hub genes, and their expression profile were validated against The Cancer Genome Atlas (TCGA) data, and key biomarkers and therapeutic targets with hub genes were determined. Important hub genes identified included ITGA1, ITGA2, ITGB1, ITGB3, MET, LAMB1, VEGFA, PTK2, and TGFβ1. Enrichment analysis characterizes the involvement of hub genes in multiple pathways. Important ones that are determined are ECM–receptor interaction and focal adhesion pathways. The interaction of overexpressed surface proteins of these pathways with extracellular molecules initiates multiple signaling cascades including stress fiber and lamellipodia formation, PI3K-Akt, MAPK, JAK/STAT, and Wnt signaling pathways. Identified biomarkers may have a strong influence on the PaCa early stage development and progression. Further, analysis of these pathways and hub genes can help in the identification of putative therapeutic targets and development of effective therapies for PaCa.
Collapse
Affiliation(s)
- Maryum Nisar
- Research Centre for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Rehan Zafar Paracha
- Research Centre for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Iqra Arshad
- Research Centre for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Sidra Adil
- Research Centre for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Sabaoon Zeb
- Research Centre for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Rumeza Hanif
- Atta-ur-Rahman School of Applied Biosciences-ASAB, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Mehak Rafiq
- Research Centre for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Zamir Hussain
- Research Centre for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
29
|
Desole C, Gallo S, Vitacolonna A, Montarolo F, Bertolotto A, Vivien D, Comoglio P, Crepaldi T. HGF and MET: From Brain Development to Neurological Disorders. Front Cell Dev Biol 2021; 9:683609. [PMID: 34179015 PMCID: PMC8220160 DOI: 10.3389/fcell.2021.683609] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/30/2021] [Indexed: 12/22/2022] Open
Abstract
Hepatocyte growth factor (HGF) and its tyrosine kinase receptor, encoded by the MET cellular proto-oncogene, are expressed in the nervous system from pre-natal development to adult life, where they are involved in neuronal growth and survival. In this review, we highlight, beyond the neurotrophic action, novel roles of HGF-MET in synaptogenesis during post-natal brain development and the connection between deregulation of MET expression and developmental disorders such as autism spectrum disorder (ASD). On the pharmacology side, HGF-induced MET activation exerts beneficial neuroprotective effects also in adulthood, specifically in neurodegenerative disease, and in preclinical models of cerebral ischemia, spinal cord injuries, and neurological pathologies, such as Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). HGF is a key factor preventing neuronal death and promoting survival through pro-angiogenic, anti-inflammatory, and immune-modulatory mechanisms. Recent evidence suggests that HGF acts on neural stem cells to enhance neuroregeneration. The possible therapeutic application of HGF and HGF mimetics for the treatment of neurological disorders is discussed.
Collapse
Affiliation(s)
- Claudia Desole
- Department of Oncology, University of Turin, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Simona Gallo
- Department of Oncology, University of Turin, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Annapia Vitacolonna
- Department of Oncology, University of Turin, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Francesca Montarolo
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy.,Neurobiology Unit, Neurology, CReSM (Regional Referring Center of Multiple Sclerosis), San Luigi Gonzaga University Hospital, Orbassano, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Antonio Bertolotto
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy.,Neurobiology Unit, Neurology, CReSM (Regional Referring Center of Multiple Sclerosis), San Luigi Gonzaga University Hospital, Orbassano, Italy
| | - Denis Vivien
- INSERM U1237, University of Caen, Gyp Cyceron, Caen, France.,Department of Clinical Research, Caen-Normandie University Hospital, Caen, France
| | - Paolo Comoglio
- IFOM, FIRC Institute for Molecular Oncology, Milan, Italy
| | - Tiziana Crepaldi
- Department of Oncology, University of Turin, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| |
Collapse
|
30
|
Jiang W, Xing XL, Zhang C, Yi L, Xu W, Ou J, Zhu N. MET and FASN as Prognostic Biomarkers of Triple Negative Breast Cancer: A Systematic Evidence Landscape of Clinical Study. Front Oncol 2021; 11:604801. [PMID: 34123778 PMCID: PMC8190390 DOI: 10.3389/fonc.2021.604801] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 04/30/2021] [Indexed: 12/31/2022] Open
Abstract
Background To know the expression of Mesenchymal–Epithelial Transition factor (MET) and Fatty Acid Synthase (FASN) in Triple Negative Breast Cancer (TNBC) patients, as well as its relationship with clinical pathological characteristic and prognosis. Methods we used immunohistochemistry staining to detect the expression of MET and FASN for those 218 TNBC patients, and analyze their relationship with the clinical pathological characteristic and prognosis. Results 130 and 65 out of 218 TNBC patients were positive for MET in the cancer and adjacent tissues respectively. 142 and 30 out of 218 TNBC patients were positive for FASN in the cancer and adjacent tissues respectively. Positive expression of MET and FASN were significantly correlated with lymph node metastasis, pathological TNM, and pathological Stage. In addition, the positive expression of MET and FASN were correlated with recurrence and metastasis. The combined use of MET and FASN can better predict the survival condition. Conclusions Our results indicated that MET and FASN showed good predictive ability for TNBC. Combined use of MET and FASN were recommended in order to make a more accurate prognosis for TNBC.
Collapse
Affiliation(s)
- Weihua Jiang
- The Affiliated Tumor Hospital of Xinjiang Medical University, Wulumuqi, China
| | | | - Chenguang Zhang
- The Affiliated Tumor Hospital of Xinjiang Medical University, Wulumuqi, China
| | - Lina Yi
- The Affiliated Tumor Hospital of Xinjiang Medical University, Wulumuqi, China
| | - Wenting Xu
- The Affiliated Tumor Hospital of Xinjiang Medical University, Wulumuqi, China
| | - Jianghua Ou
- The Affiliated Tumor Hospital of Xinjiang Medical University, Wulumuqi, China
| | - Ning Zhu
- Hunan University of Medicine, Huaihua, China
| |
Collapse
|
31
|
Wang S, Ma H, Yan Y, Chen Y, Fu S, Wang J, Wang Y, Chen H, Liu J. cMET promotes metastasis and epithelial-mesenchymal transition in colorectal carcinoma by repressing RKIP. J Cell Physiol 2021; 236:3963-3978. [PMID: 33151569 DOI: 10.1002/jcp.30142] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 10/01/2020] [Accepted: 10/23/2020] [Indexed: 02/05/2023]
Abstract
Increasing evidence indicates that c-mesenchymal-epithelial transition factor (cMET) plays an important role in the malignant progression of colorectal cancer (CRC). However, the underlying mechanism is not fully understood. As a metastasis suppressor, raf kinase inhibitory protein (RKIP) loss has been reported in many cancer types. In this study, the expression levels of cMET and RKIP in CRC tissues and cell lines were determined, and their crosstalk and potential biological effects were explored in vitro and in vivo. Our results showed that cMET was inversely correlated with RKIP. Both cMET upregulation and RKIP downregulation indicated poor clinical outcomes. Moreover, the MAPK/ERK signaling pathway was implicated in the regulation of cMET and RKIP. Overexpression of cMET promoted tumor cell epithelial-mesenchymal transition, invasion, migration, and chemoresistance, whereas the effects could be efficiently inhibited by increased RKIP. Notably, small hairpin RNA-mediated cMET knockdown dramatically suppressed cell proliferation, although no RKIP-induced influence on cell growth was observed in CRC. Altogether, cMET overexpression may contribute to tumor progression by inhibiting the antioncogene RKIP, providing preclinical justification for targeting RKIP to treat cMET-induced metastasis of CRC.
Collapse
Affiliation(s)
- Siyun Wang
- Department of PET Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Haiqing Ma
- Department of Oncology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yan Yan
- Department of Oncology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Yu Chen
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Sirui Fu
- Department of Interventional Therapy, Zhuhai Interventional Medical Center, Zhuhai City People's Hospital/Zhuhai Hospital of Jinan University, Zhuhai, Guangdong, China
| | - Junjiang Wang
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Ying Wang
- Department of Oncology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jianhua Liu
- Department of Oncology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
32
|
De Herdt MJ, van der Steen B, van der Toom QM, Aaboubout Y, Willems SM, Wieringa MH, Baatenburg de Jong RJ, Looijenga LHJ, Koljenović S, Hardillo JA. The Potential of MET Immunoreactivity for Prediction of Lymph Node Metastasis in Early Oral Tongue Squamous Cell Carcinoma. Front Oncol 2021; 11:638048. [PMID: 33996551 PMCID: PMC8117234 DOI: 10.3389/fonc.2021.638048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/06/2021] [Indexed: 01/19/2023] Open
Abstract
Objective MET positivity is independently associated with survival in oral squamous cell carcinoma (OSCC). Since MET is a known orchestrator of invasive tumor growth, we investigated its association with LNM in early oral tongue squamous cell carcinoma (OTSCC). As it is recommended by the NCCN to use tumor depth of invasion (DOI) in making decisions on elective neck dissection (END), the results obtained for MET positivity were aligned with those for DOI > 4 mm. The cutoff value used in our institution. Methods Tumor samples from patients who underwent primary tumor resection and neck dissection between 1995 and 2013, were collected from the archives of the Leiden and Erasmus University Medical Center. Immunohistochemistry with D1C2 was performed to identify MET negative (< 10% uniform positivity) and MET positive (≥ 10% uniform positivity) cancers. ROC curve analysis and the Chi-squared test were used to investigate the association of MET positivity with LNM (pN+ and occult). Binary logistic regression was used to investigate the association of MET positivity with LNM. Results Forty-five (44.1%) of the 102 cancers were MET positive. Ninety were cN0 of which 20 were pN+ (occult metastasis). The remaining 12 cancers were cN+, of which 10 were proven pN+ and 2 were pN0. MET positivity was associated with LNM with a positive predictive value (PPV) of 44.4% and a negative predictive value (NPV) of 82.5% for pN+. For the occult group, the PPV was 36.8% and the NPV was 88.5%. Regression analysis showed that MET positivity is associated with pN+ and occult LNM (p-value < 0.05). Conclusion MET positivity is significantly associated with LNM in early OTSCC, outperforming DOI. The added value of MET positivity could be in the preoperative setting when END is being considered during the initial surgery. For cases with DOI ≤ 4 mm, MET positivity could aid in the clinical decision whether regular follow-up, watchful waiting, or END is more appropriate. Realizing that these preliminary results need to be independently validated in a larger patient cohort, we believe that MET positivity could be of added value in the decision making on END in early OTSCC.
Collapse
Affiliation(s)
- Maria J De Herdt
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC, University Medical Center Rotterdam, Cancer Institute, Rotterdam, Netherlands
| | - Berdine van der Steen
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC, University Medical Center Rotterdam, Cancer Institute, Rotterdam, Netherlands
| | - Quincy M van der Toom
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC, University Medical Center Rotterdam, Cancer Institute, Rotterdam, Netherlands
| | - Yassine Aaboubout
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC, University Medical Center Rotterdam, Cancer Institute, Rotterdam, Netherlands.,Department of Pathology and Medical Biology, Erasmus MC, University Medical Center Rotterdam, Cancer Institute, Rotterdam, Netherlands
| | - Stefan M Willems
- Department of Pathology, University Medical Center Groningen, Groningen, Netherlands
| | - Marjan H Wieringa
- Department of Education, Office of Science, Elisabeth TweeSteden, Ziekenhuis, Tilburg, Netherlands
| | - Robert J Baatenburg de Jong
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC, University Medical Center Rotterdam, Cancer Institute, Rotterdam, Netherlands
| | - Leendert H J Looijenga
- Department of Pathology and Medical Biology, Erasmus MC, University Medical Center Rotterdam, Cancer Institute, Rotterdam, Netherlands.,Princess Maxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Senada Koljenović
- Department of Pathology and Medical Biology, Erasmus MC, University Medical Center Rotterdam, Cancer Institute, Rotterdam, Netherlands
| | - Jose A Hardillo
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC, University Medical Center Rotterdam, Cancer Institute, Rotterdam, Netherlands
| |
Collapse
|
33
|
Jiang W, Li T, Guo J, Wang J, Jia L, Shi X, Yang T, Jiao R, Wei X, Feng Z, Tang Q, Ji G. Bispecific c-Met/PD-L1 CAR-T Cells Have Enhanced Therapeutic Effects on Hepatocellular Carcinoma. Front Oncol 2021; 11:546586. [PMID: 33777728 PMCID: PMC7987916 DOI: 10.3389/fonc.2021.546586] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 01/25/2021] [Indexed: 12/15/2022] Open
Abstract
T cells expressing chimeric antigen receptors, especially CD19 CAR-T cells have exhibited effective antitumor activities in B cell malignancies, but due to several factors such as antigen escape effects and tumor microenvironment, their curative potential in hepatocellular carcinoma has not been encouraging. To reduce the antigen escape risk of hepatocellular carcinoma, this study was to design and construct a bispecific CAR targeting c-Met and PD-L1. c-Met/PD-L1 CAR-T cells were obtained by lentiviral transfection, and the transfection efficiency was monitored by flow cytometry analysis. LDH release assays were used to elucidate the efficacy of c-Met/PD-L1 CAR-T cells on hepatocellular carcinoma cells. In addition, xenograft models bearing human hepatocellular carcinoma were constructed to detect the antitumor effect of c-Met/PD-L1 CAR-T cells in vivo. The results shown that this bispecific CAR was manufactured successfully, T cells modified with this bispecific CAR demonstrated improved antitumor activities against c-Met and PD-L1 positive hepatocellular carcinoma cells when compared with those of monovalent c-Met CAR-T cells or PD-L1 CAR-T cells but shown no distinct cytotoxicity on hepatocytes in vitro. In vivo experiments shown that c-Met/PD-L1 CAR-T cells significantly inhibited tumor growth and improve survival persistence compared with other groups. These results suggested that the design of single-chain, bi-specific c-Met/PD-L1 CAR-T is more effective than that of monovalent c-Met CAR-T for the treatment of hepatocellular carcinoma., and this bi-specific c-Met/PD-L1 CAR is rational and implementable with current T-cell engineering technology.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Tao Li
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Jiaojiao Guo
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, China.,Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Jingjing Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Lizhou Jia
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, China.,Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Xiao Shi
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Tingting Yang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, China.,Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Ruonan Jiao
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Xin Wei
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Zhenqing Feng
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, China.,Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Qi Tang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, China.,Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Guozhong Ji
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
34
|
Deveaux AE, Allen TA, Al Abo M, Qin X, Zhang D, Patierno BM, Gu L, Gray JE, Pecot CV, Dressman HK, McCall SJ, Kittles RA, Hyslop T, Owzar K, Crawford J, Patierno SR, Clarke JM, Freedman JA. RNA splicing and aggregate gene expression differences in lung squamous cell carcinoma between patients of West African and European ancestry. Lung Cancer 2021; 153:90-98. [PMID: 33465699 DOI: 10.1016/j.lungcan.2021.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Despite disparities in lung cancer incidence and mortality, the molecular landscape of lung cancer in patients of African ancestry remains underexplored, and race-related differences in RNA splicing remain unexplored. MATERIALS AND METHODS We identified differentially spliced genes (DSGs) and differentially expressed genes (DEGs) in biobanked lung squamous cell carcinoma (LUSC) between patients of West African and European ancestry, using ancestral genotyping and Affymetrix Clariom D array. DSGs and DEGs were validated independently using the National Cancer Institute Genomic Data Commons. Associated biological processes, overlapping canonical pathways, enriched gene sets, and cancer relevance were identified using Gene Ontology Consortium, Ingenuity Pathway Analysis, Gene Set Enrichment Analysis, and CancerMine, respectively. Association with LUSC survival was conducted using The Cancer Genome Atlas. RESULTS 4,829 DSGs and 267 DEGs were identified, including novel targets in NSCLC as well as genes identified previously to have relevance to NSCLC. RNA splicing events within 3 DSGs as well as 1 DEG were validated in the independent cohort. 853 DSGs and 29 DEGs have been implicated as potential drivers, oncogenes and/or tumor suppressor genes. Biological processes enriched among DSGs and DEGs included metabolic process, biological regulation, and multicellular organismal process and, among DSGs, ion transport. Overlapping canonical pathways among DSGs included neuronal signaling pathways and, among DEGs, cell metabolism involving biosynthesis. Gene sets enriched among DSGs included KRAS Signaling, UV Response, E2 F Targets, Glycolysis, and Coagulation. 355 RNA splicing events within DSGs and 18 DEGs show potential association with LUSC patient survival. CONCLUSION These DSGs and DEGs, which show potential biological and clinical relevance, could have the ability to drive novel biomarker and therapeutic development to mitigate LUSC disparities.
Collapse
Affiliation(s)
- April E Deveaux
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Tyler A Allen
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Muthana Al Abo
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Xiaodi Qin
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Dadong Zhang
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Brendon M Patierno
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Lin Gu
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jhanelle E Gray
- Department of Thoracic Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Chad V Pecot
- Department of Medicine, Division of Hematology/Oncology, University of North Carolina, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, 27599, USA
| | - Holly K Dressman
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Shannon J McCall
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Rick A Kittles
- Department of Population Sciences, Division of Health Equities, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Terry Hyslop
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA; Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kouros Owzar
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA; Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jeffrey Crawford
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA; Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Steven R Patierno
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA; Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jeffrey M Clarke
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA; Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jennifer A Freedman
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA; Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
35
|
Hwang K, Yoon JH, Lee JH, Lee S. Recent Advances in Monoclonal Antibody Therapy for Colorectal Cancers. Biomedicines 2021; 9:39. [PMID: 33466394 PMCID: PMC7824816 DOI: 10.3390/biomedicines9010039] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer deaths worldwide. Recent advances in recombinant DNA technology have led to the development of numerous therapeutic antibodies as major sources of blockbuster drugs for CRC therapy. Simultaneously, increasing numbers of therapeutic targets in CRC have been identified. In this review, we first highlight the physiological and pathophysiological roles and signaling mechanisms of currently known and emerging therapeutic targets, including growth factors and their receptors as well as immune checkpoint proteins, in CRC. Additionally, we discuss the current status of monoclonal antibodies in clinical development and approved by US Food and Drug Administration for CRC therapy.
Collapse
Affiliation(s)
| | | | | | - Sukmook Lee
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul 02707, Korea; (K.H.); (J.H.Y.); (J.H.L.)
| |
Collapse
|
36
|
Liver regeneration: biological and pathological mechanisms and implications. Nat Rev Gastroenterol Hepatol 2021; 18:40-55. [PMID: 32764740 DOI: 10.1038/s41575-020-0342-4] [Citation(s) in RCA: 439] [Impact Index Per Article: 146.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/24/2020] [Indexed: 02/08/2023]
Abstract
The liver is the only solid organ that uses regenerative mechanisms to ensure that the liver-to-bodyweight ratio is always at 100% of what is required for body homeostasis. Other solid organs (such as the lungs, kidneys and pancreas) adjust to tissue loss but do not return to 100% of normal. The current state of knowledge of the regenerative pathways that underlie this 'hepatostat' will be presented in this Review. Liver regeneration from acute injury is always beneficial and has been extensively studied. Experimental models that involve partial hepatectomy or chemical injury have revealed extracellular and intracellular signalling pathways that are used to return the liver to equivalent size and weight to those prior to injury. On the other hand, chronic loss of hepatocytes, which can occur in chronic liver disease of any aetiology, often has adverse consequences, including fibrosis, cirrhosis and liver neoplasia. The regenerative activities of hepatocytes and cholangiocytes are typically characterized by phenotypic fidelity. However, when regeneration of one of the two cell types fails, hepatocytes and cholangiocytes function as facultative stem cells and transdifferentiate into each other to restore normal liver structure. Liver recolonization models have demonstrated that hepatocytes have an unlimited regenerative capacity. However, in normal liver, cell turnover is very slow. All zones of the resting liver lobules have been equally implicated in the maintenance of hepatocyte and cholangiocyte populations in normal liver.
Collapse
|
37
|
Hedman AC, McNulty DE, Li Z, Gorisse L, Annan RS, Sacks DB. Tyrosine phosphorylation of the scaffold protein IQGAP1 in the MET pathway alters function. J Biol Chem 2020; 295:18105-18121. [PMID: 33087447 DOI: 10.1074/jbc.ra120.015891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/14/2020] [Indexed: 12/20/2022] Open
Abstract
IQGAP1 is a key scaffold protein that regulates numerous cellular processes and signaling pathways. Analogous to many other cellular proteins, IQGAP1 undergoes post-translational modifications, including phosphorylation. Nevertheless, very little is known about the specific sites of phosphorylation or the effects on IQGAP1 function. Here, using several approaches, including MS, site-directed mutagenesis, siRNA-mediated gene silencing, and chemical inhibitors, we identified the specific tyrosine residues that are phosphorylated on IQGAP1 and evaluated the effect on function. Tyr-172, Tyr-654, Tyr-855, and Tyr-1510 were phosphorylated on IQGAP1 when phosphotyrosine phosphatase activity was inhibited in cells. IQGAP1 was phosphorylated exclusively on Tyr-1510 under conditions with enhanced MET or c-Src signaling, including in human lung cancer cell lines. This phosphorylation was significantly reduced by chemical inhibitors of MET or c-Src or by siRNA-mediated knockdown of MET. To investigate the biological sequelae of phosphorylation, we generated a nonphosphorylatable IQGAP1 construct by replacing Tyr-1510 with alanine. The ability of hepatocyte growth factor, the ligand for MET, to promote AKT activation and cell migration was significantly greater when IQGAP1-null cells were reconstituted with IQGAP1 Y1510A than when cells were reconstituted with WT IQGAP1. Collectively, our data suggest that phosphorylation of Tyr-1510 of IQGAP1 alters cell function. Because increased MET signaling is implicated in the development and progression of several types of carcinoma, IQGAP1 may be a potential therapeutic target in selected malignancies.
Collapse
Affiliation(s)
- Andrew C Hedman
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Dean E McNulty
- Discovery Analytical, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Zhigang Li
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Laëtitia Gorisse
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Roland S Annan
- Discovery Analytical, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - David B Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
38
|
Gan Q, Shao J, Cao Y, Lei J, Xie P, Ge J, Hu G. USP33 regulates c-Met expression by deubiquitinating SP1 to facilitate metastasis in hepatocellular carcinoma. Life Sci 2020; 261:118316. [PMID: 32835698 DOI: 10.1016/j.lfs.2020.118316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/05/2020] [Accepted: 08/19/2020] [Indexed: 12/21/2022]
Abstract
AIMS Deubiquitinase ubiquitin-specific protease 33 (USP33) is abnormally expressed in various tumors and participates in tumor progression. However, the expression and biological role of USP33 in hepatocellular carcinoma (HCC) are still unclear. MAIN METHODS We performed immunohistochemistry, western blotting, and qRT-PCR analysis to determine the expression of USP33 in HCC. We then analyzed the effects of USP33 expression on the prognosis of HCC. The roles of USP33 in regulating HCC cell migration and invasion were further explored in vitro. Animal studies were performed to investigate the effects of USP33 on tumor metastasis. RNA sequencing and luciferase reporter and immunofluorescence assays were used to identify the activation of the specificity protein 1 (SP1)/c-Met axis. KEY FINDINGS Here, for the first time, we reported an abnormal increase in the expression of USP33 in HCC tissues and that USP33 may act as a prognostic biomarker for HCC patients. We found that USP33 knockdown inhibited the invasion and metastasis in HCC cells both in vitro and in vivo, which was partly dependent on c-Met. Further investigations revealed that USP33 regulated c-Met expression by enhancing the protein stability of the transcription factor SP1 in HCC cells. Mechanistically, USP33 directly bound SP1 and decreased its ubiquitination, thereby upregulating c-Met expression. SIGNIFICANCE Our results reveal that USP33 acts as the deubiquitinating enzyme of SP1 and contributes to HCC invasion and metastasis through activation of the SP1/c-Met axis. These data indicate a previously unknown function of USP33, which may provide potential targets for the treatment of HCC patients.
Collapse
Affiliation(s)
- Qin Gan
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jiujiang Hospital of Nanchang University, Jiujiang 332000, China; Department of Hepatobiliary and Pancreatic Surgery, Jiujiang NO.1 People's Hospital, Jiujiang 332000, China
| | - Jia Shao
- Centre for Assisted Reproduction, The First Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Yan Cao
- Department of Gastroenterology, The Fourth Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jun Lei
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Peiyi Xie
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jin Ge
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| | - Guohui Hu
- Department of General Practice, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| |
Collapse
|
39
|
Riccardi C, Napolitano E, Musumeci D, Montesarchio D. Dimeric and Multimeric DNA Aptamers for Highly Effective Protein Recognition. Molecules 2020; 25:E5227. [PMID: 33182593 PMCID: PMC7698228 DOI: 10.3390/molecules25225227] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/14/2022] Open
Abstract
Multivalent interactions frequently occur in biological systems and typically provide higher binding affinity and selectivity in target recognition than when only monovalent interactions are operative. Thus, taking inspiration by nature, bivalent or multivalent nucleic acid aptamers recognizing a specific biological target have been extensively studied in the last decades. Indeed, oligonucleotide-based aptamers are suitable building blocks for the development of highly efficient multivalent systems since they can be easily modified and assembled exploiting proper connecting linkers of different nature. Thus, substantial research efforts have been put in the construction of dimeric/multimeric versions of effective aptamers with various degrees of success in target binding affinity or therapeutic activity enhancement. The present review summarizes recent advances in the design and development of dimeric and multimeric DNA-based aptamers, including those forming G-quadruplex (G4) structures, recognizing different key proteins in relevant pathological processes. Most of the designed constructs have shown improved performance in terms of binding affinity or therapeutic activity as anti-inflammatory, antiviral, anticoagulant, and anticancer agents and their number is certainly bound to grow in the next future.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (E.N.); (D.M.); (D.M.)
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini, 5, I-80131 Naples, Italy
| | - Ettore Napolitano
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (E.N.); (D.M.); (D.M.)
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (E.N.); (D.M.); (D.M.)
- Institute of Biostructures and Bioimages, CNR, via Mezzocannone 16, I-80134 Naples, Italy
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (E.N.); (D.M.); (D.M.)
| |
Collapse
|
40
|
Molecular mechanisms underlining the role of metformin as a therapeutic agent in lung cancer. Cell Oncol (Dordr) 2020; 44:1-18. [PMID: 33125630 DOI: 10.1007/s13402-020-00570-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Metformin, a first-line therapeutic for type 2 diabetes, has been studied for its potential use in cancer treatment following a number of epidemiological studies that have demonstrated reduced cancer incidence and mortality rates among patients treated with the drug. As yet, however, there remains significant uncertainty about the molecular mechanisms by which metformin exerts its anti-cancer effects. Herein, we summarize the evidence surrounding the anti-lung cancer effects of metformin. CONCLUSIONS Specifically, we explore protein targets of metformin, including AMPK, PP2A, IRF-1/YAP and HGF and we outline the proposed mechanisms of action for metformin in lung cancer, with particular attention given to apoptosis and autophagy. We also closely examine the synergistic activity of metformin with existing cancer treatment regimens, such as TKI's, platinum-based agents and immune therapeutics. In addition to considering preclinical and clinical studies, we also dissect and contextualize the limitations and inconsistencies of the current literature, especially those of epidemiological studies. Finally, we offer a potential trajectory for future research in this rapidly evolving area of basic and clinical oncology.
Collapse
|
41
|
Cancer-driving mutations and variants of components of the membrane trafficking core machinery. Life Sci 2020; 264:118662. [PMID: 33127517 DOI: 10.1016/j.lfs.2020.118662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
The core machinery for vesicular membrane trafficking broadly comprises of coat proteins, RABs, tethering complexes and SNAREs. As cellular membrane traffic modulates key processes of mitogenic signaling, cell migration, cell death and autophagy, its dysregulation could potentially results in increased cell proliferation and survival, or enhanced migration and invasion. Changes in the levels of some components of the core machinery of vesicular membrane trafficking, likely due to gene amplifications and/or alterations in epigenetic factors (such as DNA methylation and micro RNA) have been extensively associated with human cancers. Here, we provide an overview of association of membrane trafficking with cancer, with a focus on mutations and variants of coat proteins, RABs, tethering complex components and SNAREs that have been uncovered in human cancer cells/tissues. The major cellular and molecular cancer-driving or suppression mechanisms associated with these components of the core membrane trafficking machinery shall be discussed.
Collapse
|
42
|
c-MET immunohistochemistry for differentiating malignant mesothelioma from benign mesothelial proliferations. Hum Pathol 2020; 105:31-36. [PMID: 32916162 DOI: 10.1016/j.humpath.2020.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 01/16/2023]
Abstract
The separation of benign from malignant mesothelial proliferations can be a difficult problem for the surgical pathologist. c-MET is a receptor tyrosine kinase that is overexpressed and detectable by immunohistochemistry in many malignancies, including malignant mesothelioma. Whether c-MET is also expressed in benign mesothelial reactions is unclear from the literature. To determine whether c-MET immunohistochemistry can separate benign from malignant mesothelial processes, we stained 2 tissue microarrays containing 33 reactive epithelioid mesothelial proliferations (E-RMPs), 23 reactive spindle cell mesothelial proliferations, 45 epithelioid malignant mesotheliomas (EMMs), and 26 sarcomatoid/desmoplastic mesotheliomas (SMMs) for c-MET and compared the results with immunohistochemistry for two established markers, BAP1 and methylthioadenosine phosphorylase (MTAP). Membrane staining for c-MET was evaluated using a 12-point H-score classified as negative (score = 0), trace (score = 1-3), moderate (score = 4-6), and strong (score = 8-12). Staining was seen in only 3 of 33 (all trace) E-RMPs compared with 36 of 45 (80%) EMMs (chi-square comparing reactive and malignant = 39.80, p = 1.2 × 10-8). The H-score was >3 (moderate or strong) in 24 of 45 (53%) EMMs. Addition of BAP1 staining to the c-MET-negative/trace EMM increased sensitivity to 75% (32/42), whereas similar addition of MTAP staining increased sensitivity to 77% (33/43). No benign spindle cell proliferations showed staining compared with 10 of 26 (38%) positive SMMs, but only 4 (15%) SMMs were classified as moderate or strong. We conclude that moderate/strong c-MET staining can be used to support a diagnosis of EMM vs an epithelial reactive proliferation. c-MET is too insensitive to use for detecting SMM.
Collapse
|
43
|
Suster DI, Mino-Kenudson M. Molecular Pathology of Primary Non-small Cell Lung Cancer. Arch Med Res 2020; 51:784-798. [PMID: 32873398 DOI: 10.1016/j.arcmed.2020.08.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023]
Abstract
Lung carcinoma is one of the most common human cancers and is estimated to have an incidence of approximately 2 million new cases per year worldwide with a 20% mortality rate. Lung cancer represents one of the leading causes of cancer related death in the world. Of all cancer types to affect the pulmonary system, non-small cell lung carcinoma comprises approximately 80-85% of all tumors. In the past few decades cytogenetic and advanced molecular techniques have helped define the genomic landscape of lung cancer, and in the process, revolutionized the clinical management and treatment of patients with advanced non-small cell lung cancer. The discovery of specific, recurrent genetic abnormalities has led to the development of targeted therapies that have extended the life expectancy of patients who develop carcinoma of the lungs. Patients are now routinely treated with targeted therapies based on identifiable molecular alterations or other predictive biomarkers which has led to a revolution in the field of pulmonary pathology and oncology. Numerous different testing modalities, with various strengths and limitations now exist which complicate diagnostic algorithms, however recently emerging consensus guidelines and recommendations have begun to standardize the way to approach diagnostic testing of lung carcinoma. Herein we provide an overview of the molecular genetic landscape of non-small cell lung carcinoma, with attention to those clinically relevant alterations which drive management, as well as review current recommendations for molecular testing.
Collapse
Affiliation(s)
- David Ilan Suster
- Department of Pathology, Rutgers University, New Jersey Medical School, Newark, NJ, USA
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
44
|
Kong Y, Qiao Z, Ren Y, Genchev GZ, Ge M, Xiao H, Zhao H, Lu H. Integrative Analysis of Membrane Proteome and MicroRNA Reveals Novel Lung Cancer Metastasis Biomarkers. Front Genet 2020; 11:1023. [PMID: 33005184 PMCID: PMC7483668 DOI: 10.3389/fgene.2020.01023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is one of the most common human cancers both in incidence and mortality, with prognosis particularly poor in metastatic cases. Metastasis in lung cancer is a multifarious process driven by a complex regulatory landscape involving many mechanisms, genes, and proteins. Membrane proteins play a crucial role in the metastatic journey both inside tumor cells and the extra-cellular matrix and are a viable area of research focus with the potential to uncover biomarkers and drug targets. In this work we performed membrane proteome analysis of highly and poorly metastatic lung cells which integrated genomic, proteomic, and transcriptional data. A total of 1,762 membrane proteins were identified, and within this set, there were 163 proteins with significant changes between the two cell lines. We applied the Tied Diffusion through Interacting Events method to integrate the differentially expressed disease-related microRNAs and functionally dys-regulated membrane protein information to further explore the role of key membrane proteins and microRNAs in multi-omics context. Has-miR-137 was revealed as a key gene involved in the activity of membrane proteins by targeting MET and PXN, affecting membrane proteins through protein-protein interaction mechanism. Furthermore, we found that the membrane proteins CDH2, EGFR, ITGA3, ITGA5, ITGB1, and CALR may have significant effect on cancer prognosis and outcomes, which were further validated in vitro. Our study provides multi-omics-based network method of integrating microRNAs and membrane proteome information, and uncovers a differential molecular signatures of highly and poorly metastatic lung cancer cells; these molecules may serve as potential targets for giant-cell lung metastasis treatment and prognosis.
Collapse
Affiliation(s)
- Yan Kong
- SJTU-Yale Joint Center for Biostatistics and Data Science, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi Qiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yongyong Ren
- SJTU-Yale Joint Center for Biostatistics and Data Science, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Georgi Z Genchev
- SJTU-Yale Joint Center for Biostatistics and Data Science, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Center for Biomedical Informatics, Shanghai Engineering Research Center for Big Data in Pediatric Precision Medicine, Shanghai Children's Hospital, Shanghai, China.,Bulgarian Institute for Genomics and Precision Medicine, Sofia, Bulgaria
| | - Maolin Ge
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hongyu Zhao
- Department of Biostatistics, Yale University, New Haven, CT, United States
| | - Hui Lu
- SJTU-Yale Joint Center for Biostatistics and Data Science, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Center for Biomedical Informatics, Shanghai Engineering Research Center for Big Data in Pediatric Precision Medicine, Shanghai Children's Hospital, Shanghai, China
| |
Collapse
|
45
|
Loss of Two-Pore Channel 2 (TPC2) Expression Increases the Metastatic Traits of Melanoma Cells by a Mechanism Involving the Hippo Signalling Pathway and Store-Operated Calcium Entry. Cancers (Basel) 2020; 12:cancers12092391. [PMID: 32846966 PMCID: PMC7564716 DOI: 10.3390/cancers12092391] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 01/10/2023] Open
Abstract
Melanoma is one of the most aggressive and treatment-resistant human cancers. The two-pore channel 2 (TPC2) is located on late endosomes, lysosomes and melanosomes. Here, we characterized how TPC2 knockout (KO) affected human melanoma cells derived from a metastatic site. TPC2 KO increased these cells’ ability to invade the extracelullar matrix and was associated with the increased expression of mesenchymal markers ZEB-1, Vimentin and N-Cadherin, and the enhanced secretion of MMP9. TPC2 KO also activated genes regulated by YAP/TAZ, which are key regulators of tumourigenesis and metastasis. Expression levels of ORAI1, a component of store-operated Ca2+ entry (SOCE), and PKC-βII, part of the HIPPO pathway that negatively regulates YAP/TAZ activity, were reduced by TPC2 KO and RNA interference knockdown. We propose a cellular mechanism mediated by ORAI1/Ca2+/PKC-βII to explain these findings. Highlighting their potential clinical significance, patients with metastatic tumours showed a reduction in TPC2 expression. Our research indicates a novel role of TPC2 in melanoma. While TPC2 loss may not activate YAP/TAZ target genes in primary melanoma, in metastatic melanoma it could activate such genes and increase cancer aggressiveness. These findings aid the understanding of tumourigenesis mechanisms and could provide new diagnostic and treatment strategies for skin cancer and other metastatic cancers.
Collapse
|
46
|
Kikuchi A, Takayama H, Tsugane H, Shiba K, Chikamoto K, Yamamoto T, Matsugo S, Ishii KA, Misu H, Takamura T. Plasma half-life and tissue distribution of leukocyte cell-derived chemotaxin 2 in mice. Sci Rep 2020; 10:13260. [PMID: 32764719 PMCID: PMC7411055 DOI: 10.1038/s41598-020-70192-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 07/24/2020] [Indexed: 11/09/2022] Open
Abstract
Leukocyte cell-derived chemotaxin 2 (LECT2) is a hepatokine that causes skeletal muscle insulin resistance. The circulating levels of LECT2 are a possible biomarker that can predict weight cycling because they reflect liver fat and precede the onset of weight loss or gain. Herein, to clarify the dynamics of this rapid change in serum LECT2 levels, we investigated the in vivo kinetics of LECT2, including its plasma half-life and tissue distribution, by injecting 125I-labelled LECT2 into ICR mice and radioactivity tracing. The injected LECT2 was eliminated from the bloodstream within 10 min (approximate half-life, 5 min). In the kidneys, the radioactivity accumulated within 10 min after injection and declined thereafter. Conversely, the radioactivity in urine increased after 30 min of injection, indicating that LECT2 is mainly excreted by the kidneys into the urine. Finally, LECT2 accumulated in the skeletal muscle and liver until 30 min and 2 min after injection, respectively. LECT2 accumulation was not observed in the adipose tissue. These findings are in agreement with LECT2 action on the skeletal muscle. The present study indicates that LECT2 is a rapid-turnover protein, which renders the circulating level of LECT2 a useful rapid-response biomarker to predict body weight alterations.
Collapse
Affiliation(s)
- Akihiro Kikuchi
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan. .,Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institute of Natural Sciences, Okazaki, 444-8585, Japan.
| | - Hiroaki Takayama
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan.,Life Sciences Division, Engineering and Technology Department, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Hirohiko Tsugane
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan.,Division of Natural System, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Kazuhiro Shiba
- Advanced Science Research Center, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Keita Chikamoto
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan.,Division of Natural System, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Tatsuya Yamamoto
- Suntory Foundation for Life Sciences, Bioorganic Research Institute, Kyoto, 619-0284, Japan
| | - Seiichi Matsugo
- Division of Natural System, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Kiyo-Aki Ishii
- Department of Integrative Medicine for Longevity, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Hirofumi Misu
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Toshinari Takamura
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan.
| |
Collapse
|
47
|
The Role of Receptor Tyrosine Kinases in Lassa Virus Cell Entry. Viruses 2020; 12:v12080857. [PMID: 32781509 PMCID: PMC7472032 DOI: 10.3390/v12080857] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 02/06/2023] Open
Abstract
The zoonotic Old World mammarenavirus Lassa (LASV) causes severe hemorrhagic fever with high mortality and morbidity in humans in endemic regions. The development of effective strategies to combat LASV infections is of high priority, given the lack of a licensed vaccine and restriction on available treatment to off-label use of ribavirin. A better understanding of the fundamental aspects of the virus's life cycle would help to improve the development of novel therapeutic approaches. Host cell entry and restriction factors represent major barriers for emerging viruses and are promising targets for therapeutic intervention. In addition to the LASV main receptor, the extracellular matrix molecule dystroglycan (DG), the phosphatidylserine-binding receptors of the Tyro3/Axl/Mer (TAM), and T cell immunoglobulin and mucin receptor (TIM) families are potential alternative receptors of LASV infection. Therefore, the relative contributions of candidate receptors to LASV entry into a particular human cell type are a complex function of receptor expression and functional DG availability. Here, we describe the role of two receptor tyrosine kinases (RTKs), Axl and hepatocyte growth factor receptor (HGFR), in the presence and absence of glycosylated DG for LASV entry. We found that both RTKs participated in the macropinocytosis-related LASV entry and, regardless of the presence or absence of functional DG, their inhibition resulted in a significant antiviral effect.
Collapse
|
48
|
De Herdt MJ, Koljenović S, van der Steen B, Willems SM, Wieringa MH, Nieboer D, Hardillo JA, Gruver AM, Zeng W, Liu L, Baatenburg de Jong RJ, Looijenga LHJ. A novel immunohistochemical scoring system reveals associations of C-terminal MET, ectodomain shedding, and loss of E-cadherin with poor prognosis in oral squamous cell carcinoma. Hum Pathol 2020; 104:42-53. [PMID: 32702402 DOI: 10.1016/j.humpath.2020.07.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/13/2020] [Indexed: 01/02/2023]
Abstract
Using tissue microarrays, it was shown that membranous C-terminal MET immunoreactivity and ectodomain (ECD) shedding are associated with poor prognosis in oral cancer. Seen the potential diagnostic value, extrapolation of these results to whole-tissue sections was investigated. Because MET orchestrates epithelial-to-mesenchymal transition (EMT), the results were benchmarked to loss of E-cadherin, a readout for EMT known to be associated with poor prognosis. C-terminal MET, N-terminal MET, and E-cadherin immunoreactivities were examined on formalin-fixed paraffin-embedded parallel sections of 203 oral cancers using antibody clones D1C2, A2H2-3, and NCH-38. Interantibody and intra-antibody relations were examined using a novel scoring system, nonparametric distribution, and median tests. Survival analyses were used to examine the prognostic value of the observed immunoreactivities. Assessment of the three clones revealed MET protein status (no, decoy, transmembranous C-terminal positive), ECD shedding, and EMT. For C-terminal MET-positive cancers, D1C2 immunoreactivity is independently associated with poor overall survival (hazard ratio [HR] = 2.40; 95% confidence interval [CI] = 1.25 to 4.61; and P = 0.008) and disease-free survival (HR = 1.83; 95% CI = 1.07-3.14; P = 0.027). For both survival measures, this is also the case for ECD shedding (43.4%, with HR = 2.30; 95% CI = 1.38 to 3.83; and P = 0.001 versus HR = 1.87; 95% CI = 1.19-2.92; P = 0.006) and loss of E-cadherin (55.3%, with HR = 2.21; 95% CI = 1.30 to 3.77; and P = 0.004 versus HR = 1.90; 95% CI = 1.20-3.01; P = 0.007). The developed scoring system accounts for MET protein status, ECD shedding, and EMT and is prognostically informative. These findings may contribute to development of companion diagnostics for MET-based targeted therapy.
Collapse
Affiliation(s)
- Maria J De Herdt
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC, University Medical Center Rotterdam, Cancer Institute, 3015 GD, Rotterdam, the Netherlands.
| | - Senada Koljenović
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Cancer Institute, 3015 GD, Rotterdam, the Netherlands.
| | - Berdine van der Steen
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC, University Medical Center Rotterdam, Cancer Institute, 3015 GD, Rotterdam, the Netherlands.
| | - Stefan M Willems
- Department of Pathology, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands.
| | - Marjan H Wieringa
- Department of Education, Office of Science, Elisabeth TweeSteden Ziekenhuis, 5022 GC, Tilburg, the Netherlands.
| | - Daan Nieboer
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, 3015 GD, Rotterdam, the Netherlands.
| | - Jose A Hardillo
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC, University Medical Center Rotterdam, Cancer Institute, 3015 GD, Rotterdam, the Netherlands.
| | - Aaron M Gruver
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46225, USA.
| | - Wei Zeng
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46225, USA.
| | - Ling Liu
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46225, USA.
| | - Robert J Baatenburg de Jong
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC, University Medical Center Rotterdam, Cancer Institute, 3015 GD, Rotterdam, the Netherlands.
| | - Leendert H J Looijenga
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Cancer Institute, 3015 GD, Rotterdam, the Netherlands; Princess Maxima Center for Pediatric Oncology, 3584 CS, Utrecht, the Netherlands.
| |
Collapse
|
49
|
Salgia R, Sattler M, Scheele J, Stroh C, Felip E. The promise of selective MET inhibitors in non-small cell lung cancer with MET exon 14 skipping. Cancer Treat Rev 2020; 87:102022. [DOI: 10.1016/j.ctrv.2020.102022] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 12/17/2022]
|
50
|
Ashrafizadeh M, Najafi M, Makvandi P, Zarrabi A, Farkhondeh T, Samarghandian S. Versatile role of curcumin and its derivatives in lung cancer therapy. J Cell Physiol 2020; 235:9241-9268. [PMID: 32519340 DOI: 10.1002/jcp.29819] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/24/2020] [Accepted: 05/12/2020] [Indexed: 12/24/2022]
Abstract
Lung cancer is a main cause of death all over the world with a high incidence rate. Metastasis into neighboring and distant tissues as well as resistance of cancer cells to chemotherapy demand novel strategies in lung cancer therapy. Curcumin is a naturally occurring nutraceutical compound derived from Curcuma longa (turmeric) that has great pharmacological effects, such as anti-inflammatory, neuroprotective, and antidiabetic. The excellent antitumor activity of curcumin has led to its extensive application in the treatment of various cancers. In the present review, we describe the antitumor activity of curcumin against lung cancer. Curcumin affects different molecular pathways such as vascular endothelial growth factors, nuclear factor-κB (NF-κB), mammalian target of rapamycin, PI3/Akt, microRNAs, and long noncoding RNAs in treatment of lung cancer. Curcumin also can induce autophagy, apoptosis, and cell cycle arrest to reduce the viability and proliferation of lung cancer cells. Notably, curcumin supplementation sensitizes cancer cells to chemotherapy and enhances chemotherapy-mediated apoptosis. Curcumin can elevate the efficacy of radiotherapy in lung cancer therapy by targeting various signaling pathways, such as epidermal growth factor receptor and NF-κB. Curcumin-loaded nanocarriers enhance the bioavailability, cellular uptake, and antitumor activity of curcumin. The aforementioned effects are comprehensively discussed in the current review to further direct studies for applying curcumin in lung cancer therapy.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pooyan Makvandi
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (CNR), Naples, Italy
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, Turkey
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|