1
|
Zhou L, Wu Q, Yang Y, Li Q, Li R, Ye J. Regulation of Oil Biosynthesis and Genetic Improvement in Plants: Advances and Prospects. Genes (Basel) 2024; 15:1125. [PMID: 39336716 PMCID: PMC11431182 DOI: 10.3390/genes15091125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/30/2024] Open
Abstract
Triglycerides are the main storage form of oil in plant seeds. Both fatty acids and triglycerides possess important functions in the process of plant growth and development. To improve the seed oil content and improve its fatty acid composition, this paper analyzed the research progress on the oil regulation and synthesis metabolism process of plant seeds and summarized the strategies for the improvement of plant seed oil: (a) To regulate carbon distribution by inhibiting the expression of genes encoding key enzymes, allocating carbon sources into the protein synthesis pathway, and enhancing the expression of key genes encoding key enzymes, leading carbon sources into the synthesis pathway of fatty acids; (b) To intervene in lipid synthesis by promoting the biosynthesis of fatty acids and improving the expression level of key genes encoding enzymes in the triacylglycerol (TAG) assembly process; (c) To improve seed oil quality by altering the plant fatty acid composition and regulating the gene expression of fatty acid desaturase, as well as introducing an exogenous synthesis pathway of long chain polyunsaturated fatty acids; (d) To regulate the expression of transcription factors for lipid synthesis metabolism to increase the seed oil content. In addition, this article reviews the key enzymes involved in the biosynthesis of plant fatty acids, the synthesis of triacylglycerol, and the regulation process. It also summarizes the regulatory roles of transcription factors such as WRI, LEC, and Dof on the key enzymes during the synthesis process. This review holds significant implications for research on the genetic engineering applications in plant seed lipid metabolism.
Collapse
Affiliation(s)
- Lixia Zhou
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China (Y.Y.); (Q.L.); (R.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Qiufei Wu
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China (Y.Y.); (Q.L.); (R.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Yaodong Yang
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China (Y.Y.); (Q.L.); (R.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Qihong Li
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China (Y.Y.); (Q.L.); (R.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Rui Li
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China (Y.Y.); (Q.L.); (R.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Jianqiu Ye
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China (Y.Y.); (Q.L.); (R.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| |
Collapse
|
2
|
Akbar S, Rahman A, Ahmad N, Imran M, Hafeez Z. Understanding the Role of Polyunsaturated Fatty Acids in the Development and Prevention of Cancer. Cancer Treat Res 2024; 191:57-93. [PMID: 39133404 DOI: 10.1007/978-3-031-55622-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Polyunsaturated fatty acids (PUFAs), notably omega-3 (n-3) and omega-6 (n-6), have received much attention owing to their multifaceted effects not only in the management of diverse pathological conditions but also in the maintenance of overall health of an individual. A disproportionately high n-6 to n-3 ratio contributes to the development of various disorders including cancer, which ranks as a leading cause of death worldwide with profound social and economic burden. Epidemiological studies and clinical trials combined with the animal and cell culture models have demonstrated the beneficial effects of n-3 PUFAs in reducing the risk of various cancer types including breast, prostate and colon cancer. The anti-cancer actions of n-3 PUFAs are mainly attributed to their role in the modulation of a wide array of cellular processes including membrane dynamics, apoptosis, inflammation, angiogenesis, oxidative stress, gene expression and signal transduction pathways. On the contrary, n-6 PUFAs have been shown to exert pro-tumor actions; however, the inconsistent findings and controversial data emphasize upon the need to further investigation. Nevertheless, one of the biggest challenges in future is to optimize the n-6 to n-3 ratio despite the genetic predisposition, age, gender and disease severity. Moreover, a better understanding of the potential risks and benefits as well as the cellular and molecular mechanisms of the basic actions of these PUFAs is required to explore their role as adjuvants in cancer therapy. All these aspects will be reviewed in this chapter.
Collapse
Affiliation(s)
- Samina Akbar
- CALBINOTOX, Université de Lorraine, 54000, Nancy, France.
| | - Abdur Rahman
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Nazir Ahmad
- Faculty of Life Sciences, Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Imran
- Department of Biosciences, Faculty of Sciences, COMSATS Institute of Information Technology, Park Road, Islamabad, Pakistan
| | - Zeeshan Hafeez
- CALBINOTOX, Université de Lorraine, 54000, Nancy, France
| |
Collapse
|
3
|
Fasting and Exercise in Oncology: Potential Synergism of Combined Interventions. Nutrients 2021; 13:nu13103421. [PMID: 34684421 PMCID: PMC8537603 DOI: 10.3390/nu13103421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/28/2022] Open
Abstract
Nutrition and exercise interventions are strongly recommended for most cancer patients; however, much debate exists about the best prescription. Combining fasting with exercise is relatively untouched within the oncology setting. Separately, fasting has demonstrated reductions in chemotherapy-related side effects and improved treatment tolerability and effectiveness. Emerging evidence suggests fasting may have a protective effect on healthy cells allowing chemotherapy to exclusively target cancer cells. Exercise is commonly recommended and attenuates treatment- and cancer-related adverse changes to body composition, quality of life, and physical function. Given their independent benefits, in combination, fasting and exercise may induce synergistic effects and further improve cancer-related outcomes. In this narrative review, we provide a critical appraisal of the current evidence of fasting and exercise as independent interventions in the cancer population and discuss the potential benefits and mechanisms of combined fasting and exercise on cardiometabolic, body composition, patient-reported outcomes, and cancer-related outcomes. Our findings suggest that within the non-cancer population combined fasting and exercise is a viable strategy to improve health-related outcomes, however, its safety and efficacy in the oncology setting remain unknown. Therefore, we also provide a discussion on potential safety issues and considerations for future research in the growing cancer population.
Collapse
|
4
|
Garay MI, Comba A, Vara Messler M, Barotto NN, Silva RA, Repossi G, Quiroga PL, Mazzudulli GM, Brunotto MN, Pasqualini ME. Tumorigenic effect mediated by ROS/eicosanoids and their regulation on TP53 expression in a murine mammary gland adenocarcinoma. Prostaglandins Other Lipid Mediat 2021; 155:106564. [PMID: 34004336 DOI: 10.1016/j.prostaglandins.2021.106564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 03/23/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
The aim of this study was to investigate the in vivo and in vitro effects of dietary ω-6 and ω-3 polyunsaturated fatty acids (PUFAs) and their derivatives on the expression of TP53 and their relationship with cellular proliferation and death in a murine mammary adenocarcinoma model. BALB/c mice were divided in three diet groups: chia oil (ChO) rich in ω-3, corn oil (CO) rich in ω-6/ω-3 and safflower oil (SO) rich in ω-6 and subcutaneously inoculated with LMM3 mammary tumor cell line. Results demonstrated that diets with higher concentration of omega-6 PUFAs induced an increment of linoleic and arachidonic acid on tumor cell membranes increasing ROS liberation, 12(S)-HHT generation, TP53, Ki67 expression and cell proliferation. However, diets enriched with high content in omega-3 PUFAs induced higher tumor cell apoptosis and tumor infiltration of CD3+ lymphocytes, lowest cell viability and proliferation. Dietary omega-3 PUFAs nutritional intervention can be used as a potential preventative strategy to inhibit the molecular signaling pathways involved in the mammary tumor growth process as the TP53.
Collapse
Affiliation(s)
- M I Garay
- Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Ciudad Universitaria, 5000 Córdoba, Argentina; Cátedra de Biología Celular, Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina; Instituto de Biología Celular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina.
| | - A Comba
- Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Ciudad Universitaria, 5000 Córdoba, Argentina; Cátedra de Biología Celular, Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina; Instituto de Biología Celular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina; Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, 48109, MI, USA.
| | - M Vara Messler
- Dipartimento di Oncologia, Università di Torino, 10124 Torino, Italy.
| | - N N Barotto
- Cátedra de Biología Celular, Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina; Instituto de Biología Celular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina.
| | - R A Silva
- Cátedra de Biología Celular, Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina; Instituto de Biología Celular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina.
| | - G Repossi
- Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Ciudad Universitaria, 5000 Córdoba, Argentina; Cátedra de Biología Celular, Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina; Instituto de Biología Celular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina.
| | - P L Quiroga
- Cátedra de Biología Celular, Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina; Instituto de Biología Celular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina.
| | - G M Mazzudulli
- Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Ciudad Universitaria, 5000 Córdoba, Argentina.
| | - M N Brunotto
- Departamento de Biología Bucal, Facultad de Odontología, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina.
| | - M E Pasqualini
- Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Ciudad Universitaria, 5000 Córdoba, Argentina; Cátedra de Biología Celular, Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina; Instituto de Biología Celular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina.
| |
Collapse
|
5
|
Morales-Martínez A, Zamorano-Carrillo A, Montes S, El-Hafidi M, Sánchez-Mendoza A, Soria-Castro E, Martínez-Lazcano JC, Martínez-Gopar PE, Ríos C, Pérez-Severiano F. Rich fatty acids diet of fish and olive oils modifies membrane properties in striatal rat synaptosomes. Nutr Neurosci 2021; 24:1-12. [PMID: 30822260 DOI: 10.1080/1028415x.2019.1584692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Background: Essential fatty acids (EFAs) and non-essential fatty acids (nEFAs) exert experimental and clinical neuroprotection in neurodegenerative diseases. The main EFAs, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), nEFAs, and oleic acid (OA) contained in olive and fish oils are inserted into the cell membranes, but the exact mechanism through which they exert neuroprotection is still unknown. Objectives and Methods: In this study, we assessed the fatty acids content and membrane fluidity in striatal rat synaptosomes after fatty acid-rich diets (olive- or a fish-oil diet, 15% w/w). Then, we evaluated the effect of enriching striatum synaptosomes with fatty acids on the oxidative damage produced by the prooxidants ferrous sulfate (FeSO4) or quinolinic acid (QUIN). Results and Discussion: Lipid profile analysis in striatal synaptosomes showed that EPA content increased in the fish oil group in comparison with control and olive groups. Furthermore, we found that synaptosomes enriched with fatty acids and incubated with QUIN or FeSO4 showed a significant oxidative damage reduction. Results suggest that EFAs, particularly EPA, improve membrane fluidity and confer antioxidant effect.
Collapse
Affiliation(s)
- Adriana Morales-Martínez
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, México
- Laboratorio de Investigación de Bioquímica y Biofísica Computacional, ENMH, Instituto Politécnico Nacional, Ciudad de México, México
| | - Absalom Zamorano-Carrillo
- Laboratorio de Investigación de Bioquímica y Biofísica Computacional, ENMH, Instituto Politécnico Nacional, Ciudad de México, México
| | - Sergio Montes
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, México
| | - Mohammed El-Hafidi
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Alicia Sánchez-Mendoza
- Departamento de Farmacología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Elizabeth Soria-Castro
- Departamento de Patología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | | | | | - Camilo Ríos
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, México
| | - Francisca Pérez-Severiano
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, México
| |
Collapse
|
6
|
Liu RZ, Choi WS, Jain S, Dinakaran D, Xu X, Han WH, Yang XH, Glubrecht DD, Moore RB, Lemieux H, Godbout R. The FABP12/PPARγ pathway promotes metastatic transformation by inducing epithelial-to-mesenchymal transition and lipid-derived energy production in prostate cancer cells. Mol Oncol 2020; 14:3100-3120. [PMID: 33031638 PMCID: PMC7718947 DOI: 10.1002/1878-0261.12818] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/11/2020] [Accepted: 10/05/2020] [Indexed: 12/31/2022] Open
Abstract
Early stage localized prostate cancer (PCa) has an excellent prognosis; however, patient survival drops dramatically when PCa metastasizes. The molecular mechanisms underlying PCa metastasis are complex and remain unclear. Here, we examine the role of a new member of the fatty acid‐binding protein (FABP) family, FABP12, in PCa progression. FABP12 is preferentially amplified and/or overexpressed in metastatic compared to primary tumors from both PCa patients and xenograft animal models. We show that FABP12 concurrently triggers metastatic phenotypes (induced epithelial‐to‐mesenchymal transition (EMT) leading to increased cell motility and invasion) and lipid bioenergetics (increased fatty acid uptake and accumulation, increased ATP production from fatty acid β‐oxidation) in PCa cells, supporting increased reliance on fatty acids for energy production. Mechanistically, we show that FABP12 is a driver of PPARγ activation which, in turn, regulates FABP12's role in lipid metabolism and PCa progression. Our results point to a novel role for a FABP‐PPAR pathway in promoting PCa metastasis through induction of EMT and lipid bioenergetics.
Collapse
Affiliation(s)
- Rong-Zong Liu
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Won-Shik Choi
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Saket Jain
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Deepak Dinakaran
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Xia Xu
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Woo Hyun Han
- Faculty Saint-Jean, University of Alberta, Edmonton, AB, Canada
| | - Xiao-Hong Yang
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Darryl D Glubrecht
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Ronald B Moore
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada.,Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Hélène Lemieux
- Faculty Saint-Jean, University of Alberta, Edmonton, AB, Canada
| | - Roseline Godbout
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
7
|
González-Fernández MJ, Ortea I, Guil-Guerrero JL. α-Linolenic and γ-linolenic acids exercise differential antitumor effects on HT-29 human colorectal cancer cells. Toxicol Res (Camb) 2020; 9:474-483. [PMID: 32905142 DOI: 10.1093/toxres/tfaa046] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/30/2020] [Accepted: 06/03/2020] [Indexed: 12/19/2022] Open
Abstract
α-Linolenic acid (ALA, 18:3n-3) and γ-gamma linolenic acid (GLA, 18:3n-6) are polyunsaturated fatty acids (PUFA) that improve the human health. The present study focused on testing the in vitro antitumor actions of pure ALA and GLA on the HT-29 human colorectal cancer cell line. Cell viability was checked by MTT ((3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test, cell membrane damage by the lactate dehydrogenase assay, apoptosis was tested by both caspase-3 activity trial and transmission electron microscopy images, and protein composition was analyzed by quantitative proteomics analysis. MTT test revealed IC50 values of 230 and 255 μM for ALA and GLA, respectively, at 72 h. After 24 h of incubation, both ALA and GLA induced apoptosis on HT-29 colorectal cancer cells according to the caspase-3 assay and microscopy images. SWATH/MS analysis evidenced that ALA significantly affected the mitochondrial protein import pathway and the citric acid cycle pathway, while GLA did not significantly affect any particular pathway. In summary, both ALA and GLA showed concentration-dependent inhibitory effects on HT-29 cells viability and induced cell death by apoptosis. ALA significantly affected cellular pathways, while GLA does not have specific actions on either pathway. Both n-3 and n-6 C18 PUFA are bioactive food components useful in the colorectal cancer prevention.
Collapse
Affiliation(s)
- María José González-Fernández
- Food Technology Division, Agrifood Campus of International Excellence, ceiA3, University of Almería, E-040120 Almería, Spain
| | - Ignacio Ortea
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz 11009, Spain
| | - José Luis Guil-Guerrero
- Food Technology Division, Agrifood Campus of International Excellence, ceiA3, University of Almería, E-040120 Almería, Spain
| |
Collapse
|
8
|
Drilling for Oil: Tumor-Surrounding Adipocytes Fueling Cancer. Trends Cancer 2020; 6:593-604. [PMID: 32610069 DOI: 10.1016/j.trecan.2020.03.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 12/11/2022]
Abstract
Over the past decade, it has become apparent that metabolic reprogramming is a key event in tumor progression. The tumor microenvironment (TME) is a source of metabolites for tumor cells. Lipid-filled mature adipocytes are frequently found in proximity to invasive human tumors and release free fatty acids (FFAs) through lipolysis. These FFAs are taken up by tumor cells and used to promote tumor progression by mechanisms that include mitochondrial fatty acid oxidation (FAO). This review discusses recent advances in our understanding of this metabolic symbiosis between adipocytes and cancer cells and underlines the differences in this metabolic crosstalk between the various types of cancer and their localization.
Collapse
|
9
|
Membrane Lipidome Reorganization and Accumulation of Tissue DNA Lesions in Tumor-Bearing Mice: An Exploratory Study. Cancers (Basel) 2019; 11:cancers11040480. [PMID: 30987375 PMCID: PMC6520748 DOI: 10.3390/cancers11040480] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 12/27/2022] Open
Abstract
Increased rates of reactive oxygen/nitrogen species (ROS/RNS) are involved in almost all cancer types, associated with tumor development and progression, causing damage to biomolecules such as proteins, nucleic acids and membrane lipids, in different biological compartments. We used a human tumor xenograft mouse model to evaluate for the first time in parallel the remodeling of fatty acid moieties in erythrocyte membrane phospholipids and the level of ROS-induced DNA lesions in liver and kidney tissues. Using liquid chromatography tandem mass spectrometry the 5'R and 5'S diastereoisomers of 5',8-cyclo-2'-deoxyadenosine and 5',8-cyclo-2'-deoxyguanosine, together with 8-oxo-7,8-dihydro-2'-deoxyadenosine, were determined in mice at young (4- and 5-weeks) and old (17-weeks) ages and compared with control SCID mice without tumor implantation. Tumor-bearing mice showed a higher level of ROS-damaged nucleosides in genomic DNA as the age and tumor progress, compared to controls (1.07-1.53-fold in liver and 1.1-1.4-fold in kidney, respectively). The parallel fatty acid profile of erythrocyte membranes showed a profound lipid remodeling during tumor and age progression consisting of PUFA consumption and SFA enrichment (ca 28% and 58%, respectively, in late stage tumor-bearing mice), markers of enhanced oxidative and proliferative processes, respectively. Membrane lipid remodeling and ROS-induced DNA lesions may be combined to afford an integrated scenario of cancer progression and ageing, reinforcing a holistic vision among molecular markers rather than the biomarker identification in a single compartment.
Collapse
|
10
|
Ben Fradj MK, Ouanes Y, Hadj-Taieb S, Sallemi A, Kallel A, Jemaa R, Kaabachi N, Nouira Y, Feki M. Decreased Oleic Acid and Marine n - 3 Polyunsaturated Fatty Acids in Tunisian Patients with Urothelial Bladder Cancer. Nutr Cancer 2018; 70:1043-1050. [PMID: 30183426 DOI: 10.1080/01635581.2018.1497668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Fatty acids (FAs) are thought to impact carcinogenesis by affecting cell signaling. A case-control study including 250 patients with urothelial bladder cancer (UBC) and 250 controls was conducted. Plasma FAs composition was assessed using capillary gas chromatography. Associations of individual and classes of FAs with UBC were controlled for the main risk factors for UBC. Plasma FAs profile was different in patients compared to controls. Higher levels (third tertile vs. first tertile) in palmitic acid (PA) [multi-adjusted OR (95% CI), 1.83 (1.14-2.92)], and n - 6:n - 3 FA ratio [4.13 (2.38-7.16)] were associated with increased risk for UBC [multi-adjusted OR (95% CI), 1.83 (1.14-2.92)]. In contrast, higher levels (third tertile vs. first tertile) in oleic [0.54 (0.34-0.86)], dihomo-γ-linolenic (DGLA) [0.47 (0.29-0.74)], eicosapentaenoic (EPA) [0.32 (0.19-0.52)], and docosahexaenoic (DHA) acids [0.33 (0.20-0.53)] were associated with lower risk for UBC. Although the study design does not allow proving causality, the findings suggest a possible protective role of oleic acid and marine n - 3 polyunsaturated FAs (PUFAs) against bladder carcinogenesis.
Collapse
Affiliation(s)
- Mohamed Kacem Ben Fradj
- a Faculty of Medicine of Tunis , University of Tunis El Manar , Tunis , Tunisia.,b Laboratory of Biochemistry , Rabta University Hospital , Tunis , Tunisia
| | - Yassine Ouanes
- a Faculty of Medicine of Tunis , University of Tunis El Manar , Tunis , Tunisia.,c Department of Urology , Rabta University Hospital , Tunis , Tunisia
| | - Sameh Hadj-Taieb
- a Faculty of Medicine of Tunis , University of Tunis El Manar , Tunis , Tunisia.,b Laboratory of Biochemistry , Rabta University Hospital , Tunis , Tunisia
| | - Ahmed Sallemi
- a Faculty of Medicine of Tunis , University of Tunis El Manar , Tunis , Tunisia.,c Department of Urology , Rabta University Hospital , Tunis , Tunisia
| | - Amani Kallel
- a Faculty of Medicine of Tunis , University of Tunis El Manar , Tunis , Tunisia.,b Laboratory of Biochemistry , Rabta University Hospital , Tunis , Tunisia
| | - Riadh Jemaa
- a Faculty of Medicine of Tunis , University of Tunis El Manar , Tunis , Tunisia.,b Laboratory of Biochemistry , Rabta University Hospital , Tunis , Tunisia
| | - Naziha Kaabachi
- a Faculty of Medicine of Tunis , University of Tunis El Manar , Tunis , Tunisia.,b Laboratory of Biochemistry , Rabta University Hospital , Tunis , Tunisia
| | - Yassine Nouira
- a Faculty of Medicine of Tunis , University of Tunis El Manar , Tunis , Tunisia.,c Department of Urology , Rabta University Hospital , Tunis , Tunisia
| | - Moncef Feki
- a Faculty of Medicine of Tunis , University of Tunis El Manar , Tunis , Tunisia.,b Laboratory of Biochemistry , Rabta University Hospital , Tunis , Tunisia
| |
Collapse
|
11
|
Elsherbiny ME, Chen H, Emara M, Godbout R. ω-3 and ω-6 Fatty Acids Modulate Conventional and Atypical Protein Kinase C Activities in a Brain Fatty Acid Binding Protein Dependent Manner in Glioblastoma Multiforme. Nutrients 2018; 10:nu10040454. [PMID: 29642372 PMCID: PMC5946239 DOI: 10.3390/nu10040454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/26/2018] [Accepted: 04/03/2018] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a highly infiltrative brain cancer with a dismal prognosis. High levels of brain fatty acid binding protein (B-FABP) are associated with increased migration/infiltration in GBM cells, with a high ratio of arachidonic acid (AA) to docosahexaenoic acid (DHA) driving B-FABP-mediated migration. Since several protein kinase Cs (PKCs) are overexpressed in GBM and linked to migration, we explored a possible relationship between B-FABP and levels/activity of different PKCs, as a function of AA and DHA supplementation. We report that ectopic expression of B-FABP in U87 cells alters the levels of several PKCs, particularly PKCζ. Upon analysis of PKCζ RNA levels in a panel of GBM cell lines and patient-derived GBM neurospheres, we observed a trend towards moderate positive correlation (r = 0.624, p = 0.054) between B-FABP and PKCζ RNA levels. Analysis of PKC activity in U87 GBM cells revealed decreased typical PKC activity (23.4%) in B-FABP-expressing cells compared with nonexpressing cells, with no difference in novel and atypical PKC activities. AA and DHA modulated both conventional and atypical PKC activities in a B-FABP-dependent manner, but had no effect on novel PKC activity. These results suggest that conventional and atypical PKCs are potential downstream effectors of B-FABP/fatty acid-mediated alterations in GBM growth properties.
Collapse
Affiliation(s)
- Marwa E Elsherbiny
- Department of Pharmacology and Toxicology, Ahram Canadian University, 6th of October City, Giza 12566, Egypt.
| | - Hua Chen
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada.
| | - Marwan Emara
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Giza 12578, Egypt.
| | - Roseline Godbout
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada.
| |
Collapse
|
12
|
Tylichová Z, Slavík J, Ciganek M, Ovesná P, Krčmář P, Straková N, Machala M, Kozubík A, Hofmanová J, Vondráček J. Butyrate and docosahexaenoic acid interact in alterations of specific lipid classes in differentiating colon cancer cells. J Cell Biochem 2018; 119:4664-4679. [PMID: 29274292 DOI: 10.1002/jcb.26641] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 12/20/2017] [Indexed: 12/19/2022]
Abstract
Docosahexaenoic acid (DHA) and sodium butyrate (NaBt) exhibit a number of interactive effects on colon cancer cell growth, differentiation, or apoptosis; however, the molecular mechanisms responsible for these interactions and their impact on cellular lipidome are still not fully clear. Here, we show that both dietary agents together induce dynamic alterations of lipid metabolism, specific cellular lipid classes, and fatty acid composition. In HT-29 cell line, a model of differentiating colon carcinoma cells, NaBt supported incorporation of free DHA into non-polar lipids and their accumulation in cytoplasmic lipid droplets. DHA itself was not incorporated into sphingolipids; however, it significantly altered representation of individual ceramide (Cer) classes, in particular in combination with NaBt (DHA/NaBt). We observed altered expression of enzymes involved in Cer metabolism in cells treated with NaBt or DHA/NaBt, and exogenous Cer 16:0 was found to promote induction of apoptosis in differentiating HT-29 cells. NaBt, together with DHA, increased n-3 fatty acid synthesis and attenuated metabolism of monounsaturated fatty acids. Finally, DHA and/or NaBt altered expression of proteins involved in synthesis of fatty acids, including elongase 5, stearoyl CoA desaturase 1, or fatty acid synthase, with NaBt increasing expression of caveolin-1 and CD36 transporter, which may further promote DHA incorporation and its impact on cellular lipidome. In conclusion, our results indicate that interactions of DHA and NaBt exert complex changes in cellular lipidome, which may contribute to the alterations of colon cancer cell differentiation/apoptotic responses. The present data extend our knowledge about the nature of interactive effects of dietary fatty acids.
Collapse
Affiliation(s)
- Zuzana Tylichová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.,Faculty of Sciences, Department of Experimental Biology, Masaryk University, Brno, Czech Republic
| | - Josef Slavík
- Veterinary Research Institute, Brno, Czech Republic
| | | | - Petra Ovesná
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.,Institute of Biostatistics and Analyses, Masaryk University, Brno, Czech Republic
| | - Pavel Krčmář
- Veterinary Research Institute, Brno, Czech Republic
| | - Nicol Straková
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | | | - Alois Kozubík
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.,Faculty of Sciences, Department of Experimental Biology, Masaryk University, Brno, Czech Republic
| | - Jiřina Hofmanová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.,Faculty of Sciences, Department of Experimental Biology, Masaryk University, Brno, Czech Republic
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
13
|
Chavan-Gautam P, Rani A, Freeman DJ. Distribution of Fatty Acids and Lipids During Pregnancy. Adv Clin Chem 2018; 84:209-239. [PMID: 29478515 DOI: 10.1016/bs.acc.2017.12.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Maternal fatty acid and lipid metabolism undergoes changes during pregnancy to facilitate fetal growth and development. Different types of fatty acids have different roles in maintaining a successful pregnancy and they are incorporated into different forms of lipids for the purpose of storage and transport. This chapter aims to provide an understanding of the distribution and metabolism of fatty acids and lipids in the maternal, placental, and fetal compartments. We further describe how this distribution is altered in maternal obesity, preterm birth, and pregnancy complications such as gestational diabetes mellitus, preeclampsia, and intrauterine growth restriction.
Collapse
Affiliation(s)
- Preeti Chavan-Gautam
- Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth Deemed University, Pune, Maharashtra, India.
| | - Alka Rani
- Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth Deemed University, Pune, Maharashtra, India
| | - Dilys J Freeman
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
14
|
Scherma ME, Madzzuduli G, Silva RA, Garay MI, Repossi G, Brunotto M, Pasqualini ME. The effects of ω-6 and ω-3 fatty-acids on early stages of mice DMBA submandibular glands tumorigenesis. Prostaglandins Leukot Essent Fatty Acids 2017; 125:48-55. [PMID: 28987722 DOI: 10.1016/j.plefa.2017.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 08/16/2017] [Accepted: 08/21/2017] [Indexed: 01/28/2023]
Abstract
The aim of this work was: to assess the impact of diets enriched in polyunsaturated fatty acids ω-3 and ω-6 families on the lipid profile of cell membrane and their effect on cycle regulation and apoptosis, evaluated by TP53 and Ki-67 expression in 9,10-dimethyl-1,2-benzanthracene (DMBA) induced tumor development in submandibular glands (SMG) in murine models. To generate tumorigenic changes, SMG mice in the experimental group were injected with 50μl of 0.5% of DMBA. Both control (no DMBA) and experimental groups of BALB/c mice were fed with: chia oil (ChO), rich in ω-3 fatty acid; corn oil (CO), rich in ω-6/ω-3 fatty acid; and safflower (SO) oil, rich in ω-6fatty acid. Results demonstrate novel differential effects of ω-3 and ω-6 PUFAs on the regulation of early tumorigenesis events in murine SMG injected with DMBA. This knowledge may help to develop chemoprotective treatments, therapeutic agents and health promotion and prevention activities in humans.
Collapse
Affiliation(s)
- M E Scherma
- Departamento de Biología Bucal, Facultad de Odontología, Universidad Nacional de Córdoba, Argentina
| | - G Madzzuduli
- Instituto de Investigaciones en Ciencias de la Salud, (INICSA-CONICET-UNC), Argentina
| | - R A Silva
- Cátedra de Biología Celular, Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Argentina
| | - M I Garay
- Cátedra de Biología Celular, Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Argentina; Instituto de Investigaciones en Ciencias de la Salud, (INICSA-CONICET-UNC), Argentina
| | - G Repossi
- Cátedra de Biología Celular, Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Argentina; Instituto de Investigaciones en Ciencias de la Salud, (INICSA-CONICET-UNC), Argentina
| | - M Brunotto
- Departamento de Biología Bucal, Facultad de Odontología, Universidad Nacional de Córdoba, Argentina
| | - M E Pasqualini
- Cátedra de Biología Celular, Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Argentina; Instituto de Investigaciones en Ciencias de la Salud, (INICSA-CONICET-UNC), Argentina.
| |
Collapse
|
15
|
Touihri-Barakati I, Kallech-Ziri O, Boulila A, Khwaldia K, Marrakchi N, Hanchi B, Hosni K, Luis J. Targetting αvβ3 and α5β1 integrins with Ecballium elaterium (L.) A. Rich. seed oil. Biomed Pharmacother 2016; 84:1223-1232. [PMID: 27810778 DOI: 10.1016/j.biopha.2016.10.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/05/2016] [Accepted: 10/11/2016] [Indexed: 01/16/2023] Open
Abstract
In the present study, the effect of Ecbalium elaterium seed oil on adhesion, migration and proliferation of human brain cancer cell line (U87) was determined. Treatment of U87 cell line with the seed oil resulted in strong inhibition of their adhesion to fibrinogen (Fg), fibronectin (Fn). It also reduced their migration and proliferation in a dose-dependent manner without being cytotoxic. Concomitantly, by using Matrigel™ assays, the oil significantly inhibited angiogenesis. The anti- tumor effect of the oil is specifically mediated by αvβ3 and α5β1 integrins. The presence of integrin antagonists in seed oil from E. elaterium could be used for the development of anticancer drugs with targeted "multi-modal" therapies combining anti-adhesif, antiproliferative, antimetastasic and anti-angiogenic, approaches.
Collapse
Affiliation(s)
- Imen Touihri-Barakati
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico-chimique (INRAP), Sidi Thabet, 2020 Ariana, Tunisie.
| | - Olfa Kallech-Ziri
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico-chimique (INRAP), Sidi Thabet, 2020 Ariana, Tunisie
| | - Abdennacer Boulila
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico-chimique (INRAP), Sidi Thabet, 2020 Ariana, Tunisie
| | - Khaoula Khwaldia
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico-chimique (INRAP), Sidi Thabet, 2020 Ariana, Tunisie
| | - Naziha Marrakchi
- Faculté de Médecine de Tunis, La Rabta 1007 Tunis, Tunisie; Laboratoire des Venins et Biomolécules Thérapeutiques, Institut Pasteur de Tunis, 13, Place Pasteur, 1002 Tunis Belvédère, Tunisie
| | - Belgacem Hanchi
- Faculté des Sciences de Tunis, Campus Universitaire, Tunis El Manar, 1000 Tunis, Tunisie
| | - Karim Hosni
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico-chimique (INRAP), Sidi Thabet, 2020 Ariana, Tunisie
| | - José Luis
- Aix-Marseille Université, INSERM UMR 911, Centre de Recherche en Oncologie Biologique et Oncopharmacologie (CRO2), Faculté de Pharmacie, 13385 Marseille, France
| |
Collapse
|
16
|
Diet, Lifestyles, Family History, and Prostate Cancer Incidence in an East Algerian Patient Group. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5730569. [PMID: 27975054 PMCID: PMC5130556 DOI: 10.1155/2016/5730569] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 09/02/2016] [Accepted: 09/20/2016] [Indexed: 01/31/2023]
Abstract
Prostate cancer (PC) is the fourth most common cancer in men and the sixth leading cause of death in Algeria. To examine the relationship between lifestyle factors, including diet, and family history and PC risk, a case-control study was performed in an eastern Algerian population, comprising 90 patients with histologically confirmed PC and 190 controls. Data collection was carried out through a structured questionnaire and statistical analysis was performed to evaluate the different variables. The data showed that consumption of lamb and beef meat and high intake of animal fat and dairy products increased PC risk. Seven to thirteen vegetables servings per week and fourteen or more servings decreased PC risk by 62% and 96%, respectively. Seven to fourteen fruit servings per week decrease PC risk by 98%. Green tea consumption reduced the risk of PC but the results were statistically borderline. Increased risk was observed for individuals with family history of PC in first and in second degree. A positive strong association was also found for alcohol and smoking intake and a dose-response relationship existed for quantity and history of smoking. This study suggests that dietary habits, lifestyle factors, and family history have influence on the development of PC in Algerian population.
Collapse
|
17
|
Hofmanová J, Slavík J, Ovesná P, Tylichová Z, Vondráček J, Straková N, Vaculová AH, Ciganek M, Kozubík A, Knopfová L, Šmarda J, Machala M. Dietary fatty acids specifically modulate phospholipid pattern in colon cells with distinct differentiation capacities. Eur J Nutr 2016; 56:1493-1508. [PMID: 26983609 DOI: 10.1007/s00394-016-1196-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/25/2016] [Indexed: 02/06/2023]
Abstract
PURPOSE Although beneficial effects of the dietary n-3 docosahexaenoic acid (DHA) or butyrate in colon carcinogenesis have been implicated, the mechanisms of their action are not fully clear. Here, we investigated modulations of composition of individual phospholipid (PL) classes, with a particular emphasis on cardiolipins (CLs), in colon cells treated with DHA, sodium butyrate (NaBt), or their combination (DHA/NaBt), and we evaluated possible associations between lipid changes and cell fate after fatty acid treatment. METHODS In two distinct human colon cell models, foetal colon (FHC) and adenocarcinoma (HCT-116) cells, we compared patterns and composition of individual PL classes following the fatty acid treatment by HPLC-MS/MS. In parallel, we measured the parameters reflecting cell proliferation, differentiation and death. RESULTS In FHC cells, NaBt induced primarily differentiation, while co-treatment with DHA shifted their response towards cell death. In contrast, NaBt induced apoptosis in HCT-116 cells, which was not further affected by DHA. DHA was incorporated in all main PL types, increasing their unsaturation, while NaBt did not additionally modulate these effects in either cell model. Nevertheless, we identified an unusually wide range of CL species to be highly increased by NaBt and particularly by DHA/NaBt, and these effects were more pronounced in HCT-116 cells. DHA and DHA/NaBt enhanced levels of high molecular weight and more unsaturated CL species, containing DHA, which was specific for either differentiation or apoptotic responses. CONCLUSIONS We identified a wide range of CL species in the colon cells which composition was significantly modified after DHA and NaBt treatment. These specific CL modulations might contribute to distinct cellular differentiation or apoptotic responses.
Collapse
Affiliation(s)
- Jiřina Hofmanová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Josef Slavík
- Veterinary Research Institute, v.v.i., Brno, Czech Republic
| | - Petra Ovesná
- Institute of Biostatistics and Analyses, Masaryk University, Brno, Czech Republic
| | - Zuzana Tylichová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Nicol Straková
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Alena Hyršlová Vaculová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | | | - Alois Kozubík
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Lucie Knopfová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jan Šmarda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | |
Collapse
|
18
|
|
19
|
Comba A, Almada LL, Tolosa EJ, Iguchi E, Marks DL, Vara Messler M, Silva R, Fernandez-Barrena MG, Enriquez-Hesles E, Vrabel AL, Botta B, Di Marcotulio L, Ellenrieder V, Eynard AR, Pasqualini ME, Fernandez-Zapico ME. Nuclear Factor of Activated T Cells-dependent Down-regulation of the Transcription Factor Glioma-associated Protein 1 (GLI1) Underlies the Growth Inhibitory Properties of Arachidonic Acid. J Biol Chem 2015; 291:1933-1947. [PMID: 26601952 DOI: 10.1074/jbc.m115.691972] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Indexed: 12/11/2022] Open
Abstract
Numerous reports have demonstrated a tumor inhibitory effect of polyunsaturated fatty acids (PUFAs). However, the molecular mechanisms modulating this phenomenon are in part poorly understood. Here, we provide evidence of a novel antitumoral mechanism of the PUFA arachidonic acid (AA). In vivo and in vitro experiments showed that AA treatment decreased tumor growth and metastasis and increased apoptosis. Molecular analysis of this effect showed significantly reduced expression of a subset of antiapoptotic proteins, including BCL2, BFL1/A1, and 4-1BB, in AA-treated cells. We demonstrated that down-regulation of the transcription factor glioma-associated protein 1 (GLI1) in AA-treated cells is the underlying mechanism controlling BCL2, BFL1/A1, and 4-1BB expression. Using luciferase reporters, chromatin immunoprecipitation, and expression studies, we found that GLI1 binds to the promoter of these antiapoptotic molecules and regulates their expression and promoter activity. We provide evidence that AA-induced apoptosis and down-regulation of antiapoptotic genes can be inhibited by overexpressing GLI1 in AA-sensitive cells. Conversely, inhibition of GLI1 mimics AA treatments, leading to decreased tumor growth, cell viability, and expression of antiapoptotic molecules. Further characterization showed that AA represses GLI1 expression by stimulating nuclear translocation of NFATc1, which then binds the GLI1 promoter and represses its transcription. AA was shown to increase reactive oxygen species. Treatment with antioxidants impaired the AA-induced apoptosis and down-regulation of GLI1 and NFATc1 activation, indicating that NFATc1 activation and GLI1 repression require the generation of reactive oxygen species. Collectively, these results define a novel mechanism underlying AA antitumoral functions that may serve as a foundation for future PUFA-based therapeutic approaches.
Collapse
Affiliation(s)
- Andrea Comba
- From the Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, Minnesota 55905,; Instituto de Investigaciones en Ciencias de la Salud, Consejo Nacional de Investigaciones Científicas y Técnicas and Facultad de Ciencias Médicas-Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Luciana L Almada
- From the Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, Minnesota 55905
| | - Ezequiel J Tolosa
- From the Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, Minnesota 55905
| | - Eriko Iguchi
- From the Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, Minnesota 55905
| | - David L Marks
- From the Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, Minnesota 55905
| | - Marianela Vara Messler
- Instituto de Investigaciones en Ciencias de la Salud, Consejo Nacional de Investigaciones Científicas y Técnicas and Facultad de Ciencias Médicas-Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Renata Silva
- Instituto de Investigaciones en Ciencias de la Salud, Consejo Nacional de Investigaciones Científicas y Técnicas and Facultad de Ciencias Médicas-Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Maite G Fernandez-Barrena
- From the Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, Minnesota 55905,.
| | - Elisa Enriquez-Hesles
- From the Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, Minnesota 55905
| | - Anne L Vrabel
- From the Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, Minnesota 55905
| | - Bruno Botta
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University, Center for Life Nano Science at Sapienza, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Lucia Di Marcotulio
- Department of Molecular Medicine, Sapienza University, Pasteur Institute/Cenci-Bolognetti Foundation, 00161 Rome, Italy, and
| | - Volker Ellenrieder
- Gastroenterology and Gastrointestinal Oncology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Aldo R Eynard
- Instituto de Investigaciones en Ciencias de la Salud, Consejo Nacional de Investigaciones Científicas y Técnicas and Facultad de Ciencias Médicas-Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Maria E Pasqualini
- Instituto de Investigaciones en Ciencias de la Salud, Consejo Nacional de Investigaciones Científicas y Técnicas and Facultad de Ciencias Médicas-Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Martin E Fernandez-Zapico
- From the Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, Minnesota 55905
| |
Collapse
|
20
|
Görlach A, Dimova EY, Petry A, Martínez-Ruiz A, Hernansanz-Agustín P, Rolo AP, Palmeira CM, Kietzmann T. Reactive oxygen species, nutrition, hypoxia and diseases: Problems solved? Redox Biol 2015; 6:372-385. [PMID: 26339717 PMCID: PMC4565025 DOI: 10.1016/j.redox.2015.08.016] [Citation(s) in RCA: 245] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 08/21/2015] [Accepted: 08/25/2015] [Indexed: 02/06/2023] Open
Abstract
Within the last twenty years the view on reactive oxygen species (ROS) has changed; they are no longer only considered to be harmful but also necessary for cellular communication and homeostasis in different organisms ranging from bacteria to mammals. In the latter, ROS were shown to modulate diverse physiological processes including the regulation of growth factor signaling, the hypoxic response, inflammation and the immune response. During the last 60–100 years the life style, at least in the Western world, has changed enormously. This became obvious with an increase in caloric intake, decreased energy expenditure as well as the appearance of alcoholism and smoking; These changes were shown to contribute to generation of ROS which are, at least in part, associated with the occurrence of several chronic diseases like adiposity, atherosclerosis, type II diabetes, and cancer. In this review we discuss aspects and problems on the role of intracellular ROS formation and nutrition with the link to diseases and their problematic therapeutical issues. Oxidative stress is linked to overnutrition, obesity and associated diseases or cancer. Reactive oxygen species (ROS) are crucially involved in modulation of signaling cascades. NOX proteins and hypoxia contribute to formation of ROS under different nutrient regimes. ROS are powerful post-transcriptional and epigenetic regulators. Treatment of obesity with antioxidants requires more, larger, and better monitored clinical trials.
Collapse
Affiliation(s)
- Agnes Görlach
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich, Technical University Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Elitsa Y Dimova
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Andreas Petry
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich, Technical University Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Antonio Martínez-Ruiz
- Servicio de Immunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Pablo Hernansanz-Agustín
- Servicio de Immunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa, Madrid, Spain; Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Anabela P Rolo
- Department of Life Sciences, University of Coimbra and Center for Neurosciences and Cell Biology, University of Coimbra, Portugal
| | - Carlos M Palmeira
- Department of Life Sciences, University of Coimbra and Center for Neurosciences and Cell Biology, University of Coimbra, Portugal
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
21
|
HU ZHIMEI, QI HAIXIA, ZHANG RUIXUE, ZHANG KUN, SHI ZHEMIN, CHANG YANAN, CHEN LINFENG, ESMAEILI MOHSEN, BANIAHMAD ARIA, HONG WEI. Docosahexaenoic acid inhibits the growth of hormone-dependent prostate cancer cells by promoting the degradation of the androgen receptor. Mol Med Rep 2015; 12:3769-3774. [DOI: 10.3892/mmr.2015.3813] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 03/19/2015] [Indexed: 11/05/2022] Open
|
22
|
Garcia CP, Lamarque AL, Comba A, Berra MA, Silva RA, Labuckas DO, Das UN, Eynard AR, Pasqualini ME. Synergistic anti-tumor effects of melatonin and PUFAs from walnuts in a murine mammary adenocarcinoma model. Nutrition 2015; 31:570-7. [DOI: 10.1016/j.nut.2014.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/30/2014] [Accepted: 06/01/2014] [Indexed: 11/15/2022]
|
23
|
Guo Y, Cui JY, Lu H, Klaassen CD. Effect of various diets on the expression of phase-I drug-metabolizing enzymes in livers of mice. Xenobiotica 2015; 45:586-97. [PMID: 25733028 DOI: 10.3109/00498254.2015.1006300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
1. Previous studies have shown that diets can alter the metabolism of drugs; however, it is difficult to compare the effects of multiple diets on drug metabolism among different experimental settings. Phase-I-related genes play a major role in the biotransformation of pro-drugs and drugs. 2. In the current study, effects of nine diets on the mRNA expression of phase-I drug metabolizing enzymes in livers of mice were simultaneously investigated. Compared to the AIN-93M purified diet (control), 73 of the 132 critical phase-I drug-metabolizing genes were differentially regulated by at least one diet. Diet restriction produced the largest number of changed genes (51), followed by the atherogenic diet (27), high-fat diet (25), standard rodent chow (21), western diet (20), high-fructose diet (5), EFA deficient diet (3) and low n-3 FA diet (1). The mRNAs of the Fmo family changed most, followed by Cyp2b and 4a subfamilies, as well as Por (from 1121- to 21-fold increase of theses mRNAs). There were 59 genes not altered by any of these diets. 3. The present results may improve the interpretation of studies with mice and aid in determining effective and safe doses for individuals with different nutritional diets.
Collapse
Affiliation(s)
- Ying Guo
- Department of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University , Changsha, Hunan , People's Republic of China
| | | | | | | |
Collapse
|
24
|
Patterson WL, Georgel PT. Breaking the cycle: the role of omega-3 polyunsaturated fatty acids in inflammation-driven cancers. Biochem Cell Biol 2014; 92:321-8. [PMID: 25098909 DOI: 10.1139/bcb-2013-0127] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chronic inflammation is a cyclical, self-stimulating process. Immune cells called to sites of inflammation release pro-inflammatory signaling molecules that stimulate activation of inducible enzymes and transcription factors. These enzymes and transcription factors then stimulate production of signaling molecules that attract more immune cells and induce more enzymatic and transcriptional activity, creating a perpetual loop of inflammation. This self-renewing pool of inflammatory stimuli makes for an ideal tumor microenvironment, and chronic inflammation has been linked to oncogenesis, tumor growth, tumor cell survival, and metastasis. Three protein pathways in particular, nuclear factor kappa B (NF-kB), cyclooxygenase (COX), and lipoxygenase (LOX), provide excellent examples of the cyclical, self-renewing nature of chronic inflammation-driven cancers. NF-kB is an inducible transcription factor responsible for the expression of a vast number of inflammation and cancer related genes. COX and LOX convert omega-6 (n-6) and omga-3 (n-3) polyunsaturated fatty acids (PUFA) into pro- and anti-inflammatory signaling molecules. These signaling molecules stimulate or repress activity of all three of these pathways. In this review, we will discuss the pro- and anti-inflammatory functions of these fatty acids and their role in chronic inflammation and cancer progression.
Collapse
Affiliation(s)
- William L Patterson
- a Byrd Biotechnology Science Center, Department of Biochemistry and Microbiology, Marshall University School of Medicine, 1700 3rd Avenue. Huntington, WV 25755, USA
| | | |
Collapse
|
25
|
Batista MRB, Martínez L. Dynamics of nuclear receptor Helix-12 switch of transcription activation by modeling time-resolved fluorescence anisotropy decays. Biophys J 2014; 105:1670-80. [PMID: 24094408 DOI: 10.1016/j.bpj.2013.07.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/18/2013] [Accepted: 07/22/2013] [Indexed: 12/28/2022] Open
Abstract
Nuclear hormone receptors (NRs) are major targets for pharmaceutical development. Many experiments demonstrate that their C-terminal Helix (H12) is more flexible in the ligand-binding domains (LBDs) without ligand, this increased mobility being correlated with transcription repression and human diseases. Crystal structures have been obtained in which the H12 is extended, suggesting the possibility of large amplitude H12 motions in solution. However, these structures were interpreted as possible crystallographic artifacts, and thus the microscopic nature of H12 movements is not well known. To bridge the gap between experiments and molecular models and provide a definitive picture of H12 motions in solution, extensive molecular dynamics simulations of the peroxisome proliferator-activated receptor-γ LBD, in which the H12 was bound to a fluorescent probe, were performed. A direct comparison of the modeled anisotropy decays to time-resolved fluorescence anisotropy experiments was obtained. It is shown that the decay rates are dependent on the interactions of the probe with the surface of the protein, and display little correlation with the flexibility of the H12. Nevertheless, for the probe to interact with the surface of the LBD, the H12 must be folded over the body of the LBD. Therefore, the molecular mobility of the H12 should preserve the globularity of the LBD, so that ligand binding and dissociation occur by diffusion through the surface of a compact receptor. These results advance the comprehension of both ligand-bound and ligand-free receptor structures in solution, and also guide the interpretation of time-resolved anisotropy decays from a molecular perspective, particularly by the use of simulations.
Collapse
Affiliation(s)
- Mariana R B Batista
- Institute of Chemistry, State University of Campinas, Campinas, SP, Brazil; Institute of Physics of São Carlos, University of São Paulo, São Carlos, SP, Brazil
| | | |
Collapse
|
26
|
Pouchieu C, Chajès V, Laporte F, Kesse-Guyot E, Galan P, Hercberg S, Latino-Martel P, Touvier M. Prospective associations between plasma saturated, monounsaturated and polyunsaturated fatty acids and overall and breast cancer risk - modulation by antioxidants: a nested case-control study. PLoS One 2014; 9:e90442. [PMID: 24587366 PMCID: PMC3937383 DOI: 10.1371/journal.pone.0090442] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 01/30/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Mechanistic data suggest that different types of fatty acids play a role in carcinogenesis and that antioxidants may modulate this relationship but epidemiologic evidence is lacking. Our aim was to investigate the association between plasma saturated, monounsaturated and polyunsaturated fatty acids (SFAs, MUFAs and PUFAs) and overall and breast cancer risk and to evaluate the potential modulatory effect of an antioxidant supplementation on these relationships. METHODS A nested case-control study included all first incident cancer cases diagnosed in the SU.VI.MAX study between 1994 and 2002 (n=250 cases, one matched control/case). Participants to the SU.VI.MAX randomized controlled trial received either vitamin/mineral antioxidants or placebo during this intervention period. Baseline fatty acid composition of plasma total lipids was measured by gas chromatography. Conditional logistic regression was performed overall and stratified by intervention group. RESULTS Dihomo-γ-linolenic acid (Ptrend=0.002), the dihomo-γ-linolenic/linoleic acids ratio (Ptrend=0.001), mead acid (Ptrend=0.0004), and palmitoleic acid (Ptrend=0.02) were inversely associated with overall cancer risk. The arachidonic/dihomo-γ-linolenic acids ratio (Ptrend=0.02) and linoleic acid (Ptrend=0.02) were directly associated with overall cancer risk. Similar results were observed for breast cancer specifically. In stratified analyses, associations were only observed in the placebo group. Notably, total PUFAs were directly associated with overall (Ptrend=0.02) and breast cancer risk in the placebo group only. CONCLUSION Specific SFAs, MUFAs and PUFAs were prospectively differentially associated with cancer risk. In addition, this study suggests that antioxidants may modulate these associations by counteracting the potential effects of these fatty acids on carcinogenesis.
Collapse
Affiliation(s)
- Camille Pouchieu
- Sorbonne Paris Cité, Nutritional Epidemiology Research Team (EREN), Epidemiology and Biostatistics Center, Inserm U1153, Inra U1125, Cnam, University Paris 13, University Paris 5, University Paris 7, Bobigny, France
| | - Véronique Chajès
- Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France
| | - François Laporte
- Department of Integrated Biology, University Hospital of Grenoble, Grenoble, France
| | - Emmanuelle Kesse-Guyot
- Sorbonne Paris Cité, Nutritional Epidemiology Research Team (EREN), Epidemiology and Biostatistics Center, Inserm U1153, Inra U1125, Cnam, University Paris 13, University Paris 5, University Paris 7, Bobigny, France
| | - Pilar Galan
- Sorbonne Paris Cité, Nutritional Epidemiology Research Team (EREN), Epidemiology and Biostatistics Center, Inserm U1153, Inra U1125, Cnam, University Paris 13, University Paris 5, University Paris 7, Bobigny, France
| | - Serge Hercberg
- Sorbonne Paris Cité, Nutritional Epidemiology Research Team (EREN), Epidemiology and Biostatistics Center, Inserm U1153, Inra U1125, Cnam, University Paris 13, University Paris 5, University Paris 7, Bobigny, France
- Public Health Department, Avicenne Hospital, Bobigny, France
| | - Paule Latino-Martel
- Sorbonne Paris Cité, Nutritional Epidemiology Research Team (EREN), Epidemiology and Biostatistics Center, Inserm U1153, Inra U1125, Cnam, University Paris 13, University Paris 5, University Paris 7, Bobigny, France
| | - Mathilde Touvier
- Sorbonne Paris Cité, Nutritional Epidemiology Research Team (EREN), Epidemiology and Biostatistics Center, Inserm U1153, Inra U1125, Cnam, University Paris 13, University Paris 5, University Paris 7, Bobigny, France
| |
Collapse
|
27
|
Sandrone SS, Repossi G, Candolfi M, Eynard AR. Polyunsaturated fatty acids and gliomas: a critical review of experimental, clinical, and epidemiologic data. Nutrition 2014; 30:1104-9. [PMID: 24976422 DOI: 10.1016/j.nut.2014.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 01/12/2014] [Indexed: 01/25/2023]
Abstract
Certain polyunsaturated fatty acids (PUFAs) called essential fatty acids (EFAs) cannot be biosynthesized by the body and hence, need to be obtained from diet. These PUFAs and their metabolites have multiple physiological functions that are altered in tumor cells due to a decreased expression of Δdelta-6-desaturase, which is an essential step in their metabolism. As a result, tumor cells would be protected from the toxic effect caused by free radicals, one product of EFA metabolism. EFAs have been proposed to have therapeutic potential in the treatment of glioblastoma. Gliomas are the most common primary tumors of the central nervous system in children and adults. High-grade gliomas remain a therapeutic challenge in neuro-oncology because there is no treatment that achieves a significant improvement in survival. Novel therapeutic strategies that use PUFAs for the treatment of gliomas have been assessed in cell cultures, rodent glioma models, and humans, with encouraging results. Here we review the latest progress made in the field.
Collapse
Affiliation(s)
- Silvana Silvia Sandrone
- Biología Celular, Histología y Embriología, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina; Servicio de Patología, Hospital Rawson de Córdoba, Córdoba, Argentina
| | - Gaston Repossi
- Biología Celular, Histología y Embriología, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina; Cátedra de Histología, Embriología y Genética, Universidad Nacional de La Rioja, La Rioja, Argentina
| | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina; CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Aldo Renato Eynard
- Biología Celular, Histología y Embriología, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina; CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
28
|
Samoylenko A, Hossain JA, Mennerich D, Kellokumpu S, Hiltunen JK, Kietzmann T. Nutritional countermeasures targeting reactive oxygen species in cancer: from mechanisms to biomarkers and clinical evidence. Antioxid Redox Signal 2013; 19:2157-96. [PMID: 23458328 PMCID: PMC3869543 DOI: 10.1089/ars.2012.4662] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 02/08/2013] [Accepted: 03/01/2013] [Indexed: 02/06/2023]
Abstract
Reactive oxygen species (ROS) exert various biological effects and contribute to signaling events during physiological and pathological processes. Enhanced levels of ROS are highly associated with different tumors, a Western lifestyle, and a nutritional regime. The supplementation of food with traditional antioxidants was shown to be protective against cancer in a number of studies both in vitro and in vivo. However, recent large-scale human trials in well-nourished populations did not confirm the beneficial role of antioxidants in cancer, whereas there is a well-established connection between longevity of several human populations and increased amount of antioxidants in their diets. Although our knowledge about ROS generators, ROS scavengers, and ROS signaling has improved, the knowledge about the direct link between nutrition, ROS levels, and cancer is limited. These limitations are partly due to lack of standardized reliable ROS measurement methods, easily usable biomarkers, knowledge of ROS action in cellular compartments, and individual genetic predispositions. The current review summarizes ROS formation due to nutrition with respect to macronutrients and antioxidant micronutrients in the context of cancer and discusses signaling mechanisms, used biomarkers, and its limitations along with large-scale human trials.
Collapse
Affiliation(s)
- Anatoly Samoylenko
- Department of Biochemistry, Biocenter Oulu, University of Oulu, Oulu, Finland
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Jubayer Al Hossain
- Department of Biochemistry, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Daniela Mennerich
- Department of Biochemistry, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Sakari Kellokumpu
- Department of Biochemistry, Biocenter Oulu, University of Oulu, Oulu, Finland
| | | | - Thomas Kietzmann
- Department of Biochemistry, Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
29
|
Role of ceramide in diabetes mellitus: evidence and mechanisms. Lipids Health Dis 2013; 12:98. [PMID: 23835113 PMCID: PMC3716967 DOI: 10.1186/1476-511x-12-98] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 06/28/2013] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus is a metabolic disease with multiple complications that causes serious diseases over the years. The condition leads to severe economic consequences and is reaching pandemic level globally. Much research is being carried out to address this disease and its underlying molecular mechanism. This review focuses on the diverse role and mechanism of ceramide, a prime sphingolipid signaling molecule, in the pathogenesis of type 1 and type 2 diabetes and its complications. Studies using cultured cells, animal models, and human subjects demonstrate that ceramide is a key player in the induction of β-cell apoptosis, insulin resistance, and reduction of insulin gene expression. Ceramide induces β-cell apoptosis by multiple mechanisms namely; activation of extrinsic apoptotic pathway, increasing cytochrome c release, free radical generation, induction of endoplasmic reticulum stress and inhibition of Akt. Ceramide also modulates many of the insulin signaling intermediates such as insulin receptor substrate, Akt, Glut-4, and it causes insulin resistance. Ceramide reduces the synthesis of insulin hormone by attenuation of insulin gene expression. Better understanding of this area will increase our understanding of the contribution of ceramide to the pathogenesis of diabetes, and further help in identifying potential therapeutic targets for the management of diabetes mellitus and its complications.
Collapse
|
30
|
Relative quantification of biomarkers using mixed-isotope labeling coupled with MS. Bioanalysis 2013; 4:2525-41. [PMID: 23157360 DOI: 10.4155/bio.12.208] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The identification and quantification of important biomarkers is a critical first step in the elucidation of biological systems. Biomarkers take many forms as cellular responses to stimuli and can be manifested during transcription, translation, and/or metabolic processing. Increasingly, researchers have relied upon mixed-isotope labeling (MIL) coupled with MS to perform relative quantification of biomarkers between two or more biological samples. MIL effectively tags biomarkers of interest for ease of identification and quantification within the mass spectrometer by using isotopic labels that introduce a heavy and light form of the tag. In addition to MIL coupled with MS, a number of other approaches have been used to quantify biomarkers including protein gel staining, enzymatic labeling, metabolic labeling, and several label-free approaches that generate quantitative data from the MS signal response. This review focuses on MIL techniques coupled with MS for the quantification of protein and small-molecule biomarkers.
Collapse
|
31
|
Eynard AR, Navarro A. Crosstalk among dietary polyunsaturated fatty acids, urolithiasis, chronic inflammation, and urinary tract tumor risk. Nutrition 2013; 29:930-8. [PMID: 23594581 DOI: 10.1016/j.nut.2012.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/04/2012] [Accepted: 12/13/2012] [Indexed: 01/04/2023]
Abstract
Based on a consistent bulk of experimental and epidemiologic works, we proposed that abnormal metabolism and/or dietary deprivation of essential polyunsaturated fatty acids by inducing a chronic and subclinical essential fatty acid deficiency (EFAD) in urothelial cell membranes may enhance the risk for urinary tract tumor (UTT) development. This threat may be enhanced by the unusual fact that the fatty-acid profile of the normal urothelium is similar to that reported in EFAD. The risk for UTT may be worsened when coexisting with a low-grade chronic inflammation (LGCI) state induced by urolithiasis or disbalance management of peroxides, free radical molecules, and their quenchers. There is cumulative evidence linking the LGCI of the urinary tract mucosa, calculi, and UTT, due to the long-standing release of promitotic, promutagen, and pro-inflammatory antiapoptotic cytokines in these conditions. The dual role played by pro- and anti-inflammatory eicosanoids and bioactive lipids, cytokines, and the disbalance of lipid peroxidation is discussed, concluding that the moderate, long-standing consumption or dietary supplementation of ω-3 PUFAs may improve the chances of avoiding UTT development.
Collapse
Affiliation(s)
- Aldo R Eynard
- Instituto de Biología Celular, INICSA, Córdoba, Argentina.
| | | |
Collapse
|
32
|
Abstract
Long chain omega-3 polyunsaturated fatty acids (LC n-3 PUFAs) are recommended for management of patients with wide-ranging chronic diseases, including coronary heart disease, rheumatoid arthritis, dementia, and depression. Increased consumption of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is recommended by many health authorities to prevent (up to 0.5 g/day) or treat chronic disease (1.0 g/day for coronary heart disease; 1.2–4 g/day for elevated triglyceride levels). Recommendations for dietary intake of LC n-3 PUFAs are often provided for α-linolenic acid, and for the combination of EPA and DHA. However, many studies have also reported differential effects of EPA, DHA and their metabolites in the clinic and at the laboratory bench. The aim of this article is to review studies that have identified divergent responses to EPA and DHA, and to explore reasons for these differences. In particular, we review potential contributing factors such as differential membrane incorporation, modulation of gene expression, activation of signaling pathways and metabolite formation. We suggest that there may be future opportunity to refine recommendations for intake of individual LC n-3 PUFAs.
Collapse
Affiliation(s)
- Fraser D Russell
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland 4556, Australia.
| | | |
Collapse
|
33
|
Epstein MM, Kasperzyk JL, Mucci LA, Giovannucci E, Price A, Wolk A, Håkansson N, Fall K, Andersson SO, Andrén O. Dietary fatty acid intake and prostate cancer survival in Örebro County, Sweden. Am J Epidemiol 2012; 176:240-52. [PMID: 22781428 DOI: 10.1093/aje/kwr520] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Although dietary fat has been associated with prostate cancer risk, the association between specific fatty acids and prostate cancer survival remains unclear. Dietary intake of 14 fatty acids was analyzed in a population-based cohort of 525 Swedish men with prostate cancer in Örebro County (1989-1994). Multivariable hazard ratios and 95% confidence intervals for time to prostate cancer death by quartile and per standard deviation increase in intake were estimated by Cox proportional hazards regression. Additional models examined the association by stage at diagnosis (localized: T0-T2/M0; advanced: T0-T4/M1, T3-T4/M0). Among all men, those with the highest omega-3 docosahexaenoic acid and total marine fatty acid intakes were 40% less likely to die from prostate cancer (P(trend) = 0.05 and 0.04, respectively). Among men with localized prostate cancer, hazard ratios of 2.07 (95% confidence interval: 0.93, 4.59; P(trend) = 0.03) for elevated total fat, 2.39 (95% confidence interval: 1.06, 5.38) for saturated myristic acid, and 2.88 (95% confidence interval: 1.24, 6.67) for shorter chain (C4-C10) fatty acid intakes demonstrated increased risk for disease-specific mortality for the highest quartile compared with the lowest quartile. This study suggests that high intake of total fat and certain saturated fatty acids may worsen prostate cancer survival, particularly among men with localized disease. In contrast, high marine omega-3 fatty acid intake may improve disease-specific survival for all men.
Collapse
Affiliation(s)
- Mara M Epstein
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Moore MR, King RA. Effects of omega-3 fatty acids on progestin stimulation of invasive properties in breast cancer. Discov Oncol 2012; 3:205-17. [PMID: 22833172 DOI: 10.1007/s12672-012-0118-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 07/11/2012] [Indexed: 12/16/2022] Open
Abstract
Clinical studies have shown that progestins increase breast cancer risk in hormone replacement therapy, while we and others have previously reported that progestins stimulate invasive properties in progesterone receptor (PR)-rich human breast cancer cell lines. Based on others' reports that omega-3 fatty acids inhibit metastatic properties of breast cancer, we have reviewed the literature for possible connections between omega-3 fatty-acid-driven pathways and progestin-stimulated pathways in an attempt to suggest theoretical mechanisms for possible omega-3 fatty acid inhibition of progestin stimulation of breast cancer invasion. We also present some data suggesting that fatty acids regulate progestin stimulation of invasive properties in PR-rich T47D human breast cancer cells, and that an appropriate concentration of the omega-3 fatty acid eicosapentaenoic acid inhibits progestin stimulation of invasive properties. It is hoped that focus on the inter-relationship between pathways by which omega-3 fatty acids inhibit and progestins stimulate breast cancer invasive properties will lead to further in vitro, in vivo, and clinical studies testing the hypothesis that omega-3 fatty acids can inhibit progestin stimulation of invasive properties in breast cancer, and ameliorate harmful effects of progestins which occur in combined progestin-estrogen hormone replacement therapy.
Collapse
Affiliation(s)
- Michael R Moore
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive BBSC, Huntington, WV 25755, USA.
| | | |
Collapse
|
35
|
Vara Messler M, Cremonezzi DC, Soria EA, Eynard AR. Nutritional chemoprevention of urinary tract tumors (UTT) induced by lithogenic agents: risk for UTT in children exposed to melamine-contaminated milk formulas. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2012; 30:174-187. [PMID: 22690714 DOI: 10.1080/10590501.2012.684302] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Urinary tract tumors are tenth in frequency, and many environmental carcinogens are excreted by urine. Interplay between chronic inflammatory urolithiasis and urothelial carcinogenesis is not well understood. Experimental evidences show that dietary melamine induce these events even at low concentrations. This is important because thousands of children were exposed to melamine through intentionally contaminated milk formula worldwide. We propose that an increased risk for urinary tumors in adult life may occur and screenings for early urinary signs may be necessary. Therefore, urothelial biology, melamine carcinogenic potential, and related epidemiology are discussed, recommending a preventive dietary polyunsaturated fatty acid-based supplementation, since they modulate such interplay in rodents.
Collapse
Affiliation(s)
- M Vara Messler
- Instituto de Biología Celular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Argentina
| | | | | | | |
Collapse
|