1
|
Danieli PP, Hoang N, Selvanayagam T, Yang A, Breetvelt E, Tabbers M, Cohen C, Aelvoet AS, Trost B, Ward T, Semotiuk K, Durno C, Aronson M, Cohen Z, Dekker E, Vorstman J. Autistic traits in youth with familial adenomatous polyposis: A Dutch-Canadian case-control study. Am J Med Genet B Neuropsychiatr Genet 2024; 195:e32999. [PMID: 38967411 DOI: 10.1002/ajmg.b.32999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/25/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024]
Abstract
This study investigated the neurodevelopmental impact of pathogenic adenomatous polyposis coli (APC) gene variants in patients with familial adenomatous polyposis (FAP), a cancer predisposition syndrome. We hypothesized that certain pathogenic APC variants result in behavioral-cognitive challenges. We compared 66 FAP patients (cases) and 34 unaffected siblings (controls) to explore associations between APC variants and behavioral and cognitive challenges. Our findings indicate that FAP patients exhibited higher Social Responsiveness Scale (SRS) scores, suggesting a greater prevalence of autistic traits when compared to unaffected siblings (mean 53.8 vs. 47.4, Wilcoxon p = 0.018). The distribution of SRS scores in cases suggested a bimodal pattern, potentially linked to the location of the APC variant, with scores increasing from the 5' to 3' end of the gene (Pearson's r = 0.33, p = 0.022). While we observed a trend toward lower educational attainment in cases, this difference was not statistically significant. This study is the first to explore the connection between APC variant location and neurodevelopmental traits in FAP, expanding our understanding of the genotype-phenotype correlation. Our results emphasize the importance of clinical assessment for autistic traits in FAP patients, shedding light on the potential role of APC gene variants in these behavioral and cognitive challenges.
Collapse
Affiliation(s)
- Polina Perlman Danieli
- Department of Psychiatry, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ny Hoang
- Department of Genetic Counselling, The Hospital for Sick Children, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Thanuja Selvanayagam
- Department of Genetic Counselling, The Hospital for Sick Children, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alvin Yang
- Department of Psychiatry, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Familial Gastrointestinal Cancer Registry at the Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Elemi Breetvelt
- Department of Psychiatry, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Merit Tabbers
- Department of Pediatrics, Emma Children's Hospital, Amsterdam, The Netherlands
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Emma Children's Hospital, Amsterdam Reproduction and Development and Amsterdam Gastroenterology Endocrinology Metabolism Research Institutes, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Christine Cohen
- Department of Gastroenterology and Hepatology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Gastroenterology & Hepatology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Arthur S Aelvoet
- Department of Gastroenterology and Hepatology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Gastroenterology & Hepatology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Brett Trost
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Thomas Ward
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Familial Gastrointestinal Cancer Registry at the Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Kara Semotiuk
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Familial Gastrointestinal Cancer Registry at the Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Carol Durno
- The Familial Gastrointestinal Cancer Registry at the Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
- Division of Gastroenterology/Hepatology & Nutrition, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Melyssa Aronson
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Familial Gastrointestinal Cancer Registry at the Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Zane Cohen
- The Familial Gastrointestinal Cancer Registry at the Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Evelien Dekker
- Department of Gastroenterology and Hepatology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Gastroenterology & Hepatology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Jacob Vorstman
- Department of Psychiatry, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental Psychopathology, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Reissland M, Hartmann O, Tauch S, Bugter JM, Prieto-Garcia C, Schulte C, Loebbert S, Solvie D, Bitman-Lotan E, Narain A, Jacomin AC, Schuelein-Voelk C, Fuss CT, Pahor N, Ade C, Buck V, Potente M, Li V, Beliu G, Wiegering A, Grossmann T, Eilers M, Wolf E, Maric H, Rosenfeldt M, Maurice MM, Dikic I, Gallant P, Orian A, Diefenbacher ME. USP10 drives cancer stemness and enables super-competitor signalling in colorectal cancer. Oncogene 2024:10.1038/s41388-024-03141-x. [PMID: 39443725 DOI: 10.1038/s41388-024-03141-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/30/2024] [Accepted: 08/21/2024] [Indexed: 10/25/2024]
Abstract
The contribution of deubiquitylating enzymes (DUBs) to β-Catenin stabilization in intestinal stem cells and colorectal cancer (CRC) is poorly understood. Here, and by using an unbiassed screen, we discovered that the DUB USP10 stabilizes β-Catenin specifically in APC-truncated CRC in vitro and in vivo. Mechanistic studies, including in vitro binding together with computational modelling, revealed that USP10 binding to β-Catenin is mediated via the unstructured N-terminus of USP10 and is outcompeted by intact APC, favouring β-catenin degradation. However, in APC-truncated cancer cells USP10 binds to β-catenin, increasing its stability which is critical for maintaining an undifferentiated tumour identity. Elimination of USP10 reduces the expression of WNT and stem cell signatures and induces the expression of differentiation genes. Remarkably, silencing of USP10 in murine and patient-derived CRC organoids established that it is essential for NOTUM signalling and the APC super competitor-phenotype, reducing tumorigenic properties of APC-truncated CRC. These findings are clinically relevant as patient-derived organoids are highly dependent on USP10, and abundance of USP10 correlates with poorer prognosis of CRC patients. Our findings reveal, therefore, a role for USP10 in CRC cell identity, stemness, and tumorigenic growth by stabilising β-Catenin, leading to aberrant WNT signalling and degradation resistant tumours. Thus, USP10 emerges as a unique therapeutic target in APC truncated CRC.
Collapse
Affiliation(s)
- Michaela Reissland
- Protein Stability and Cancer Group, University of Wuerzburg, Department of Biochemistry and Molecular Biology, Wuerzburg, Germany
- Mildred-Scheel Early Career Cancer Center, Wuerzburg, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Oliver Hartmann
- Protein Stability and Cancer Group, University of Wuerzburg, Department of Biochemistry and Molecular Biology, Wuerzburg, Germany
- Mildred-Scheel Early Career Cancer Center, Wuerzburg, Germany
| | - Saskia Tauch
- Protein Stability and Cancer Group, University of Wuerzburg, Department of Biochemistry and Molecular Biology, Wuerzburg, Germany
- Division of Signal Transduction and Growth Control, DKFZ/ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jeroen M Bugter
- Oncode Institute and Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Cristian Prieto-Garcia
- Protein Stability and Cancer Group, University of Wuerzburg, Department of Biochemistry and Molecular Biology, Wuerzburg, Germany
- Molecular Signalling Group, Institute of Biochemistry II, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Clemens Schulte
- Rudolf-Virchow-Center for Integrative and Translational Imaging, University of Wuerzburg, Wuerzburg, Germany
| | - Sinah Loebbert
- Mildred-Scheel Early Career Cancer Center, Wuerzburg, Germany
- Department of Biochemistry and Molecular Biology, University of Wuerzburg, Wuerzburg, Germany
| | - Daniel Solvie
- Department of Biochemistry and Molecular Biology, University of Wuerzburg, Wuerzburg, Germany
| | | | - Ashwin Narain
- Cancer Systems Biology Group, University of Wuerzburg, Am Hubland, Wuerzburg, Germany
| | - Anne-Claire Jacomin
- Molecular Signalling Group, Institute of Biochemistry II, Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | - Carmina T Fuss
- Protein Stability and Cancer Group, University of Wuerzburg, Department of Biochemistry and Molecular Biology, Wuerzburg, Germany
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Wuerzburg, Wuerzburg, Germany
| | - Nikolett Pahor
- Protein Stability and Cancer Group, University of Wuerzburg, Department of Biochemistry and Molecular Biology, Wuerzburg, Germany
- Mildred-Scheel Early Career Cancer Center, Wuerzburg, Germany
| | - Carsten Ade
- Department of Biochemistry and Molecular Biology, University of Wuerzburg, Wuerzburg, Germany
| | - Viktoria Buck
- Institute for Pathology, University of Würzburg, Wuerzburg, Germany
| | - Michael Potente
- Angiogenesis & Metabolism Laboratory, Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Berlin Germany and Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Vivian Li
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK
| | - Gerti Beliu
- Institute of Lung Health and Immunity, Helmholtz Center, Munich, Germany
| | - Armin Wiegering
- Department of Biochemistry and Molecular Biology, University of Wuerzburg, Wuerzburg, Germany
- Department of General, Visceral, Transplantation, Vascular and Paediatric Surgery, University Hospital, Julius-Maximilians-University of Wuerzburg, Wuerzburg, Germany
| | - Tom Grossmann
- Amsterdam Institute of Molecular and Life Sciences, Amsterdam, Netherlands
| | - Martin Eilers
- Mildred-Scheel Early Career Cancer Center, Wuerzburg, Germany
- Department of Biochemistry and Molecular Biology, University of Wuerzburg, Wuerzburg, Germany
| | - Elmar Wolf
- Mildred-Scheel Early Career Cancer Center, Wuerzburg, Germany
- Cancer Systems Biology Group, University of Wuerzburg, Am Hubland, Wuerzburg, Germany
| | - Hans Maric
- Rudolf-Virchow-Center for Integrative and Translational Imaging, University of Wuerzburg, Wuerzburg, Germany
| | - Mathias Rosenfeldt
- Mildred-Scheel Early Career Cancer Center, Wuerzburg, Germany
- Institute for Pathology, University of Würzburg, Wuerzburg, Germany
| | - Madelon M Maurice
- Oncode Institute and Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ivan Dikic
- Molecular Signalling Group, Institute of Biochemistry II, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Peter Gallant
- Department of Biochemistry and Molecular Biology, University of Wuerzburg, Wuerzburg, Germany
| | - Amir Orian
- Faculty of Medicine, TICC, Technion Haifa, Haifa, Israel
| | - Markus E Diefenbacher
- Protein Stability and Cancer Group, University of Wuerzburg, Department of Biochemistry and Molecular Biology, Wuerzburg, Germany.
- Mildred-Scheel Early Career Cancer Center, Wuerzburg, Germany.
- Institute of Lung Health and Immunity, Helmholtz Center, Munich, Germany.
- German Center for Lung Research, DZL, Germany.
- Ludwig Maximilian University Munich, Munich, Germany.
| |
Collapse
|
3
|
Wan X, Zhang X, Xu M, Zheng Z, Zhou Y, Zhong Z. Unveiling the role of KRAS in Chinese colorectal cancer patients: a positive influence on tumor mutational burden. Transl Cancer Res 2024; 13:4752-4762. [PMID: 39430843 PMCID: PMC11483435 DOI: 10.21037/tcr-24-600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/19/2024] [Indexed: 10/22/2024]
Abstract
Background One of the main challenges associated with the development of therapeutic and diagnostic strategies for patients with colorectal cancer (CRC) is the establishment of minimally invasive and efficient biomarkers. Pertinent genes in CRC have been identified through their functions in systematic mutagenesis screens. KRAS is considered a dominant mutated oncogene that contributes to pathogenesis of CRC. This study aimed to explore the genomic alternations of KRAS in a CRC population. Methods Sequencing data of 94 Chinese patients with CRC were prospectively collected and analyzed using next-generation sequencing (NGS). The influence of KRAS and its associated subtype co-mutations on the expression level of the tumor mutational burden (TMB) was investigated. The objective of our study was to assess the potential prognostic significance of KRAS and other driving oncogenes in determining the clinical efficacy of immunotherapy. Results The gene mutation rates of TP53, APC, and KRAS were 81.91%, 71.28%, and 43.62%, respectively. Additionally, KRAS G12D displayed a relatively higher mutation rate than other KRAS-mutant subtypes. Increased TMB was observed in cases of KRAS and BRAF mutation combined with APC single mutation; furthermore, the expression of TMB in G12V was the highest, and G12D presented the lowest TMB in single KRAS-mutant subtypes or the combination with APC mutations. Conclusions The TMB driven by KRAS co-mutations may have the potential to be used as a key biomarker for prediction of treatment outcomes of immune checkpoint inhibitors (ICIs) in patients with CRC, especially with APC co-mutation.
Collapse
Affiliation(s)
- Xuebin Wan
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- HaploX Biotechnology, Co., Ltd., Shenzhen, China
| | - Xiaoni Zhang
- HaploX Biotechnology, Co., Ltd., Shenzhen, China
- Haplox Medical Laboratory, Shenzhen, China
| | - Mingyan Xu
- HaploX Biotechnology, Co., Ltd., Shenzhen, China
- Haplox Medical Laboratory, Shenzhen, China
| | - Zhi Zheng
- HaploX Biotechnology, Co., Ltd., Shenzhen, China
| | - Yujun Zhou
- HaploX Biotechnology, Co., Ltd., Shenzhen, China
| | - Zhiyong Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
4
|
Hedayati N, Mafi A, Farahani A, Hashemi M, Nabavi N, Alimohammadi M, Rahimzadeh P, Taheriazam A, Farahani N. The importance of the circRNA/Wnt axis in gliomas: Biological functions and clinical opportunities. Pathol Res Pract 2024; 261:155510. [PMID: 39116573 DOI: 10.1016/j.prp.2024.155510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Gliomas are among the most common cancers in the central nervous system, arising through various signaling pathways. One significant pathway is Wnt signaling, a tightly regulated process that plays a crucial role in gliomagenesis and development. The current study aims to explore the relationship between circular RNAs (circRNAs) and the Wnt/β-catenin signaling pathway in gliomas, considering the growing recognition of circRNAs in disease pathogenesis. A comprehensive review of recent research was conducted to investigate the roles of circRNAs in gliomas, focusing on their expression patterns and interactions with the Wnt signaling pathway. The analysis included studies examining circRNAs' function as microRNA sponges and their impact on glioma biology. The findings reveal that circRNAs are differentially expressed in gliomas and significantly influence the occurrence, growth, and metastasis of these tumors. Specifically, circRNAs interact with the Wnt signaling pathway, affecting glioma development and progression. This interaction highlights the importance of circRNAs in glioma pathophysiology. Understanding the regulatory network involving circRNAs and Wnt signaling offers valuable insights into glioma pathophysiology. CircRNAs hold promise as diagnostic and prognostic biomarkers and may serve as targets for novel therapeutic strategies in glioma treatment.
Collapse
Affiliation(s)
- Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Alireza Mafi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Aryan Farahani
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical sciences, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, Canada
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Najma Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
5
|
D’Antonio DL, Fantini F, Moscatello C, Ferrone A, Scaringi S, Valanzano R, Ficari F, Efthymakis K, Neri M, Aceto GM, Curia MC. The Interplay among Wnt/β-catenin Family Members in Colorectal Adenomas and Surrounding Tissues. Biomedicines 2024; 12:1730. [PMID: 39200196 PMCID: PMC11352173 DOI: 10.3390/biomedicines12081730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 09/02/2024] Open
Abstract
BACKGROUND The colorectal adenoma undergoes neoplastic progression via the normal epithelium-adenoma-adenocarcinoma sequence as reported in the Vogelgram. The hazard of developing a tumor is deeply associated with the number and size of adenomas and their subtype. Adenomatous polyps are histologically categorized as follows: approximately 80-90% are tubular, 5-15% are villous, and 5-10% are tubular/villous. Given the higher risk of a malignant transformation observed in tubular/villous adenomas, patients diagnosed with adenomatous polyposis are at an improved risk of developing CRC. The Wnt/β-catenin pathway plays a key role in the onset of colorectal adenoma; in particular, intestinal cells first acquire loss-of-function mutations in the APC gene that induce the formation of adenomas. METHODS Wnt/β-catenin pathway APC, Wnt3a, Wnt5a, LEF1, and BCL9 genes and protein expression analyses were conducted by qRT-PCR and western blot in 68 colonic samples (polyps and adjacent mucosa) from 41 patients, of which 17 were affected by FAP. Ten normal colonic mucosal samples were collected from 10 healthy donors. RESULTS In this study, both the APC gene and protein were less expressed in the colon tumor compared to the adjacent colonic mucosa. Conversely, the activated β-catenin was more expressed in polyps than in the adjacent mucosa. All results confirmed the literature data on carcinomas. A statistically significant correlation between Wnt3a and BCL9 both in polyps and in the adjacent mucosa underlines that the canonical Wnt pathway is activated in early colon carcinogenesis and that the adjacent mucosa is already altered. CONCLUSION This is the first study analyzing the difference in expression of the Wnt/β-catenin pathway in human colorectal adenomas. Understanding the progression from adenomas to colorectal carcinomas is essential for the development of new therapeutic strategies and improving clinical outcomes with the use of APC and β-catenin as biomarkers.
Collapse
Affiliation(s)
- Domenica Lucia D’Antonio
- Department of Medical, Oral and Biotechnological Sciences, “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (D.L.D.); (F.F.); (C.M.); (A.F.); (G.M.A.)
- Villa Serena Foundation for Research, Via Leonardo Petruzzi 42, 65013 Città Sant’Angelo, Italy
| | - Fabiana Fantini
- Department of Medical, Oral and Biotechnological Sciences, “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (D.L.D.); (F.F.); (C.M.); (A.F.); (G.M.A.)
| | - Carmelo Moscatello
- Department of Medical, Oral and Biotechnological Sciences, “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (D.L.D.); (F.F.); (C.M.); (A.F.); (G.M.A.)
| | - Alessio Ferrone
- Department of Medical, Oral and Biotechnological Sciences, “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (D.L.D.); (F.F.); (C.M.); (A.F.); (G.M.A.)
| | - Stefano Scaringi
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134 Firenze, Italy; (S.S.); (R.V.); (F.F.)
| | - Rosa Valanzano
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134 Firenze, Italy; (S.S.); (R.V.); (F.F.)
| | - Ferdinando Ficari
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134 Firenze, Italy; (S.S.); (R.V.); (F.F.)
| | - Konstantinos Efthymakis
- Department of Medicine and Aging Sciences, “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (K.E.); (M.N.)
| | - Matteo Neri
- Department of Medicine and Aging Sciences, “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (K.E.); (M.N.)
| | - Gitana Maria Aceto
- Department of Medical, Oral and Biotechnological Sciences, “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (D.L.D.); (F.F.); (C.M.); (A.F.); (G.M.A.)
| | - Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (D.L.D.); (F.F.); (C.M.); (A.F.); (G.M.A.)
| |
Collapse
|
6
|
Büki G, Antal G, Bene J. Rare Germline Variants in the Adenomatous Polyposis Coli Gene Associated with Dental and Osseous Anomalies. Int J Mol Sci 2024; 25:8189. [PMID: 39125758 PMCID: PMC11312143 DOI: 10.3390/ijms25158189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
APC is a tumor suppressor gene that exerts its effect through the regulation of the Wnt signaling pathway. Loss of function mutations of the gene are associated with familial adenomatous polyposis (FAP). Early diagnosis in FAP patients is essential to prevent the development of colorectal cancer. Extraintestinal manifestations often precede the formation of the polyposis; therefore, these manifestations may serve as a clinical indicator for the condition. The aim of this study was to assess genotype-phenotype associations between the location of APC mutations and various extraintestinal features, mainly focusing on osseous and dental anomalies. Analyses of our cases and the mutations available in the literature with these manifestations revealed that mutations in the N-terminal region (amino acids 1-~1000) of the protein are more frequently associated with only osseous anomalies, whereas dental manifestations are more prevalent in mutations in the middle region (amino acids 1000-~2100). In addition, supernumerary teeth were found to be the most common dental feature. Since dental abnormalities often precede intestinal polyposis, dentists have a crucial role in the early identification of patients at risk.
Collapse
Affiliation(s)
- Gergely Büki
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary;
| | - Gréta Antal
- Department of Dentistry, Oral and Maxillofacial Surgery, Clinical Center, Medical School, University of Pécs, 7623 Pécs, Hungary;
| | - Judit Bene
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary;
| |
Collapse
|
7
|
Zhang J, You Q, Wang Y, Ji J. LncRNA GAS5 Modulates the Progression of Glioma Through Repressing miR-135b-5p and Upregulating APC. Biologics 2024; 18:129-142. [PMID: 38817552 PMCID: PMC11137960 DOI: 10.2147/btt.s454058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024]
Abstract
Purpose The main purpose of this paper is to explore the interaction between GAS5 and miR-135b-5p to understand their function in the metastasis, invasion, and proliferation of glioma. This may provide new ideas for the pathogenesis and treatment of glioma. Patients and Methods Western blotting assays and RT‑qPCR were employed to investigate the expression of related genes in glioma tissues or cell lines. CCK-8 was used to examine the impact of GAS5 on cell viability. Motile activities were adopted by the transwell and wound healing experiments. A double luciferase experiment was performed to elucidate transcriptional regulation. Results GAS5 showed low expression in glioma cells and tissues, and up-regulation of GAS5 could depress the invasion, proliferation, and metastasis of glioma. GAS5 negatively regulates miR-135b-5p, which can counteract the cellular effects caused by GAS5. APC was the target of miR-135b-5p, and GAS5 can regulate the expression of APC by sponging miR-135b-5p. APC overexpression reversed the effects of miR-135b-5p promotion on glioma cells, while miR-135b-5p has the opposite function. As a downstream target gene of GAS5, miR-135b-5p was negatively regulated by GAS5. The restoration of miR-135b-5p can remarkably reverse the impact of GAS5 on glioma cells. In addition, GAS5 increased the expression of APC in glioma cells by inhibiting miR-135b-5p. Conclusion GAS5 increased APC expression by restraining miR-135b-5p and partially blocked the progression of glioma, suggesting that it could be an advantageous therapeutic target for glioma intervention.
Collapse
Affiliation(s)
- Jidong Zhang
- Center for Neurological Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, People’s Republic of China
| | - Qiuxiang You
- Center for Neurological Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, People’s Republic of China
| | - Yutao Wang
- Center for Neurological Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, People’s Republic of China
| | - Jianwen Ji
- Center for Neurological Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, People’s Republic of China
| |
Collapse
|
8
|
Zabeti Touchaei A, Vahidi S, Samadani AA. Immune landscape in APC and TP53 related tumor microenvironment in colon adenocarcinoma: A bioinformatic analysis. Eur J Microbiol Immunol (Bp) 2024; 14:154-165. [PMID: 38470482 PMCID: PMC11097784 DOI: 10.1556/1886.2024.00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction APC and TP53 are the two most regularly mutated genes in colon adenocarcinoma (COAD), especially in progressive malignancies and antitumoral immune response. The current bioinformatics analysis investigates the APC and TP53 gene expression profile in colon adenocarcinoma as a prognostic characteristic for survival, particularly concentrating on the correlated immune microenvironment. Methods Clinical and genetic data of colon cancer and normal tissue samples were obtained from The Cancer Genome Atlas (TCGA)-COAD and Genotype-Tissue Expression (GTEx) online databases, respectively. The genetic differential expressions were analyzed in both groups via the one-way ANOVA test. Kaplan-Meier survival curves were applied to estimate the overall survival (OS). P < 0.05 was fixed as statistically significant. On Tumor Immune Estimation Resource and Gene Expression Profiling Interactive Analysis databases, the linkage between immune cell recruitment and APC and TP53 status was assessed through Spearman's correlation analysis. Results APC and TP53 were found mutated in 66.74% and 85.71% of the 454 and 7 TCGA-COAD patients in colon and rectosigmoid junction primary sites, respectively with a higher log2-transcriptome per million reads compared to the GTEx group (318 samples in sigmoid and 368 samples in transverse). Survival curves revealed a worse significant OS for the high-APC and TP53 profile colon. Spearman's analysis of immune cells demonstrated a strong positive correlation between the APC status and infiltration of T cell CD4+, T cell CD8+, NK cell, and macrophages and also a positive correlation between status and infiltration of T cell CD4+, T cell CD8+. Conclusions APC and TP53 gene mutations prevail in colon cancer and are extremely associated with poor prognosis and shortest survival. The infiltrating T cell CD4+, T cell CD8+, NK cell, and macrophages populate the colon microenvironment and regulate the mechanisms of tumor advancement, immune evasion, and sensitivity to standard chemotherapy. More comprehensive research is needed to demonstrate these results and turn them into new therapeutic outlooks.
Collapse
Affiliation(s)
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
9
|
Croft J, Grajeda B, Aguirre LA, Abou-Fadel JS, Ellis CC, Estevao I, Almeida IC, Zhang J. Circulating Blood Prognostic Biomarker Signatures for Hemorrhagic Cerebral Cavernous Malformations (CCMs). Int J Mol Sci 2024; 25:4740. [PMID: 38731959 PMCID: PMC11084792 DOI: 10.3390/ijms25094740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Cerebral cavernous malformations (CCMs) are a neurological disorder characterized by enlarged intracranial capillaries in the brain, increasing the susceptibility to hemorrhagic strokes, a major cause of death and disability worldwide. The limited treatment options for CCMs underscore the importance of prognostic biomarkers to predict the likelihood of hemorrhagic events, aiding in treatment decisions and identifying potential pharmacological targets. This study aimed to identify blood biomarkers capable of diagnosing and predicting the risk of hemorrhage in CCM1 patients, establishing an initial set of circulating biomarker signatures. By analyzing proteomic profiles from both human and mouse CCM models and conducting pathway enrichment analyses, we compared groups to identify potential blood biomarkers with statistical significance. Specific candidate biomarkers primarily associated with metabolism and blood clotting pathways were identified. These biomarkers show promise as prognostic indicators for CCM1 deficiency and the risk of hemorrhagic stroke, strongly correlating with the likelihood of hemorrhagic cerebral cavernous malformations (CCMs). This lays the groundwork for further investigation into blood biomarkers to assess the risk of hemorrhagic CCMs.
Collapse
Affiliation(s)
- Jacob Croft
- Department of Molecular and Translational Medicine, Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX 79905, USA (J.S.A.-F.)
| | - Brian Grajeda
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79902, USA; (B.G.); (I.E.)
| | - Luis A. Aguirre
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79902, USA; (B.G.); (I.E.)
| | - Johnathan S. Abou-Fadel
- Department of Molecular and Translational Medicine, Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX 79905, USA (J.S.A.-F.)
| | - Cameron C. Ellis
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79902, USA; (B.G.); (I.E.)
| | - Igor Estevao
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79902, USA; (B.G.); (I.E.)
| | - Igor C. Almeida
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79902, USA; (B.G.); (I.E.)
| | - Jun Zhang
- Department of Molecular and Translational Medicine, Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX 79905, USA (J.S.A.-F.)
| |
Collapse
|
10
|
Tang J, Lam GT, Brooks RD, Miles M, Useckaite Z, Johnson IR, Ung BSY, Martini C, Karageorgos L, Hickey SM, Selemidis S, Hopkins AM, Rowland A, Vather R, O'Leary JJ, Brooks DA, Caruso MC, Logan JM. Exploring the role of sporadic BRAF and KRAS mutations during colorectal cancer pathogenesis: A spotlight on the contribution of the endosome-lysosome system. Cancer Lett 2024; 585:216639. [PMID: 38290660 DOI: 10.1016/j.canlet.2024.216639] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 02/01/2024]
Abstract
The highly heterogenous nature of colorectal cancer can significantly hinder its early and accurate diagnosis, eventually contributing to high mortality rates. The adenoma-carcinoma sequence and serrated polyp-carcinoma sequence are the two most common sequences in sporadic colorectal cancer. Genetic alterations in adenomatous polyposis coli (APC), v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) and tumour protein 53 (TP53) genes are critical in adenoma-carcinoma sequence, whereas v-Raf murine sarcoma viral oncogene homolog B (BRAF) and MutL Homolog1 (MLH1) are driving oncogenes in the serrated polyp-carcinoma sequence. Sporadic mutations in these genes contribute differently to colorectal cancer pathogenesis by introducing distinct alterations in several signalling pathways that rely on the endosome-lysosome system. Unsurprisingly, the endosome-lysosome system plays a pivotal role in the hallmarks of cancer and contributes to specialised colon function. Thus, the endosome-lysosome system might be distinctively influenced by different mutations and these alterations may contribute to the heterogenous nature of sporadic colorectal cancer. This review highlights potential connections between major sporadic colorectal cancer mutations and the diverse pathogenic mechanisms driven by the endosome-lysosome system in colorectal carcinogenesis.
Collapse
Affiliation(s)
- Jingying Tang
- Clinical and Health Sciences, University of South Australia, North Terrace, Adelaide, South Australia, Australia
| | - Giang T Lam
- Clinical and Health Sciences, University of South Australia, North Terrace, Adelaide, South Australia, Australia
| | - Robert D Brooks
- Clinical and Health Sciences, University of South Australia, North Terrace, Adelaide, South Australia, Australia
| | - Mark Miles
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, Melbourne, Vic, Australia
| | - Zivile Useckaite
- College of Medicine and Public Health, Flinders University, Flinders Drive, Bedford Park, Adelaide, SA, Australia
| | - Ian Rd Johnson
- Clinical and Health Sciences, University of South Australia, North Terrace, Adelaide, South Australia, Australia
| | - Ben S-Y Ung
- Clinical and Health Sciences, University of South Australia, North Terrace, Adelaide, South Australia, Australia
| | - Carmela Martini
- Clinical and Health Sciences, University of South Australia, North Terrace, Adelaide, South Australia, Australia
| | - Litsa Karageorgos
- Clinical and Health Sciences, University of South Australia, North Terrace, Adelaide, South Australia, Australia
| | - Shane M Hickey
- Clinical and Health Sciences, University of South Australia, North Terrace, Adelaide, South Australia, Australia
| | - Stavros Selemidis
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, Melbourne, Vic, Australia
| | - Ashley M Hopkins
- College of Medicine and Public Health, Flinders University, Flinders Drive, Bedford Park, Adelaide, SA, Australia
| | - Andrew Rowland
- College of Medicine and Public Health, Flinders University, Flinders Drive, Bedford Park, Adelaide, SA, Australia
| | - Ryash Vather
- Colorectal Unit, Department of Surgery, Royal Adelaide Hospital, Adelaide, South Australia, Australia; Centre for Cancer Biology, University of South Australia, Adelaide, South Australia, Australia
| | - John J O'Leary
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland
| | - Douglas A Brooks
- Clinical and Health Sciences, University of South Australia, North Terrace, Adelaide, South Australia, Australia
| | - Maria C Caruso
- Clinical and Health Sciences, University of South Australia, North Terrace, Adelaide, South Australia, Australia
| | - Jessica M Logan
- Clinical and Health Sciences, University of South Australia, North Terrace, Adelaide, South Australia, Australia.
| |
Collapse
|
11
|
Kelson CO, Zaytseva YY. Altered lipid metabolism in APC-driven colorectal cancer: the potential for therapeutic intervention. Front Oncol 2024; 14:1343061. [PMID: 38590663 PMCID: PMC10999677 DOI: 10.3389/fonc.2024.1343061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/12/2024] [Indexed: 04/10/2024] Open
Abstract
Altered lipid metabolism is a well-recognized feature of solid cancers, including colorectal cancer. In colorectal cancer, upregulation of lipid metabolism contributes to initiation, progression, and metastasis; thus, aberrant lipid metabolism contributes to a poor patient outcome. The inactivating mutation of APC, a vital tumor suppressor in the Wnt signaling pathway, is a key event that occurs early in the majority of colorectal cancer cases. The potential crosstalk between lipid metabolism and APC-driven colorectal cancer is poorly understood. This review collectively highlights and summarizes the limited understanding between mutations in APC and the upregulation of Wnt/beta-catenin signaling and lipid metabolism. The interconnection between APC inactivation and aberrant lipid metabolism activates Wnt/beta-catenin signaling which causes transcriptome, epigenetic, and microbiome changes to promote colorectal cancer initiation and progression. Furthermore, the downstream effects of this collaborative effort between aberrant Wnt/beta-catenin signaling and lipid metabolism are enhanced stemness, cellular proliferation, prooncogenic signaling, and survival. Understanding the mechanistic link between APC inactivation and alterations in lipid metabolism may foster identification of new therapeutic targets to enable development of more efficacious strategies for prevention and/or treatment of colorectal cancer.
Collapse
Affiliation(s)
- Courtney O. Kelson
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
| | - Yekaterina Y. Zaytseva
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
12
|
Hsiao CY, Lu CY, Su HJ, Huang KW. Plasma Cell-Free Adenomatous Polyposis Coli Gene Promoter Methylation as a Prognostic Biomarker for Hepatocellular Carcinoma. Oncology 2024; 102:935-943. [PMID: 38527449 DOI: 10.1159/000538455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/12/2024] [Indexed: 03/27/2024]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is a leading cause of cancer death worldwide. Lack of biomarkers for follow-up after treatment is a clinical challenge. DNA methylation has been proposed to be a potential biomarker in HCC. However, there is still a lack of evidence of its clinical use. This study aimed to evaluate the value of using plasma Adenomatous Polyposis Coli promoter methylation level (APC-MET) as a potential biomarker in HCC treatment. METHOD A total of 96 patients with HCC at BCLC stage B who underwent local tumor ablation treatment were prospectively included in this study. APC-MET was examined in the plasma of each patient before and 1 month after treatment. The prediction value of APC-MET for survival outcome and disease status after treatment was analyzed and adjusted with alpha-fetoprotein and protein induced by vitamin K absence-II using Cox regression analysis. RESULTS Univariate Cox regression analysis showed preoperative APC-MET >0 (HR, 2.9, 95% CI: 1.05-8.05, p = 0.041) and postoperative APC-MET >0 (HR, 3.47, 95% CI: 1.16-10.4, p = 0.026) were both predictors of death, and preoperative APC-MET >0 was a predictor of disease progression after treatment (HR, 2.04, 95% CI: 1.21-3.44, p = 0.007). In multivariate models, preoperative APC-MET >0 was a significant predictor of disease progression after adjusting with the other two traditional biomarkers (HR, 1.82, 95% CI: 1.05-3.17, p = 0.034). CONCLUSIONS Hypermethylation of APC promoter appears to be a potential biomarker that could predict patient survival and disease progression outcomes in patients with intermediate-stage HCC after local ablation treatment.
Collapse
Affiliation(s)
- Chih-Yang Hsiao
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan,
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan,
- Department of Traumatology, National Taiwan University Hospital, Taipei, Taiwan,
| | | | | | - Kai-Wen Huang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
13
|
Hoch CC, Knoedler L, Knoedler S, Bashiri Dezfouli A, Schmidl B, Trill A, Douglas JE, Adappa ND, Stögbauer F, Wollenberg B. Integrated Molecular and Histological Insights for Targeted Therapies in Mesenchymal Sinonasal Tract Tumors. Curr Oncol Rep 2024; 26:272-291. [PMID: 38376625 PMCID: PMC10920452 DOI: 10.1007/s11912-024-01506-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2024] [Indexed: 02/21/2024]
Abstract
PURPOSE OF REVIEW This review aims to provide a comprehensive overview of mesenchymal sinonasal tract tumors (STTs), a distinct subset of STTs. Despite their rarity, mesenchymal STTs represent a unique clinical challenge, characterized by their rarity, often slow progression, and frequently subtle or overlooked symptoms. The complex anatomy of the sinonasal area, which includes critical structures such as the orbit, brain, and cranial nerves, further complicates surgical treatment options. This underscores an urgent need for more advanced and specialized therapeutic approaches. RECENT FINDINGS Advancements in molecular diagnostics, particularly in next-generation sequencing, have significantly enhanced our understanding of STTs. Consequently, the World Health Organization has updated its tumor classification to better reflect the distinct histological and molecular profiles of these tumors, as well as to categorize mesenchymal STTs with greater accuracy. The growing understanding of the molecular characteristics of mesenchymal STTs opens new possibilities for targeted therapeutic interventions, marking a significant shift in treatment paradigms. This review article concentrates on mesenchymal STTs, specifically addressing sinonasal tract angiofibroma, sinonasal glomangiopericytoma, biphenotypic sinonasal sarcoma, and skull base chordoma. These entities are marked by unique histopathological and molecular features, which challenge conventional treatment approaches and simultaneously open avenues for novel targeted therapies. Our discussion is geared towards delineating the molecular underpinnings of mesenchymal STTs, with the objective of enhancing therapeutic strategies and addressing the existing shortcomings in the management of these intricate tumors.
Collapse
Affiliation(s)
- Cosima C Hoch
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), Ismaningerstrasse 22, 81675, Munich, Germany
| | - Leonard Knoedler
- Department of Surgery, Division of Plastic Surgery, Yale School of Medicine, New Haven, CT, USA
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Samuel Knoedler
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum Munich, Munich, Germany
| | - Ali Bashiri Dezfouli
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), Ismaningerstrasse 22, 81675, Munich, Germany
- Central Institute for Translational Cancer Research, Technical University of Munich (TranslaTUM), Department of Radiation Oncology, Klinikum rechts der Isar, Munich, Germany
| | - Benedikt Schmidl
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), Ismaningerstrasse 22, 81675, Munich, Germany
| | - Anskar Trill
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), Ismaningerstrasse 22, 81675, Munich, Germany
- Central Institute for Translational Cancer Research, Technical University of Munich (TranslaTUM), Department of Radiation Oncology, Klinikum rechts der Isar, Munich, Germany
| | - Jennifer E Douglas
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Nithin D Adappa
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Fabian Stögbauer
- Institute of Pathology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Barbara Wollenberg
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), Ismaningerstrasse 22, 81675, Munich, Germany.
| |
Collapse
|
14
|
Yamasaki S, Shintani T, Ando T, Miyauchi M, Yanamoto S. Transformation of an odontogenic keratocyst into a solid variant of odontogenic keratocyst/keratoameloblastoma during long‑term follow‑up: A case report. Mol Med Rep 2024; 29:44. [PMID: 38275130 PMCID: PMC10828982 DOI: 10.3892/mmr.2024.13168] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/03/2024] [Indexed: 01/27/2024] Open
Abstract
Keratoameloblastoma (KA) and solid variant of odontogenic keratocyst (SOKC) are rare odontogenic lesions, and their relationship and differences are unclear. The present study described a case that started as an odontogenic keratocyst (OKC) and transformed to SOKC/KA upon recurrence. Briefly, a 26‑year‑old man presented with swelling in the right cheek and was referred to the Department of Oral and Maxillofacial surgery, Hiroshima University Hospital (Hiroshima, Japan). At the initial visit, unicystic bone permeation was observed extending from the right canine to the molar, maxillary sinus and nasal cavity. After the biopsy, the patient underwent excisional surgery and was diagnosed with OKC. Thereafter, the lesion recurred six times over a period of 13 years and showed different histopathological features from those of the primary lesion, all consisting of numerous cysts with keratinization, which were diagnosed as SOKC/KA. The Ki‑67 positivity rate was ~10%, which was higher than that of the primary lesion, but there was no atypia. Genetic analysis of the recurrent lesion revealed mutations in adenomatous polyposis coli and Kirsten rat sarcoma viral oncogene homolog. This case originated from OKC, and the morphological features of OKC and KA were mixed upon recurrence, supporting the commonality and association between the two. However, multiple mutations different from those of OKC and ameloblastoma were detected, suggesting an association of SOKC/KA with increased proliferative activity and a high recurrence rate.
Collapse
Affiliation(s)
- Sachiko Yamasaki
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Tomoaki Shintani
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima 734-8553, Japan
| | - Toshinori Ando
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima 734-8553, Japan
| | - Mutsumi Miyauchi
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Souichi Yanamoto
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| |
Collapse
|
15
|
Yakkala PA, Naaz F, Shafi S, Kamal A. PI3K and tankyrase inhibitors as therapeutic targets in colorectal cancer. Expert Opin Ther Targets 2024; 28:159-177. [PMID: 38497299 DOI: 10.1080/14728222.2024.2331015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
INTRODUCTION The pathways like Wingless-related integration (Wnt/β-catenin) and PI3K play an important role in colorectal cancer (CRC) development; however, their roles are distinct in the process of oncogenesis. Despite their differences, these pathways interact through feedback mechanisms and regulate the common effectors both in the upstream and the downstream processes in normal and pathological conditions. Their ability to reciprocally control each other is a primary resistance mechanism for the selective inhibitors in CRC. AREA COVERED This review highlights the Wnt/β-catenin and PI3K pathways that are interrelated in CRC, recent advances and some key perspectives in developing inhibitors that could target the tankyrase enzyme and PI3K, apart from a brief description of the potential of dual inhibitors of PI3K and Tankyrases (TNKS). EXPERT OPINION Recent research has focused on overcoming the challenges particularly relating to the resistance and efficacy of dual inhibitors targeting PI3K and tankyrase proteins. Despite these challenges, PI3K as well as tankyrases remain promising therapeutic targets for the treatment of solid tumors. The design of potent inhibitors is crucial to effectively block these protein signaling pathways. Moreover, it is essential to explore the potential of dual-target inhibition of other signaling pathways in conjunction with PI3K and tankyrase.
Collapse
Affiliation(s)
- Prasanna Anjaneyulu Yakkala
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Fatima Naaz
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Syed Shafi
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Ahmed Kamal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Medchal, India
- Environment, Forests, Science & Technology Department, Telangana State Council of Science & Technlogy, Hyderabad, India
| |
Collapse
|
16
|
Hakami ZH. Biomarker discovery and validation for gastrointestinal tumors: A comprehensive review of colorectal, gastric, and liver cancers. Pathol Res Pract 2024; 255:155216. [PMID: 38401376 DOI: 10.1016/j.prp.2024.155216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 02/26/2024]
Abstract
Gastrointestinal (GI) malignancies, encompassing gastric, hepatic, colonic, and rectal cancers, are prevalent forms of cancer globally and contribute substantially to cancer-related mortality. Although there have been improvements in methods for diagnosing and treating GI cancers, the chances of survival for these types of cancers are still extremely low. According to the World Cancer Research International Fund's most recent figures, stomach cancer was responsible for roughly one million deaths worldwide in 2020. This emphasizes the importance of developing more effective tools for detecting, diagnosing, and predicting the outcome of these cancers at an early stage. Biomarkers, quantitative indications of biological processes or disease states, have emerged as promising techniques for enhancing the diagnosis and prognosis of GI malignancies. Recently, there has been a considerable endeavor to discover and authenticate biomarkers for various GI cancers by the utilization of diverse methodologies, including genomics, proteomics, and metabolomics. This review provides a thorough examination of the current state of biomarker research in the field of gastrointestinal malignancies, with a specific emphasis on colorectal, stomach, and liver cancers. A thorough literature search was performed on prominent databases such as PubMed, Scopus, and Web of Science to find pertinent papers published until November, 2023 for the purpose of compiling this review. The diverse categories of biomarkers, encompassing genetic, epigenetic, and protein-based biomarkers, and their potential utility in the fields of diagnosis, prognosis, and treatment selection, are explored. Recent progress in identifying and confirming biomarkers, as well as the obstacles that persist in employing biomarkers in clinical settings are emphasized. The utilization of biomarkers in GI cancers has significant potential in enhancing patient outcomes. Ongoing research is expected to uncover more efficient biomarkers for the diagnosis and prognosis of these cancers.
Collapse
Affiliation(s)
- Zaki H Hakami
- Department of Medical Laboratory Technology, Faculty of Applied Medical Science, Jazan University, Jazan 45142, Saudi Arabia.
| |
Collapse
|
17
|
Bowman J, Lynch VJ. Rapid evolution of genes with anti-cancer functions during the origins of large bodies and cancer resistance in elephants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.582135. [PMID: 38463968 PMCID: PMC10925141 DOI: 10.1101/2024.02.27.582135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Elephants have emerged as a model system to study the evolution of body size and cancer resistance because, despite their immense size, they have a very low prevalence of cancer. Previous studies have found that duplication of tumor suppressors at least partly contributes to the evolution of anti-cancer cellular phenotypes in elephants. Still, many other mechanisms must have contributed to their augmented cancer resistance. Here, we use a suite of codon-based maximum-likelihood methods and a dataset of 13,310 protein-coding gene alignments from 261 Eutherian mammals to identify positively selected and rapidly evolving elephant genes. We found 496 genes (3.73% of alignments tested) with statistically significant evidence for positive selection and 660 genes (4.96% of alignments tested) that likely evolved rapidly in elephants. Positively selected and rapidly evolving genes are statistically enriched in gene ontology terms and biological pathways related to regulated cell death mechanisms, DNA damage repair, cell cycle regulation, epidermal growth factor receptor (EGFR) signaling, and immune functions, particularly neutrophil granules and degranulation. All of these biological factors are plausibly related to the evolution of cancer resistance. Thus, these positively selected and rapidly evolving genes are promising candidates for genes contributing to elephant-specific traits, including the evolution of molecular and cellular characteristics that enhance cancer resistance.
Collapse
Affiliation(s)
- Jacob Bowman
- Department of Biological Sciences, University at Buffalo, SUNY, 551 Cooke Hall, Buffalo, NY, 14260, USA
| | - Vincent J. Lynch
- Department of Biological Sciences, University at Buffalo, SUNY, 551 Cooke Hall, Buffalo, NY, 14260, USA
| |
Collapse
|
18
|
Al-Tameemi HK, Al-Husseini RM, Al-Mudhafer RH, Abid HA, Al-Gazali HR, Abdullah DA, Albaldawy MT. Molecular and immunohistochemical study of APC exon 16 and its possible role in colorectal carcinoma development. Heliyon 2024; 10:e23443. [PMID: 38356597 PMCID: PMC10865248 DOI: 10.1016/j.heliyon.2023.e23443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 02/16/2024] Open
Abstract
Background Colorectal cancer ranks second as a cause of cancer deaths. Mutations in the adenomatous polyposis coli (APC) gene, especially in exon 16, could contribute to colorectal carcinoma development. This study explored the correlations between APC gene exon 16 variations/expression and colorectal carcinoma progression. Methods In a case-control study, blood samples from 150 colorectal carcinoma patients and 50 healthy volunteers were analyzed by PCR and sequencing for APC exon 16 variations. The APC protein expression on tissue samples was evaluated by immunohistochemistry and statistical analyses were used to examine clinicopathological correlations. Results The sequencing analysis revealed a mutation in exon 16 of the APC gene (rs459552) in 36 % of colorectal cancer cases while absent in all non-cancer controls. Subgroup analysis by tumor grade showed higher prevalence of mutant allele in Grade II and Grade III cases, with frequencies reaching 60.0 % and 69.2 %, respectively, compared to a substantially lower prevalence of 29.4 % in Grade I patients. Immunohistochemistry showed no significant correlation between this mutation and APC expression. APC positivity proportions were 25.5 % in Grade I tumors (n = 26/102) versus 17.1 % in Grade II (n = 6/35) and 46.2 % in Grade III (n = 6/13), showing a non-significant trend of reduced positivity in higher grade tumors (p>0.05). Conclusions The frequency of APC exon 16 mutation (rs459552) rose significantly with increasing tumor grade. Similarly, although not statistically significant, the percentage of APC positive staining increased with poorer tumor differentiation, rather than declining. Therefore, the APC exon 16 mutation and expression analysis provides insights into colorectal cancer progression, with the rs459552 mutation correlating with grade and may promoting aggression.
Collapse
Affiliation(s)
- Hamid K. Al-Tameemi
- Department of Medical Laboratory Techniques, Bilad Alrafidain University Collage, Baqubah, Iraq
| | | | | | - Hussein A. Abid
- Department of Chemistry and Biochemistry, College of Medicine, Al-Nahrain University, Baghdad, Iraq
- Department of Laboratory Diagnostics, Faculty of Health Sciences, University of Pécs, Pécs, Hungary
| | | | - Dina A.A. Abdullah
- Department of Science, College of Basic Education, University of Diyala, Baqubah, Iraq
| | - Mustafa T. Albaldawy
- Department of Medical Laboratory Technology, Middle Technical University, Balad Technical Institute, Balad, Iraq
| |
Collapse
|
19
|
Li J, Li S, Shu M, Hu W. Unravelling the heterogeneity of oral squamous cell carcinoma by integrative analysis of single-cell and bulk transcriptome data. J Cell Mol Med 2024; 28:e18108. [PMID: 38279519 PMCID: PMC10844683 DOI: 10.1111/jcmm.18108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 01/28/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a prevalent malignancy of the head and neck with rising global incidence. Despite advances in treatment modalities, OSCC prognosis remains diverse due to the complex molecular and cellular heterogeneity within tumours, as well as the heterogeneity in tumour microenvironment (TME). In this study, we utilized single-cell RNA sequencing (scRNA-seq) analysis to explore distinct subpopulations of tumour cells in OSCC tissues and their interaction with components in TME. We identified four major tumour cell subpopulations (C0, C1, C2 and C3) with unique molecular characteristics and functional features. Pathway enrichment analysis revealed that C0 primarily expressed genes involved in extracellular matrix interactions and C1 showed higher proliferation levels, suggesting that the two cell subpopulations exhibited tumour aggressiveness. Conversely, C2 and C3 displayed features associated with keratinization and cornified envelope formation. Accordingly, C0 and C1 subpopulations were associated with shorter overall and disease-free survival times, while C2 and C3 were weakly correlated with longer survival. Genomic analysis showed that C1 demonstrated a positive correlation with tumour mutation burden. Furthermore, C0 exhibited resistant to cisplatin treatment, while C1 showed more sensitive to cisplatin treatment, indicating that C0 might exhibit more aggressive compared to C1. Additionally, C0 had a higher level of communication with fibroblasts and endothelial cells in TME via integrin-MAPK signalling, suggesting that the function of C0 was maintained by that pathway. In summary, this study provided critical insights into the molecular and cellular heterogeneity of OSCC, with potential implications for prognosis prediction and personalized therapeutic approaches.
Collapse
Affiliation(s)
- Jia Li
- Department of ProsthodonticsShanghai Engineering Research Center of Tooth Restoration and RegenerationStomatological Hospital and Dental School of Tongji UniversityShanghaiChina
| | - Shengjiao Li
- Department of Oral and Maxillofacial SurgeryShanghai Engineering Research Center of Tooth Restoration and RegenerationStomatological Hospital and Dental School of Tongji UniversityShanghaiChina
| | - Mingyang Shu
- Department of StomatologyHuai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical UniversityHuai'anChina
| | - Weiwei Hu
- Department of StomatologyHuai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical UniversityHuai'anChina
| |
Collapse
|
20
|
Economides MP, Nakazawa M, Lee JW, Li X, Hollifield L, Chambers R, Sarfaty M, Goldberg JD, Antonarakis ES, Wise DR. Case Series of Men with the Germline APC I1307K variant and Treatment-Emergent Neuroendocrine Prostate Cancer. Clin Genitourin Cancer 2024; 22:e31-e37.e1. [PMID: 37482523 DOI: 10.1016/j.clgc.2023.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/25/2023]
Abstract
INTRODUCTION Somatic mutations in the Wnt signaling gene Adenomatous Polyposis Coli (APC) promote metastatic prostate cancer (PCa) progression. Less is known regarding the impact of germline APC mutations on PCa outcomes. We sought to investigate the prevalence of aggressive variant PCa (AVPC) and treatment-emergent neuroendocrine PCa (t-NEPC) in patients with the germline APC I1307K variant, an alteration found in 7% of Ashkenazi Jewish men. MATERIALS AND METHODS We report a retrospective cohort study comparing patients with PCa and either APC I1307K germline mutation, APC somatic mutations, or unselected patients. Proportions of patients with AVPC among all the cases were estimated along with 95% Clopper-Pearson exact confidence intervals (CI). Odds ratios with 95% CI were provided for the prevalence of t-NEPC and AVPC in patients with germline APC I1307K compared to patients with frameshift alterations in APC. RESULTS From 2016-2022, 18 patients with PCa at 3 institutions with the germline APC (I1307K) mutation were identified. Clinically-defined AVPC was found in 8 of the 15 cases with metastatic disease (53%; 95% CI: 26%-79%). Combined somatic alterations in two or more of RB1, TP53 or PTEN (molecularly-defined AVPC) were found in 5/18 cases (28%; 95% CI: 10%-54%). When compared to 20 patients with APC somatic frameshift mutations, patients with the germline APC I1307K variant had a significantly increased risk of AVPC (OR 7.2; 95% CI 1.27, 40.68). CONCLUSION PCa that develops in the presence of the germline APC I1307K mutation appear to be enriched for clinically-defined and molecularly-defined AVPC and in particular, for t-NEPC.
Collapse
Affiliation(s)
- Minas P Economides
- Department of Medicine, Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY
| | - Mari Nakazawa
- Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Jonathan W Lee
- Department of Medicine, Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY
| | - Xiaochun Li
- Division of Biostatistics, Department of Population Health, NYU Grossman School of Medicine and Biostatistics Shared Resource, NYU Perlmutter Cancer Center, New York, NY
| | - Lucas Hollifield
- Department of Genetics, Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY
| | - Rachelle Chambers
- Department of Genetics, Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY
| | - Michal Sarfaty
- Sheba Medical Center, Institute of Oncology, Israel Sackler Faculty of Medicine, Tel-Aviv, Israel
| | - Judith D Goldberg
- Division of Biostatistics, Department of Population Health, NYU Grossman School of Medicine and Biostatistics Shared Resource, NYU Perlmutter Cancer Center, New York, NY
| | | | - David R Wise
- Department of Medicine, Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY.
| |
Collapse
|
21
|
Bird RP. Vitamin D and cancer. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 109:92-159. [PMID: 38777419 DOI: 10.1016/bs.afnr.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The role of vitamin D in the prevention of chronic diseases including cancer, has received a great deal of attention during the past few decades. The term "Cancer" represents multiple disease states with varying biological complexities. The strongest link between vitamin D and cancer is provided by ecological and studies like observational, in preclinical models. It is apparent that vitamin D exerts diverse biological responses in a tissue specific manner. Moreover, several human factors could affect bioactivity of vitamin D. The mechanism(s) underlying vitamin D initiated anti-carcinogenic effects are diverse and includes changes at the muti-system levels. The oncogenic environment could easily corrupt the traditional role of vitamin D or could ensure resistance to vitamin D mediated responses. Several researchers have identified gaps in our knowledge pertaining to the role of vitamin D in cancer. Further areas are identified to solidify the role of vitamin D in cancer control strategies.
Collapse
Affiliation(s)
- Ranjana P Bird
- School of Health Sciences, University of Northern British Columbia, Prince George, BC, Canada.
| |
Collapse
|
22
|
Kazandjian S, Rousselle E, Dankner M, Cescon DW, Spreafico A, Ma K, Kavan P, Batist G, Rose AAN. The Clinical, Genomic, and Transcriptomic Landscape of BRAF Mutant Cancers. Cancers (Basel) 2024; 16:445. [PMID: 38275886 PMCID: PMC10814895 DOI: 10.3390/cancers16020445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/08/2024] [Accepted: 01/13/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND BRAF mutations are classified into four molecularly distinct groups, and Class 1 (V600) mutant tumors are treated with targeted therapies. Effective treatment has not been established for Class 2/3 or BRAF Fusions. We investigated whether BRAF mutation class differed according to clinical, genomic, and transcriptomic variables in cancer patients. METHODS Using the AACR GENIE (v.12) cancer database, the distribution of BRAF mutation class in adult cancer patients was analyzed according to sex, age, primary race, and tumor type. Genomic alteration data and transcriptomic analysis was performed using The Cancer Genome Atlas. RESULTS BRAF mutations were identified in 9515 (6.2%) samples among 153,834, with melanoma (31%), CRC (20.7%), and NSCLC (13.9%) being the most frequent cancer types. Class 1 harbored co-mutations outside of the MAPK pathway (TERT, RFN43) vs. Class 2/3 mutations (RAS, NF1). Across all tumor types, Class 2/3 were enriched for alterations in genes involved in UV response and WNT/β-catenin. Pathway analysis revealed enrichment of WNT/β-catenin and Hedgehog signaling in non-V600 mutated CRC. Males had a higher proportion of Class 3 mutations vs. females (17.4% vs. 12.3% q = 0.003). Non-V600 mutations were generally more common in older patients (aged 60+) vs. younger (38% vs. 15% p < 0.0001), except in CRC (15% vs. 30% q = 0.0001). Black race was associated with non-V600 BRAF alterations (OR: 1.58; p < 0.0001). CONCLUSIONS Class 2/3 BRAFs are more present in Black male patients with co-mutations outside of the MAPK pathway, likely requiring additional oncogenic input for tumorigenesis. Improving access to NGS and trial enrollment will help the development of targeted therapies for non-V600 BRAF mutations.
Collapse
Affiliation(s)
- Suzanne Kazandjian
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H4A 3T2, Canada; (S.K.); (K.M.); (P.K.); (G.B.)
- Segal Cancer Centre, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Emmanuelle Rousselle
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (E.R.); (M.D.)
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Matthew Dankner
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (E.R.); (M.D.)
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 2M1, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - David W. Cescon
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Center, Toronto, ON M5G 2M9, Canada; (D.W.C.); (A.S.)
| | - Anna Spreafico
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Center, Toronto, ON M5G 2M9, Canada; (D.W.C.); (A.S.)
| | - Kim Ma
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H4A 3T2, Canada; (S.K.); (K.M.); (P.K.); (G.B.)
- Segal Cancer Centre, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Petr Kavan
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H4A 3T2, Canada; (S.K.); (K.M.); (P.K.); (G.B.)
- Segal Cancer Centre, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Gerald Batist
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H4A 3T2, Canada; (S.K.); (K.M.); (P.K.); (G.B.)
- Segal Cancer Centre, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - April A. N. Rose
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H4A 3T2, Canada; (S.K.); (K.M.); (P.K.); (G.B.)
- Segal Cancer Centre, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (E.R.); (M.D.)
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 2M1, Canada
| |
Collapse
|
23
|
Iqbal MJ, Kabeer A, Abbas Z, Siddiqui HA, Calina D, Sharifi-Rad J, Cho WC. Interplay of oxidative stress, cellular communication and signaling pathways in cancer. Cell Commun Signal 2024; 22:7. [PMID: 38167159 PMCID: PMC10763046 DOI: 10.1186/s12964-023-01398-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
Cancer remains a significant global public health concern, with increasing incidence and mortality rates worldwide. Oxidative stress, characterized by the production of reactive oxygen species (ROS) within cells, plays a critical role in the development of cancer by affecting genomic stability and signaling pathways within the cellular microenvironment. Elevated levels of ROS disrupt cellular homeostasis and contribute to the loss of normal cellular functions, which are associated with the initiation and progression of various types of cancer. In this review, we have focused on elucidating the downstream signaling pathways that are influenced by oxidative stress and contribute to carcinogenesis. These pathways include p53, Keap1-NRF2, RB1, p21, APC, tumor suppressor genes, and cell type transitions. Dysregulation of these pathways can lead to uncontrolled cell growth, impaired DNA repair mechanisms, and evasion of cell death, all of which are hallmark features of cancer development. Therapeutic strategies aimed at targeting oxidative stress have emerged as a critical area of investigation for molecular biologists. The objective is to limit the response time of various types of cancer, including liver, breast, prostate, ovarian, and lung cancers. By modulating the redox balance and restoring cellular homeostasis, it may be possible to mitigate the damaging effects of oxidative stress and enhance the efficacy of cancer treatments. The development of targeted therapies and interventions that specifically address the impact of oxidative stress on cancer initiation and progression holds great promise in improving patient outcomes. These approaches may include antioxidant-based treatments, redox-modulating agents, and interventions that restore normal cellular function and signaling pathways affected by oxidative stress. In summary, understanding the role of oxidative stress in carcinogenesis and targeting this process through therapeutic interventions are of utmost importance in combating various types of cancer. Further research is needed to unravel the complex mechanisms underlying oxidative stress-related pathways and to develop effective strategies that can be translated into clinical applications for the management and treatment of cancer. Video Abstract.
Collapse
Affiliation(s)
| | - Ayesha Kabeer
- Department of Biotechnology, University of Sialkot, Sialkot, Punjab, Pakistan
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Zaighum Abbas
- Department of Biotechnology, University of Sialkot, Sialkot, Punjab, Pakistan
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | | | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong.
| |
Collapse
|
24
|
Hussein ZH, Hassawi BA, Ibraheem Q. Aberrant β-Catenin Expression and Its Association With Epithelial-Mesenchymal Transition and Clinical Outcomes of Colorectal Cancer. Cureus 2024; 16:e53104. [PMID: 38414697 PMCID: PMC10897760 DOI: 10.7759/cureus.53104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2024] [Indexed: 02/29/2024] Open
Abstract
Background Colorectal cancer (CRC) is a significant global health challenge with high mortality rates. Dysregulation of β-catenin, epithelial-mesenchymal transition (EMT), and adenomatous polyposis coli (APC) are crucial in CRC development. Mutations in the APC gene lead to aberrant β-catenin expression, a key player in CRC pathogenesis. β-catenin not only influences canonical Wnt signaling but also regulates EMT. This study investigated the correlation between APC mutations, β-catenin dysregulation, and EMT induction in CRC. Methodology Tissue samples from 96 CRC patients and 40 para-cancerous normal tissues were collected and subjected to immunohistochemistry to assess β-catenin, E-cadherin, ZEB1, Snail, and vimentin expression. Genomic DNA was extracted and analyzed for APC mutations. Next-generation sequencing was employed for data analysis. Results Aberrant β-catenin expression was found in 82.3% of CRC cases and correlated with advanced clinicopathological factors. Aberrant β-catenin expression was associated with age (p=0.01), tumor invasion depth (p=0.03), nodal/distant metastasis (p=0.001 and 0.004), and vascular invasion (p=0.001). Aberrant β-catenin was correlated with EMT status. A positive correlation was observed between aberrant β-catenin expression and ZEB1 (p=0.001), Snail (p=0.001), vimentin (p=0.001), and loss of membranous E-cadherin (p=0001). Coexistence of aberrant β-catenin and EMT markers was associated with advanced CRC progression. Cancerous tissues displayed higher aberrant β-catenin and EMT markers expression than para-cancerous tissues. APC mutations were present in 59.3% of cases, with 91.2% of mutated APC cases showing aberrant β-catenin expression. The coexistence of APC mutation and aberrant β-catenin expression was correlated with the clinical outcomes of CRC patients. Mutated APC cases exhibited significantly increased EMT marker expression. Conclusion This study underscores the importance of aberrant β-catenin expression in CRC progression, linked to APC mutations and EMT induction. Understanding these relationships could aid in developing targeted therapies for CRC.
Collapse
Affiliation(s)
- Zihel H Hussein
- Department of Anatomy, Biology, and Histology, College of Medicine, University of Duhok, Duhok, IRQ
| | - Bashar Al Hassawi
- Department of Anatomy, Biology, and Histology, College of Medicine, University of Duhok, Duhok, IRQ
| | - Qais Ibraheem
- Department of Anatomy, Biology, and Histology, College of Medicine, University of Duhok, Duhok, IRQ
| |
Collapse
|
25
|
Harvey BJ, Harvey HM. Sex Differences in Colon Cancer: Genomic and Nongenomic Signalling of Oestrogen. Genes (Basel) 2023; 14:2225. [PMID: 38137047 PMCID: PMC10742859 DOI: 10.3390/genes14122225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Colon cancer (CRC) is a prevalent malignancy that exhibits distinct differences in incidence, prognosis, and treatment responses between males and females. These disparities have long been attributed to hormonal differences, particularly the influence of oestrogen signalling. This review aims to provide a comprehensive analysis of recent advances in our understanding of the molecular mechanisms underlying sex differences in colon cancer and the protective role of membrane and nuclear oestrogen signalling in CRC development, progression, and therapeutic interventions. We discuss the epidemiological and molecular evidence supporting sex differences in colon cancer, followed by an exploration of the impact of oestrogen in CRC through various genomic and nongenomic signalling pathways involving membrane and nuclear oestrogen receptors. Furthermore, we examine the interplay between oestrogen receptors and other signalling pathways, in particular the Wnt/β-catenin proliferative pathway and hypoxia in shaping biological sex differences and oestrogen protective actions in colon cancer. Lastly, we highlight the potential therapeutic implications of targeting oestrogen signalling in the management of colon cancer and propose future research directions to address the current gaps in our understanding of this complex phenomenon.
Collapse
Affiliation(s)
- Brian J. Harvey
- Faculty of Medicine, Royal College of Surgeons in Ireland, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Harry M. Harvey
- Princess Margaret Cancer Centre, Toronto, ON M5G 1Z5, Canada;
| |
Collapse
|
26
|
Rao Y, Ahmed N, Pritchard J, O'Brien EP. Incorporating mutational heterogeneity to identify genes that are enriched for synonymous mutations in cancer. BMC Bioinformatics 2023; 24:462. [PMID: 38062391 PMCID: PMC10704839 DOI: 10.1186/s12859-023-05521-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 10/05/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Synonymous mutations, which change the DNA sequence but not the encoded protein sequence, can affect protein structure and function, mRNA maturation, and mRNA half-lives. The possibility that synonymous mutations might be enriched in cancer has been explored in several recent studies. However, none of these studies control for all three types of mutational heterogeneity (patient, histology, and gene) that are known to affect the accurate identification of non-synonymous cancer-associated genes. Our goal is to adopt the current standard for non-synonymous mutations in an investigation of synonymous mutations. RESULTS Here, we create an algorithm, MutSigCVsyn, an adaptation of MutSigCV, to identify cancer-associated genes that are enriched for synonymous mutations based on a non-coding background model that takes into account the mutational heterogeneity across these levels. Using MutSigCVsyn, we first analyzed 2572 cancer whole-genome samples from the Pan-cancer Analysis of Whole Genomes (PCAWG) to identify non-synonymous cancer drivers as a quality control. Indicative of the algorithm accuracy we find that 58.6% of these candidate genes were also found in Cancer Census Gene (CGC) list, and 66.2% were found within the PCAWG cancer driver list. We then applied it to identify 30 putative cancer-associated genes that are enriched for synonymous mutations within the same samples. One of the promising gene candidates is the B cell lymphoma 2 (BCL-2) gene. BCL-2 regulates apoptosis by antagonizing the action of proapoptotic BCL-2 family member proteins. The synonymous mutations in BCL2 are enriched in its anti-apoptotic domain and likely play a role in cancer cell proliferation. CONCLUSION Our study introduces MutSigCVsyn, an algorithm that accounts for mutational heterogeneity at patient, histology, and gene levels, to identify cancer-associated genes that are enriched for synonymous mutations using whole genome sequencing data. We identified 30 putative candidate genes that will benefit from future experimental studies on the role of synonymous mutations in cancer biology.
Collapse
Affiliation(s)
- Yiyun Rao
- Huck Institute of the Life Sciences, Pennsylvania State University, University Park, State College, PA, 16802, USA
| | - Nabeel Ahmed
- Huck Institute of the Life Sciences, Pennsylvania State University, University Park, State College, PA, 16802, USA
- Moderna, Inc., Cambridge, USA
| | - Justin Pritchard
- Department of Biomedical Engineering, Pennsylvania State University, University Park, State College, PA, 16802, USA.
| | - Edward P O'Brien
- Department of Chemistry, Pennsylvania State University, University Park, State College, PA, 16802, USA.
- Institute for Computational and Data Sciences, Pennsylvania State University, University Park, State College, PA, 16802, USA.
| |
Collapse
|
27
|
Sagathia V, Patel C, Beladiya J, Patel S, Sheth D, Shah G. Tankyrase: a promising therapeutic target with pleiotropic action. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3363-3374. [PMID: 37338576 DOI: 10.1007/s00210-023-02576-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023]
Abstract
Tankyrase 1 (TNKS1) and tankyrase 2 (TNKS2) enzymes belong to the poly (ADP-ribose) polymerase (PARP) family participates in process of poly-ADP-ribosylation of different target proteins which leads to ubiquitin-mediated proteasomal degradation. Tankyrases are also involved in the pathophysiology of many diseases, especially cancer. Their functions include cell cycle homeostasis (primarily in mitosis), telomere maintenance, Wnt signaling pathway regulation, and insulin signaling (particularly GLUT4 translocation). Studies have implicated that genetic changes, mutations in the tankyrase coding sequence, or up regulation and down regulation of tankyrase are reflected in the numerous disease conditions. Investigations are pursued to develop putative molecules that target tankyrase in various diseases such as cancer, obesity, osteoarthritis, fibrosis, cherubism, and diabetes, thereby providing a new therapeutic treatment option. In the present review, we described the structure and function of tankyrase along with its role in different disease conditions. Furthermore, we also presented cumulative experimental evidences of different drugs acting on tankyrase.
Collapse
Affiliation(s)
- Vrunda Sagathia
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, 380009, Gujarat, India
| | - Chirag Patel
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, 380009, Gujarat, India.
| | - Jayesh Beladiya
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, 380009, Gujarat, India
| | - Sandip Patel
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, 380009, Gujarat, India
| | - Devang Sheth
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, 380009, Gujarat, India
| | - Gaurang Shah
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, 380009, Gujarat, India
| |
Collapse
|
28
|
Tobin MP, Pfeifer CR, Zhu PK, Hayes BH, Wang M, Vashisth M, Xia Y, Phan SH, Belt SA, Irianto J, Discher DE. Differences in cell shape, motility, and growth reflect chromosomal number variations that can be visualized with live-cell ChReporters. Mol Biol Cell 2023; 34:br19. [PMID: 37903225 PMCID: PMC10848937 DOI: 10.1091/mbc.e23-06-0207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 11/01/2023] Open
Abstract
Chromosome numbers often change dynamically in tumors and cultured cells, which complicates therapy as well as understanding genotype-mechanotype relationships. Here we use a live-cell "ChReporter" method to identify cells with a single chromosomal loss in efforts to better understand differences in cell shape, motility, and growth. We focus on a standard cancer line and first show clonal populations that retain the ChReporter exhibit large differences in cell and nuclear morphology as well as motility. Phenotype metrics follow simple rules, including migratory persistence scaling with speed, and cytoskeletal differences are evident from drug responses, imaging, and single-cell RNA sequencing. However, mechanotype-genotype relationships between fluorescent ChReporter-positive clones proved complex and motivated comparisons of clones that differ only in loss or retention of a Chromosome-5 ChReporter. When lost, fluorescence-null cells show low expression of Chromosome-5 genes, including a key tumor suppressor APC that regulates microtubules and proliferation. Colonies are compact, nuclei are rounded, and cells proliferate more, with drug results implicating APC, and patient survival data indicating an association in multiple tumor-types. Visual identification of genotype with ChReporters can thus help clarify mechanotype and mechano-evolution.
Collapse
Affiliation(s)
- Michael P. Tobin
- Mol. Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104
| | | | | | - Brandon H. Hayes
- Mol. Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104
| | - Mai Wang
- Mol. Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104
| | - Manasvita Vashisth
- Mol. Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104
| | - Yuntao Xia
- Mol. Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104
| | - Steven H. Phan
- Mol. Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104
| | - Susanna A. Belt
- Mol. Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104
| | - Jerome Irianto
- Mol. Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104
| | - Dennis E. Discher
- Mol. Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
29
|
Ramazi S, Daddzadi M, Sahafnejad Z, Allahverdi A. Epigenetic regulation in lung cancer. MedComm (Beijing) 2023; 4:e401. [PMID: 37901797 PMCID: PMC10600507 DOI: 10.1002/mco2.401] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 10/31/2023] Open
Abstract
Lung cancer is indeed a major cause of cancer-related deaths worldwide. The development of tumors involves a complex interplay of genetic, epigenetic, and environmental factors. Epigenetic mechanisms, including DNA methylation (DNAm), histone modifications, and microRNA expression, play a crucial role in this process. Changes in DNAm patterns can lead to the silencing of important genes involved in cellular functions, contributing to the development and progression of lung cancer. MicroRNAs and exosomes have also emerged as reliable biomarkers for lung cancer. They can provide valuable information about early diagnosis and treatment assessment. In particular, abnormal hypermethylation of gene promoters and its effects on tumorigenesis, as well as its roles in the Wnt signaling pathway, have been extensively studied. Epigenetic drugs have shown promise in the treatment of lung cancer. These drugs target the aberrant epigenetic modifications that are involved in the development and progression of the disease. Several factors have been identified as drug targets in non-small cell lung cancer. Recently, combination therapy has been discussed as a successful strategy for overcoming drug resistance. Overall, understanding the role of epigenetic mechanisms and their targeting through drugs is an important area of research in lung cancer treatment.
Collapse
Affiliation(s)
- Shahin Ramazi
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Meadeh Daddzadi
- Department of BiotechnologyFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Zahra Sahafnejad
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Abdollah Allahverdi
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| |
Collapse
|
30
|
Weston WA, Barr AR. A cell cycle centric view of tumour dormancy. Br J Cancer 2023; 129:1535-1545. [PMID: 37608096 PMCID: PMC10645753 DOI: 10.1038/s41416-023-02401-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/24/2023] Open
Abstract
Tumour dormancy and recurrent metastatic cancer remain the greatest clinical challenge for cancer patients. Dormant tumour cells can evade treatment and detection, while retaining proliferative potential, often for years, before relapsing to tumour outgrowth. Cellular quiescence is one mechanism that promotes and maintains tumour dormancy due to its central role in reducing proliferation, elevating cyto-protective mechanisms, and retaining proliferative potential. Quiescence/proliferation decisions are dictated by intrinsic and extrinsic signals, which regulate the activity of cyclin-dependent kinases (CDKs) to modulate cell cycle gene expression. By clarifying the pathways regulating CDK activity and the signals which activate them, we can better understand how cancer cells enter, maintain, and escape from quiescence throughout the progression of dormancy and metastatic disease. Here we review how CDK activity is regulated to modulate cellular quiescence in the context of tumour dormancy and highlight the therapeutic challenges and opportunities it presents.
Collapse
Affiliation(s)
- William A Weston
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Alexis R Barr
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK.
- Institute of Clinical Sciences, Imperial College London, Du Cane Rd, London, W12 0NN, UK.
| |
Collapse
|
31
|
Postwala H, Shah Y, Parekh PS, Chorawala MR. Unveiling the genetic and epigenetic landscape of colorectal cancer: new insights into pathogenic pathways. Med Oncol 2023; 40:334. [PMID: 37855910 DOI: 10.1007/s12032-023-02201-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/19/2023] [Indexed: 10/20/2023]
Abstract
Colorectal cancer (CRC) is a complex disease characterized by genetic and epigenetic alterations, playing a crucial role in its development and progression. This review aims to provide insights into the emerging landscape of these alterations in CRC pathogenesis to develop effective diagnostic tools and targeted therapies. Genetic alterations in signaling pathways such as Wnt/β-catenin, and PI3K/Akt/mTOR are pivotal in CRC development. Genetic profiling has identified distinct molecular subtypes, enabling personalized treatment strategies. Epigenetic modifications, including DNA methylation and histone modifications, also contribute to CRC pathogenesis by influencing critical cellular processes through gene silencing or activation. Non-coding RNAs have emerged as essential players in epigenetic regulation and CRC progression. Recent research highlights the interplay between genetic and epigenetic alterations in CRC. Genetic mutations can affect epigenetic modifications, leading to dysregulated gene expression and signaling cascades. Conversely, epigenetic changes can modulate genetic expression, amplifying or dampening the effects of genetic alterations. Advancements in understanding pathogenic pathways have potential clinical applications. Identifying genetic and epigenetic markers as diagnostic and prognostic biomarkers promises more accurate risk assessment and early detection. Challenges remain, including validating biomarkers and developing robust therapeutic strategies through extensive research and clinical trials. The dynamic nature of genetic and epigenetic alterations necessitates a comprehensive understanding of their temporal and spatial patterns during CRC progression. In conclusion, the genetic and epigenetic landscape of CRC is increasingly being unraveled, providing valuable insights into its pathogenesis. Integrating genetic and epigenetic knowledge holds great potential for improving diagnostics, prognostics, and personalized therapies in CRC. Continued research efforts are vital to translate these findings into clinical practice, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Humzah Postwala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Yesha Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Priyajeet S Parekh
- AV Pharma LLC, 1545 University Blvd N Ste A, Jacksonville, Florida, 32211, USA
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, 380009, Gujarat, India.
| |
Collapse
|
32
|
Peng H, Ying J, Zang J, Lu H, Zhao X, Yang P, Wang X, Li J, Gong Z, Zhang D, Wang Z. Specific Mutations in APC, with Prognostic Implications in Metastatic Colorectal Cancer. Cancer Res Treat 2023; 55:1270-1280. [PMID: 37114476 PMCID: PMC10582542 DOI: 10.4143/crt.2023.415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
PURPOSE Loss-of-function mutations in the adenomatous polyposis coli (APC) gene are common in metastatic colorectal cancer (mCRC). However, the characteristic of APC specific mutations in mCRC is poorly understood. Here, we explored the clinical and molecular characteristics of N-terminal and C-terminal side APC mutations in Chinese patients with mCRC. MATERIALS AND METHODS Hybrid capture-based next-generation sequencing was performed on tumor tissues from 275 mCRC pati-ents to detect mutations in 639 tumor-associated genes. The prognostic value and gene-pathway difference between APC specific mutations in mCRC patients were analyzed. RESULTS APC mutations were highly clustered, accounting for 73% of all mCRC patients, and most of them were truncating mutations. The tumor mutation burden of the N-terminal side APC mutations group (n=76) was significantly lower than that of the C-terminal side group (n=123) (p < 0.001), further confirmed by the public database. Survival analysis showed that mCRC patients with N-terminus side APC mutations had longer overall survival than C-terminus side. Tumor gene pathway analysis showed that gene mutations in the RTK/RAS, Wnt and transforming growth factor β signaling pathways of the C-terminal group were significantly higher than those of the N-terminal group (p < 0.05). Additionally, KRAS, AMER1, TGFBR2, and ARID1A driver mutations were more common in patients with C-terminal side APC mutations. CONCLUSION APC specific mutations have potential function as mCRC prognostic biomarkers. There are obvious differences in the gene mutation patterns between the C-terminus and N-terminus APC mutations group, which may have certain guiding significance for the subsequent precise treatment of mCRC.
Collapse
Affiliation(s)
- Huan Peng
- Division of Colorectal Surgery, Department of Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai,
China
| | - Jun Ying
- Division of Colorectal Surgery, Department of Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai,
China
| | - Jia Zang
- Division of Colorectal Surgery, Department of Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai,
China
| | - Hao Lu
- Division of Colorectal Surgery, Department of Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai,
China
| | - Xiaokai Zhao
- Jiaxing Key Laboratory of Precision Medicine and Companion Diagnostics, Jiaxing Yunying Medical Inspection Co., Ltd., Jiaxing,
China
- Department of R&D, Zhejiang Yunying Medical Technology Co., Ltd., Jiaxing,
China
| | - Pengmin Yang
- Jiaxing Key Laboratory of Precision Medicine and Companion Diagnostics, Jiaxing Yunying Medical Inspection Co., Ltd., Jiaxing,
China
- Department of R&D, Zhejiang Yunying Medical Technology Co., Ltd., Jiaxing,
China
| | - Xintao Wang
- Jiaxing Key Laboratory of Precision Medicine and Companion Diagnostics, Jiaxing Yunying Medical Inspection Co., Ltd., Jiaxing,
China
- Department of R&D, Zhejiang Yunying Medical Technology Co., Ltd., Jiaxing,
China
| | - Jieyi Li
- Jiaxing Key Laboratory of Precision Medicine and Companion Diagnostics, Jiaxing Yunying Medical Inspection Co., Ltd., Jiaxing,
China
- Department of R&D, Zhejiang Yunying Medical Technology Co., Ltd., Jiaxing,
China
| | - Ziying Gong
- Jiaxing Key Laboratory of Precision Medicine and Companion Diagnostics, Jiaxing Yunying Medical Inspection Co., Ltd., Jiaxing,
China
- Department of R&D, Zhejiang Yunying Medical Technology Co., Ltd., Jiaxing,
China
| | - Daoyun Zhang
- Jiaxing Key Laboratory of Precision Medicine and Companion Diagnostics, Jiaxing Yunying Medical Inspection Co., Ltd., Jiaxing,
China
- Department of R&D, Zhejiang Yunying Medical Technology Co., Ltd., Jiaxing,
China
| | - Zhiguo Wang
- Division of Colorectal Surgery, Department of Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai,
China
| |
Collapse
|
33
|
Hurník P, Putnová BM, Ševčíková T, Hrubá E, Putnová I, Škarda J, Havel M, Res O, Cvek J, Buchtová M, Štembírek J. Metastasising ameloblastoma or ameloblastic carcinoma? A case report with mutation analyses. BMC Oral Health 2023; 23:563. [PMID: 37573343 PMCID: PMC10423427 DOI: 10.1186/s12903-023-03259-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 07/27/2023] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND Ameloblastic carcinoma and metastasising ameloblastoma are rare epithelial odontogenic tumours with aggressive features. Distinguishing between these two lesions is often clinically difficult but necessary to predict tumour behaviour or to plan future therapy. Here, we provide a brief review of the literature available on these two types of lesions and present a new case report of a young man with an ameloblastoma displaying metastatic features. We also use this case to illustrate the similarities and differences between these two types of tumours and the difficulties of their differential diagnosis. CASE PRESENTATION Our histopathological analyses uncovered a metastasising tumour with features of ameloblastic carcinoma, which developed from the ameloblastoma. We profiled the gene expression of Wnt pathway members in ameloblastoma sample of this patient, because multiple molecules of this pathway are involved in the establishing of cell polarity, cell migration or for epithelial-mesenchymal transition during tumour metastasis to evaluate features of tumor behaviour. Indeed, we found upregulation of several cell migration-related genes in our patient. Moreover, we uncovered somatic mutation BRAF p.V600E with known pathological role in cancerogenesis and germline heterozygous FANCA p.S858R mutation, whose interpretation in this context has not been discussed yet. CONCLUSIONS In conclusion, we have uncovered a unique case of ameloblastic carcinoma associated with an alteration of Wnt signalling and the presence of BRAF mutation. Development of harmful state of our patient might be also supported by the germline mutation in one FANCA allele, however this has to be confirmed by further analyses.
Collapse
Affiliation(s)
- Pavel Hurník
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
- Institute of Clinical and Molecular Pathology and Medical Genetics, Faculty Hospital and Medical Faculty Ostrava, Ostrava, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Barbora Moldovan Putnová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
- Department of Pathological Morphology and Parasitology, University of Veterinary Sciences, Brno, Czech Republic
| | - Tereza Ševčíková
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Eva Hrubá
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Iveta Putnová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
- Department of Anatomy, Histology and Embryology, University of Veterinary Sciences, Brno, Czech Republic
| | - Josef Škarda
- Institute of Clinical and Molecular Pathology and Medical Genetics, Faculty Hospital and Medical Faculty Ostrava, Ostrava, Czech Republic
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University and University Hospital in Olomouc, Olomouc, Czech Republic
| | - Martin Havel
- Department of Nuclear Medicine, University Hospital Ostrava, Ostrava, Czech Republic
| | - Oldřich Res
- Department of Oral and Maxillofacial Surgery, University Hospital Ostrava, Ostrava, Czech Republic
| | - Jakub Cvek
- Department of Oncology, Faculty of Medicine and University Hospital Ostrava, Ostrava, Czech Republic
| | - Marcela Buchtová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic.
| | - Jan Štembírek
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic.
- Department of Oral and Maxillofacial Surgery, University Hospital Ostrava, Ostrava, Czech Republic.
| |
Collapse
|
34
|
Crossay E, Jullian V, Trinel M, Sagnat D, Hamel D, Groppi E, Rolland C, Stigliani JL, Mejia K, Cabanillas BJ, Alric L, Buscail E, El Kalamouni C, Mavingui P, Deraison C, Racaud-Sultan C, Fabre N. Daphnanes diterpenes from the latex of Hura crepitans L. and their PKCζ-dependent anti-proliferative activity on colorectal cancer cells. Bioorg Med Chem 2023; 90:117366. [PMID: 37329676 DOI: 10.1016/j.bmc.2023.117366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/04/2023] [Accepted: 05/30/2023] [Indexed: 06/19/2023]
Abstract
Hura crepitans L. (Euphorbiaceae) is a thorn-covered tree widespread in South America, Africa and Asia which produces an irritating milky latex containing numerous secondary metabolites, notably daphnane-type diterpenes known as Protein Kinase C activators. Fractionation of a dichloromethane extract of the latex led to the isolation of five new daphnane diterpenes (1-5), along with two known analogs (6-7) including huratoxin. Huratoxin (6) and 4',5'-epoxyhuratoxin (4) were found to exhibit significant and selective cell growth inhibition against colorectal cancer cell line Caco-2 and primary colorectal cancer cells cultured as colonoids. The underlying mechanism of 4 and 6 was further investigated revealing the involvement of PKCζ in the cytostatic activity.
Collapse
Affiliation(s)
- Elise Crossay
- UMR 152 PharmaDev, Université de Toulouse, IRD, UPS, France
| | | | - Manon Trinel
- UMR 152 PharmaDev, Université de Toulouse, IRD, UPS, France
| | - David Sagnat
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, France; Toulouse Organoids Platform, Institut de Recherche en Santé Digestive, INSERM, Toulouse, France
| | - Dimitri Hamel
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, France; LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Emie Groppi
- UMR 152 PharmaDev, Université de Toulouse, IRD, UPS, France
| | - Corinne Rolland
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, France
| | | | - Kember Mejia
- Instituto de Investigaciones de la Amazonia Peruana (IIAP), Iquitos, Peru
| | - Billy Joel Cabanillas
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| | - Laurent Alric
- Pole Digestif, Centre Hospitalier Universitaire, Toulouse, France
| | - Etienne Buscail
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, France; Département de Chirurgie Digestive, Unité de Chirurgie Colorectale, Centre Hospitalier Universitaire, Toulouse, France
| | - Chaker El Kalamouni
- UMR PIMIT, Université de La Réunion, INSERM U1187, CNRS 9192, IRD 249, La Réunion, France
| | - Patrick Mavingui
- UMR PIMIT, Université de La Réunion, INSERM U1187, CNRS 9192, IRD 249, La Réunion, France
| | - Céline Deraison
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, France
| | | | - Nicolas Fabre
- UMR 152 PharmaDev, Université de Toulouse, IRD, UPS, France.
| |
Collapse
|
35
|
Abdelmaksoud NM, Abulsoud AI, Abdelghany TM, Elshaer SS, Rizk SM, Senousy MA. Mitochondrial remodeling in colorectal cancer initiation, progression, metastasis, and therapy: A review. Pathol Res Pract 2023; 246:154509. [PMID: 37182313 DOI: 10.1016/j.prp.2023.154509] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/16/2023]
Abstract
Colorectal cancer (CRC) is a major health concern with multifactorial pathophysiology representing intense therapeutic challenges. It is well known that deregulation of spatiotemporally-controlled signaling pathways and their metabolic reprogramming effects play a pivotal role in the development and progression of CRC. As such, the mitochondrial role in CRC initiation gained a lot of attention recently, as it is considered the powerhouse that regulates the bioenergetics in CRC. In addition, the crosstalk between microRNAs (miRNAs) and mitochondrial dysfunction has become a newfangled passion for deciphering CRC molecular mechanisms. This review sheds light on the relationship between different signaling pathways involved in metabolic reprogramming and their therapeutic targets, alterations in mitochondrial DNA content, mitochondrial biogenesis, and mitophagy, and the role of polymorphisms in mitochondrial genes as well as miRNAs regulating mitochondrial proteins in CRC initiation, progression, metastasis, and resistance to various therapies.
Collapse
Affiliation(s)
- Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020 El Salam, 11785 Cairo, Egypt
| | - Ahmed I Abulsoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020 El Salam, 11785 Cairo, Egypt; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11823, Egypt.
| | - Tamer M Abdelghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11884, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020 El Salam, 11785 Cairo, Egypt
| | - Shereen Saeid Elshaer
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020 El Salam, 11785 Cairo, Egypt; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Sherine Maher Rizk
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Mahmoud A Senousy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo 11786, Egypt
| |
Collapse
|
36
|
Sun J, Shao X, Huang J, Gong M, Zhang J, Yuan Z. Multiple toxicity evaluations of perfluorooctane sulfonate on intact planarian Dugesia japonica. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60932-60945. [PMID: 37042918 DOI: 10.1007/s11356-023-26842-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/03/2023] [Indexed: 05/10/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is gaining widespread attention as a persistent organic pollutant with multiple mechanisms of toxicity. In this study, PFOS at different concentrations and different exposure times was used to evaluate the multiple toxicities on intact planarian Dugesia japonica. The proliferation of neoblasts, apoptosis, DNA damage and the expression levels of neuronal genes and the major genes of the Wnt pathway were effectively studied. The results demonstrated that the balance between proliferation and apoptosis of intact planarian cells was disrupted after PFOS exposure, which in turn affected tissue homeostasis and differentiation. PFOS exposure led to increased DNA damage and altered neuronal gene expression. In addition, PFOS exposure could down-regulate the expression of Wnt pathway genes, but the inhibition of the Wnt pathway by PFOS was time- and concentration-dependent. These findings suggest that PFOS has multiple toxic effects on planarians and may interfere with cell proliferation and neurodevelopment by affecting the key gene expression in the Wnt pathway, providing estimable information on the neurodevelopmental toxicity and ecotoxicity of PFOS toxicity in aquatic animals and environments.
Collapse
Affiliation(s)
- Jingyi Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Xinxin Shao
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Jinying Huang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Mengxin Gong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Jianyong Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Zuoqing Yuan
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong, China.
| |
Collapse
|
37
|
Chandramohan K, Balan DJ, Devi KP, Nabavi SF, Reshadat S, Khayatkashani M, Mahmoodifar S, Filosa R, Amirkhalili N, Pishvaei S, Aval OS, Nabavi SM. Short interfering RNA in colorectal cancer: is it wise to shoot the messenger? Eur J Pharmacol 2023; 949:175699. [PMID: 37011722 DOI: 10.1016/j.ejphar.2023.175699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Colorectal cancer (CRC) is the third most common cancer and the leading cause of gastrointestinal cancer death. 90% of people diagnosed with colorectal cancer are over the age of 50; nevertheless, the illness is more aggressive among those detected at a younger age. Chemotherapy-based treatment has several adverse effects on both normal and malignant cells. The primary signaling pathways implicated in the advancement of CRC include hedgehog (Hh), janus kinase and signal transducer and activator of transcription (JAK/STAT), Wingless-related integration site (Wnt)/β-catenin, transforming growth factor-β (TNF-β), epidermal growth factor receptor (EGFR)/Mitogen-activated protein kinases (MAPK), phosphoinositide 3-kinase (PI3K), nuclear factor kappa B (NF-κB), and Notch. Loss of heterozygosity in tumor suppressor genes like adenomatous polyposis coli, as well as mutation or deletion of genes like p53 and Kirsten rat sarcoma viral oncogene (KRAS), are all responsible for the occurrence of CRC. Novel therapeutic targets linked to these signal-transduction cascades have been identified as a consequence of advances in small interfering RNA (siRNA) treatments. This study focuses on many innovative siRNA therapies and methodologies for delivering siRNA therapeutics to the malignant site safely and effectively for the treatment of CRC. Treatment of CRC using siRNA-associated nanoparticles (NPs) may inhibit the activity of oncogenes and MDR-related genes by targeting a range of signaling mechanisms. This study summarizes several siRNAs targeting signaling molecules, as well as the therapeutic approaches that might be employed to treat CRC in the future.
Collapse
|
38
|
Kusnik A, Li S, Graziano E, Katerji R, Ramaraju G. A Case of a Beta-Catenin-Activated Hepatic Adenoma in a Male Patient With Familial Adenomatous Polyposis. ACG Case Rep J 2023; 10:e01012. [PMID: 36936132 PMCID: PMC10019209 DOI: 10.14309/crj.0000000000001012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/31/2023] [Accepted: 02/13/2023] [Indexed: 03/17/2023] Open
Abstract
Hepatocellular adenoma is a benign liver tumor often diagnosed incidentally in women of reproductive age who are taking oral contraceptives. In this study, we present a unique case of an 18-year-old man with known familial adenomatous polyposis who presented with sepsis in the setting of a recent total proctocolectomy and was incidentally found to have multiple large hepatic lesions. A biopsy of a liver lesion confirmed the diagnosis of a beta-catenin-activated hepatic adenoma. To the best of our knowledge, this is the first known case of beta-catenin-activated hepatic adenoma in a patient with a known familial adenomatous polyposis mutation. Beta-catenin is one of the many subtypes of hepatocellular adenomas, which carries a high risk of malignant transformation.
Collapse
Affiliation(s)
| | - Shifan Li
- Department of Internal Medicine, University of Rochester Medical Center, Rochester, NY
| | - Elliot Graziano
- Division of Gastroenterology and Hepatology, University of Rochester Medical Center, Rochester, NY
| | - Roula Katerji
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY
| | - Gopal Ramaraju
- Division of Gastroenterology and Hepatology, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
39
|
Lechuga S, Braga-Neto MB, Naydenov NG, Rieder F, Ivanov AI. Understanding disruption of the gut barrier during inflammation: Should we abandon traditional epithelial cell lines and switch to intestinal organoids? Front Immunol 2023; 14:1108289. [PMID: 36875103 PMCID: PMC9983034 DOI: 10.3389/fimmu.2023.1108289] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
Disruption of the intestinal epithelial barrier is a hallmark of mucosal inflammation. It increases exposure of the immune system to luminal microbes, triggering a perpetuating inflammatory response. For several decades, the inflammatory stimuli-induced breakdown of the human gut barrier was studied in vitro by using colon cancer derived epithelial cell lines. While providing a wealth of important data, these cell lines do not completely mimic the morphology and function of normal human intestinal epithelial cells (IEC) due to cancer-related chromosomal abnormalities and oncogenic mutations. The development of human intestinal organoids provided a physiologically-relevant experimental platform to study homeostatic regulation and disease-dependent dysfunctions of the intestinal epithelial barrier. There is need to align and integrate the emerging data obtained with intestinal organoids and classical studies that utilized colon cancer cell lines. This review discusses the utilization of human intestinal organoids to dissect the roles and mechanisms of gut barrier disruption during mucosal inflammation. We summarize available data generated with two major types of organoids derived from either intestinal crypts or induced pluripotent stem cells and compare them to the results of earlier studies with conventional cell lines. We identify research areas where the complementary use of colon cancer-derived cell lines and organoids advance our understanding of epithelial barrier dysfunctions in the inflamed gut and identify unique questions that could be addressed only by using the intestinal organoid platforms.
Collapse
Affiliation(s)
- Susana Lechuga
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Manuel B. Braga-Neto
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Nayden G. Naydenov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Andrei I. Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|
40
|
miR-4757-3p Inhibited the Migration and Invasion of Lung Cancer Cell via Targeting Wnt Signaling Pathway. JOURNAL OF ONCOLOGY 2023; 2023:6544042. [PMID: 36814555 PMCID: PMC9940952 DOI: 10.1155/2023/6544042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/13/2022] [Accepted: 11/24/2022] [Indexed: 02/17/2023]
Abstract
Lung cancer accounts for the vast majority of cancer-related deaths worldwide, and aberrant miRNA expression is commonly observed as the disease progresses. The current study aimed to determine the role of miR-4757-3p in the development of lung cancer. The real-time PCR test was performed to determine the expression of miR-4757-3p in lung cancer cell lines. miR-4757-3p was downregulated in A549 cells. CCK8 and transwell assays demonstrated that overexpression of miR-4757-3p significantly reduced A549 cell invasion and migration. Bioinformatic analysis by the TargetScan database predicted the possible targets of miR-4757-3p. A luciferase activity test was used to determine the direct relationship between miR-4757-3p, Wnt5a, and Wnt8b. The overexpression of miR-4757-3p drastically inhibited the expression of Wnt5a and Wnt8b. Furthermore, we discovered that silencing Wnt5a and Wnt8b significantly lowered β-catenin expression and hampered invasion and migration. Finally, miR-4757-3p inhibited lung cancer cell migration and invasion by inhibiting the activation of the Wnt signaling pathway. Our study provided evidence that miR-4757-3p could be developed as an indicator or an anticancer target in the clinical application.
Collapse
|
41
|
Rao W, Yang L, Dai N, Zhang L, Liu J, Yang B, Li M, Shan J, Wang Q, Wang D. Frequently mutated genes in predicting the relapse of stage I lung adenocarcinoma. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:1767-1778. [PMID: 36739576 DOI: 10.1007/s12094-023-03074-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/05/2023] [Indexed: 02/06/2023]
Abstract
PURPOSE Approximately, 45-65% stage I non-small cell lung cancer (NSCLC) patients with surgical resection relapse within 5 years. Therefore, it is urgent to identify the predictors involved in the relapse of stage I NSCLC. METHODS/PATIENTS Targeted sequencing was used to examine the mutation of tumor tissues and matched adjacent normal tissues from 35 patients with stage I lung adenocarcinoma (LUAD). Then, tissue microarrays containing tumor tissues from 149 stage I LUAD patients were used to assess protein expression of frequently mutated genes by immunohistochemistry. COX regression model was used to evaluate the impacts of frequently mutated genes and their protein expression on relapse-free survival (RFS) in stage I LUAD. RESULTS AND CONCLUSIONS Three hundred and twenty-nine non-synonymous somatic variants were identified in 161 genes among these 35 patients. EGFR, TP53, LRP1B, RBM10, KRAS, NTRK3, RB1, ALK, APC, FAT2, KEAP1, MED12 and MLL3 were described as frequently mutated genes with prevalence more than 10%. Patients harboring KRAS mutation had more relapse in 1 year after surgical resection. For the expression of these frequently mutated genes in 149 stage I patients, multivariate Cox regression analyses showed that the expression of RBM10 was positively associated with RFS in all patients (HR 0.40, 95% CI 0.15-1.0, p = 0.052), and the expression of APC was negative associated with RFS in patients with EGFR mutations (HR 3.10, 95% CI 1.54-6.26, p = 0.002). Stage I LUAD patients with KRAS mutation or low RBM10 expression are inclined to receive more positive intervention rather than just disease surveillance.
Collapse
Affiliation(s)
- Wen Rao
- Cancer Center, Daping Hospital and Army Medical Center of PLA, Army Medical University, No.10 Changjiangzhi Rd, Yuzhong District, Chongqing, People's Republic of China.,The 75th Group Army Hospital, Dali, Yunnan, People's Republic of China
| | - Lujie Yang
- Cancer Center, Daping Hospital and Army Medical Center of PLA, Army Medical University, No.10 Changjiangzhi Rd, Yuzhong District, Chongqing, People's Republic of China
| | - Nan Dai
- Cancer Center, Daping Hospital and Army Medical Center of PLA, Army Medical University, No.10 Changjiangzhi Rd, Yuzhong District, Chongqing, People's Republic of China
| | - Liang Zhang
- Cancer Center, Daping Hospital and Army Medical Center of PLA, Army Medical University, No.10 Changjiangzhi Rd, Yuzhong District, Chongqing, People's Republic of China
| | - Jie Liu
- Cancer Center, Daping Hospital and Army Medical Center of PLA, Army Medical University, No.10 Changjiangzhi Rd, Yuzhong District, Chongqing, People's Republic of China
| | - Bo Yang
- Cancer Center, Daping Hospital and Army Medical Center of PLA, Army Medical University, No.10 Changjiangzhi Rd, Yuzhong District, Chongqing, People's Republic of China
| | - Mengxia Li
- Cancer Center, Daping Hospital and Army Medical Center of PLA, Army Medical University, No.10 Changjiangzhi Rd, Yuzhong District, Chongqing, People's Republic of China
| | - Jinlu Shan
- Cancer Center, Daping Hospital and Army Medical Center of PLA, Army Medical University, No.10 Changjiangzhi Rd, Yuzhong District, Chongqing, People's Republic of China
| | - Qiushi Wang
- Department of Pathology, Daping Hospital and Army Medical Center of PLA, Army Medical University, Chongqing, People's Republic of China
| | - Dong Wang
- Cancer Center, Daping Hospital and Army Medical Center of PLA, Army Medical University, No.10 Changjiangzhi Rd, Yuzhong District, Chongqing, People's Republic of China.
| |
Collapse
|
42
|
Mugge L, Dang DD, Stabingas K, Keating G, Rossi C, Keating R. MN1 altered astroblastoma with APC and LRP1B gene mutations: a unique variant in the cervical spine of a pediatric patient. Childs Nerv Syst 2023; 39:1309-1315. [PMID: 36648513 DOI: 10.1007/s00381-022-05795-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/08/2022] [Indexed: 01/18/2023]
Abstract
PURPOSE Astroblastomas (AB) are high-grade neoplasms which typically occur within the cerebral hemisphere. However, given the rarity of this neoplasm and the number of variants, the relevance of this molecular makeup is unknown. We sought to describe the clinical presentation, treatment, and pathological analysis of a novel MN1 (meningioma 1) cervical spinal cord astroblastoma variant presenting in a pediatric patient. METHODS A retrospective review of electronic medical records was performed with an emphasis on neuroimaging, perioperative course, and pathological analysis. RESULTS An 11-month-old male with no significant history presented with two weeks of neck stiffness and cervicalgia. Neurologically, the patient was intact without signs of infection or trauma. Cervical CT was unremarkable. A subsequent MRI demonstrated a heterogeneously enhancing intramedullary lesion extending from the craniocervical junction to T4. The patient was treated with perioperative steroids and underwent C1-C3 laminectomies and C4-T4 laminotomies for tumor resection. Upon completion of the durotomy, an exophytic gray-red tumor was appreciated within the epidural space and gross total resection was achieved (no change on intraoperative neurophysiological monitoring) and confirmed on post-operative imaging. Immunohistochemical analysis was consistent with an astroblastoma with atypical diffuse positivity of CD56, CD99, and nuclear OLIG2. Molecular analysis revealed not only MN1 alterations but also changes in genes encoding APC and LRP1B. Both alterations were not previously documented to be associated with an astroblastoma. CONCLUSION Our case represents the first report of an infant with an MN1 astroblastoma with APC and LRP1B gene alterations in the cervical spine. Gross total resection paired with a detailed histopathologic analysis is vital for optimizing adjuvant treatment.
Collapse
Affiliation(s)
- Luke Mugge
- Department of Neurosurgery, Children's National Medical Center, Washington, DC, USA. .,Department of Neurosciences, Inova Neuroscience and Spine Institute, 3300 Gallows Road, Falls Church, VA, 22042, USA.
| | - Danielle D Dang
- Department of Neurosciences, Inova Neuroscience and Spine Institute, 3300 Gallows Road, Falls Church, VA, 22042, USA
| | - Kristen Stabingas
- Department of Neurosurgery, Children's National Medical Center, Washington, DC, USA
| | - Gregory Keating
- Department of Neurosurgery, Children's National Medical Center, Washington, DC, USA.,Department of Neurosurgery, MedStar Georgetown University Hospital, Washington, DC, USA
| | - Christopher Rossi
- Department of Pathology, Children's National Medical Center, Washington, DC, USA
| | - Robert Keating
- Department of Neurosurgery, Children's National Medical Center, Washington, DC, USA
| |
Collapse
|
43
|
Dey A, Mitra A, Pathak S, Prasad S, Zhang AS, Zhang H, Sun XF, Banerjee A. Recent Advancements, Limitations, and Future Perspectives of the use of Personalized Medicine in Treatment of Colon Cancer. Technol Cancer Res Treat 2023; 22:15330338231178403. [PMID: 37248615 PMCID: PMC10240881 DOI: 10.1177/15330338231178403] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/18/2023] [Accepted: 03/13/2023] [Indexed: 08/29/2024] Open
Abstract
Due to the heterogeneity of colon cancer, surgery, chemotherapy, and radiation are ineffective in all cases. The genomic profile and biomarkers associated with the process are considered in personalized medicine, along with the patient's personal history. It is based on the response of the targeted therapies to specific genetic variations. The patient's genetic transcriptomic and epigenetic features are evaluated, and the best therapeutic approach and diagnostic testing are identified through personalized medicine. This review aims to summarize all the necessary, updated information on colon cancer related to personalized medicine. Personalized medicine is gaining prominence as generalized treatments are finding it challenging to contain colon cancer cases which currently rank fourth among global cancer incidence while being the fifth largest in total death cases worldwide. In personalized therapy, patients are grouped into specific categories, and the best therapeutic approach is chosen based on evaluating their molecular features. Various personalized strategies are currently being explored in the treatment of colon cancer involving immunotherapy, phytochemicals, and other biomarker-specific targeted therapies. However, significant challenges must be overcome to integrate personalized medicine into healthcare systems completely. We look at the various signaling pathways and genetic and epigenetic alterations associated with colon cancer to understand and identify biomarkers useful in targeted therapy. The current personalized therapies available in colon cancer treatment and the strategies being explored to improve the existing methods are discussed. This review highlights the advantages and limitations of personalized medicine in colon cancer therapy. The current scenario of personalized medicine in developed countries and the challenges faced in middle- and low-income countries are also summarized. Finally, we discuss the future perspectives of personalized medicine in colon cancer and how it could be integrated into the healthcare systems.
Collapse
Affiliation(s)
- Amit Dey
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Chennai, India
| | - Abhijit Mitra
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Chennai, India
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Chennai, India
| | - Suhanya Prasad
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Białystok, Poland
| | | | - Hong Zhang
- School of Medicine, Department of Medical Sciences, Orebro University, Örebro, Sweden
| | - Xiao-Feng Sun
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Chennai, India
| |
Collapse
|
44
|
Matani H, Sahu D, Paskewicz M, Gorbunova A, Omstead AN, Wegner R, Finley GG, Jobe BA, Kelly RJ, Zaidi AH, Goel A. Prognostic and predictive biomarkers for response to neoadjuvant chemoradiation in esophageal adenocarcinoma. Biomark Res 2022; 10:81. [PMCID: PMC9664643 DOI: 10.1186/s40364-022-00429-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
Abstract
Background
Esophageal adenocarcinoma is a lethal disease. For locally advanced patients, neoadjuvant chemoradiotherapy followed by surgery is the standard of care. Risk stratification relies heavily on clinicopathologic features, particularly pathologic response, which is inadequate, therefore establishing the need for new and reliable biomarkers for risk stratification.
Methods
Thirty four patients with locally advanced esophageal adenocarcinoma were analyzed, of which 21 received a CROSS regimen with carboplatin, paclitaxel, and radiation. Capture-based targeted sequencing was performed on the paired baseline and post-treatment samples. Differentially mutated gene analysis between responders and non-responders of treatment was performed to determine predictors of response. A univariate Cox proportional hazard regression was used to examine associations between gene mutation status and overall survival.
Results
A 3-gene signature, based on mutations in EPHA5, BCL6, and ERBB2, was identified that robustly predicts response to the CROSS regimen. For this model, sensitivity was 84.6% and specificity was 100%. Independently, a 9 gene signature was created using APC, MAP3K6, ETS1, CSF3R, PDGFRB, GATA2, ARID1A, PML, and FGF6, which significantly stratifies patients into risk categories, prognosticating for improved relapse-free (p = 4.73E-03) and overall survival (p = 3.325E-06). The sensitivity for this model was 73.33% and the specificity was 94.74%.
Conclusion
We have identified a 3-gene signature (EPHA5, BCL6, and ERBB2) that is predictive of response to neoadjuvant chemoradiotherapy and a separate prognostic 9-gene classifier that predicts survival outcomes. These panels provide significant potential for personalized management of locally advanced esophageal cancer.
Collapse
|
45
|
Yu L, Zhang MM, Hou JG. Molecular and cellular pathways in colorectal cancer: apoptosis, autophagy and inflammation as key players. Scand J Gastroenterol 2022; 57:1279-1290. [PMID: 35732586 DOI: 10.1080/00365521.2022.2088247] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Colorectal carcinogenesis (CRC) is one of the most aggressive forms of cancer, particularly in developing countries. It accounts for the second and third-highest reason for cancer-induced lethality in women and men respectively. CRC involves genetic and epigenetic modifications in colonic epithelium, leading to colon adenocarcinoma. The current review highlights the pathogenic mechanisms and multifactorial etiology of CRC, influenced by apoptosis, inflammation, and autophagy pathways. METHODS We have carried out a selective literature review on mechanisms contributing to the pathogenesis of CRC. RESULTS Resistance to senescence and apoptosis of the mesenchymal cells, which play a key role in intestinal organogenesis, morphogenesis and homeostasis, appears important for sporadic CRC. Additionally, inflammation-associated tumorigenesis is a key incident in CRC, supported by immune disruptors, adaptive and innate immune traits, environmental factors, etc. involving oxidative stress, DNA damage and epigenetic modulations. The self-digesting mechanism, autophagy, also plays a twin role in CRC through the participation of LC3/LC3-II, Beclin-1, ATG5, other autophagy proteins, and Inflammatory Bowel Disease (IBD) susceptibility genes. It facilitates the promotion of effective surveillance pathways and stimulates the generation of malignant tumor cells. The autophagy and apoptotic pathways undergo synergistic or antagonistic interactions in CRC and bear a critical association with IBD that results from the pro-neoplastic effects of persistent intestinal inflammation. Conversely, pro-inflammatory factors stimulate tumor growth and angiogenesis and inhibit apoptosis, suppressing anti-tumor activities. CONCLUSION Hence, research attempts for the development of potential therapies for CRC are in progress, primarily based on combinatorial approaches targeting apoptosis, inflammation, and autophagy.
Collapse
Affiliation(s)
- Lei Yu
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Miao-Miao Zhang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Ji-Guang Hou
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
46
|
Lessey LR, Robinson SC, Chaudhary R, Daniel JM. Adherens junction proteins on the move—From the membrane to the nucleus in intestinal diseases. Front Cell Dev Biol 2022; 10:998373. [PMID: 36274850 PMCID: PMC9581404 DOI: 10.3389/fcell.2022.998373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
The function and structure of the mammalian epithelial cell layer is maintained by distinct intercellular adhesion complexes including adherens junctions (AJs), tight junctions, and desmosomes. The AJ is most integral for stabilizing cell-cell adhesion and conserving the structural integrity of epithelial tissues. AJs are comprised of the transmembrane protein E-cadherin and cytoplasmic catenin cofactors (α, β, γ, and p120-catenin). One organ where malfunction of AJ is a major contributor to disease states is the mammalian intestine. In the intestine, cell-cell adhesion complexes work synergistically to maintain structural integrity and homeostasis of the epithelium and prevent its malfunction. Consequently, when AJ integrity is compromised in the intestinal epithelium, the ensuing homeostatic disruption leads to diseases such as inflammatory bowel disease and colorectal carcinoma. In addition to their function at the plasma membrane, protein components of AJs also have nuclear functions and are thus implicated in regulating gene expression and intracellular signaling. Within the nucleus, AJ proteins have been shown to interact with transcription factors such as TCF/LEF and Kaiso (ZBTB33), which converge on the canonical Wnt signaling pathway. The multifaceted nature of AJ proteins highlights their complexity in modulating homeostasis and emphasizes the importance of their subcellular localization and expression in the mammalian intestine. In this review, we summarize the nuclear roles of AJ proteins in intestinal tissues; their interactions with transcription factors and how this leads to crosstalk with canonical Wnt signaling; and how nuclear AJ proteins are implicated in intestinal homeostasis and disease.
Collapse
|
47
|
Biomechanics of cancer stem cells. Essays Biochem 2022; 66:359-369. [PMID: 35942932 DOI: 10.1042/ebc20220014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 12/27/2022]
Abstract
Cancer stem cells (CSCs) have been believed to be one driving force for tumor progression and drug resistance. Despite the significance of biochemical signaling in malignancy, highly malignant tumor cells or CSCs exhibit lower cellular stiffness than weakly malignant cells or non-CSCs, which are softer than their healthy counterparts, suggesting the inverse correlation between cell stiffness and malignancy. Recent years have witnessed the rapid accumulation of evidence illustrating the reciprocity between cell cytoskeleton/mechanics and CSC functions and the potential of cellular stiffness for specific targeting of CSCs. However, a systematic understanding of tumor cell mechanics and their role in CSCs and tumor progression is still lacking. The present review summarizes the recent progress in the alterations of tumor cell cytoskeleton and stiffness at different stages of tumor progression and recapitulates the relationship between cellular stiffness and CSC functions. The altered cell mechanics may mediate the mechanoadaptive responses that possibly empower CSCs to survive and thrive during metastasis. Furthermore, we highlight the possible impact of tumor cell mechanics on CSC malignancy, which may potentiate low cell stiffness as a mechanical marker for CSC targeting.
Collapse
|
48
|
The involvement of gut microbiota in the anti-tumor effect of carnosic acid via IL-17 suppression in colorectal cancer. Chem Biol Interact 2022; 365:110080. [PMID: 35926579 DOI: 10.1016/j.cbi.2022.110080] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is a malignant tumor that threatens human health worldwide. Disturbance of the gut microbiota caused by various external factors is one of the leading causes. Carnosic acid (CA) is a phenolic diterpene compound, mainly isolated from rosemary plants, with anti-inflammatory and anti-tumor properties. In this study, we aimed to investigate the role of CA in CRC development and its underlying mechanisms in B6/JGpt-Apcem1Cin(min)/Gpt (ApcMin/+) mice based on the analysis of gut microbiota, serum metabolomics, and tumor proteomics. Enzyme-linked immunosorbent assay (ELISA) and Western blot were performed to confirm the changes in cytokine and protein levels related to inflammation after CA administration. CA regulated the abundance of the gut microbiota, which further caused changes in the production of dl-lactic acid. CA suppressed the inflammatory response by reducing the levels of IL-1β, -6, and -17A. Overall, CA showed anti-CRC properties via modulation of gut microbiota and serum metabolites through NF-κB/STAT3 signaling to inhibit IL-17 expression in ApcMin/+ mice. These results provide experimental evidence for the future treatment of CRC with CA.
Collapse
|
49
|
Identification of APC Mutation as a Potential Predictor for Immunotherapy in Colorectal Cancer. JOURNAL OF ONCOLOGY 2022; 2022:6567998. [PMID: 35874638 PMCID: PMC9300385 DOI: 10.1155/2022/6567998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/13/2022] [Indexed: 12/24/2022]
Abstract
To date, anticancer immunotherapy has presented some clinical benefits to most of advanced mismatch repair deficient (dMMR)/microsatellite instability-high (MSI-H) colorectal cancer (CRC) patients. In addition to MSI status, we aimed to reveal the potential predictive value of adenomatous polyposis coli (APC) gene mutations in CRC patients. A total of 238 Chinese CRC patients was retrospectively identified and analyzed for clinical features and gene alternations in APC-mutant type (MT) and APC-wild-type (WT) groups. Clinical responses were then evaluated from the public TCGA database and MSKCC immunotherapy database. Although programmed cell death ligand 1 (PD-L1) level, MSI status, loss of heterogeneity at the human leukocyte antigen (HLA LOH), and tumor neoantigen burden (TNB) level were not statistically different between the APC-MT group and APC-WT group, tumor mutation burden (TMB) level was significantly higher in APC-MT patients (P < 0.05). Furthermore, comutation analysis for APC mutations revealed co-occurring genomic alterations of PCDHB7 and exclusive mutations of CTNNB1, BRAF, AFF3, and SNX25 (P < 0.05). Besides, overall survival from MSKCC-CRC cohort was longer in the APC-WT group than in the APC-MT group (HR 2.26 (95% CI 1.05–4.88), P < 0.05). Furthermore, most of patients in the APC-WT group were detected as high-grade immune subtypes (C2–C4) comparing with those in the APC-MT group. In addition, the percentages of NK T cells, Treg cells, and fibroblasts cells were higher in APC-WT patients than in APC-MT patients (P < 0.05). In summary, APC mutations might be associated with poor outcomes for immunotherapy in CRC patients regardless of MSI status. This study suggested APC gene mutations might be a potential predictor for immunotherapy in CRC.
Collapse
|
50
|
Hashemi-Khah MS, Arbab-Soleimani N, Forghanifard MM, Gholami O, Taheri S, Amoueian S. An In Vivo Study of Lactobacillus rhamnosus (PTCC 1637) as a New Therapeutic Candidate in Esophageal Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7607470. [PMID: 35782061 PMCID: PMC9249511 DOI: 10.1155/2022/7607470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/11/2022] [Indexed: 11/17/2022]
Abstract
Objective This study is aimed at investigating the effect of probiotic Lactobacillus rhamnosus on esophageal cancer in vivo and in vitro. Methods and Results In this study, the cytotoxicity effects of L. rhamnosus supernatant and whole-cell culture on a cancer cell line (Kyse30) compared to 5fu were evaluated by the MTT assay. The real-time PCR method was used to analyse the L. rhamnosus supernatant effect on the expression of Wnt signaling pathway genes. An in vivo investigation in nude mice was done to assess the anti-tumor activity of L. rhamnosus supernatant and whole-cell culture. Both supernatant and whole-cell culture of L. rhamnosus reduced cell survival (Kyse30) P < 0.001. The supernatant of this bacterium significantly reduced the expression of Wnt signaling pathway genes. Administration of supernatant and whole-cell culture of L. rhamnosus expressively reduced tumor growth compared to the control group. The effects of this bacterium on tumor necrosis were quite evident, pathologically P < 0.01. Conclusion This study is the first report that assessed the potential impact of L. rhamnosus, especially its supernatant on esophageal cancer and Wnt signaling pathway genes. Therefore, this bacterium can be a harmless candidate for esophageal cancer therapy.
Collapse
Affiliation(s)
| | | | | | - Omid Gholami
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Saba Taheri
- Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
| | - Sakineh Amoueian
- Pathology Department, Emam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|