1
|
Saito T, Suzuki M, Ohba A, Hamaguchi S, Namekata I, Tanaka H. Enhanced Late I Na Induces Intracellular Ion Disturbances and Automatic Activity in the Guinea Pig Pulmonary Vein Cardiomyocytes. Int J Mol Sci 2024; 25:8688. [PMID: 39201376 PMCID: PMC11354854 DOI: 10.3390/ijms25168688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
The effects of enhanced late INa, a persistent component of the Na+ channel current, on the intracellular ion dynamics and the automaticity of the pulmonary vein cardiomyocytes were studied with fluorescent microscopy. Anemonia viridis toxin II (ATX- II), an enhancer of late INa, caused increases in the basal Na+ and Ca2+ concentrations, increases in the number of Ca2+ sparks and Ca2+ waves, and the generation of repetitive Ca2+ transients. These phenomena were inhibited by eleclazine, a blocker of the late INa; SEA0400, an inhibitor of the Na+/Ca2+ exchanger (NCX); H89, a protein kinase A (PKA) inhibitor; and KN-93, a Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitor. These results suggest that enhancement of late INa in the pulmonary vein cardiomyocytes causes disturbance of the intracellular ion environment through activation of the NCX and Ca2+-dependent enzymes. Such mechanisms are probably involved in the ectopic electrical activity of the pulmonary vein myocardium.
Collapse
Affiliation(s)
| | | | | | | | - Iyuki Namekata
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama Funabashi, Chiba 274-8510, Japan; (T.S.); (M.S.); (A.O.); (S.H.); (H.T.)
| | | |
Collapse
|
2
|
Davies A, Fox K, Galassi AR, Banai S, Ylä-Herttuala S, Lüscher TF. Management of refractory angina: an update. Eur Heart J 2021; 42:269-283. [PMID: 33367764 DOI: 10.1093/eurheartj/ehaa820] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/17/2020] [Accepted: 10/03/2020] [Indexed: 12/15/2022] Open
Abstract
Despite the use of anti-anginal drugs and/or percutaneous coronary interventions (PCI) or coronary artery bypass grafting, the proportion of patients with coronary artery disease who have daily or weekly angina ranges from 2% to 24%. Refractory angina refers to long-lasting symptoms (for >3 months) due to established reversible ischaemia, which cannot be controlled by escalating medical therapy with the use of 2nd- and 3rd-line pharmacological agents, bypass grafting, or stenting. While there is uncertain prognostic benefit, the treatment of refractory angina is important to improve the quality of life of the patients affected. This review focuses on conventional pharmacological approaches to treating refractory angina, including guideline directed drug combination and dosages. The symptomatic and prognostic impact of advanced and novel revascularization strategies such as chronic total occlusion PCI, transmyocardial laser revascularization, coronary sinus occlusion, radiation therapy for recurrent restenosis, and spinal cord stimulation are also covered and recommendations of the 2019 ESC Guidelines on the Diagnosis and Management of Chronic Coronary Syndromes discussed. Finally, the potential clinical use of current angiogenetic and stem cell therapies in reducing ischaemia and/or pain is evaluated.
Collapse
Affiliation(s)
- Allan Davies
- National Heart and Lung Institute, Imperial College, Guy Scadding Building, Dovehouse Street, London SW3 6LY, UK.,Royal Brompton & Harefield Hospitals, London, UK
| | - Kim Fox
- National Heart and Lung Institute, Imperial College, Guy Scadding Building, Dovehouse Street, London SW3 6LY, UK.,Royal Brompton & Harefield Hospitals, London, UK
| | | | - Shmuel Banai
- Slezak Super Centre for Cardiac Research, Tel Aviv University, Tel Aviv, Israel.,Tel Aviv Medical Centre, Tel Aviv, Israel
| | | | - Thomas F Lüscher
- National Heart and Lung Institute, Imperial College, Guy Scadding Building, Dovehouse Street, London SW3 6LY, UK.,Royal Brompton & Harefield Hospitals, London, UK.,University of Zurich, Center for Molecular Cardiology, University of Zurich, Switzerland
| |
Collapse
|
3
|
Yehualashet AS, Belachew TF, Kifle ZD, Abebe AM. Targeting Cardiac Metabolic Pathways: A Role in Ischemic Management. Vasc Health Risk Manag 2020; 16:353-365. [PMID: 32982263 PMCID: PMC7501978 DOI: 10.2147/vhrm.s264130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Among the vast number of noncommunicable diseases encountered worldwide, cardiovascular diseases accounted for about 17.8 million deaths in 2017 and ischemic heart disease (IHD) remains the single-largest cause of death in countries across all income groups. Because conventional medications are not without shortcomings and patients still refractory to these medications, scientific investigation is ongoing to advance the management of IHD, and shows a great promise for better treatment modalities, but additional research can warrant improvement in terms of the quality of life of patients. Metabolic modulation is one promising strategy for the treatment of IHD, because alterations in energy metabolism are involved in progression of the disease. Therefore, the purpose of this review was to strengthen attention toward the use of metabolic modulators and to review the current level of knowledge on cardiac energy metabolic pathways.
Collapse
Affiliation(s)
- Awgichew Shewasinad Yehualashet
- Pharmacology and Toxicology Unit, Department of Pharmacy, College of Health Sciences, Debre Berhan University, Debre Berhan, Ethiopia
| | | | - Zemene Demelash Kifle
- School of Pharmacy, Department of Pharmacology, University of Gondar, Gondar, Ethiopia
| | - Ayele Mamo Abebe
- Department of Nursing, College of Health Sciences, Debre Berhan University, Debre Berhan, Ethiopia
| |
Collapse
|
4
|
El-Bizri N, Li CH, Liu GX, Rajamani S, Belardinelli L. Selective inhibition of physiological late Na+ current stabilizes ventricular repolarization. Am J Physiol Heart Circ Physiol 2018; 314:H236-H245. [DOI: 10.1152/ajpheart.00071.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The physiological role of cardiac late Na+ current ( INa) has not been well described. In this study, we tested the hypothesis that selective inhibition of physiological late INa abbreviates the normal action potential (AP) duration (APD) and counteracts the prolongation of APD and arrhythmic activities caused by inhibition of the delayed rectifier K+ current ( IKr). The effects of GS-458967 (GS967) on the physiological late INa and APs in rabbit isolated ventricular myocytes and on the monophasic APs and arrhythmias in rabbit isolated perfused hearts were determined. In ventricular myocytes, GS967 and, for comparison, tetrodotoxin concentration dependently decreased the physiological late INa with IC50 values of 0.5 and 1.9 µM, respectively, and significantly shortened the APD measured at 90% repolarization (APD90). A strong correlation between inhibition of the physiological late INa and shortening of APD by GS967 or tetrodotoxin ( R2 of 0.96 and 0.97, respectively) was observed. Pretreatment of isolated myocytes or hearts with GS967 (1 µM) significantly shortened APD90 and monophasic APD90 and prevented the prolongation and associated arrhythmias caused by the IKr inhibitor E4031 (1 µM). In conclusion, selective inhibition of physiological late INa shortens the APD, stabilizes ventricular repolarization, and decreases the proarrhythmic potential of pharmacological agents that slow ventricular repolarization. Thus, selective inhibition of late INa may constitute a generalizable approach to stabilize ventricular repolarization and suppress arrhythmogenicity associated with conditions whereby AP or QT intervals are prolonged. NEW & NOTEWORTHY The contribution of physiological late Na+ current in action potential duration (APD) of rabbit cardiac myocytes was estimated. The inhibition of this current prevented the prolongation of APD in rabbit cardiac myocytes, the prolongation of monophasic APD, and generation of arrhythmias in rabbit isolated hearts caused by delayed rectifier K+ current inhibition.
Collapse
Affiliation(s)
| | - Cindy Hong Li
- Department of Biology, Gilead Sciences, Fremont, California
| | - Gong-Xin Liu
- Department of Biology, Gilead Sciences, Fremont, California
| | | | | |
Collapse
|
5
|
Guarini G, Huqi A, Morrone D, Capozza PFG, Marzilli M. Trimetazidine and Other Metabolic Modifiers. Eur Cardiol 2018; 13:104-111. [PMID: 30697354 DOI: 10.15420/ecr.2018.15.2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Treatment goals for people with chronic angina should focus on the relief of symptoms and improving mortality rates so the patient can feel better and live longer. The traditional haemodynamic approach to ischaemic heart disease was based on the assumption that increasing oxygen supply and decreasing oxygen demand would improve symptoms. However, data from clinical trials, show that about one third of people continue to have angina despite a successful percutaneous coronary intervention and medical therapy. Moreover, several trials on chronic stable angina therapy and revascularisation have failed to show benefits in terms of primary outcome (survival, cardiovascular death, all-cause mortality), symptom relief or echocardiographic parameters. Failure to significantly improve quality of life and prognosis may be attributed in part to a limited understanding of ischaemic heart disease, by neglecting the fact that ischaemia is a metabolic disorder. Shifting cardiac metabolism from free fatty acids towards glucose is a promising approach for the treatment of patients with stable angina, independent of the underlying disease (macrovascular and/or microvascular disease). Cardiac metabolic modulators open the way to a greater understanding of ischaemic heart disease and its common clinical manifestations as an energetic disorder rather than an imbalance between the demand and supply of oxygen and metabolites.
Collapse
Affiliation(s)
- Giacinta Guarini
- Cardiovascular Medicine Division, Cardiothoracic and Vascular Department, University of Pisa Italy
| | - Alda Huqi
- Cardiovascular Medicine Division, Ospedale della Versilia, Lido di Camaiore Italy
| | - Doralisa Morrone
- Cardiovascular Medicine Division, Cardiothoracic and Vascular Department, University of Pisa Italy
| | | | - Mario Marzilli
- Cardiovascular Medicine Division, Cardiothoracic and Vascular Department, University of Pisa Italy
| |
Collapse
|
6
|
Late sodium current associated cardiac electrophysiological and mechanical dysfunction. Pflugers Arch 2017; 470:461-469. [DOI: 10.1007/s00424-017-2079-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/27/2017] [Accepted: 10/09/2017] [Indexed: 12/19/2022]
|
7
|
Abstract
INTRODUCTION Angina pectoris, or symptomatic myocardial ischaemia, reflects an impairment of coronary blood flow, and usually a deficiency of available myocardial energetics. Treatment options vary with the precise cause, which may vary with regards to the roles of increased myocardial oxygen demand versus reduced supply. Traditionally, organic nitrates, β-adrenoceptor antagonists, and non-dihydropyridine calcium antagonists were the only commonly used prophylactic anti-anginal agents. However, many patients failed to respond adequately to such therapy, and/or were unsuitable for their use. Areas covered: A number of 'new' agents have been shown to represent ancillary forms of prophylactic anti-anginal therapy and are particularly useful in patients who are relatively unsuitable for either percutaneous or surgical revascularisation. These include modulators of myocardial metabolic efficiency, such as perhexiline, trimetazidine and ranolazine, as well as high dose allopurinol, nicorandil and ivabradine. The advantages and disadvantages of these various agents are summarized. Expert opinion: 'Optimal' medical treatment of angina pectoris now includes use of agents primarily intended to reduce risk of infarction (e.g. statins, aspirin, ACE inhibitors). In patients whose angina persists despite the use of 'standard' anti-anginal therapy, and who are not ideal for invasive revascularization options, a number of emerging drugs offer prospects of symptomatic relief.
Collapse
Affiliation(s)
- Cher-Rin Chong
- a Cardiology and Clinical Pharmacology Departments, Basil Hetzel Institute , Queen Elizabeth Hospital, University of Adelaide , Adelaide , SA , Australia.,b Pharmacy Department , Queen Elizabeth Hospital , Woodville South , SA , Australia
| | - Gao J Ong
- a Cardiology and Clinical Pharmacology Departments, Basil Hetzel Institute , Queen Elizabeth Hospital, University of Adelaide , Adelaide , SA , Australia
| | - John D Horowitz
- a Cardiology and Clinical Pharmacology Departments, Basil Hetzel Institute , Queen Elizabeth Hospital, University of Adelaide , Adelaide , SA , Australia
| |
Collapse
|
8
|
Guarini G, Huqi A, Morrone D, Marzilli M. Pharmacological Agents Targeting Myocardial Metabolism for the Management of Chronic Stable Angina : an Update. Cardiovasc Drugs Ther 2016; 30:379-391. [DOI: 10.1007/s10557-016-6677-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Markandeya YS, Tsubouchi T, Hacker TA, Wolff MR, Belardinelli L, Balijepalli RC. Inhibition of late sodium current attenuates ionic arrhythmia mechanism in ventricular myocytes expressing LaminA-N195K mutation. Heart Rhythm 2016; 13:2228-2236. [PMID: 27498076 DOI: 10.1016/j.hrthm.2016.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Lamin A and C are nuclear filament proteins encoded by the LMNA gene. Mutations in the LMNA gene cause many congenital diseases known as laminopathies, including Emery-Dreifuss muscular dystrophy, Hutchinson-Gilford progeria syndrome, and familial dilated cardiomyopathy (DCM) with conduction disease. A missense mutation (N195K) in the A-type lamins results in familial DCM and sudden arrhythmic death. OBJECTIVE The purpose of this study was to investigate the ion current mechanism of arrhythmia and DCM caused by the LaminA-N195K variant. METHODS A homozygous mouse line expressing the Lmna-N195K mutation (LmnaN195K/N195K) that exhibited arrhythmia, DCM, and sudden death was used. Using whole cell patch-clamp technique, we measured action potential duration (APD), Na+ currents (INa) in ventricular myocytes isolated from LmnaN195K/N195K, and wild-type mice. RESULTS Both peak and late INa were significantly (P <.05) increased in LmnaN195K/N195K ventricular myocytes. Similarly, LmnaN195K/N195K ventricular myocytes exhibited significant (P <.005) prolongation of APD (time to 50% [APD50] and 90% [APD90] repolarization) and triggered activity. Acute application of ranolazine inhibited late INa, shortened APD, and abolished triggered activity in LmnaN195K/N195K ventricular myocytes. CONCLUSION Inhibition of late INa may be an effective therapy in preventing arrhythmia in patients with LmnaN195K mutation-related DCM.
Collapse
Affiliation(s)
- Yogananda S Markandeya
- Cellular and Molecular Arrhythmia Research Program, Department of Medicine, University of Wisconsin, Madison, Wisconsin
| | - Tadashi Tsubouchi
- Preclinical Research Laboratories, Sumitomo Dainippon Pharma Co. Ltd., Osaka, Japan
| | - Timothy A Hacker
- Cellular and Molecular Arrhythmia Research Program, Department of Medicine, University of Wisconsin, Madison, Wisconsin
| | - Matthew R Wolff
- Meriter UnityPoint Heart and Vascular Institute, Madison, Wisconsin
| | | | - Ravi C Balijepalli
- Cellular and Molecular Arrhythmia Research Program, Department of Medicine, University of Wisconsin, Madison, Wisconsin.
| |
Collapse
|
10
|
Altamirano F, Wang ZV, Hill JA. Cardioprotection in ischaemia-reperfusion injury: novel mechanisms and clinical translation. J Physiol 2015; 593:3773-88. [PMID: 26173176 PMCID: PMC4575567 DOI: 10.1113/jp270953] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 06/23/2015] [Indexed: 12/29/2022] Open
Abstract
In recent decades, robust successes have been achieved in conquering the acutely lethal manifestations of heart disease. Nevertheless, the prevalence of heart disease, especially heart failure, continues to rise. Among the precipitating aetiologies, ischaemic disease is a leading cause of heart failure. In the context of ischaemia, the myocardium is deprived of oxygen and nutrients, which elicits a cascade of events that provokes cell death. This ischaemic insult is typically coupled with reperfusion, either spontaneous or therapeutically imposed, wherein blood supply is restored to the previously ischaemic tissue. While this intervention limits ischaemic injury, it triggers a new cascade of events that is also harmful, viz. reperfusion injury. In recent years, novel insights have emerged regarding mechanisms of ischaemia-reperfusion injury, and some hold promise as targets of therapeutic relevance. Here, we review a select number of these pathways, focusing on recent discoveries and highlighting prospects for therapeutic manipulation for clinical benefit.
Collapse
Affiliation(s)
- Francisco Altamirano
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical CenterDallas, TX, 75390, USA
| | - Zhao V Wang
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical CenterDallas, TX, 75390, USA
| | - Joseph A Hill
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical CenterDallas, TX, 75390, USA
- Department of Molecular Biology, University of Texas Southwestern Medical CenterDallas, TX, 75390, USA
| |
Collapse
|
11
|
Singh S, Schwarz K, Horowitz J, Frenneaux M. Cardiac energetic impairment in heart disease and the potential role of metabolic modulators: a review for clinicians. ACTA ACUST UNITED AC 2015; 7:720-8. [PMID: 25518045 DOI: 10.1161/circgenetics.114.000221] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiac energetic impairment is a frequent finding in patients with both inherited and acquired diseases of heart muscle. In this review the mechanisms of energy generation in the healthy heart and their disturbances in heart muscle diseases are described. Therapeutic agents targeted at correcting cardiac energetic impairment are discussed.
Collapse
Affiliation(s)
- Satnam Singh
- From the Department of Cardiovascular Medicine, University of Aberdeen, Aberdeen, United Kingdom (S.S., K.S., M.F.); and Cardiology Unit, The Queen Elizabeth Hospital, Adelaide, Australia (J.H.)
| | - Konstantin Schwarz
- From the Department of Cardiovascular Medicine, University of Aberdeen, Aberdeen, United Kingdom (S.S., K.S., M.F.); and Cardiology Unit, The Queen Elizabeth Hospital, Adelaide, Australia (J.H.)
| | - John Horowitz
- From the Department of Cardiovascular Medicine, University of Aberdeen, Aberdeen, United Kingdom (S.S., K.S., M.F.); and Cardiology Unit, The Queen Elizabeth Hospital, Adelaide, Australia (J.H.)
| | - Michael Frenneaux
- From the Department of Cardiovascular Medicine, University of Aberdeen, Aberdeen, United Kingdom (S.S., K.S., M.F.); and Cardiology Unit, The Queen Elizabeth Hospital, Adelaide, Australia (J.H.).
| |
Collapse
|
12
|
Remme CA, Wilde AAM. Targeting sodium channels in cardiac arrhythmia. Curr Opin Pharmacol 2013; 15:53-60. [PMID: 24721654 DOI: 10.1016/j.coph.2013.11.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 11/26/2013] [Accepted: 11/28/2013] [Indexed: 12/15/2022]
Abstract
Cardiac voltage-gated sodium channels are responsible for proper electrical conduction in the heart. During acquired pathological conditions and inherited sodium channelopathies, altered sodium channel function causes conduction disturbances and ventricular arrhythmias. Although the clinical, genetic and biophysical characteristics of cardiac sodium channel disease have been extensively studied, limited progress has been made in the development of treatment strategies targeting sodium channels. Classical non-selective sodium channel blockers have only limited clinical applicability, while more selective inhibitors of the late sodium current constitute a more promising treatment option. Because of our insufficient understanding of their complexity and subcellular diversity, other specific therapeutic targets for modulating sodium channels remain elusive. The current status and future potential of targeting sodium channels in cardiac arrhythmias are discussed.
Collapse
Affiliation(s)
- Carol Ann Remme
- Department of Clinical and Experimental Cardiology, Academic Medical Center, University of Amsterdam, The Netherlands.
| | - Arthur A M Wilde
- Department of Clinical and Experimental Cardiology, Academic Medical Center, University of Amsterdam, The Netherlands
| |
Collapse
|