1
|
Yu J, Zhang M, Li T, Gao W, Yang Z, Wang K, Liu Z, Zhu S, Wen S, Zhao Y, Cai Q, Shang Z, Wang Y, Niu Y. Monoacylglycerol lipase blockades the senescence-associated secretory phenotype by interfering with NF-κB activation and promotes docetaxel efficacy in prostate cancer. Oncogene 2024; 43:2835-2849. [PMID: 39155296 DOI: 10.1038/s41388-024-03132-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 08/20/2024]
Abstract
Metabolic reprogramming and cellular senescence greatly contribute to cancer relapse and recurrence. In aging and treated prostate, persistent accumulating senescence-associated secretory phenotype (SASP) of cancer cells often limits the overall survival of patients. Novel strategic therapy with monoacylglycerol lipase (MGLL) upregulation that counters the cellular and docetaxel induced SASP might overcome this clinical challenge in prostate cancer (PCa). With primary comparative expression and survival analysis screening of fatty acid (FA) metabolism signature genes in the TCGA PCa dataset and our single center cohort, MGLL was detected to be downregulated in malignancy prostate tissues and its low expression predicted worse progression-free and overall survival. Functionally, overexpression of MGLL mainly suppresses NF-κB-driven SASP (N-SASP) which mostly restricts the cancer cell paracrine and autocrine tumorigenic manners and the corresponding cellular senescence. Further investigating metabolites, we determined that MGLL constitutive expression prevents lipid accumulation, decreases metabolites preferably, and consequently downregulates ATP levels. Overexpressed MGLL inhibited IκBα phosphorylation, NF-κB p65 phosphorylation, and NF-κB nuclear translocation to deactivate NF-κB transcriptional activities, and be responsible for the repressed N-SASP, partially through reducing ATP levels. Preclinically, combinational treatment with MGLL overexpression and docetaxel chemotherapy dramatically delays tumor progression in mouse models. Taken together, our findings identify MGLL as a switch for lipase-related N-SASP suppression and provide a potential drug candidate for promoting docetaxel efficacy in PCa.
Collapse
Affiliation(s)
- Jianpeng Yu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
- Tianjin Institute of Urology, Tianjin, 300211, China.
| | - Minghao Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
- Tianjin Institute of Urology, Tianjin, 300211, China
- Department of Urology, Tianjin Third Central Hospital, Tianjin, 300170, China
| | - Taipeng Li
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
- Tianjin Institute of Urology, Tianjin, 300211, China
| | - Wenlong Gao
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
- Tianjin Institute of Urology, Tianjin, 300211, China
| | - Zhao Yang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
- Tianjin Institute of Urology, Tianjin, 300211, China
| | - Keruo Wang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
- Tianjin Institute of Urology, Tianjin, 300211, China
| | - Zihao Liu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
- Tianjin Institute of Urology, Tianjin, 300211, China
| | - Shimiao Zhu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
- Tianjin Institute of Urology, Tianjin, 300211, China
| | - Simeng Wen
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
- Tianjin Institute of Urology, Tianjin, 300211, China
| | - Yang Zhao
- Tianjin Institute of Urology, Tianjin, 300211, China
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Qiliang Cai
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
- Tianjin Institute of Urology, Tianjin, 300211, China.
| | - Zhiqun Shang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
- Tianjin Institute of Urology, Tianjin, 300211, China.
| | - Yong Wang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
- Tianjin Institute of Urology, Tianjin, 300211, China.
| | - Yuanjie Niu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
- Tianjin Institute of Urology, Tianjin, 300211, China.
| |
Collapse
|
2
|
Taguchi R, Yamaguchi-Tanaka M, Takagi K, Sato A, Miki Y, Miyashita M, Suzuki T. Clinicopathological Significance and Prognostic Role of High Mobility Group Box 1 (HMGB1), Toll-Like Receptor (TLR) 2 and TLR4 in Breast Cancer. Acta Histochem Cytochem 2024; 57:75-83. [PMID: 38695037 PMCID: PMC11058461 DOI: 10.1267/ahc.24-00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/03/2024] [Indexed: 05/04/2024] Open
Abstract
High-mobility group box 1 (HMGB1) functions as damage-associated molecular pattern (DAMPs), released into extracellular space during cellular stress. Extracellular HMGB1 act as signal molecules through Toll-like receptor (TLR) 2 or TLR4, exerting diverse functions in both normal cells and malignant cells including breast cancer. However, their comprehensive examination in breast cancer tissues is lacking. Thus, we immunolocalized them in 112 breast cancer tissues, correlating their immunoreactivity with clinicopathological parameters and clinical outcomes to clarify their significance in breast cancer. We demonstrated that nuclear HMGB1 immunoreactivity was correlated with tumor progression and longer disease-free survival. In contrast, TLR2 immunoreactivity was correlated with increased cell proliferation and shorter disease-free survival, dependent on cytoplasmic HMGB1 immunoreactivity. Additionally, TLR4 immunoreactivity correlated with chemoresistance, regardless of cytoplasmic HMGB1 immunoreactivity. It was therefore considered that TLR2 collaboratively contributed to breast cancer progression with HMGB1-DAMPs to become a worse prognostic factor. Meanwhile, TLR4 served as a worse prognostic factor associated with chemoresistance, irrespective of HMGB1.
Collapse
Affiliation(s)
- Reina Taguchi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980–8575, Japan
| | - Mio Yamaguchi-Tanaka
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980–8575, Japan
- Department of Personalized Medicine Center, Tohoku University Hospital, Sendai, Miyagi 980–8575, Japan
| | - Kiyoshi Takagi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980–8575, Japan
| | - Ai Sato
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980–8575, Japan
| | - Yasuhiro Miki
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980–8575, Japan
| | - Minoru Miyashita
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980–8575, Japan
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980–8575, Japan
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980–8575, Japan
- Department of Pathology, Tohoku University Hospital, Sendai, Miyagi 980–8575, Japan
| |
Collapse
|
3
|
Ashrafizadeh M, Zhang W, Tian Y, Sethi G, Zhang X, Qiu A. Molecular panorama of therapy resistance in prostate cancer: a pre-clinical and bioinformatics analysis for clinical translation. Cancer Metastasis Rev 2024; 43:229-260. [PMID: 38374496 DOI: 10.1007/s10555-024-10168-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 01/04/2024] [Indexed: 02/21/2024]
Abstract
Prostate cancer (PCa) is a malignant disorder of prostate gland being asymptomatic in early stages and high metastatic potential in advanced stages. The chemotherapy and surgical resection have provided favourable prognosis of PCa patients, but advanced and aggressive forms of PCa including CRPC and AVPC lack response to therapy properly, and therefore, prognosis of patients is deteriorated. At the advanced stages, PCa cells do not respond to chemotherapy and radiotherapy in a satisfactory level, and therefore, therapy resistance is emerged. Molecular profile analysis of PCa cells reveals the apoptosis suppression, pro-survival autophagy induction, and EMT induction as factors in escalating malignant of cancer cells and development of therapy resistance. The dysregulation in molecular profile of PCa including upregulation of STAT3 and PI3K/Akt, downregulation of STAT3, and aberrant expression of non-coding RNAs are determining factor for response of cancer cells to chemotherapy. Because of prevalence of drug resistance in PCa, combination therapy including co-utilization of anti-cancer drugs and nanotherapeutic approaches has been suggested in PCa therapy. As a result of increase in DNA damage repair, PCa cells induce radioresistance and RelB overexpression prevents irradiation-mediated cell death. Similar to chemotherapy, nanomaterials are promising for promoting radiosensitivity through delivery of cargo, improving accumulation in PCa cells, and targeting survival-related pathways. In respect to emergence of immunotherapy as a new tool in PCa suppression, tumour cells are able to increase PD-L1 expression and inactivate NK cells in mediating immune evasion. The bioinformatics analysis for evaluation of drug resistance-related genes has been performed.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Yu Tian
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Xianbin Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China.
| | - Aiming Qiu
- Department of Geriatrics, the Fifth People's Hospital of Wujiang District, Suzhou, China.
| |
Collapse
|
4
|
Pérez-Gómez JM, Montero-Hidalgo AJ, Fuentes-Fayos AC, Sarmento-Cabral A, Guzmán-Ruiz R, Malagón MM, Herrera-Martínez AD, Gahete MD, Luque RM. Exploring the role of the inflammasomes on prostate cancer: Interplay with obesity. Rev Endocr Metab Disord 2023; 24:1165-1187. [PMID: 37819510 PMCID: PMC10697898 DOI: 10.1007/s11154-023-09838-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/21/2023] [Indexed: 10/13/2023]
Abstract
Obesity is a weight-related disorder characterized by excessive adipose tissue growth and dysfunction which leads to the onset of a systemic chronic low-grade inflammatory state. Likewise, inflammation is considered a classic cancer hallmark affecting several steps of carcinogenesis and tumor progression. In this regard, novel molecular complexes termed inflammasomes have been identified which are able to react to a wide spectrum of insults, impacting several metabolic-related disorders, but their contribution to cancer biology remains unclear. In this context, prostate cancer (PCa) has a markedly inflammatory component, and patients frequently are elderly individuals who exhibit weight-related disorders, being obesity the most prevalent condition. Therefore, inflammation, and specifically, inflammasome complexes, could be crucial players in the interplay between PCa and metabolic disorders. In this review, we will: 1) discuss the potential role of each inflammasome component (sensor, molecular adaptor, and targets) in PCa pathophysiology, placing special emphasis on IL-1β/NF-kB pathway and ROS and hypoxia influence; 2) explore the association between inflammasomes and obesity, and how these molecular complexes could act as the cornerstone between the obesity and PCa; and, 3) compile current clinical trials regarding inflammasome targeting, providing some insights about their potential use in the clinical practice.
Collapse
Affiliation(s)
- Jesús M Pérez-Gómez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Antonio J Montero-Hidalgo
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Antonio C Fuentes-Fayos
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - André Sarmento-Cabral
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Rocio Guzmán-Ruiz
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - María M Malagón
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Aura D Herrera-Martínez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Endocrinology and Nutrition Service, HURS/IMIBIC, Córdoba, Spain
| | - Manuel D Gahete
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Raúl M Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain.
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain.
| |
Collapse
|
5
|
He P, Dai Q, Wu X. New insight in urological cancer therapy: From epithelial-mesenchymal transition (EMT) to application of nano-biomaterials. ENVIRONMENTAL RESEARCH 2023; 229:115672. [PMID: 36906272 DOI: 10.1016/j.envres.2023.115672] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 05/21/2023]
Abstract
A high number of cancer-related deaths (up to 90) are due to metastasis and simple definition of metastasis is new colony formation of tumor cells in a secondary site. In tumor cells, epithelial-mesenchymal transition (EMT) stimulates metastasis and invasion, and it is a common characteristic of malignant tumors. Prostate cancer, bladder cancer and renal cancer are three main types of urological tumors that their malignant and aggressive behaviors are due to abnormal proliferation and metastasis. EMT has been well-documented as a mechanism for promoting invasion of tumor cells and in the current review, a special attention is directed towards understanding role of EMT in malignancy, metastasis and therapy response of urological cancers. The invasion and metastatic characteristics of urological tumors enhance due to EMT induction and this is essential for ensuring survival and ability in developing new colonies in neighboring and distant tissues and organs. When EMT induction occurs, malignant behavior of tumor cells enhances and their tend in developing therapy resistance especially chemoresistance promotes that is one of the underlying reasons for therapy failure and patient death. The lncRNAs, microRNAs, eIF5A2, Notch-4 and hypoxia are among common modulators of EMT mechanism in urological tumors. Moreover, anti-tumor compounds such as metformin can be utilized in suppressing malignancy of urological tumors. Besides, genes and epigenetic factors modulating EMT mechanism can be therapeutically targeted for interfering malignancy of urological tumors. Nanomaterials are new emerging agents in urological cancer therapy that they can improve potential of current therapeutics by their targeted delivery to tumor site. The important hallmarks of urological cancers including growth, invasion and angiogenesis can be suppressed by cargo-loaded nanomaterials. Moreover, nanomaterials can improve chemotherapy potential in urological cancer elimination and by providing phototherapy, they mediate synergistic tumor suppression. The clinical application depends on development of biocompatible nanomaterials.
Collapse
Affiliation(s)
- Peng He
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qiang Dai
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiaojun Wu
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
6
|
Wang M, Wang Y, Liu R, Yu R, Gong T, Zhang Z, Fu Y. TLR4 Blockade Using Docosahexaenoic Acid Restores Vulnerability of Drug-Tolerant Tumor Cells and Prevents Breast Cancer Metastasis and Postsurgical Relapse. ACS BIO & MED CHEM AU 2022; 3:97-113. [PMID: 37101603 PMCID: PMC10125315 DOI: 10.1021/acsbiomedchemau.2c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/05/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022]
Abstract
Nonmutational mechanisms were recently discovered leading to reversible drug tolerance. Despite the rapid elimination of a majority of tumor cells, a small subpopulation of "'drug-tolerant"' cells remain viable with lethal drug exposure, which may further lead to resistance or tumor relapse. Several signaling pathways are involved in the local or systemic inflammatory responses contributing to drug-induced phenotypic switch. Here, we report that Toll-like receptor 4 (TLR4)-interacting lipid docosahexaenoic acid (DHA) restores the cytotoxic effect of doxorubicin (DOX) in the lipopolysaccharide-treated breast tumor cell line 4T1, preventing the phenotypic switch to drug-tolerant cells, which significantly reduces primary tumor growth and lung metastasis in both 4T1 orthotopic and experimental metastasis models. Importantly, DHA in combination with DOX delays and inhibits tumor recurrence following surgical removal of the primary tumor. Furthermore, the coencapsulation of DHA and DOX in a nanoemulsion significantly prolongs the survival of mice in the postsurgical 4T1 tumor relapse model with significantly reduced systemic toxicity. The synergistic antitumor, antimetastasis, and antirecurrence effects of DHA + DOX combination are likely mediated by attenuating TLR4 activation, thus sensitizing tumor cells to standard chemotherapy.
Collapse
Affiliation(s)
- Mou Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu610041, China
| | - Yuejing Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu610041, China
| | - Renhe Liu
- The Scripps Research Institute, 10550 North Torrey Pines Road,
La Jolla, San Diego, California92037, United States
| | - Ruilian Yu
- Department of Oncology, Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu610072, China
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu610041, China
| | - Yao Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu610041, China
| |
Collapse
|
7
|
Wang M, Wang S, Pan Y, Yu R, Zhang ZR, Fu Y. In situ gel implant for postsurgical wound management and extended chemoimmunotherapy against breast cancer recurrence. Acta Biomater 2022; 138:168-181. [PMID: 34755605 DOI: 10.1016/j.actbio.2021.10.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 12/22/2022]
Abstract
Postsurgical recurrence of breast cancer is closely related to the inflammatory tumor microenvironment evoked by surgical wounds. Toll-like receptor 4 (TLR4) signaling contributes to NF-κB activation thus secreting various inflammatory cytokines. Herein, we developed an in situ photo-crosslinked hydrogel (D/T gel) concurrently loaded with doxorubicin (DOX) and a TLR4 antagonist, resatorvid (TAK-242). Its therapeutic effect against breast cancer postsurgical relapse was accomplished through remodeling the proinflammatory tumor microenvironment. The obtained gel network exhibited ideal biodegradability and biocompatibility, which motivated dermal wound healing in the full thickness wound model in mice. Despite the initial burst release of DOX, D/T gels exhibited extended-release of both DOX and TAK-242 for up to 21 days in vitro. TAK-242 was demonstrated to inhibit the lipopolysaccharide-induced NF-κB activation and downregulate TLR4 levels in both RAW264.7 and 4T1 cells. In a 4T1-Luc tumor postsurgical recurrence model, D/T gel significantly suppressed recurrent tumor growth by elevating the concentrations of DOX and TAK-242 at the tumor sites and remodeling the TLR4 activation-induced proinflammatory microenvironment. Overall, the D/T gel platform technology is proven to deliver therapeutics directly to the surgical wound bed, attenuating the dual inflammatory responses induced by DOX and surgical wounding thus greatly potentiating its efficacy in preventing postsurgical tumor recurrence. STATEMENT OF SIGNIFICANCE: Postsurgical recurrence of breast cancer is closely related to the inflammatory tumor microenvironment (TME) evoked by surgical wounds. Although chemotherapeutics lead to extensive residual tumor cell necrosis, multiple inflammatory cytokines are secreted simultaneously, which are conducive to tumor recurrence. In this work, a TLR4 antagonist, TAK-242, was combined with DOX to reverse the dual inflammatory TME induced by surgical wounding and chemotherapy. To elevate the concentration of therapeutics at the tumor site, a photocrosslinked hydrogel (D/T gel) implant coloaded with TAK-242 and DOX was developed and applied on the postsurgical bed. Consequently, D/T gel attenuated the dual inflammatory responses and greatly potentiated its efficacy in preventing postsurgical tumor recurrence.
Collapse
Affiliation(s)
- Mou Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Shuying Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yi Pan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Ruilian Yu
- Department of Oncology, Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhi-Rong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yao Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Kashani B, Zandi Z, Pourbagheri-Sigaroodi A, Bashash D, Ghaffari SH. The role of toll-like receptor 4 (TLR4) in cancer progression: A possible therapeutic target? J Cell Physiol 2020; 236:4121-4137. [PMID: 33230811 DOI: 10.1002/jcp.30166] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/13/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022]
Abstract
The toll-like receptor (TLR) family consists of vital receptors responsible for pattern recognition in innate immunity, making them the core proteins involved in pathogen detection and eliciting immune responses. The most studied member of this family, TLR4, has been the center of attention regarding its contributory role in many inflammatory diseases including sepsis shock and asthma. Notably, mounting pieces of evidence have proved that this receptor is aberrantly expressed on the tumor cells and the tumor microenvironment in a wide range of cancer types and it is highly associated with the initiation of tumorigenesis as well as tumor progression and drug resistance. Cancer therapy using TLR4 inhibitors has recently drawn scientists' attention, and the promising results of such studies may pave the way for more investigation in the foreseeable future. This review will introduce the key proteins of the TLR4 pathway and how they interact with major growth factors in the tumor microenvironment. Moreover, we will discuss the many aspects of tumor progression affected by the activation of this receptor and provide an overview of the recent therapeutic approaches using various TLR4 antagonists.
Collapse
Affiliation(s)
- Bahareh Kashani
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Zandi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Xu K, Wang Z, Copland JA, Chakrabarti R, Florczyk SJ. 3D porous chitosan-chondroitin sulfate scaffolds promote epithelial to mesenchymal transition in prostate cancer cells. Biomaterials 2020; 254:120126. [PMID: 32480094 DOI: 10.1016/j.biomaterials.2020.120126] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022]
Abstract
Prostate cancer (PCa) is a common cancer in men that is curable prior to metastasis, when its prognosis worsens. Chondroitin sulfate (CS) is found in the extracellular matrix of normal prostate tissue and PCa, with greater content in metastatic PCa. Biomaterial scaffolds containing CS have yet to be evaluated for tumor microenvironment applications. Three-dimensional porous chitosan-CS (C-CS) scaffolds were developed and evaluated for PCa culture. Three C-CS scaffold compositions were prepared with 4 w/v% chitosan and 0.1, 0.5, and 1.0 w/v% CS and named 4-0.1, 4-0.5, and 4-1, respectively. The C-CS scaffolds had 90-95% porosity, average pore sizes between 143 and 166 μm, and no significant difference in scaffold stiffness. PC-3 and 22Rv1 PCa cells were cultured on the C-CS scaffolds to study the effect of CS on PCa growth and epithelial to mesenchymal transition (EMT). All C-CS scaffold compositions supported PCa growth and the 4-1 scaffolds had the greatest cell numbers for both PC-3 and 22Rv1. The C-CS scaffolds promoted upregulated EMT marker expression compared to 2D cultures with the greatest EMT marker expression in 4-1 scaffolds. Increasing CS concentration promoted upregulated vimentin expression in PC-3 cultures and N-cadherin and MMP-2 expression in 22Rv1 cultures. C-CS scaffolds promoted docetaxel drug resistance in PC-3 and 22Rv1 cultures and the 4-1 scaffold cultures had the greatest drug resistance. These results indicate that C-CS scaffolds are a promising in vitro platform for PCa.
Collapse
Affiliation(s)
- Kailei Xu
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, 32816-2455, USA
| | - Zi Wang
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, 32816-2455, USA
| | - John A Copland
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Ratna Chakrabarti
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Stephen J Florczyk
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, 32816-2455, USA; Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA.
| |
Collapse
|
10
|
γ-Tocotrienol and α-Tocopherol Ether Acetate Enhance Docetaxel Activity in Drug-Resistant Prostate Cancer Cells. Molecules 2020; 25:molecules25020398. [PMID: 31963634 PMCID: PMC7024271 DOI: 10.3390/molecules25020398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/12/2020] [Accepted: 01/15/2020] [Indexed: 01/22/2023] Open
Abstract
Prostate cancer is the second most commonly diagnosed cancer in men, and metastatic prostate cancer is currently incurable. Prostate cancer frequently becomes resistant to standard of care treatments, and the administration of chemotherapeutic drugs is often accompanied by toxic side effects. Combination therapy is one tool that can be used to combat therapeutic resistance and drug toxicity. Vitamin E (VE) compounds and analogs have been proposed as potential non-toxic chemotherapeutics. Here we modeled combination therapy using mixture design response surface methodology (MDRSM), a statistical technique designed to optimize mixture compositions, to determine whether combinations of three chemotherapeutic agents: γ-tocotrienol (γ-T3), α-tocopherol ether acetate (α-TEA), and docetaxel (DOC), would prove more effective than docetaxel alone in the treatment of human prostate cancer cells. Response surfaces were generated for cell viability, and the optimal treatment combination for reducing cell viability was calculated. We found that a combination of 20 µM γ-T3, 30 µM α-TEA, and 25 nm DOC was most effective in the treatment of PC-3 cells. We also found that the combination of γ-T3 and α-TEA with DOC decreased the amount of DOC required to reduce cell viability in PC-3 cells and ameliorated therapeutic resistance in DOC-resistant PC-3 cells.
Collapse
|
11
|
Effects of Polygonatum sibiricum Polysaccharides (PSP) on Human Esophageal Squamous Cell Carcinoma (ESCC) via NF-κB Signaling Pathway. INT J POLYM SCI 2019. [DOI: 10.1155/2019/3852879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Objective. To explore the effects of different concentrations of Polygonatum sibiricum polysaccharides (PSP) on human esophageal squamous cell carcinoma (ESCC) cell line Eca109 and explore the new approach for the treatment of ESCC. Methods. Eca109 cells were divided into 5 groups, including one control group and 4 experimental groups where the concentrations of PSP used were 50, 100, 200, and 400 μg/mL. The proliferation rate of Eca109 cells in each group was measured with the CCK8 assay, and the apoptosis rate in each group was analyzed by flow cytometry; the in vitro scratch assay was used to determine the migration ability of Eca109 cells after PSP treatment; the expression levels of IL-1, IL-6, IL-10, TNF-α, and TGF-β were measured by RT-PCR, and the expression levels of TLR4 and proteins that are related to NF-κB signaling pathways were determined by Western blot. Results. PSP significantly inhibited the proliferation of Eca109 cells (p<0.05) on a time- and dose-dependent manner; the apoptosis rates of Eca109 cells in experimental groups were significantly increased after 48 h of culture (p<0.05); PSP significantly reduced the migration and invasion ability of Eca109 cells (p<0.05); RT-PCR results showed that the expression of IL-10 in Eca109 cells increased significantly after treatment with PSP (p<0.05), while the expression of IL-1, IL-6, TNF-α, and TGF-β decreased significantly (p<0.05). Compared with the control group, the expression level of TLR4, NF-κB/p50, and NF-κB/p65 protein in each experimental group was significantly lower than that in the control group (p<0.05). Conclusions. PSP significantly inhibited the proliferation, invasion, and migration of Eca109 cells and promoted cell apoptosis. These observed effects were probably due to the PSP’s inhibition on the NF-κB signaling pathway in Eca109 cells via the regulation of the TLR4 expression.
Collapse
|
12
|
Zhou S, Du R, Wang Z, Shen W, Gao R, Jiang S, Fang Y, Shi Y, Chang A, Liu L, Liu C, Li N, Xiang R. TLR4 increases the stemness and is highly expressed in relapsed human hepatocellular carcinoma. Cancer Med 2019; 8:2325-2337. [PMID: 30957973 PMCID: PMC6536932 DOI: 10.1002/cam4.2070] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 02/10/2019] [Accepted: 02/13/2019] [Indexed: 12/12/2022] Open
Abstract
Toll‐like receptor 4 (TLR4) plays an essential role in cancer progress. Here, we find that the expression of TLR4 in relapsed human hepatocellular carcinoma (HCC) clinical samples is higher than that in the non‐relapsed ones, which leads us to explore the role of TLR4 in cancer stemness. We reported that TLR4‐AKT signaling pathway was activated by lipopolysaccharides (LPS) in HCC cell lines to enhance the cancer stemness capacity, which was reflected by the increased percentage of CD133+CD49f+ population and side population, enhanced sphere formation, and the upregulation of stemness marker gene‐SOX2. Downregulation of SOX2 attenuated the enhanced HCC stemness induced by LPS, indicating SOX2 as a downstream mediator of LPS‐TLR4 signaling. The role of LPS‐TLR4 signaling in inducing HCC stemness was further confirmed by tumor xenograft experiment in vivo. Taken together, our findings provide a novel therapeutic target to prevent the recurrence of HCC.
Collapse
Affiliation(s)
- Shuang Zhou
- School of Medicine, Nankai University, Tianjin, China
| | - Renle Du
- School of Medicine, Nankai University, Tianjin, China
| | - Zhenglu Wang
- Biobank of Tianjin First Center Hospital, Tianjin, China
| | - Wenzhi Shen
- School of Medicine, Nankai University, Tianjin, China
| | - Ruifang Gao
- School of Medicine, Nankai University, Tianjin, China
| | - Shan Jiang
- School of Medicine, Nankai University, Tianjin, China
| | - Yan Fang
- School of Medicine, Nankai University, Tianjin, China
| | - Yuzhi Shi
- School of Medicine, Nankai University, Tianjin, China
| | - Antao Chang
- School of Medicine, Nankai University, Tianjin, China
| | - Lei Liu
- Biobank of Tianjin First Center Hospital, Tianjin, China
| | - Chenghu Liu
- School of Medicine, Nankai University, Tianjin, China
| | - Na Li
- School of Medicine, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Tianjin, China.,The 2011 Project Collaborative Innovation Center for Biological Therapy, Nankai University, Tianjin, China
| | - Rong Xiang
- School of Medicine, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Tianjin, China.,The 2011 Project Collaborative Innovation Center for Biological Therapy, Nankai University, Tianjin, China
| |
Collapse
|
13
|
Human Toll-Like Receptor 4 (hTLR4): Structural and functional dynamics in cancer. Int J Biol Macromol 2019; 122:425-451. [DOI: 10.1016/j.ijbiomac.2018.10.142] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/10/2018] [Accepted: 10/18/2018] [Indexed: 12/23/2022]
|
14
|
Edwardson DW, Boudreau J, Mapletoft J, Lanner C, Kovala AT, Parissenti AM. Inflammatory cytokine production in tumor cells upon chemotherapy drug exposure or upon selection for drug resistance. PLoS One 2017; 12:e0183662. [PMID: 28915246 PMCID: PMC5600395 DOI: 10.1371/journal.pone.0183662] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 08/08/2017] [Indexed: 01/08/2023] Open
Abstract
Tumor Necrosis Factor alpha (TNF-α) has been shown to be released by tumor cells in response to docetaxel, and lipopolysaccharides (LPS), the latter through activation of toll-like receptor 4 (TLR4). However, it is unclear whether the former involves TLR4 receptor activation through direct binding of the drug to TLR4 at the cell surface. The current study was intended to better understand drug-induced TNF-α production in tumor cells, whether from short-term drug exposure or in cells selected for drug resistance. ELISAs were employed to measure cytokine release from breast and ovarian tumor cells in response to several structurally distinct chemotherapy agents and/or TLR4 agonists or antagonists. Drug uptake and drug sensitivity studies were also performed. We observed that several drugs induced TNF-αrelease from multiple tumor cell lines. Docetaxel-induced cytokine production was distinct from that of LPS in both MyD88-positive (MCF-7) and MyD88-deficient (A2780) cells. The acquisition of docetaxel resistance was accompanied by increased constitutive production of TNF-αand CXCL1, which waned at higher levels of resistance. In docetaxel-resistant MCF-7 and A2780 cell lines, the production of TNF-α could not be significantly augmented by docetaxel without the inhibition of P-gp, a transporter protein that promotes drug efflux from tumor cells. Pretreatment of tumor cells with LPS sensitized MyD88-positive cells (but not MyD88-deficient) to docetaxel cytotoxicity in both drug-naive and drug-resistant cells. Our findings suggest that taxane-induced inflammatory cytokine production from tumor cells depends on the duration of exposure, requires cellular drug-accumulation, and is distinct from the LPS response seen in breast tumor cells. Also, stimulation of the LPS-induced pathway may be an attractive target for treatment of drug-resistant disease.
Collapse
Affiliation(s)
- Derek W. Edwardson
- Ph.D. Program in Biomolecular Science, Laurentian University, Sudbury, Ontario, Canada
| | - Justin Boudreau
- Department of Biology, Laurentian University, Sudbury, Ontario, Canada
| | - Jonathan Mapletoft
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | - Carita Lanner
- Ph.D. Program in Biomolecular Science, Laurentian University, Sudbury, Ontario, Canada
- Department of Biology, Laurentian University, Sudbury, Ontario, Canada
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
- Division of Medical Sciences, Northern Ontario School of Medicine, Sudbury, Ontario, Canada
| | - A. Thomas Kovala
- Ph.D. Program in Biomolecular Science, Laurentian University, Sudbury, Ontario, Canada
- Department of Biology, Laurentian University, Sudbury, Ontario, Canada
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
- Division of Medical Sciences, Northern Ontario School of Medicine, Sudbury, Ontario, Canada
| | - Amadeo M. Parissenti
- Ph.D. Program in Biomolecular Science, Laurentian University, Sudbury, Ontario, Canada
- Department of Biology, Laurentian University, Sudbury, Ontario, Canada
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
- Division of Medical Sciences, Northern Ontario School of Medicine, Sudbury, Ontario, Canada
- Health Sciences North Research Institute, Sudbury, Ontario, Canada
- Faculty of Medicine, Division of Oncology, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
15
|
Li J, Yang F, Wei F, Ren X. The role of toll-like receptor 4 in tumor microenvironment. Oncotarget 2017; 8:66656-66667. [PMID: 29029545 PMCID: PMC5630445 DOI: 10.18632/oncotarget.19105] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 06/27/2017] [Indexed: 02/07/2023] Open
Abstract
Tumors are closely related to chronic inflammation, during which there are various changes in inflammatory sites, such as immune cells infiltration, pro-inflammation cytokines production, and interaction between immune cells and tissue cells. Besides, substances, released from both tissue cells attacked by exogenous etiologies, also act on local cells. These changes induce a dynamic and complex microenvironment favorable for tumor growth, invasion, and metastasis. The toll-like receptor 4 (TLR4) is the first identified member of the toll-like receptor family that can recognize pathogen-associated molecular patterns (PAMPs) and damage-associated molecular pattern (DAMPs). TLR4 expresses not only on immune cells but also on tumor cells. Accumulating evidences demonstrated that the activation of TLR4 in tumor microenvironment can not only boost the anti-tumor immunity but also give rise to immune surveillance and tumor progression. This review will summarize the expression and function of TLR4 on dendritic cells (DCs), tumor-associated macrophages (TAMs), T cells, myeloid-derived suppressor cells (MDSCs), tumor cells as well as stromal cells in tumor microenvironment. Validation of the multiple role of TLR4 in tumors could primarily pave the road for the development of anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Jing Li
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Fan Yang
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Feng Wei
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| |
Collapse
|
16
|
Huang H, Liu T, Guo J, Yu L, Wu X, He Y, Li D, Liu J, Zhang K, Zheng X, Goodin S. Brefeldin A enhances docetaxel-induced growth inhibition and apoptosis in prostate cancer cells in monolayer and 3D cultures. Bioorg Med Chem Lett 2017; 27:2286-2291. [PMID: 28462831 DOI: 10.1016/j.bmcl.2017.04.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 12/17/2022]
Abstract
Docetaxel is a commonly used chemotherapeutic drug for patients with late stage prostate cancer. However, serious side effect and drug resistance limit its clinical success. Brefeldin A is a 16-membered macrolide antibiotic from mangrove-derived Fungus Aspergillus sp. (9Hu), which exhibited potent cytotoxicity against human cancer cells. In the present study, we determined the effect of brefeldin A on docetaxel-induced growth inhibition and apoptosis in human prostate cancer PC-3 cells. Brefeldin A in combination with docetaxel inhibited the growth of PC-3 cells in monolayer and in three dimensional cultures. The combination also potently stimulated apoptosis in PC-3 cells as determined by propidium iodide staining and morphological assessment. Mechanistic studies showed that growth inhibition and apoptosis in PC-3 cells treated with brefeldin A and docetaxel were associated with decrease in the level of Bcl-2. The present study indicates that combined brefeldin A with docetaxel may represent a novel approach for improving the efficacy of docetaxel, and Bcl-2 may serve as a target for brefeldin A to enhance the effects of docetaxel chemotherapy.
Collapse
Affiliation(s)
- Huarong Huang
- Allan H. Conney Laboratory for Anticancer Research, Guangdong University of Technology, Guangzhou 510006, China.
| | - Ting Liu
- Allan H. Conney Laboratory for Anticancer Research, Guangdong University of Technology, Guangzhou 510006, China
| | - Junxi Guo
- Allan H. Conney Laboratory for Anticancer Research, Guangdong University of Technology, Guangzhou 510006, China
| | - Lin Yu
- Allan H. Conney Laboratory for Anticancer Research, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaofeng Wu
- Allan H. Conney Laboratory for Anticancer Research, Guangdong University of Technology, Guangzhou 510006, China
| | - Yan He
- Allan H. Conney Laboratory for Anticancer Research, Guangdong University of Technology, Guangzhou 510006, China
| | - Dongli Li
- Department of Chemical Engineering and Environment, Wuyi University, Jiangmen 510060, China
| | - Junlei Liu
- Allan H. Conney Laboratory for Anticancer Research, Guangdong University of Technology, Guangzhou 510006, China
| | - Kun Zhang
- Allan H. Conney Laboratory for Anticancer Research, Guangdong University of Technology, Guangzhou 510006, China
| | - Xi Zheng
- Allan H. Conney Laboratory for Anticancer Research, Guangdong University of Technology, Guangzhou 510006, China; Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States.
| | - Susan Goodin
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, United States
| |
Collapse
|
17
|
Zu Y, Ping W, Deng T, Zhang N, Fu X, Sun W. Lipopolysaccharide-induced toll-like receptor 4 signaling in esophageal squamous cell carcinoma promotes tumor proliferation and regulates inflammatory cytokines expression. Dis Esophagus 2017; 30:1-8. [PMID: 27061118 DOI: 10.1111/dote.12466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Emerging evidence suggests toll-like receptor 4 (TLR4) signaling contributes to cancer development and progression. However, the consequences of signaling via the TLR4 pathway in esophageal squamous cell carcinoma (ESCC) are still unclear. Here, we investigated the impact of Lipopolysaccharide (LPS)-induced TLR4 signaling on ESCC cell proliferation, inflammatory cytokines expression, and downstream molecular mechanisms. Seventy-eight ESCC and 26 normal esophageal specimens were analyzed by immunohistochemistry, and two cell lines (Eca-109 and TE-1) were used for in vitro studies. LPS, a natural agonist of TLR4, was used to activate TLR4 signaling. The effects of LPS-TLR4 signaling on cell proliferation and inflammatory cytokines regulation were examined. Specific inhibitors of mitogen-activated protein kinase (MAPK) (extracellular regulated protein kinase [ERK] and p38) signaling pathways were used to investigate the role of each pathway in LPS-TLR4 signaling. TLR4 protein was increased in ESCC tumor tissues compared with the adjacent normal tissues. TLR4 over-expression was significantly correlated with tumor differentiation grade, lymph node metastasis, and UICC stage. LPS-induced activation of TLR4 signaling promoted cancer cell proliferation, increased production of proinflammatory or immunosuppressive cytokines TNF-α, TGF-β and inhibited the anti-inflammatory cytokine IL-10. LPS-TLR4 signaling was associated with the activation of ERK and p38 MAPK signaling pathways. Further inactivation of the two pathways by specific inhibitors attenuated cell proliferation and inflammatory cytokines expression induced by LPS. Our results indicate that LPS-TLR4 signaling in cancer cells contributes to the progression of human ESCC.
Collapse
Affiliation(s)
- Yukun Zu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, Hubei, P. R. China
| | - Wei Ping
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, Hubei, P. R. China
| | - Taoran Deng
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ni Zhang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, Hubei, P. R. China
| | - Xiangning Fu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, Hubei, P. R. China
| | - Wei Sun
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, Hubei, P. R. China
| |
Collapse
|
18
|
Oh JH, Deasy JO. A literature mining-based approach for identification of cellular pathways associated with chemoresistance in cancer. Brief Bioinform 2015. [PMID: 26220932 DOI: 10.1093/bib/bbv053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chemoresistance is a major obstacle to the successful treatment of many human cancer types. Increasing evidence has revealed that chemoresistance involves many genes and multiple complex biological mechanisms including cancer stem cells, drug efflux mechanism, autophagy and epithelial-mesenchymal transition. Many studies have been conducted to investigate the possible molecular mechanisms of chemoresistance. However, understanding of the biological mechanisms in chemoresistance still remains limited. We surveyed the literature on chemoresistance-related genes and pathways of multiple cancer types. We then used a curated pathway database to investigate significant chemoresistance-related biological pathways. In addition, to investigate the importance of chemoresistance-related markers in protein-protein interaction networks identified using the curated database, we used a gene-ranking algorithm designed based on a graph-based scoring function in our previous study. Our comprehensive survey and analysis provide a systems biology-based overview of the underlying mechanisms of chemoresistance.
Collapse
|
19
|
Jain S, Suklabaidya S, Das B, Raghav SK, Batra SK, Senapati S. TLR4 activation by lipopolysaccharide confers survival advantage to growth factor deprived prostate cancer cells. Prostate 2015; 75:1020-33. [PMID: 25833062 DOI: 10.1002/pros.22983] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 01/23/2015] [Indexed: 02/01/2023]
Abstract
BACKGROUND Prostate cancer (PCa) cells express Toll-like receptor-4 (TLR4), a known pro-tumorigenic molecule for different cancer cells. The cancer cells residing in the avascular region of the tumor confront various metabolic stresses and continuously adapt mechanisms to overcome them. We hypothesized that TLR4 activation might provide direct survival advantage to metabolically stressed PCa cells. METHODS We first investigated the effect of LPS on survival of serum deprived PCa cells. To understand the molecular mechanisms involved in TLR4 mediated PCa survival, we next investigated change in expression of markers for apoptosis, senescence and autophagy. Ultimately, the effect of LPS on established prostate tumors was confirmed in vivo using a syngeneic rat model for PCa. RESULTS Lipopolysaccharide (LPS)-mediated TLR4 activation significantly enhanced survival of serum deprived (SD) PC3, DU145 and MAT-LyLu PCa cells. TLR4 inhibition by a specific inhibitor resulted in rapid death of SD-PC3 cells, which was significantly suppressed by LPS. Interestingly, LPS treatment suppressed macroautophagy in SD-PC3 cells and increased expression of CCL2 (C-C motif ligand-2), a known autophagy inhibitor and pro-survival factor. Intra-tumor LPS injection resulted in increased tumor mass, induced TLR4 activation, suppressed autophagy, and increased the macrophage population in MAT-LyLu-tumors. CONCLUSIONS Our study reveals that bacterial LPS enhance survival of PCa cells under conditions of nutrient stress through TLR4 activation. Moreover, LPS induces overexpression of CCL2 involved in the suppression of starvation-induced macroautophagy in PCa cells, and enhanced macrophage population in prostate tumors in vivo. Taken together, the current study suggests the importance of bacterial infection or TLR4-activation in prostate cancer pathogenesis.
Collapse
Affiliation(s)
- Sumeet Jain
- Institute of Life Sciences, Bhubaneswar, Odisha, India
- Manipal University, Manipal, Karnataka, India
| | - Sujit Suklabaidya
- Institute of Life Sciences, Bhubaneswar, Odisha, India
- Manipal University, Manipal, Karnataka, India
| | - Biswajit Das
- Institute of Life Sciences, Bhubaneswar, Odisha, India
| | | | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, Buffett Cancer Center, Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, Nebraska
| | | |
Collapse
|
20
|
Zhao S, Zhang Y, Zhang Q, Wang F, Zhang D. Toll-like receptors and prostate cancer. Front Immunol 2014; 5:352. [PMID: 25101092 PMCID: PMC4107957 DOI: 10.3389/fimmu.2014.00352] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 07/09/2014] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer is the second leading cause of cancer-related death in men after lung cancer. Immune responses clearly play a critical role in the tumorigenesis and in the efficacy of radiation therapy and chemotherapy in prostate cancer; however, the underlying molecular mechanisms are still poorly understood. Toll-like receptors (TLRs) are a well-known family of pattern recognition receptors that play a key role in host immune system. Recent studies demonstrate that there are links between TLRs and cancer; however, the function and biological importance of TLRs in prostate cancer seems complex. To elucidate the role of TLRs and innate immunity in prostate cancer might provide us with a better understanding of the molecular mechanisms of this disease. Moreover, utilizing the agonists or antagonists of TLRs might represent a promising new strategy against prostate cancer. In this review, we summarize recent advances on the studies of association between TLR signaling and prostate cancer, TLR polymorphisms and prostate cancer risk, and provide some insights about TLRs as potential targets for prostate cancer immunotherapy.
Collapse
Affiliation(s)
- Shu Zhao
- Institute of Biosciences and Technology, Texas A&M University Health Science Center , Houston, TX , USA ; Department of Medical Oncology, Affiliated Tumor Hospital of Harbin Medical University , Harbin , China
| | - Yifan Zhang
- Institute of Biosciences and Technology, Texas A&M University Health Science Center , Houston, TX , USA
| | - Qingyuan Zhang
- Department of Medical Oncology, Affiliated Tumor Hospital of Harbin Medical University , Harbin , China
| | - Fen Wang
- Institute of Biosciences and Technology, Texas A&M University Health Science Center , Houston, TX , USA
| | - Dekai Zhang
- Institute of Biosciences and Technology, Texas A&M University Health Science Center , Houston, TX , USA
| |
Collapse
|
21
|
Traka MH, Melchini A, Mithen RF. Sulforaphane and prostate cancer interception. Drug Discov Today 2014; 19:1488-92. [PMID: 25051139 DOI: 10.1016/j.drudis.2014.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 07/14/2014] [Indexed: 12/20/2022]
Abstract
Whereas much attention is focused on distinguishing newly diagnosed prostate cancers that will progress to become aggressive forms of the disease from those that will remain indolent, it is also appropriate to explore therapeutic and lifestyle interventions to reduce the risk of progression. Diets rich in broccoli have been associated with a reduction in risk of progression, which has been attributed to the compound sulforaphane. Although the mode of action of sulforaphane has been extensively studied in cell and animal models and a multiple of mechanisms that could underpin its protective effects have been proposed, recent evidence from human intervention studies suggests that sulforaphane is involved in a complex interplay between redox status and metabolism to result in a tissue environment that does not favour prostate cancer progression.
Collapse
Affiliation(s)
- Maria H Traka
- Food and Health Programme, Institute of Food Research, Norwich Research Park, Norwich, NR4 7UA, UK
| | - Antonietta Melchini
- Food and Health Programme, Institute of Food Research, Norwich Research Park, Norwich, NR4 7UA, UK
| | - Richard F Mithen
- Food and Health Programme, Institute of Food Research, Norwich Research Park, Norwich, NR4 7UA, UK.
| |
Collapse
|
22
|
Saar M, Zhao H, Nolley R, Young SR, Coleman I, Nelson PS, Vessella RL, Peehl DM. Spheroid culture of LuCaP 147 as an authentic preclinical model of prostate cancer subtype with SPOP mutation and hypermutator phenotype. Cancer Lett 2014; 351:272-80. [PMID: 24998678 DOI: 10.1016/j.canlet.2014.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/16/2014] [Accepted: 06/24/2014] [Indexed: 11/24/2022]
Abstract
LuCaP serially transplantable xenografts are valuable preclinical models of locally advanced or metastatic prostate cancer. For the first time, we recently succeeded in establishing and serially passaging spheroid cultures of several LuCaP xenografts. Here, we characterized in depth the molecular and cellular phenotype of LuCaP 147 cultures and found faithful retention of the characteristics of the original xenograft, including immunophenotype, genetic fidelity, gene expression profile and responsiveness to androgen. Furthermore, we demonstrated capabilities for high-throughput drug screening and that anti-cancer agents induced cell cycle arrest and apoptosis in spheroid cultures. Finally, we showed that cells formed tumors when re-introduced into mice, providing an authentic in vitro-in vivo preclinical model of a subtype of prostate cancer with a hypermutator phenotype and an SPOP mutation.
Collapse
Affiliation(s)
- Matthias Saar
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Urology and Pediatric Urology, University of Saarland, Homburg, Saar, Germany
| | - Hongjuan Zhao
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rosalie Nolley
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sarah R Young
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ilsa Coleman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Peter S Nelson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Robert L Vessella
- Department of Urology, University of Washington, Puget Sound VA Health Care System, Seattle, WA 98195, USA
| | - Donna M Peehl
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
23
|
Sivanathan L, Chow A, Wong A, Hoang VC, Emmenegger U. In vivo passage of human prostate cancer cells in mice results in stable gene expression changes affecting numerous cancer-associated biological processes. Prostate 2014; 74:537-46. [PMID: 24435653 DOI: 10.1002/pros.22774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 12/23/2013] [Indexed: 11/09/2022]
Abstract
BACKGROUND While therapeutic resistance is difficult to model in vitro in its entirety, in vivo passage and re-derivation of treatment resistant prostate cancer cell variants is a strategy to study therapeutic resistance more comprehensively. However, the process of in vivo passage itself may result in gene expression changes that could confound the analysis of such resistant cell variants compared to their parental cell lines. METHODS We compared the expression profiles of parental PC-3 human prostate cancer cells and PC-3 cells re-derived after in vivo passage in athymic nude mice. Whole transcriptome information was obtained using the SOLiD 4 system (Applied Biosystems). Differentially expressed genes were mapped to genes in the Database for Annotation, Visualization and Integrated Discovery for gene enrichment and functional annotation analysis. The expression of a panel of these genes was validated using quantitative RT-PCR. RESULTS Altogether, 21,032 distinct transcripts were found in PC-3 and/or NS1.1. Of these, 906 were differentially regulated (≥2-fold) in NS1.1 versus PC-3. 337 transcripts were upregulated, and 569 were downregulated, including genes previously associated with various aspects of prostate carcinogenesis such as TLR4 and IGFBP5, respectively. Gene ontology analysis of the differentially expressed transcripts revealed enrichment for biological processes such as cell adhesion, migration, and angiogenesis. CONCLUSIONS When using in vivo as opposed to in vitro derived prostate cancer cell variants for comparative genetic studies of complex traits such as therapeutic resistance, one may be better served to use similarly in vivo passaged control cell variants instead of parental cell lines.
Collapse
Affiliation(s)
- Lavarnan Sivanathan
- Biological Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
24
|
Vacchelli E, Eggermont A, Sautès-Fridman C, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Toll-like receptor agonists for cancer therapy. Oncoimmunology 2013; 2:e25238. [PMID: 24083080 PMCID: PMC3782517 DOI: 10.4161/onci.25238] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 05/31/2013] [Indexed: 12/19/2022] Open
Abstract
Toll-like receptors (TLRs) have long been known for their ability to initiate innate immune responses upon exposure to conserved microbial components such as lipopolysaccharide (LPS) and double-stranded RNA. More recently, this family of pattern recognition receptors has been attributed a critical role in the elicitation of anticancer immune responses, raising interest in the development of immunochemotherapeutic regimens based on natural or synthetic TLR agonists. In spite of such an intense wave of preclinical and clinical investigation, only three TLR agonists are currently licensed by FDA for use in cancer patients: bacillus Calmette–Guérin (BCG), an attenuated strain of Mycobacterium bovis that operates as a mixed TLR2/TLR4 agonist; monophosphoryl lipid A (MPL), a derivative of Salmonella minnesota that functions as a potent agonist of TLR4; and imiquimod, a synthetic imidazoquinoline that activates TLR7. One year ago, in the August and September issues of OncoImmunology, we described the main biological features of TLRs and discussed the progress of clinical studies evaluating the safety and therapeutic potential of TLR agonists in cancer patients. Here, we summarize the latest developments in this exciting area of research, focusing on preclinical studies that have been published during the last 13 mo and clinical trials launched in the same period to investigate the antineoplastic activity of TLR agonists.
Collapse
Affiliation(s)
- Erika Vacchelli
- Institut Gustave Roussy; Villejuif, France ; Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre; Paris, France ; INSERM, U848; Villejuif, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Rajput S, Volk-Draper LD, Ran S. TLR4 is a novel determinant of the response to paclitaxel in breast cancer. Mol Cancer Ther 2013; 12:1676-87. [PMID: 23720768 DOI: 10.1158/1535-7163.mct-12-1019] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Overexpression of Toll-like receptor-4 (TLR4) in human tumors often correlates with chemoresistance and metastasis. We found that TLR4 is overexpressed in the majority of clinical breast cancer samples and in 68% of the examined breast cancer lines. TLR4 is activated by lipopolysaccharide (LPS) and other ligands including the widely used drug paclitaxel. LPS is frequently used to show a tumor-promoting role of TLR4 although this bacterial component is unlikely to be found in the breast cancer environment. We reasoned that paclitaxel-dependent activation of TLR4 is more relevant to breast cancer chemoresistance that could be mediated by activation of the NF-κB pathway leading to upregulation of prosurvival genes. To test this hypothesis, we correlated TLR4 expression with resistance to paclitaxel in two modified breast cancer lines with either depleted or overexpressed TLR4 protein. Depletion of TLR4 in naturally overexpressing MDA-MB-231 cells downregulated prosurvival genes concomitant with 2- to 3-fold reduced IC(50) to paclitaxel in vitro and a 6-fold decrease in recurrence rate in vivo. Conversely, TLR4 overexpression in a negative cell line HCC1806 significantly increased expression of inflammatory and prosurvival genes along with a 3-fold increase of IC(50) to paclitaxel in vitro and enhanced tumor resistance to paclitaxel therapy in vivo. Importantly, both tumor models showed that many paclitaxel-upregulated inflammatory cytokines were coinduced with their receptors suggesting that this therapy induces autocrine tumor-promoting loops. Collectively, these results show that paclitaxel not only kills tumor cells but also enhances their survival by activating TLR4 pathway. These findings suggest that blocking TLR4 could significantly improve response to paclitaxel therapy.
Collapse
Affiliation(s)
- Sandeep Rajput
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62794, USA
| | | | | |
Collapse
|