1
|
Song M, Qiang Y, Zhao X, Song F. Cyclin-dependent Kinase 5 and Neurodegenerative Diseases. Mol Neurobiol 2024; 61:7287-7302. [PMID: 38378992 DOI: 10.1007/s12035-024-04047-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 02/07/2024] [Indexed: 02/22/2024]
Abstract
Neurodegenerative diseases are a group of diseases characterized by the progressive loss of neurons, including Alzheimer's disease, Parkinson's disease, and Amyotrophic lateral sclerosis. These diseases have a high incidence and mortality rate globally, placing a heavy burden on patients and their families. The pathogenesis of neurodegenerative diseases is complex, and there are no effective treatments at present. Cyclin-dependent kinase 5 is a proline-directed serine/threonine protein kinase that is closely related to the development and function of the nervous system. Under physiological conditions, it is involved in regulating the process of neuronal proliferation, differentiation, migration, and synaptic plasticity. Moreover, there is increasing evidence that cyclin-dependent kinase 5 also plays an important role in the pathogenesis of neurodegenerative diseases. In this review, we address the biological characteristics of cyclin-dependent kinase 5 and its role in neurodegenerative diseases. In particular, this review highlights the underlying mechanistic linkages between cyclin-dependent kinase 5 and mitochondrial dysfunction, oxidative stress and neuroinflammation in the context of neurodegeneration. Finally, we also summarize the currently available cyclin-dependent kinase 5 inhibitors and their prospects for the treatment of neurodegenerative diseases. Taken together, a better understanding of the molecular mechanisms of cyclin-dependent kinase 5 involved in neurodegenerative diseases can lead to the development of new strategies for the prevention and treatment of these devastating diseases.
Collapse
Affiliation(s)
- Mingxue Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Yalong Qiang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Xiulan Zhao
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Fuyong Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China.
| |
Collapse
|
2
|
Cao Y, Li F, Sun Z, Liu J, Liu J, Yang Q, Ge P, Luo Y, Chen H. Regulation of Microtubule Stability in Pulmonary Microvascular Endothelial Cells in Rats with Severe Acute Pancreatitis: Qingyi Decoction is a Potential CDK5 Inhibitor. J Inflamm Res 2024; 17:2513-2530. [PMID: 38699595 PMCID: PMC11063490 DOI: 10.2147/jir.s451755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
Purpose Explore the therapeutic effects and regulatory mechanism of Qingyi Decoction (QYD) on severe acute pancreatitis (SAP) associated acute lung injury (ALI). Methods We identified the constituents absorbed into the blood of QYD based on a network pharmacological strategy. The differentially expressed genes from the GEO database were screened to identify the critical targets of QYD treatment of SAP-ALI. The SAP-ALI rat model was constructed.Some methods were used to evaluate the efficacy and mechanism of QYD in treating SAP-ALI. LPS-stimulated pulmonary microvascular endothelial cell injury simulated the SAP-induced pulmonary endothelial injury model. We further observed the therapeutic effect of QYD and CDK5 plasmid transfection on endothelial cell injury. Results 18 constituents were absorbed into the blood, and 764 targets were identified from QYD, 25 of which were considered core targets for treating SAP-ALI. CDK5 was identified as the most critical gene. The results of differential expression analysis showed that the mRNA expression level of CDK5 in the blood of SAP patients was significantly up-regulated compared with that of healthy people. Animal experiments have demonstrated that QYD can alleviate pancreatic and lung injury inflammatory response and reduce the upregulation of CDK5 in lung tissue. QYD or CDK5 inhibitors could decrease the expression of NFAT5 and GEF-H1, and increase the expression of ACE-tub in SAP rat lung tissue. Cell experiments proved that QYD could inhibit the expression of TNF-α and IL-6 induced by LPS. Immunofluorescence results suggested that QYD could alleviate the cytoskeleton damage of endothelial cells, and the mechanism might be related to the inhibition of CDK5-mediated activation of NFAT5, GEF-H1, and ACE-tub. Conclusion CDK5 has been identified as a critical target for pulmonary endothelial injury of SAP-ALI. QYD may partially alleviate microtubule disassembly by targeting the CDK5/NFAT5/GEF-H1 signaling pathway, thus relieving SAP-induced pulmonary microvascular endothelial cell injury.
Collapse
Affiliation(s)
- Yinan Cao
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Fan Li
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Zhenxuan Sun
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Jin Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Jie Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Qi Yang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Peng Ge
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Yalan Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| |
Collapse
|
3
|
Yang S, Jiao D, Song T, Rui P, Fan R, Ma Z. Gene expression profiles of skin from cyclin dependent kinases 5-knockdown mice. Anim Biosci 2024; 37:567-575. [PMID: 37946423 PMCID: PMC10915219 DOI: 10.5713/ab.23.0244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/15/2023] [Accepted: 10/02/2023] [Indexed: 11/12/2023] Open
Abstract
OBJECTIVE This study aimed to identify genes regulated by cyclin dependent kinases 5 (CDK5) that participate in hair pigmentation in mice. METHODS The mRNA expression profiles of skin samples from CDK5-knockdown mice were constructed using high-throughput RNA sequencing and compared with those of wild-type mice. RESULTS In total, 8,002 known genes were differentially expressed between CDK5-knockdown and wild-type mice. Of these, 3,658 were upregulated and 4,344 were downregulated in the skin of CDK5-knockdown mice. An additional 318 previously unknown genes were also differentially expressed, with 171 downregulated and 147 upregulated genes in the skin of CDK5-knockdown mice. Of the known genes expressed in mouse skin, 80 were associated with hair color, with 61 showing lower expression and 19 exhibiting higher expression in skin of CDK5-knockdown mice. Importantly, the expression of the tyrosinase-related protein 1 (TYRP1) and the calcium signaling pathway were also found to be regulated by CDK5, suggesting that pigmentation is regulated by CDK5 via the calcium signaling pathway and TYRP1. CONCLUSION The transcriptome profiles obtained from the skin of CDK5-knockdown mice compared to wild-type mice provide a valuable resource to help understand the mechanism by which CDK5 regulates melanogenesis in mice and other animals.
Collapse
Affiliation(s)
- Shanshan Yang
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066600,
China
- Hebei Key Laboratory of Veterinary Preventive Medicine, College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066600,
China
| | - Dingxing Jiao
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066600,
China
- Hebei Key Laboratory of Veterinary Preventive Medicine, College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066600,
China
| | - Tao Song
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066600,
China
- Hebei Key Laboratory of Veterinary Preventive Medicine, College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066600,
China
| | - Ping Rui
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066600,
China
- Hebei Key Laboratory of Veterinary Preventive Medicine, College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066600,
China
| | - Ruiwen Fan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801,
China
| | - Zengjun Ma
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066600,
China
- Hebei Key Laboratory of Veterinary Preventive Medicine, College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066600,
China
| |
Collapse
|
4
|
Wu W, Lin L, Zhao Y, Li H, Zhang R. Protein modification regulated autophagy in Bombyx mori and Drosophila melanogaster. Front Physiol 2023; 14:1281555. [PMID: 38028759 PMCID: PMC10665574 DOI: 10.3389/fphys.2023.1281555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Post-translational modifications refer to the chemical alterations of proteins following their biosynthesis, leading to changes in protein properties. These modifications, which encompass acetylation, phosphorylation, methylation, SUMOylation, ubiquitination, and others, are pivotal in a myriad of cellular functions. Macroautophagy, also known as autophagy, is a major degradation of intracellular components to cope with stress conditions and strictly regulated by nutrient depletion, insulin signaling, and energy production in mammals. Intriguingly, in insects, 20-hydroxyecdysone signaling predominantly stimulates the expression of most autophagy-related genes while concurrently inhibiting mTOR activity, thereby initiating autophagy. In this review, we will outline post-translational modification-regulated autophagy in insects, including Bombyx mori and Drosophila melanogaster, in brief. A more profound understanding of the biological significance of post-translational modifications in autophagy machinery not only unveils novel opportunities for autophagy intervention strategies but also illuminates their potential roles in development, cell differentiation, and the process of learning and memory processes in both insects and mammals.
Collapse
Affiliation(s)
- Wenmei Wu
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Luobin Lin
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Yuntao Zhao
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Huaqin Li
- Guangzhou Xinhua University, Guangzhou, Guangdong, China
| | - Rongxin Zhang
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Tian Y, Jing G, Zhang M. Insulin-degrading enzyme: Roles and pathways in ameliorating cognitive impairment associated with Alzheimer's disease and diabetes. Ageing Res Rev 2023; 90:101999. [PMID: 37414154 DOI: 10.1016/j.arr.2023.101999] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/12/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Accumulation of amyloid-β in the central nervous system is a common feature of Alzheimer's disease (AD) and diabetes-related cognitive impairment. Since the insulin-degrading enzyme (IDE) can break down amyloid-β plaques, there is considerable interest in using this enzyme to treat both neurological disorders. In this review, we have summarized the pre-clinical and clinical research on the potential application of IDE for the improvement of cognitive impairment. Furthermore, we have presented an overview of the main pathways that can be targeted to mitigate the progression of AD and the cognitive impairment caused by diabetes.
Collapse
Affiliation(s)
- Yue Tian
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Guangchan Jing
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Mengren Zhang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
6
|
Jabeur R, Corbel C, Loyer P, Le Parc A, Le Grand A, Comte A, Bach S, André-Leroux G, Sire O, Ben Mansour H, Le Tilly V. Identification of Novel Compounds Inhibiting the Kinase Activity of the CDK5/p25 Complex via Direct Binding to p25. Biochemistry 2023; 62:1452-1463. [PMID: 37074084 DOI: 10.1021/acs.biochem.2c00691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Tamoxifen, the gold standard drug for endocrine therapy for breast cancer, modulates the phosphorylation status of the TAU protein in Alzheimer's disease by inhibiting CDK5 kinase activity. Its binding to p25 prevents CDK5/p25 complexation and hence a decrease of CDK5 activity. In breast tumors, this complex is involved in the proliferation and survival of cancer cells, as well as in the disease's prognosis. Still, the molecular stability of the CDK5/p25 complex following tamoxifen exposure in this cancer type has not yet been clearly deciphered. Here, we report the functional characterization of CDK5 and its p25 regulatory subunit in the absence and presence of tamoxifen. In addition, two novel inhibitors of the kinase activity of the CDK5/p25 complex are identified, both of which would reduce the risk of recurrence of estrogen receptor-positive (ER+) breast cancers and prevent drawbacks induced by tamoxifen exposure. Accordingly, 6His-CDK5 and 6His-p25 have been expressed and purified. Fluorescence anisotropy measurements have been used to assess that the two proteins do form an active complex, and thermodynamic parameters of their interaction were measured. It was also confirmed that tamoxifen directly binds to p25 and inhibits CDK5 kinase activity. Similar observations were obtained using 4-hydroxytamoxifen, an active metabolized form of tamoxifen. Two novel compounds have been identified here that harbor a benzofuran moiety and were shown to target directly p25, and their bindings resulted in decreased CDK5 kinase activity. This encouraging alternative opens the way to the ensuing chemical optimization of this scaffold. It also promises a more specific therapeutic approach that may both tackle the pathological signaling in breast cancer and provide a potential new drug for Alzheimer's disease.
Collapse
Affiliation(s)
- Riheb Jabeur
- IRDL UMR CNRS 6027, Université Bretagne Sud, 56017 Vannes, France
- Research Unit of Analysis and Process Applied on the Environment─APAE UR17ES32, Higher Institute of Applied Sciences and Technology, Mahdia, University of Monastir, TN5121 Monastir, Tunisia
| | - Caroline Corbel
- IRDL UMR CNRS 6027, Université Bretagne Sud, 56017 Vannes, France
| | - Pascal Loyer
- Univ Rennes, INSERM, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer) UMR-A 1341, UMR-S 1241, F-35000 Rennes, France
| | | | | | - Arnaud Comte
- Compound Library, ICBMS UMR 5246 CNRS-Université Claude Bernard Lyon 1, Université de Lyon, 69622 Villeurbanne, France
| | - Stéphane Bach
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
- Sorbonne Université, CNRS, FR2424, Plateforme de criblage KISSf (Kinase Inhibitor Specialized Screening facility), Station Biologique de Roscoff, 29680 Roscoff, France
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, 2520 Potchefstroom, South Africa
| | | | - Olivier Sire
- IRDL UMR CNRS 6027, Université Bretagne Sud, 56017 Vannes, France
| | - Hedi Ben Mansour
- Research Unit of Analysis and Process Applied on the Environment─APAE UR17ES32, Higher Institute of Applied Sciences and Technology, Mahdia, University of Monastir, TN5121 Monastir, Tunisia
| | | |
Collapse
|
7
|
Mounika P, Gurupadayya B, Kumar HY, Namitha B. An Overview of CDK Enzyme Inhibitors in Cancer Therapy. Curr Cancer Drug Targets 2023; 23:603-619. [PMID: 36959160 DOI: 10.2174/1568009623666230320144713] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 03/25/2023]
Abstract
The ability to address the cell cycle in cancer therapy brings up new medication development possibilities. Cyclin-dependent kinases are a group of proteins that control the progression of the cell cycle. The CDK/cyclin complexes are activated when specific CDK sites are phosphorylated. Because of their non-selectivity and severe toxicity, most first-generation CDK inhibitors (also known as pan-CDK inhibitors) have not been authorized for clinical usage. Despite this, significant progress has been made in allowing pan-CDK inhibitors to be employed in clinical settings. Pan-CDK inhibitors' toxicity and side effects have been lowered in recent years because of the introduction of combination therapy techniques. As a result of this, pan-CDK inhibitors have regained a lot of clinical potential as a combination therapy approach. The CDK family members have been introduced in this overview, and their important roles in cell cycle control have been discussed. Then, we have described the current state of CDK inhibitor research, with a focus on inhibitors other than CDK4/6. We have mentioned first-generation pan-CDKIs, flavopiridol and roscovitine, as well as second-generation CDKIs, dinaciclib, P276-00, AT7519, TG02, roniciclib, and RGB-286638, based on their research phases, clinical trials, and cancer targeting. CDKIs are CDK4/6, CDK7, CDK9, and CDK12 inhibitors. Finally, we have looked into the efficacy of CDK inhibitors and PD1/PDL1 antibodies when used together, which could lead to the development of a viable cancer treatment strategy.
Collapse
Affiliation(s)
- Peddaguravagari Mounika
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Bannimath Gurupadayya
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Honnavalli Yogish Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Bannimath Namitha
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| |
Collapse
|
8
|
Gupta A, Dagar G, Chauhan R, Sadida HQ, Almarzooqi SK, Hashem S, Uddin S, Macha MA, Akil ASAS, Pandita TK, Bhat AA, Singh M. Cyclin-dependent kinases in cancer: Role, regulation, and therapeutic targeting. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 135:21-55. [PMID: 37061333 DOI: 10.1016/bs.apcsb.2023.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Regulated cell division is one of the fundamental phenomena which is the basis of all life on earth. Even a single base pair mutation in DNA leads to the production of the dysregulated protein that can have catastrophic consequences. Cell division is tightly controlled and orchestrated by proteins called cyclins and cyclin-dependent kinase (CDKs), which serve as licensing factors during different phases of cell division. Dysregulated cell division is one of the most important hallmarks of cancer and is commonly associated with a mutation in cyclins and CDKs along with tumor suppressor proteins. Therefore, targeting the component of the cell cycle which leads to these characteristics would be an effective strategy for treating cancers. Specifically, Cyclin-dependent kinases (CDKs) involved in cell cycle regulation have been identified to be overexpressed in many cancers. Many studies indicate that oncogenesis occurs in cancerous cells by the overactivity of different CDKs, which impact cell cycle progression and checkpoint dysregulation which is responsible for development of tumor. The development of CDK inhibitors has emerged as a promising and novel approach for cancer treatment in both solid and hematological malignancies. Some of the novel CDK inhibitors have shown remarkable results in clinical trials, such as-Ribociclib®, Palbociclib® and Abemaciclib®, which are CDK4/6 inhibitors and have received FDA approval for the treatment of breast cancer. In this chapter, we discuss the molecular mechanism through which cyclins and CDKs regulate cell cycle progression and the emergence of cyclins and CDKs as rational targets in cancer. We also discuss recent advances in developing CDK inhibitors, which have emerged as a novel class of inhibitors, and their associated toxicities in recent years.
Collapse
Affiliation(s)
- Ashna Gupta
- Department of Medical Oncology, Dr B.R Ambedkar Institute Rotary Cancer Hospital All India Institute of Medical Sciences, New Delhi, India
| | - Gunjan Dagar
- Department of Medical Oncology, Dr B.R Ambedkar Institute Rotary Cancer Hospital All India Institute of Medical Sciences, New Delhi, India
| | - Ravi Chauhan
- Department of Medical Oncology, Dr B.R Ambedkar Institute Rotary Cancer Hospital All India Institute of Medical Sciences, New Delhi, India
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Sara K Almarzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Sheema Hashem
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Jammu and Kashmir, India
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Tej K Pandita
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, TX, United States
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar.
| | - Mayank Singh
- Department of Medical Oncology, Dr B.R Ambedkar Institute Rotary Cancer Hospital All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
9
|
Hedna R, Kovacic H, Pagano A, Peyrot V, Robin M, Devred F, Breuzard G. Tau Protein as Therapeutic Target for Cancer? Focus on Glioblastoma. Cancers (Basel) 2022; 14:5386. [PMID: 36358803 PMCID: PMC9653627 DOI: 10.3390/cancers14215386] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 08/27/2023] Open
Abstract
Despite being extensively studied for several decades, the microtubule-associated protein Tau has not finished revealing its secrets. For long, Tau has been known for its ability to promote microtubule assembly. A less known feature of Tau is its capability to bind to cancer-related protein kinases, suggesting a possible role of Tau in modulating microtubule-independent cellular pathways that are associated with oncogenesis. With the intention of finding new therapeutic targets for cancer, it appears essential to examine the interaction of Tau with these kinases and their consequences. This review aims at collecting the literature data supporting the relationship between Tau and cancer with a particular focus on glioblastoma tumors in which the pathological significance of Tau remains largely unexplored. We will first treat this subject from a mechanistic point of view showing the pivotal role of Tau in oncogenic processes. Then, we will discuss the involvement of Tau in dysregulating critical pathways in glioblastoma. Finally, we will outline promising strategies to target Tau protein for the therapy of glioblastoma.
Collapse
Affiliation(s)
- Rayane Hedna
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Hervé Kovacic
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Alessandra Pagano
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Vincent Peyrot
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Maxime Robin
- Faculté de Pharmacie, Institut Méditerranéen de Biodiversité et Ecologie marine et continentale (IMBE), UMR 7263, CNRS, IRD 237, Aix-Marseille Université, 13005 Marseille, France
| | - François Devred
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Gilles Breuzard
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| |
Collapse
|
10
|
Wei Y, Zhou X, Chen P, Jiang X, Jiang Z, Dong Z, Pan M, Lu C. BmCDK5 Affects Cell Proliferation and Cytoskeleton Morphology by Interacting with BmCNN in Bombyx mori. INSECTS 2022; 13:insects13070609. [PMID: 35886785 PMCID: PMC9323621 DOI: 10.3390/insects13070609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023]
Abstract
The ordered cell cycle is important to the proliferation and differentiation of living organisms. Cyclin-dependent kinases (CDKs) perform regulatory functions in different phases of the cell cycle process to ensure order. We identified a homologous gene of the Cyclin-dependent kinase family, BmCDK5, in Bombyx mori. BmCDK5 contains the STKc_CDK5 domain. The BmCDK5 gene was highly expressed in S phase. Overexpression of the BmCDK5 gene accelerates the process of the cell cycle's mitotic period (M) and promotes cell proliferation; knocking out the BmCDK5 gene inhibited cell proliferation. Furthermore, we identified a protein, BmCNN, which can interact with BmCDK5 and represents the same express patterns as the BmCDK5 gene in the cell cycle phase and the spatial-temporal expression of B. mori. This study revealed that BmCDK5 and BmCNN play roles in promoting cell proliferation and regulating cytoskeleton morphology, but do not induce expression changes in microtubule protein. Therefore, our findings provide a new insight; the BmCDK5 gene has a regulatory effect on the cell cycle and proliferation of B. mori, which is presumably due to the interaction between BmCDK5 and BmCNN regulating changes in the cytoskeleton.
Collapse
Affiliation(s)
- Yi Wei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (Y.W.); (X.Z.); (P.C.); (X.J.); (Z.J.); (Z.D.)
| | - Xiaolin Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (Y.W.); (X.Z.); (P.C.); (X.J.); (Z.J.); (Z.D.)
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (Y.W.); (X.Z.); (P.C.); (X.J.); (Z.J.); (Z.D.)
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China
| | - Xia Jiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (Y.W.); (X.Z.); (P.C.); (X.J.); (Z.J.); (Z.D.)
| | - Ziyi Jiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (Y.W.); (X.Z.); (P.C.); (X.J.); (Z.J.); (Z.D.)
| | - Zhanqi Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (Y.W.); (X.Z.); (P.C.); (X.J.); (Z.J.); (Z.D.)
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China
| | - Minhui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (Y.W.); (X.Z.); (P.C.); (X.J.); (Z.J.); (Z.D.)
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China
- Correspondence: (M.P.); (C.L.); Tel.: +86-23-6825-0076 (M.P.); Fax: 86-23-6825-1128 (M.P.)
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (Y.W.); (X.Z.); (P.C.); (X.J.); (Z.J.); (Z.D.)
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China
- Correspondence: (M.P.); (C.L.); Tel.: +86-23-6825-0076 (M.P.); Fax: 86-23-6825-1128 (M.P.)
| |
Collapse
|
11
|
Zhang CH, Qin K, Tian SL, Han Y, Xu SY, Shao XY. Identification and Verification of the Ability of Cdk5 to Phosphorylate Deubiquitinating Enzyme BRCC3 In Vitro. Bull Exp Biol Med 2022; 172:701-708. [PMID: 35503584 DOI: 10.1007/s10517-022-05460-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Indexed: 11/30/2022]
Abstract
It is known that the expression of the deubiquitinating enzyme BRCA1-BRCA2-containing complex subunit 3 (BRCC3) and cyclin-dependent protein kinase 5 (Cdk5) is increased in Parkinson's disease (both are involved in neuroinflammatory response). However, the regulatory mechanism of Cdk5 on the post-translational modification of BRCC3 remains unclear. Here we studied whether Cdk5 phosphorylates BRCC3. Phosphorylation of BRCC3 by Cdk5 was predicted by GPS 5.0 software. His-BRCC3 plasmid was constructed by cloning the BRCC3 gene into pGEX-6P-1 vector, and then His-BRCC3 fusion protein was induced with isopropyl β-d-1-thiogalactopyranoside and purified using His-Tag affinity chromatography purification agarose. Phosphorylation of BRCC3 fusion protein by Cdk5 in vitro was detected by mass spectrometry and Western blotting. The results showed that multiple phosphorylation sites were predicted by GPS 5.0, and the His-BRCC3 fusion protein was successfully induced and purified. In vitro kinase assay, Western blotting, and mass spectrometry showed that Cdk5 can phosphorylate BRCC3. It has been demonstrated that protein kinase Cdk5 can phosphorylate the deubiquitinating enzyme BRCC3 in vitro, which provides new data for further study on the mechanism of neurodegeneration.
Collapse
Affiliation(s)
- C H Zhang
- Department of Human Anatomy, Laboratory Animal Center, Guilin Medical College, Guilin, Guangxi, China
| | - K Qin
- Department of Human Anatomy, Laboratory Animal Center, Guilin Medical College, Guilin, Guangxi, China
| | - S L Tian
- Department of Human Anatomy, Laboratory Animal Center, Guilin Medical College, Guilin, Guangxi, China
| | - Y Han
- Department of Human Anatomy, Laboratory Animal Center, Guilin Medical College, Guilin, Guangxi, China
| | - S Y Xu
- Laboratory Animal Center, Guilin Medical College, Guilin, Guangxi, China.
| | - X Y Shao
- Department of Human Anatomy, Laboratory Animal Center, Guilin Medical College, Guilin, Guangxi, China.
| |
Collapse
|
12
|
Physical Interaction between Cyclin-Dependent Kinase 5 (CDK5) and Clock Factors Affects the Circadian Rhythmicity in Peripheral Oscillators. Clocks Sleep 2022; 4:185-201. [PMID: 35323171 PMCID: PMC8946863 DOI: 10.3390/clockssleep4010017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/22/2022] [Accepted: 03/01/2022] [Indexed: 11/17/2022] Open
Abstract
Circadian rhythms are self-sustained oscillators with a period of 24 h that is based on the output of transcriptional and post-translational feedback loops. Phosphorylation is considered one of the most important post-translational modifications affecting rhythmicity from cyanobacteria to mammals. For example, the lack of cyclin-dependent kinase 5 (CDK5) shortened the period length of the circadian oscillator in the Suprachiasmatic Nuclei (SCN) of mice via the destabilization of the PERIOD 2 (PER2) protein. Here, we show that CDK5 kinase activity and its interaction with clock components, including PER2 and CLOCK, varied over time in mouse embryonic fibroblast cells. Furthermore, the deletion of Cdk5 from cells resulted in a prolonged period and shifted the transcription of clock-controlled genes by about 2 to 4 h with a simple delay of chromatin binding of ARNTL (BMAL1) CLOCK. Taken together, our data indicate that CDK5 is critically involved in regulating the circadian clock in vitro at the molecular level.
Collapse
|
13
|
Daniels MH, Malojcic G, Clugston SL, Williams B, Coeffet-Le Gal M, Pan-Zhou XR, Venkatachalan S, Harmange JC, Ledeboer M. Discovery and Optimization of Highly Selective Inhibitors of CDK5. J Med Chem 2022; 65:3575-3596. [PMID: 35143203 DOI: 10.1021/acs.jmedchem.1c02069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most prevalent monogenic human disease, but to date, only one therapy (tolvaptan) is approved to treat kidney cysts in ADPKD patients. Cyclin-dependent kinase 5 (CDK5), an atypical member of the cyclin-dependent kinase family, has been implicated as a target for treating ADPKD. However, no compounds have been disclosed to date that selectively inhibit CDK5 while sparing the broader CDK family members. Herein, we report the discovery of CDK5 inhibitors, including GFB-12811, that are highly selective over the other tested kinases. In cellular assays, our compounds demonstrate CDK5 target engagement while avoiding anti-proliferative effects associated with inhibiting other CDKs. In addition, we show that the compounds in this series exhibit promising in vivo PK profiles, enabling their use as tool compounds for interrogating the role of CDK5 in ADPKD and other diseases.
Collapse
Affiliation(s)
- Matthew H Daniels
- Goldfinch Bio, 215 First Street, Cambridge, Massachusetts 02142, United States
| | - Goran Malojcic
- Goldfinch Bio, 215 First Street, Cambridge, Massachusetts 02142, United States
| | - Susan L Clugston
- Goldfinch Bio, 215 First Street, Cambridge, Massachusetts 02142, United States
| | - Brett Williams
- Goldfinch Bio, 215 First Street, Cambridge, Massachusetts 02142, United States
| | | | - Xin-Ru Pan-Zhou
- Goldfinch Bio, 215 First Street, Cambridge, Massachusetts 02142, United States
| | | | | | - Mark Ledeboer
- Goldfinch Bio, 215 First Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
14
|
kumar Bhardwaj V, Das P, Purohit R. Identification and comparison of plant-derived scaffolds as selective CDK5 inhibitors against standard molecules: Insights from umbrella sampling simulations. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Cdk5 drives formation of heterogeneous pancreatic neuroendocrine tumors. Oncogenesis 2021; 10:83. [PMID: 34862365 PMCID: PMC8642406 DOI: 10.1038/s41389-021-00372-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/02/2021] [Accepted: 11/11/2021] [Indexed: 01/07/2023] Open
Abstract
Pancreatic neuroendocrine tumors (PanNETs) are a heterogeneous population of neoplasms that arise from hormone-secreting islet cells of the pancreas and have increased markedly in incidence over the past four decades. Non-functional PanNETs, which occur more frequently than hormone-secreting tumors, are often not diagnosed until later stages of tumor development and have poorer prognoses. Development of successful therapeutics for PanNETs has been slow, partially due to a lack of diverse animal models for pre-clinical testing. Here, we report development of an inducible, conditional mouse model of PanNETs by using a bi-transgenic system for regulated expression of the aberrant activator of Cdk5, p25, specifically in β-islet cells. This model produces a heterogeneous population of PanNETs that includes a subgroup of well-differentiated, non-functional tumors. Production of these tumors demonstrates the causative potential of aberrantly active Cdk5 for generation of PanNETs. Further, we show that human PanNETs express Cdk5 pathway components, are dependent on Cdk5 for growth, and share genetic and transcriptional overlap with the INS-p25OE model. The utility of this model is enhanced by the ability to form tumor-derived allografts. This new model of PanNETs will facilitate molecular delineation of Cdk5-dependent PanNETs and the development of new targeted therapeutics.
Collapse
|
16
|
The Atypical Cyclin-Dependent Kinase 5 (Cdk5) Guards Podocytes from Apoptosis in Glomerular Disease While Being Dispensable for Podocyte Development. Cells 2021; 10:cells10092464. [PMID: 34572114 PMCID: PMC8470701 DOI: 10.3390/cells10092464] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/03/2022] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) is expressed in terminally differentiated cells, where it drives development, morphogenesis, and survival. Temporal and spatial kinase activity is regulated by specific activators of Cdk5, dependent on the cell type and environmental factors. In the kidney, Cdk5 is exclusively expressed in terminally differentiated glomerular epithelial cells called podocytes. In glomerular disease, signaling mechanisms via Cdk5 have been addressed by single or combined conventional knockout of known specific activators of Cdk5. A protective, anti-apoptotic role has been ascribed to Cdk5 but not a developmental phenotype, as in terminally differentiated neurons. The effector kinase itself has never been addressed in animal models of glomerular disease. In the present study, conditional and inducible knockout models of Cdk5 were analyzed to investigate the role of Cdk5 in podocyte development and glomerular disease. While mice with podocyte-specific knockout of Cdk5 had no developmental defects and regular lifespan, loss of Cdk5 in podocytes increased susceptibility to glomerular damage in the nephrotoxic nephritis model. Glomerular damage was associated with reduced anti-apoptotic signals in Cdk5-deficient mice. In summary, Cdk5 acts primarily as master regulator of podocyte survival during glomerular disease and—in contrast to neurons—does not impact on glomerular development or maintenance.
Collapse
|
17
|
Fettrelet T, Gigon L, Karaulov A, Yousefi S, Simon HU. The Enigma of Eosinophil Degranulation. Int J Mol Sci 2021; 22:ijms22137091. [PMID: 34209362 PMCID: PMC8268949 DOI: 10.3390/ijms22137091] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 12/18/2022] Open
Abstract
Eosinophils are specialized white blood cells, which are involved in the pathology of diverse allergic and nonallergic inflammatory diseases. Eosinophils are traditionally known as cytotoxic effector cells but have been suggested to additionally play a role in immunomodulation and maintenance of homeostasis. The exact role of these granule-containing leukocytes in health and diseases is still a matter of debate. Degranulation is one of the key effector functions of eosinophils in response to diverse stimuli. The different degranulation patterns occurring in eosinophils (piecemeal degranulation, exocytosis and cytolysis) have been extensively studied in the last few years. However, the exact mechanism of the diverse degranulation types remains unknown and is still under investigation. In this review, we focus on recent findings and highlight the diversity of stimulation and methods used to evaluate eosinophil degranulation.
Collapse
Affiliation(s)
- Timothée Fettrelet
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, CH-3010 Bern, Switzerland; (T.F.); (L.G.); (S.Y.)
- Department of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Lea Gigon
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, CH-3010 Bern, Switzerland; (T.F.); (L.G.); (S.Y.)
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergology, Sechenov University, 119991 Moscow, Russia;
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, CH-3010 Bern, Switzerland; (T.F.); (L.G.); (S.Y.)
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, CH-3010 Bern, Switzerland; (T.F.); (L.G.); (S.Y.)
- Department of Clinical Immunology and Allergology, Sechenov University, 119991 Moscow, Russia;
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420012 Kazan, Russia
- Institute of Biochemistry, Medical School Brandenburg, D-16816 Neuruppin, Germany
- Correspondence: ; Tel.: +41-31-632-3281
| |
Collapse
|
18
|
Abstract
The chronification of pain can be attributed to changes in membrane receptors and channels underlying neuronal plasticity and signal transduction largely within nociceptive neurons that initiate and maintain pathological pain states. These proteins are subject to dynamic modification by posttranslational modifications, creating a code that controls protein function in time and space. Phosphorylation is an important posttranslational modification that affects ∼30% of proteins in vivo. Increased phosphorylation of various nociceptive ion channels and of their modulators underlies sensitization of different pain states. Cyclin-dependent kinases are proline-directed serine/threonine kinases that impact various biological and cellular systems. Cyclin-dependent kinase 5 (Cdk5), one member of this kinase family, and its activators p35 and p39 are expressed in spinal nerves, dorsal root ganglia, and the dorsal horn of the spinal cord. In neuropathic pain conditions, expression and/or activity of Cdk5 is increased, implicating Cdk5 in nociception. Experimental evidence suggests that Cdk5 is regulated through its own phosphorylation, through increasing p35's interaction with Cdk5, and through cleavage of p35 into p25. This narrative review discusses the molecular mechanisms of Cdk5-mediated regulation of target proteins involved in neuropathic pain. We focus on Cdk5 substrates that have been linked to nociceptive pathways, including channels (eg, transient receptor potential cation channel and voltage-gated calcium channel), proteins involved in neurotransmitter release (eg, synaptophysin and collapsin response mediator protein 2), and receptors (eg, glutamate, purinergic, and opioid). By altering the phosphoregulatory "set point" of proteins involved in pain signaling, Cdk5 thus appears to be an attractive target for treating neuropathic pain conditions.
Collapse
|
19
|
Xiao QY, Ye TY, Wang XL, Han L, Wang TX, Qi DM, Cheng XR, Wang SQ. A network pharmacology-based study on key pharmacological pathways and targets of Qi Fu Yin acting on Alzheimer's disease. Exp Gerontol 2021; 149:111336. [PMID: 33785395 DOI: 10.1016/j.exger.2021.111336] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/03/2021] [Accepted: 03/25/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a central nervous system (CNS) disease characterized by progressive cognitive dysfunction and memory loss. Qi Fu Yin is mainly used to treat dementia, particularly AD, in the clinic, but its comprehensive mechanisms are not known. OBJECTIVE In this research, we aimed to investigate the mechanisms of Qi Fu Yin in AD by network pharmacology and molecular docking. METHODS First, the chemical constituents in Qi Fu Yin were obtained from five databases and classified according to their structure. Targets of chemical constituents and AD-related targets were also collected from the databases. Then, overlapping genes between Qi Fu Yin and AD were identified by intersection analysis. MetaCore was used to gather enrichment information. Combination synergy analysis was performed by Cytoscape. After ligand-receptor docking, the binding affinity was verified by ADP-Glo™ kinase assay and fluorescence resonance energy transfer (FRET) assay. RESULTS We found 12 classes with 977 components in Qi Fu Yin. A total of 511 compounds and 577 potential target proteins in Qi Fu Yin were found to be related to AD. The pathways of Qi Fu Yin in AD included oxidative stress and immune response. There was the best binding affinity between 11 pairs of genes and compounds. Furthermore, CDK5 was inhibited by nepetin with an IC50 of 3.172 μM and kaempferol with an IC50 of 2.659 μM. Ceanothic acid and 18 beta-glycyrrhetinic acid inhibited GSK3β, and the IC50 values were 8.732 μM and 8.06 μM, respectively. CONCLUSION Qi Fu Yin might alleviate Tau hyperphosphorylation by nepetin, kaempferol, ceanothic acid and 18 beta-glycyrrhetinic acid.
Collapse
Affiliation(s)
- Qiu-Yue Xiao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Tian-Yuan Ye
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiao-Long Wang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lu Han
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | | | - Dong-Mei Qi
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiao-Rui Cheng
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Sheng-Qi Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
20
|
Do PA, Lee CH. The Role of CDK5 in Tumours and Tumour Microenvironments. Cancers (Basel) 2020; 13:E101. [PMID: 33396266 PMCID: PMC7795262 DOI: 10.3390/cancers13010101] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/11/2022] Open
Abstract
Cyclin-dependent kinase 5 (CDK5), which belongs to the protein kinase family, regulates neuronal function but is also associated with cancer development and has been proposed as a target for cancer treatment. Indeed, CDK5 has roles in cell proliferation, apoptosis, angiogenesis, inflammation, and immune response. Aberrant CDK5 activation triggers tumour progression in numerous types of cancer. In this review, we summarise the role of CDK5 in cancer and neurons and CDK5 inhibitors. We expect that our review helps researchers to develop CDK5 inhibitors as treatments for refractory cancer.
Collapse
Affiliation(s)
| | - Chang Hoon Lee
- Phamaceutical Biochemistry, College of Pharmacy, BK21 FOUR Team, and Integrated Research Institute for Drug Development, Dongguk University, Goyang 100-715, Korea;
| |
Collapse
|
21
|
Burlando B, Milanese M, Giordano G, Bonifacino T, Ravera S, Blanchini F, Bonanno G. A multistationary loop model of ALS unveils critical molecular interactions involving mitochondria and glucose metabolism. PLoS One 2020; 15:e0244234. [PMID: 33332476 PMCID: PMC7746301 DOI: 10.1371/journal.pone.0244234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/05/2020] [Indexed: 02/01/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a poor-prognosis disease with puzzling pathogenesis and inconclusive treatments. We develop a mathematical model of ALS based on a system of interactive feedback loops, focusing on the mutant SOD1G93A mouse. Misfolded mutant SOD1 aggregates in motor neuron (MN) mitochondria and triggers a first loop characterized by oxidative phosphorylation impairment, AMP kinase over-activation, 6-phosphofructo-2-kinase (PFK3) rise, glucose metabolism shift from pentose phosphate pathway (PPP) to glycolysis, cell redox unbalance, and further worsening of mitochondrial dysfunction. Oxidative stress then triggers a second loop, involving the excitotoxic glutamatergic cascade, with cytosolic Ca2+ overload, increase of PFK3 expression, and further metabolic shift from PPP to glycolysis. Finally, cytosolic Ca2+ rise is also detrimental to mitochondria and oxidative phosphorylation, thus closing a third loop. These three loops are overlapped and positive (including an even number of inhibitory steps), hence they form a candidate multistationary (bistable) system. To describe the system dynamics, we model the interactions among the functional agents with differential equations. The system turns out to admit two stable equilibria: the healthy state, with high oxidative phosphorylation and preferential PPP, and the pathological state, with AMP kinase activation, PFK3 over expression, oxidative stress, excitotoxicity and MN degeneration. We demonstrate that the loop system is monotone: all functional agents consistently act toward the healthy or pathological condition, depending on low or high mutant SOD1 input. We also highlight that molecular interactions involving PFK3 are crucial, as their deletion disrupts the system's bistability leading to a single healthy equilibrium point. Hence, our mathematical model unveils that promising ALS management strategies should be targeted to mechanisms that keep low PFK3 expression and activity within MNs.
Collapse
Affiliation(s)
- Bruno Burlando
- Department of Pharmacy, University of Genova, Genova, Italy
| | - Marco Milanese
- Department of Pharmacy, University of Genova, Genova, Italy
| | - Giulia Giordano
- Department of Industrial Engineering, University of Trento, Trento, Italy
- Delft Center for Systems and Control, Delft University of Technology, Delft, The Netherlands
- * E-mail:
| | | | - Silvia Ravera
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Franco Blanchini
- Dipartimento di Scienze Matematiche, Informatiche e Fisiche, University of Udine, Udine, Italy
| | - Giambattista Bonanno
- Department of Pharmacy, University of Genova, Genova, Italy
- IRCCS—Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
22
|
Wargent ET, Martin-Gronert MS, Cripps RL, Heisler LK, Yeo GSH, Ozanne SE, Arch JRS, Stocker CJ. Developmental programming of appetite and growth in male rats increases hypothalamic serotonin (5-HT)5A receptor expression and sensitivity. Int J Obes (Lond) 2020; 44:1946-1957. [PMID: 32719434 DOI: 10.1038/s41366-020-0643-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 06/23/2020] [Accepted: 07/16/2020] [Indexed: 11/08/2022]
Abstract
BACKGROUND Though it is well established that neonatal nutrition plays a major role in lifelong offspring health, the mechanisms underpinning this have not been well defined. Early postnatal accelerated growth resulting from maternal nutritional status is associated with increased appetite and body weight. Likewise, slow growth correlates with decreased appetite and body weight. Food consumption and food-seeking behaviour are directly modulated by central serotonergic (5-hydroxytryptamine, 5-HT) pathways. This study examined the effect of a rat maternal postnatal low protein (PLP) diet on 5-HT receptor mediated food intake in offspring. METHODS Microarray analyses, in situ hybridization or laser capture microdissection of the ARC followed by RT-PCR were used to identify genes up- or down-regulated in the arcuate nucleus of the hypothalamus (ARC) of 3-month-old male PLP rats. Third ventricle cannulation was used to identify altered sensitivity to serotonin receptor agonists and antagonists with respect to food intake. RESULTS Male PLP offspring consumed less food and had lower growth rates up to 3 months of age compared with Control offspring from dams fed a normal diet. In total, 97 genes were upregulated including the 5-HT5A receptor (5-HT5AR) and 149 downregulated genes in PLP rats compared with Controls. The former obesity medication fenfluramine and the 5-HT receptor agonist 5-Carboxamidotryptamine (5-CT) significantly suppressed food intake in both groups, but the PLP offspring were more sensitive to d-fenfluramine and 5-CT compared with Controls. The effect of 5-CT was antagonized by the 5-HT5AR antagonist SB699551. 5-CT also reduced NPY-induced hyperphagia in both Control and PLP rats but was more effective in PLP offspring. CONCLUSIONS Postnatal low protein programming of growth in rats enhances the central effects of serotonin on appetite by increasing hypothalamic 5-HT5AR expression and sensitivity. These findings provide insight into the possible mechanisms through which a maternal low protein diet during lactation programs reduced growth and appetite in offspring.
Collapse
Affiliation(s)
- Edward T Wargent
- Buckingham Institute of Translational Medicine, University of Buckingham, Hunter Street, Buckingham, MK18 1EG, UK
| | - Malgorzata S Martin-Gronert
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Roselle L Cripps
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Lora K Heisler
- The Rowett, Institute, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Giles S H Yeo
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Susan E Ozanne
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Jonathan R S Arch
- Buckingham Institute of Translational Medicine, University of Buckingham, Hunter Street, Buckingham, MK18 1EG, UK
| | - Claire J Stocker
- Buckingham Institute of Translational Medicine, University of Buckingham, Hunter Street, Buckingham, MK18 1EG, UK.
| |
Collapse
|
23
|
Palomo V, Nozal V, Rojas-Prats E, Gil C, Martinez A. Protein kinase inhibitors for amyotrophic lateral sclerosis therapy. Br J Pharmacol 2020; 178:1316-1335. [PMID: 32737989 DOI: 10.1111/bph.15221] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/03/2020] [Accepted: 07/25/2020] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder that causes the progressive loss of motoneurons and, unfortunately, there is no effective treatment for this disease. Interconnecting multiple pathological mechanisms are involved in the neuropathology of this disease, including abnormal aggregation of proteins, neuroinflammation and dysregulation of the ubiquitin proteasome system. Such complex mechanisms, together with the lack of reliable animal models of the disease have hampered the development of drugs for this disease. Protein kinases, a key pharmacological target in several diseases, have been linked to ALS as they play a central role in the pathology of many diseases. Therefore several inhibitors are being currently trailed for clinical proof of concept in ALS patients. In this review, we examine the recent literature on protein kinase inhibitors currently in pharmaceutical development for this diseaseas future therapy for AS together with their involvement in the pathobiology of ALS. LINKED ARTICLES: This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.6/issuetoc.
Collapse
Affiliation(s)
- Valle Palomo
- Centro de Investigaciones Biológicas-CSIC, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Vanesa Nozal
- Centro de Investigaciones Biológicas-CSIC, Madrid, Spain
| | | | - Carmen Gil
- Centro de Investigaciones Biológicas-CSIC, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Ana Martinez
- Centro de Investigaciones Biológicas-CSIC, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, Madrid, Spain
| |
Collapse
|
24
|
Abstract
Disparities in cancer patient responses have prompted widespread searches to identify differences in sensitive vs. nonsensitive populations and form the basis of personalized medicine. This customized approach is dependent upon the development of pathway-specific therapeutics in conjunction with biomarkers that predict patient responses. Here, we show that Cdk5 drives growth in subgroups of patients with multiple types of neuroendocrine neoplasms. Phosphoproteomics and high throughput screening identified phosphorylation sites downstream of Cdk5. These phosphorylation events serve as biomarkers and effectively pinpoint Cdk5-driven tumors. Toward achieving targeted therapy, we demonstrate that mouse models of neuroendocrine cancer are responsive to selective Cdk5 inhibitors and biomimetic nanoparticles are effective vehicles for enhanced tumor targeting and reduction of drug toxicity. Finally, we show that biomarkers of Cdk5-dependent tumors effectively predict response to anti-Cdk5 therapy in patient-derived xenografts. Thus, a phosphoprotein-based diagnostic assay combined with Cdk5-targeted therapy is a rational treatment approach for neuroendocrine malignancies.
Collapse
|
25
|
CDK5: Key Regulator of Apoptosis and Cell Survival. Biomedicines 2019; 7:biomedicines7040088. [PMID: 31698798 PMCID: PMC6966452 DOI: 10.3390/biomedicines7040088] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022] Open
Abstract
The atypical cyclin-dependent kinase 5 (CDK5) is considered as a neuron-specific kinase that plays important roles in many cellular functions including cell motility and survival. The activation of CDK5 is dependent on interaction with its activator p35, p39, or p25. These activators share a CDK5-binding domain and form a tertiary structure similar to that of cyclins. Upon activation, CDK5/p35 complexes localize primarily in the plasma membrane, cytosol, and perinuclear region. Although other CDKs are activated by cyclins, binding of cyclin D and E showed no effect on CDK5 activation. However, it has been shown that CDK5 can be activated by cyclin I, which results in anti-apoptotic functions due to the increased expression of Bcl-2 family proteins. Treatment with the CDK5 inhibitor roscovitine sensitizes cells to heat-induced apoptosis and its phosphorylation, which results in prevention of the apoptotic protein functions. Here, we highlight the regulatory mechanisms of CDK5 and its roles in cellular processes such as gene regulation, cell survival, and apoptosis.
Collapse
|
26
|
Liu W, Zhou Y, Liang R, Zhang Y. Inhibition of cyclin-dependent kinase 5 activity alleviates diabetes-related cognitive deficits. FASEB J 2019; 33:14506-14515. [PMID: 31689375 DOI: 10.1096/fj.201901292r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cognitive deficit is a prevalent and underestimated complication of diabetes, and the underlying cellular and molecular mechanisms are not well understood. Aberrant activity of cyclin-dependent kinase (Cdk)5 is implicated in a number of neurodegenerative diseases. The present study examined the role of Cdk5 in the progression of diabetes-related cognitive deficits. We showed that the Cdk5 protein expression and kinase activity were significantly increased in diabetic mice at 16 wk. In primary cultured hippocampal neurons exposed to 30 mM glucose, Cdk5 protein and kinase activity were also elevated in a time-dependent manner. Moreover, the high glucose exposure led to an aberrant Cdk5 activation due to its activator p25 that was cleaved from p35 by calpain. Both in diabetic mice and in cultured hippocampal neurons exposed to high glucose, inhibition of Cdk5 activity with roscovitine (Ros) or short hairpin RNA (shRNA) decreased the protein levels of cleaved caspase-3 and the ratio of Bax and Bcl-2. The apoptotic rate detected by TUNEL in vivo or Annexin V and propidium iodide staining for flow cytometry in vitro also had obvious reduction. In addition, high glucose exposure resulted in the increase of phosphorylated (phospho)-MAPK kinase (MKK)6, phospho-p38, and c-Jun, which were rescued by Ros or Cdk5 shRNA. It is more important that the cognitive deficits of diabetic mice were also effectively alleviated by Ros. These results indicate that aberrant Cdk5 activity triggered hippocampal neuron apoptosis by activating MKK6/p38 MAPK cascade in hyperglycemia. Inhibition of Cdk5 overactivation attenuates neuronal apoptosis and cognitive deficits and contributes to the relief of diabetic neurotoxicity in the brain.-Liu, W., Zhou, Y., Liang, R., Zhang, Y. Inhibition of cyclin-dependent kinase 5 activity alleviates diabetes-related cognitive deficits.
Collapse
Affiliation(s)
- Wei Liu
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Yi Zhou
- Department of Neurology, The Second Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang, China
| | - Rui Liang
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Yue Zhang
- Department of Clinical Diagnostics, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
27
|
Sulak MA, Ghosh M, Sinharoy P, Andrei SR, Damron DS. Modulation of TRPA1 channel activity by Cdk5 in sensory neurons. Channels (Austin) 2019; 12:65-75. [PMID: 29308980 PMCID: PMC5972803 DOI: 10.1080/19336950.2018.1424282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Transient receptor potential cation channel, subfamily A, member 1 (TRPA1), is activated by a broad range of noxious stimuli. Cdk5, a member of the Cdk family, has recently been identified as a modulator of pain signaling pathways. In the current study, we investigated the extent to which Cdk5 modulates TRPA1 activity. Cdk5 inhibition was found to attenuate TRPA1 response to agonist in mouse DRG sensory neurons. Additionally, the presence of active Cdk5 was associated with increased TRPA1 phosphorylation in transfected HEK293 cells that was roscovitine-sensitive and absent in the mouse mutant S449A full-length channel. Immunopurified Cdk5 was observed to phosphorylate human TRPA1 peptide substrate at S448A in vitro. Our results point to a role for Cdk5 in modulating TRPA1 activity.
Collapse
Affiliation(s)
- Michael A Sulak
- a Department of Human Genetics , University of Chicago , Chicago , IL , USA
| | - Monica Ghosh
- b Department of Biological Sciences , Kent State University , Kent , OH , USA
| | - Pritam Sinharoy
- c Department of Anesthesia , Perioperative and Pain Medicine, Stanford School of Medicine , Stanford , CA , USA
| | - Spencer R Andrei
- d Department of Medicine , Vanderbilt University Medical Center , Nashville , TN , USA
| | - Derek S Damron
- b Department of Biological Sciences , Kent State University , Kent , OH , USA
| |
Collapse
|
28
|
Wang F, Zhao W, Gao Y, Zhou J, Li H, Zhang G, Guo D, Xie C, Li J, Yin Z, Zhang J. CDK5-mediated phosphorylation and stabilization of TPX2 promotes hepatocellular tumorigenesis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:286. [PMID: 31272499 PMCID: PMC6610961 DOI: 10.1186/s13046-019-1297-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 06/26/2019] [Indexed: 01/06/2023]
Abstract
Background CDK5, an atypical member of the CDK family, play a significant role in the tumorigenesis of multiple organ, but CDK5 and its substrates in genesis and development of HCC is still unclear. Methods Expression of CDK5 in HCC tumor and paired adjacent noncancerous tissues from 90 patients were measured by Western blotting, immunohistochemistry, and real-time PCR. The role of CDK5 in cell function and tumorigenesis was explored in HCC cell lines, ex vivo xenografts and diethylnitrosamine induced HCC model. Furthermore, comparative phosphoproteomic screening identified the oncoprotein TPX2 as a new substrate of CDK5. We also identified the effect of CDK5/P25 interaction blocker tamoxifen on HCC cell growth and migration. Results CDK5 was increased in HCC tisues and the level of CDK5 was correlated with the severity of HCC based on patient recurrence and 5-year fatality rate. Exogenously expressed CDK5 but not kinase-dead CDK5 promoted proliferation, migration, and invasion of HCC cells. Functional ablation of CDK5 significantly inhibited the exacerbation of HCC cells. Xenograft implantation of HCC cells overexpressing CDK5 promoted tumorigenesis, and genetic knockdown of CDK5 reduced HCC growth and metastasis in vivo. More importantly, heterozygous knockout CDK5 (Cdk5+/−) attenuated HCC tumorigenesis induced by diethylnitrosamine. CDK5-mediated phosphorylation of TPX2 at serine 486 promoted its protein stability. TPX2 silence could restore HCC cell migration capability with overexpression CDK5. Treatment with tamoxifen inhibited cell growth and migration of HCC, demonstrating the role of active CDK5 in HCC. Conclusions Our results suggest activation of CDK5 is associated with HCC tumorigenesis. CDK5-mediated phosphorylation and stabilization of TPX2 promotes hepatocellular proliferation and tumorigenicity. Electronic supplementary material The online version of this article (10.1186/s13046-019-1297-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fuqiang Wang
- Department of Hepatobiliary Surgery, Zhongshan Hospital of Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, 361004, Fujian, China
| | - Wenxing Zhao
- Taian City Central Hospital, Taian, 271000, Shandong, China
| | - Yuehong Gao
- Fujian Provincial Key Laboratory of Neurodegenerative Diseaseand Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Jiechao Zhou
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Huifang Li
- Fujian Provincial Key Laboratory of Neurodegenerative Diseaseand Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Guanyun Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Diseaseand Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Dong Guo
- Fujian Provincial Key Laboratory of Neurodegenerative Diseaseand Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Chengrong Xie
- Department of Hepatobiliary Surgery, Zhongshan Hospital of Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, 361004, Fujian, China
| | - Jie Li
- Department of Hepatobiliary Surgery, Zhongshan Hospital of Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, 361004, Fujian, China
| | - Zhenyu Yin
- Department of Hepatobiliary Surgery, Zhongshan Hospital of Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, 361004, Fujian, China.
| | - Jie Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Diseaseand Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China.
| |
Collapse
|
29
|
Liu J, Du J, Wang Y. CDK5 inhibits the clathrin-dependent internalization of TRPV1 by phosphorylating the clathrin adaptor protein AP2μ2. Sci Signal 2019; 12:12/585/eaaw2040. [PMID: 31186372 DOI: 10.1126/scisignal.aaw2040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Transient receptor potential vanilloid 1 (TRPV1), a nonselective, ligand-gated cation channel, responds to multiple noxious stimuli and is targeted by many kinases that influence its trafficking and activity. Studies on the internalization of TRPV1 have mainly focused on that induced by capsaicin or other agonists. Here, we report that constitutive internalization of TRPV1 occurred in a manner dependent on clathrin, dynamin, and adaptor protein complex 2 (AP2). The μ2 subunit of AP2 (AP2μ2) interacted directly with TRPV1 and was required for its constitutive internalization. Cyclin-dependent kinase 5 (CDK5) phosphorylated AP2μ2 at Ser45, which reduced the interaction between TRPV1 and AP2μ2, leading to decreased TRPV1 internalization. Intrathecal delivery of a cell-penetrating fusion peptide corresponding to the Cdk5 phosphorylation site in AP2μ2, which competed with AP2μ2 for phosphorylation by Cdk5, increased the abundance of TRPV1 on the surface of dorsal root ganglion neurons and reduced complete Freund's adjuvant (CFA)-induced inflammatory thermal hyperalgesia in rats. In addition to describing a mechanism of TRPV1 constitutive internalization and its inhibition by CDK5, these findings demonstrate that CDK5 promotes inflammatory thermal hyperalgesia by reducing TRPV1 internalization, providing previously unidentified insights into the search for drug targets to treat pain.
Collapse
Affiliation(s)
- Jiao Liu
- Center of Medical and Health Analysis, Peking University Health Science Center, Beijing 100191, China.,Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, the Key Laboratory for Neuroscience of the Ministry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Junxia Du
- College of Biological Science and Engineering, Xingtai University, Xingtai 054001, Hebei Province, China
| | - Yun Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, the Key Laboratory for Neuroscience of the Ministry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China. .,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| |
Collapse
|
30
|
Krishnan M, Kang SC. Vitexin inhibits acrylamide-induced neuroinflammation and improves behavioral changes in zebrafish larvae. Neurotoxicol Teratol 2019; 74:106811. [PMID: 31158445 DOI: 10.1016/j.ntt.2019.106811] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 02/08/2023]
Abstract
Neuroinflammation is crucial for the pathophysiological hallmarks of many neurodegenerative disorders. Hyperactivated microglia has long been implicated as a detrimental player in regulating unresolvable inflammatory insults which cause damage to neurons. In the context of acrylamide (ACR) neurotoxicity, microglia activation is documented to correlate with ACR-adduct formation in the presynaptic neurons. Thus, inhibition of inflammatory mediators through vital candidate is greatly warranted to retard the disease progression. In the present study, we investigated, whether vitexin, a C-glycosylated flavone, with anti-inflammatory activity, could inhibit ACR-induced neuroinflammation-like behavior in zebrafish larvae. ACR was exposed at a dose 1 mM to 3 days post fertilization (dpf) zebrafish larvae for 3 days, whereas vitexin (10 μM) was treated for 24 h. After vitexin treatment, a series of histopathology, behavioral tests and molecular analyses were measured. Our data show that ACR larvae exhibited abnormal morphologies in brain cartilage and histological patterns. At behavioral levels, motor function was altered while the expression of pro-inflammatory mediator levels was markedly up-regulated in ACR larvae. Further, we validated the enhanced CDK5 activity is known to trigger microglia activation, also we found reduced expressions of neuroplasticity (CREB1 and ATF1) and antioxidant response makers (Nrf2, SOD-1 and CAT) in ACR intoxicated larvae. Interestingly, vitexin treatment markedly alleviated ACR-induced histological and behavioral changes in zebrafish larvae. Moreover, vitexin effectively inhibited CDK5 expression, and also hampered the release of pro-inflammatory mediators in ACR larvae. Finally, vitexin treatment rescued the loss of neuroplasticity markers along with enhanced antioxidant markers in ACR larvae. Taken together, results in the present study showed the possibility of vitexin as a potential therapeutic drug in the suppression of neuroinflammation.
Collapse
Affiliation(s)
- Manigandan Krishnan
- Department of Biotechnology, College of Engineering, Daegu University, Kyoungsan, Kyoungbook 712-714, Republic of Korea
| | - Sun Chul Kang
- Department of Biotechnology, College of Engineering, Daegu University, Kyoungsan, Kyoungbook 712-714, Republic of Korea.
| |
Collapse
|
31
|
Stretton C, Lipina C, Hyde R, Cwiklinski E, Hoffmann TM, Taylor PM, Hundal HS. CDK7 is a component of the integrated stress response regulating SNAT2 (SLC38A2)/System A adaptation in response to cellular amino acid deprivation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:978-991. [PMID: 30857869 PMCID: PMC6456927 DOI: 10.1016/j.bbamcr.2019.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 12/31/2022]
Abstract
Extracellular amino acid (AA) withdrawal/restriction invokes an integrated stress response (ISR) that induces global suppression of protein synthesis whilst allowing transcription and translation of a select group of genes, whose protein products facilitate cellular adaptation to AA insufficiency. Transcriptional induction of the System A/SNAT2 AA transporter represents a classic adaptation response and crucially depends upon activation of the General Control Nonderepressible-2 kinase/Activating transcription factor 4 (GCN2/ATF4) pathway. However, the ISR may also include additional signalling inputs operating in conjunction or independently of GCN2/ATF4 to upregulate SNAT2. Herein, we show that whilst pharmacological inhibition of MEK-ERK, mTORC1 and p38 MAP kinase signalling has no detectable effect on System A upregulation, inhibitors targeting GSK3 (e.g. SB415286) caused significant repression of the SNAT2 adaptation response. Strikingly, the effects of SB415286 persist in cells in which GSK3α/β have been stably silenced indicating an off-target effect. We show that SB415286 can also inhibit cyclin-dependent kinases (CDK) and that roscovitine and flavopiridol (two pan CDK inhibitors) are effective repressors of the SNAT2 adaptive response. In particular, our work reveals that CDK7 activity is upregulated in AA-deprived cells in a GCN-2-dependent manner and that a potent and selective CDK7 inhibitor, THZ-1, not only attenuates the increase in ATF4 expression but blocks System A adaptation. Importantly, the inhibitory effects of THZ-1 on System A adaptation are mitigated in cells expressing a doxycycline-inducible drug-resistant form of CDK7. Our data identify CDK7 as a novel component of the ISR regulating System A adaptation in response to AA insufficiency. Roscovitine and flavopiridol (CDK inhibitors) block the System A adaptive response. Extracellular amino acid (AA) withdrawal induces CDK7 activation. Pharmacological inhibition of GCN2 represses CDK7 activation in AA-deprived cells. Targeted suppression of CDK7 represses ATF4 expression and System A adaptation.
Collapse
Affiliation(s)
- Clare Stretton
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Christopher Lipina
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Russell Hyde
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Emma Cwiklinski
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Thorsten M Hoffmann
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Peter M Taylor
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Harinder S Hundal
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
32
|
García-Reyes B, Kretz AL, Ruff JP, von Karstedt S, Hillenbrand A, Knippschild U, Henne-Bruns D, Lemke J. The Emerging Role of Cyclin-Dependent Kinases (CDKs) in Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2018; 19:E3219. [PMID: 30340359 PMCID: PMC6214075 DOI: 10.3390/ijms19103219] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/27/2018] [Accepted: 10/11/2018] [Indexed: 02/07/2023] Open
Abstract
The family of cyclin-dependent kinases (CDKs) has critical functions in cell cycle regulation and controlling of transcriptional elongation. Moreover, dysregulated CDKs have been linked to cancer initiation and progression. Pharmacological CDK inhibition has recently emerged as a novel and promising approach in cancer therapy. This idea is of particular interest to combat pancreatic ductal adenocarcinoma (PDAC), a cancer entity with a dismal prognosis which is owed mainly to PDAC's resistance to conventional therapies. Here, we review the current knowledge of CDK biology, its role in cancer and the therapeutic potential to target CDKs as a novel treatment strategy for PDAC.
Collapse
Affiliation(s)
- Balbina García-Reyes
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Anna-Laura Kretz
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Jan-Philipp Ruff
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Silvia von Karstedt
- Department of Translational Genomics, University Hospital Cologne, Weyertal 115b, 50931 Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany.
| | - Andreas Hillenbrand
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Doris Henne-Bruns
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Johannes Lemke
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| |
Collapse
|
33
|
Ji K, Fan R, Zhang J, Yang S, Dong C. Long non-coding RNA expression profile in Cdk5-knockdown mouse skin. Gene 2018; 672:195-201. [DOI: 10.1016/j.gene.2018.05.120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/27/2018] [Accepted: 05/31/2018] [Indexed: 01/16/2023]
|
34
|
Klinman E, Tokito M, Holzbaur ELF. CDK5-dependent activation of dynein in the axon initial segment regulates polarized cargo transport in neurons. Traffic 2018; 18:808-824. [PMID: 28941293 DOI: 10.1111/tra.12529] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 02/03/2023]
Abstract
The unique polarization of neurons depends on selective sorting of axonal and somatodendritic cargos to their correct compartments. Axodendritic sorting and filtering occurs within the axon initial segment (AIS). However, the underlying molecular mechanisms responsible for this filter are not well understood. Here, we show that local activation of the neuronal-specific kinase cyclin-dependent kinase 5 (CDK5) is required to maintain AIS integrity, as depletion or inhibition of CDK5 induces disordered microtubule polarity and loss of AIS cytoskeletal structure. Furthermore, CDK5-dependent phosphorylation of the dynein regulator Ndel1 is required for proper re-routing of mislocalized somatodendritic cargo out of the AIS; inhibition of this pathway induces profound mis-sorting defects. While inhibition of the CDK5-Ndel1-Lis1-dynein pathway alters both axonal microtubule polarity and axodendritic sorting, we found that these defects occur on distinct timescales; brief inhibition of dynein disrupts axonal cargo sorting before loss of microtubule polarity becomes evident. Together, these studies identify CDK5 as a master upstream regulator of trafficking in vertebrate neurons, required for both AIS microtubule organization and polarized dynein-dependent sorting of axodendritic cargos, and support an ongoing and essential role for dynein at the AIS.
Collapse
Affiliation(s)
- Eva Klinman
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mariko Tokito
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Erika L F Holzbaur
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
35
|
Cyclin-dependent kinase 5 modulates the P2X2a receptor channel gating through phosphorylation of C-terminal threonine 372. Pain 2018; 158:2155-2168. [PMID: 28809765 DOI: 10.1097/j.pain.0000000000001021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The purinergic P2X2 receptor (P2X2R) is an adenosine triphosphate-gated ion channel widely expressed in the nervous system. Here, we identified a putative cyclin-dependent kinase 5 (Cdk5) phosphorylation site in the full-size variant P2X2aR (TPKH), which is absent in the splice variant P2X2bR. We therefore investigated the effects of Cdk5 and its neuronal activator, p35, on P2X2aR function. We found an interaction between P2X2aR and Cdk5/p35 by co-immunofluorescence and co-immunoprecipitation in HEK293 cells. We also found that threonine phosphorylation was significantly increased in HEK293 cells co-expressing P2X2aR and p35 as compared to cells expressing only P2X2aR. Moreover, P2X2aR-derived peptides encompassing the Cdk5 consensus motif were phosphorylated by Cdk5/p35. Whole-cell patch-clamp recordings indicated a delay in development of use-dependent desensitization (UDD) of P2X2aR but not of P2X2bR in HEK293 cells co-expressing P2X2aR and p35. In Xenopus oocytes, P2X2aRs showed a slower UDD than in HEK293 cells and Cdk5 activation prevented this effect. A similar effect was found in P2X2a/3R heteromeric currents in HEK293 cells. The P2X2aR-T372A mutant was resistant to UDD. In endogenous cells, we observed similar distribution between P2X2R and Cdk5/p35 by co-localization using immunofluorescence in primary culture of nociceptive neurons. Moreover, co-immunoprecipitation experiments showed an interaction between Cdk5 and P2X2R in mouse trigeminal ganglia. Finally, endogenous P2X2aR-mediated currents in PC12 cells and P2X2/3R mediated increases of intracellular Ca in trigeminal neurons were Cdk5 dependent, since inhibition with roscovitine accelerated the desensitization kinetics of these responses. These results indicate that the P2X2aR is a novel target for Cdk5-mediated phosphorylation, which might play important physiological roles including pain signaling.
Collapse
|
36
|
MultiBacMam Bimolecular Fluorescence Complementation (BiFC) tool-kit identifies new small-molecule inhibitors of the CDK5-p25 protein-protein interaction (PPI). Sci Rep 2018; 8:5083. [PMID: 29572554 PMCID: PMC5865166 DOI: 10.1038/s41598-018-23516-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/14/2018] [Indexed: 11/10/2022] Open
Abstract
Protein-protein interactions (PPIs) are at the core of virtually all biological processes in cells. Consequently, targeting PPIs is emerging at the forefront of drug discovery. Cellular assays which closely recapitulate native conditions in vivo are instrumental to understand how small molecule drugs can modulate such interactions. We have integrated MultiBacMam, a baculovirus-based mammalian gene delivery tool we developed, with bimolecular fluorescence complementation (BiFC), giving rise to a highly efficient system for assay development, identification and characterization of PPI modulators. We used our system to analyze compounds impacting on CDK5-p25 PPI, which is implicated in numerous diseases including Alzheimer’s. We evaluated our tool-kit with the known inhibitor p5T, and we established a mini-screen to identify compounds that modulate this PPI in dose-response experiments. Finally, we discovered several compounds disrupting CDK5-p25 PPI, which had not been identified by other screening or structure-based methods before.
Collapse
|
37
|
Abramson HN. Kinase inhibitors as potential agents in the treatment of multiple myeloma. Oncotarget 2018; 7:81926-81968. [PMID: 27655636 PMCID: PMC5348443 DOI: 10.18632/oncotarget.10745] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/30/2016] [Indexed: 12/13/2022] Open
Abstract
Recent years have witnessed a dramatic increase in the number of therapeutic options available for the treatment of multiple myeloma (MM) - from immunomodulating agents to proteasome inhibitors to histone deacetylase (HDAC) inhibitors and, most recently, monoclonal antibodies. Used in conjunction with autologous hematopoietic stem cell transplantation, these modalities have nearly doubled the disease's five-year survival rate over the last three decades to about 50%. In spite of these advances, MM still is considered incurable as resistance and relapse are common. While small molecule protein kinase inhibitors have made inroads in the therapy of a number of cancers, to date their application to MM has been less than successful. Focusing on MM, this review examines the roles played by a number of kinases in driving the malignant state and the rationale for target development in the design of a number of kinase inhibitors that have demonstrated anti-myeloma activity in both in vitro and in vivo xenograph models, as well as those that have entered clinical trials. Among the targets and their inhibitors examined are receptor and non-receptor tyrosine kinases, cell cycle control kinases, the PI3K/AKT/mTOR pathway kinases, protein kinase C, mitogen-activated protein kinase, glycogen synthase kinase, casein kinase, integrin-linked kinase, sphingosine kinase, and kinases involved in the unfolded protein response.
Collapse
Affiliation(s)
- Hanley N Abramson
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
38
|
Sandoval R, Lazcano P, Ferrari F, Pinto-Pardo N, González-Billault C, Utreras E. TNF-α Increases Production of Reactive Oxygen Species through Cdk5 Activation in Nociceptive Neurons. Front Physiol 2018; 9:65. [PMID: 29467671 PMCID: PMC5808211 DOI: 10.3389/fphys.2018.00065] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/18/2018] [Indexed: 12/20/2022] Open
Abstract
The participation of reactive oxygen species (ROS) generated by NOX1 and NOX2/NADPH oxidase has been documented during inflammatory pain. However, the molecular mechanism involved in their activation is not fully understood. We reported earlier a key role of Cyclin-dependent kinase 5 (Cdk5) during inflammatory pain. In particular, we demonstrated that TNF-α increased p35 expression, a Cdk5 activator, causing Cdk5-mediated TRPV1 phosphorylation followed by an increment in Ca2+ influx in nociceptive neurons and increased pain sensation. Here we evaluated if Cdk5 activation mediated by p35 transfection in HEK293 cells or by TNF-α treatment in primary culture of nociceptive neurons could increase ROS production. By immunofluorescence we detected the expression of catalytic subunit (Nox1 and Nox2) and their cytosolic regulators (NOXO1 and p47phox) of NOX1 and NOX2/NADPH oxidase complexes, and their co-localization with Cdk5/p35 in HEK293 cells and in nociceptive neurons. By using a hydrogen peroxide sensor, we detected a significant increase of ROS production in p35 transfected HEK293 cells as compared with control cells. This effect was significantly blocked by VAS2870 (NADPH oxidase inhibitor) or by roscovitine (Cdk5 activity inhibitor). Also by using another ROS probe named DCFH-DA, we found a significant increase of ROS production in nociceptive neurons treated with TNF-α and this effect was also blocked by VAS2870 or by roscovitine treatment. Interestingly, TNF-α increased immunodetection of p35 protein and NOX1 and NOX2/NADPH oxidase complexes in primary culture of trigeminal ganglia neurons. Finally, the cytosolic regulator NOXO1 was significantly translocated to plasma membrane after TNF-α treatment and roscovitine blocked this effect. Altogether these results suggest that Cdk5 activation is implicated in the ROS production by NOX1 and NOX2/NADPH oxidase complexes during inflammatory pain.
Collapse
Affiliation(s)
- Rodrigo Sandoval
- Laboratory of Molecular and Cellular Mechanisms of Pain, Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile
| | - Pablo Lazcano
- Laboratory of Molecular and Cellular Mechanisms of Pain, Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile
| | - Franco Ferrari
- Laboratory of Molecular and Cellular Mechanisms of Pain, Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile
| | - Nicolás Pinto-Pardo
- Laboratory of Molecular and Cellular Mechanisms of Pain, Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile.,Doctorate in Biomedicine, Universidad de los Andes, Santiago, Chile
| | - Christian González-Billault
- Laboratory of Cellular and Neuronal Dynamics, Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile.,The Buck Institute for Research on Aging, Novato, CA, United States
| | - Elías Utreras
- Laboratory of Molecular and Cellular Mechanisms of Pain, Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile
| |
Collapse
|
39
|
Wilkaniec A, Gąssowska-Dobrowolska M, Strawski M, Adamczyk A, Czapski GA. Inhibition of cyclin-dependent kinase 5 affects early neuroinflammatory signalling in murine model of amyloid beta toxicity. J Neuroinflammation 2018; 15:1. [PMID: 29301548 PMCID: PMC5753486 DOI: 10.1186/s12974-017-1027-y] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 12/07/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Cyclin-dependent kinase 5 (Cdk5) belongs to the family of proline-directed serine/threonine kinases and plays a critical role in neuronal differentiation, migration, synaptogenesis, plasticity, neurotransmission and apoptosis. The deregulation of Cdk5 activity was observed in post mortem analysis of brain tissue of Alzheimer's disease (AD) patients, suggesting the involvement of Cdk5 in the pathomechanism of this neurodegenerative disease. However, our recent study demonstrated the important function of Cdk5 in regulating inflammatory reaction. METHODS Since the role of Cdk5 in regulation of inflammatory signalling in AD is unknown, we investigated the involvement of Cdk5 in neuroinflammation induced by single intracerebroventricular (icv) injection of amyloid beta protein (Aβ) oligomers in mouse. The brain tissue was analysed up to 35 days post injection. Roscovitine (intraperitoneal administration) was used as a potent Cdk5 inhibitor. The experiments were also performed on human neuroblastoma SH-SY5Y as well as mouse BV2 cell lines treated with exogenous oligomeric Aβ. RESULTS Our results demonstrated that single injection of Aβ oligomers induces long-lasting activation of microglia and astrocytes in the hippocampus. We observed also profound, early inflammatory response in the mice hippocampus, leading to the significant elevation of pro-inflammatory cytokines expression (e.g. TNF-α, IL-1β, IL-6). Moreover, Aβ oligomers elevated the formation of truncated protein p25 in mouse hippocampus and induced overactivation of Cdk5 in neuronal cells. Importantly, administration of roscovitine reduced the inflammatory processes evoked by Aβ in the hippocampus, leading to the significant decrease of cytokines level. CONCLUSIONS These studies clearly show the involvement of Cdk5 in modulation of brain inflammatory response induced by Aβ and may indicate this kinase as a novel target for pharmacological intervention in AD.
Collapse
Affiliation(s)
- Anna Wilkaniec
- Department of Cellular Signalling, Mossakowski Medical Research Centre Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland
| | - Magdalena Gąssowska-Dobrowolska
- Department of Cellular Signalling, Mossakowski Medical Research Centre Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland
| | - Marcin Strawski
- Laboratory of Electrochemistry, Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Centre Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland
| | - Grzegorz A Czapski
- Department of Cellular Signalling, Mossakowski Medical Research Centre Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland.
| |
Collapse
|
40
|
Nandi N, Tyra LK, Stenesen D, Krämer H. Stress-induced Cdk5 activity enhances cytoprotective basal autophagy in Drosophila melanogaster by phosphorylating acinus at serine 437. eLife 2017; 6:e30760. [PMID: 29227247 PMCID: PMC5760206 DOI: 10.7554/elife.30760] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 12/08/2017] [Indexed: 12/22/2022] Open
Abstract
Cdk5 is a post-mitotic kinase with complex roles in maintaining neuronal health. The various mechanisms by which Cdk5 inhibits and promotes neurodegeneration are still poorly understood. Here, we show that in Drosophila melanogaster Cdk5 regulates basal autophagy, a key mechanism suppressing neurodegeneration. In a targeted screen, Cdk5 genetically interacted with Acinus (Acn), a primarily nuclear protein, which promotes starvation-independent, basal autophagy. Loss of Cdk5, or its required cofactor p35, reduces S437-Acn phosphorylation, whereas Cdk5 gain-of-function increases pS437-Acn levels. The phospho-mimetic S437D mutation stabilizes Acn and promotes basal autophagy. In p35 mutants, basal autophagy and lifespan are reduced, but restored to near wild-type levels in the presence of stabilized AcnS437D. Expression of aggregation-prone polyQ-containing proteins or the Amyloid-β42 peptide, but not alpha-Synuclein, enhances Cdk5-dependent phosphorylation of S437-Acn. Our data indicate that Cdk5 is required to maintain the protective role of basal autophagy in the initial responses to a subset of neurodegenerative challenges.
Collapse
Affiliation(s)
- Nilay Nandi
- Department of NeuroscienceUT Southwestern Medical CenterDallasUnited States
| | - Lauren K Tyra
- Department of NeuroscienceUT Southwestern Medical CenterDallasUnited States
| | - Drew Stenesen
- Department of NeuroscienceUT Southwestern Medical CenterDallasUnited States
| | - Helmut Krämer
- Department of NeuroscienceUT Southwestern Medical CenterDallasUnited States
- Department of Cell BiologyUT Southwestern Medical CenterDallasUnited States
| |
Collapse
|
41
|
Abstract
Selective abrogation of cyclin-dependent kinases (CDK) activity is a highly promising strategy in cancer treatment. The atypical CDK, CDK5 has long been known for its role in neurodegenerative diseases, and is becoming an attractive drug target for cancer therapy. Myriads of recent studies have uncovered that aberrant expression of CDK5 contributes to the oncogenic initiation and progression of multiple solid and hematological malignancies. CDK5 is also implicated in the regulation of cancer stem cell biology. In this review, we present the current state of knowledge of CDK5 as a druggable target for cancer treatment. We also provide a detailed outlook of designing selective and potent inhibitors of this enzyme.
Collapse
|
42
|
Functional Role of Cyclin-Dependent Kinase 5 in the Regulation of Melanogenesis and Epidermal Structure. Sci Rep 2017; 7:13783. [PMID: 29062096 PMCID: PMC5653820 DOI: 10.1038/s41598-017-12567-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/12/2017] [Indexed: 01/08/2023] Open
Abstract
The mammalian integumentary system plays important roles in body homeostasis, and dysfunction of melanogenesis or epidermal development may lead to a variety of skin diseases, including melanoma. Skin pigmentation in humans and coat color in fleece-producing animals are regulated by many genes. Among them, microphthalmia-associated transcription factor (MITF) and paired-box 3 (PAX3) are at the top of the cascade and regulate activities of many important melanogenic enzymes. Here, we report for the first time that cyclin-dependent kinase 5 (Cdk5) is an essential regulator of MITF and PAX3. Cdk5 knockdown in mice causes a lightened coat color, a polarized distribution of melanin and hyperproliferation of basal keratinocytes. Reduced expression of Keratin 10 (K10) resulting from Cdk5 knockdown may be responsible for an abnormal epidermal structure. In contrast, overexpression of Cdk5 in sheep (Ovis aries) only produces brown patches on a white background, with no other observable abnormalities. Collectively, our findings show that Cdk5 has an important functional role in the regulation of melanin production and transportation and in normal development of the integumentary system.
Collapse
|
43
|
Prochazkova M, Hall B, Hu M, Okine T, Reukauf J, Binukumar BK, Amin ND, Roque E, Pant HC, Kulkarni A. Peripheral and orofacial pain sensation is unaffected by the loss of p39. Mol Pain 2017; 13:1744806917737205. [PMID: 28969475 PMCID: PMC5656108 DOI: 10.1177/1744806917737205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cdk5 is a key neuronal kinase necessary for proper brain development, which has recently been implicated in modulating nociception. Conditional deletion of Cdk5 in pain-sensing neurons attenuates pain responses to heat in both the periphery and orofacial regions. Cdk5 activity is regulated by binding to the activators p35 and p39, both of which possess a cyclin box. Our previous examination of the nociceptive role of the well-characterized Cdk5 activator p35 using mice that either lack or overexpress this regulatory subunit demonstrated that Cdk5/p35 activity affects mechanical, chemical, and thermal nociception. In contrast, the nociceptive role of Cdk5’s other less-studied activator p39 is unknown. Here, we report that the knockout of p39 in mice did not affect orofacial and peripheral nociception. The lack of any algesic response to nociceptive stimuli in the p39 knockout mice contrasts with the hypoalgesic effects that result from the deletion of p35. Our data demonstrate different and nonoverlapping roles of Cdk5 activators in the regulation of orofacial as well as peripheral nociception with a crucial role for Cdk5/p35 in pain signaling.
Collapse
Affiliation(s)
- Michaela Prochazkova
- Functional Genomics Section, National Institute of Dental and Craniofacial Research
| | - Bradford Hall
- Functional Genomics Section, National Institute of Dental and Craniofacial Research
| | - Minghan Hu
- Functional Genomics Section, National Institute of Dental and Craniofacial Research
| | - Tracy Okine
- Functional Genomics Section, National Institute of Dental and Craniofacial Research
| | - Jennifer Reukauf
- Functional Genomics Section, National Institute of Dental and Craniofacial Research
| | - B K Binukumar
- Neuronal Cytoskeletal Protein Regulation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Niranjana D Amin
- Neuronal Cytoskeletal Protein Regulation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health
| | - Eva Roque
- Functional Genomics Section, National Institute of Dental and Craniofacial Research
| | - Harish C Pant
- Neuronal Cytoskeletal Protein Regulation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health
| | | |
Collapse
|
44
|
Abstract
L-type calcium channel CaV1.2 plays an essential role in cardiac function. The gain-of-function mutations in CaV1.2 have been reported to be associated with Timothy syndrome, a disease characterized by QT prolongation and syndactyly. Previously we demonstrated that roscovitine, a cyclin-dependent kinase (CDK) inhibitor, could rescue the phenotypes in induced pluripotent stem cell-derived cardiomyocytes from Timothy syndrome patients. However, exactly how roscovitine rescued the phenotypes remained unclear. Here we report a mechanism potentially underlying the therapeutic effects of roscovitine on Timothy syndrome cardiomyocytes. Our results using roscovitine analogs and CDK inhibitors and constructs demonstrated that roscovitine exhibits its therapeutic effects in part by inhibiting CDK5. The outcomes of this study allowed us to identify a molecular mechanism whereby CaV1.2 channels are regulated by CDK5. This study provides insights into the regulation of cardiac calcium channels and the development of future therapeutics for Timothy syndrome patients. CDK5 Inhibition alleviates the phenotypes in Timothy syndrome cardiomyocytes CDK5 regulates the functions of CaV1.2 channels in cardiomyocytes
Collapse
|
45
|
de la Peña JB, Dela Peña IJ, Custodio RJ, Botanas CJ, Kim HJ, Cheong JH. Exploring the Validity of Proposed Transgenic Animal Models of Attention-Deficit Hyperactivity Disorder (ADHD). Mol Neurobiol 2017; 55:3739-3754. [PMID: 28534274 DOI: 10.1007/s12035-017-0608-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/09/2017] [Indexed: 12/31/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common, behavioral, and heterogeneous neurodevelopmental condition characterized by hyperactivity, impulsivity, and inattention. Symptoms of this disorder are managed by treatment with methylphenidate, amphetamine, and/or atomoxetine. The cause of ADHD is unknown, but substantial evidence indicates that this disorder has a significant genetic component. Transgenic animals have become an essential tool in uncovering the genetic factors underlying ADHD. Although they cannot accurately reflect the human condition, they can provide insights into the disorder that cannot be obtained from human studies due to various limitations. An ideal animal model of ADHD must have face (similarity in symptoms), predictive (similarity in response to treatment or medications), and construct (similarity in etiology or underlying pathophysiological mechanism) validity. As the exact etiology of ADHD remains unclear, the construct validity of animal models of ADHD would always be limited. The proposed transgenic animal models of ADHD have substantially increased and diversified over the years. In this paper, we compiled and explored the validity of proposed transgenic animal models of ADHD. Each of the reviewed transgenic animal models has strengths and limitations. Some fulfill most of the validity criteria of an animal model of ADHD and have been extensively used, while there are others that require further validation. Nevertheless, these transgenic animal models of ADHD have provided and will continue to provide valuable insights into the genetic underpinnings of this complex disorder.
Collapse
Affiliation(s)
- June Bryan de la Peña
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Irene Joy Dela Peña
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Raly James Custodio
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Chrislean Jun Botanas
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Jae Hoon Cheong
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul, 01795, Republic of Korea.
| |
Collapse
|
46
|
Ruan YY, Zhai W, Shi XM, Zhang L, Hu YL. Safflower yellow ameliorates cognition deficits and reduces tau phosphorylation in APP/PS1 transgenic mice. Metab Brain Dis 2016; 31:1133-42. [PMID: 27311611 DOI: 10.1007/s11011-016-9857-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 06/09/2016] [Indexed: 10/21/2022]
Abstract
Alzheimer's disease (AD), the most common cause of dementia worldwide, is mainly characterized by the aggregated β-amyloid (Aβ) and hyperphosphorylated tau. Safflower yellow (SY) is a novel water extract of natural safflower and has been suggested to ameliorate memory deficits in several animal models of dementia. In this study, we aimed to investigate the effect and mechanism of SY on deficits of learning and memory and hyperphosphorylation of tau in APP/PS1 double transgenic mice. APP/PS1 mice were administered with SY (10, 30, 100 mg/kg) by oral gavage for three months at the age of six months. The ability of learning and memory was investigated using the step-down test and Morris water maze test, and protein level in the brain was evaluated using western blot. Here, we found that SY treatment can improve spatial learning and memory ability, and reduce tau hyperphosphorylation at Ser199, Thr205, Ser396, Ser404 sites in APP/PS1 mice. In addition, the activity the of cyclin-dependent kinase 5 (CDK-5) and glycogen synthase kinase 3β (GSK-3β), major kinases involved in tau phosphorylation, was siginificantly decreased in APP/PS1 mice by SY treatment. These results support SY can serve as a promising multitarget neuronal therapeutic agent for the treatment of AD.
Collapse
Affiliation(s)
- Ying-Ying Ruan
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources of Ministry Pharmacy, Shihezi University, Bei'er Road, Shihezi, Xinjiang, 832000, China
| | - Wei Zhai
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources of Ministry Pharmacy, Shihezi University, Bei'er Road, Shihezi, Xinjiang, 832000, China
| | - Xiao-Meng Shi
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources of Ministry Pharmacy, Shihezi University, Bei'er Road, Shihezi, Xinjiang, 832000, China
| | - Lu Zhang
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources of Ministry Pharmacy, Shihezi University, Bei'er Road, Shihezi, Xinjiang, 832000, China
| | - Yan-Li Hu
- Department of Pharmacology, College of Pharmaceutical Science, Shihezi University, Shihezi, Xinjiang, 832000, China.
| |
Collapse
|
47
|
Physiological and Pathogenic Roles of Prolyl Isomerase Pin1 in Metabolic Regulations via Multiple Signal Transduction Pathway Modulations. Int J Mol Sci 2016; 17:ijms17091495. [PMID: 27618008 PMCID: PMC5037772 DOI: 10.3390/ijms17091495] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 08/15/2016] [Accepted: 08/30/2016] [Indexed: 12/11/2022] Open
Abstract
Prolyl isomerases are divided into three groups, the FKBP family, Cyclophilin and the Parvulin family (Pin1 and Par14). Among these isomerases, Pin1 is a unique prolyl isomerase binding to the motif including pSer/pThr-Pro that is phosphorylated by kinases. Once bound, Pin1 modulates the enzymatic activity, protein stability or subcellular localization of target proteins by changing the cis- and trans-formations of proline. Several studies have examined the roles of Pin1 in the pathogenesis of cancers and Alzheimer's disease. On the other hand, recent studies have newly demonstrated Pin1 to be involved in regulating glucose and lipid metabolism. Interestingly, while Pin1 expression is markedly increased by high-fat diet feeding, Pin1 KO mice are resistant to diet-induced obesity, non-alcoholic steatohepatitis and diabetic vascular dysfunction. These phenomena result from the binding of Pin1 to several key factors regulating metabolic functions, which include insulin receptor substrate-1, AMPK, Crtc2 and NF-κB p65. In this review, we focus on recent advances in elucidating the physiological roles of Pin1 as well as the pathogenesis of disorders involving this isomerase, from the viewpoint of the relationships between signal transductions and metabolic functions.
Collapse
|
48
|
Onufriev MV, Semenova TP, Volkova EP, Sergun’kina MA, Yakovlev AA, Zakharova NM, Gulyaeva NV. Seasonal changes in actin and Cdk5 expression in different brain regions of the Yakut ground squirrel (Spermophilus undulatus). NEUROCHEM J+ 2016. [DOI: 10.1134/s1819712416020070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Onufriev MV, Semenova TP, Volkova EP, Sergun’kina MA, Yakovlev AA, Zakharova NM, Gulyaeva NV. The characteristics of the expression of the Cdk1 and Cyclin B1 Proteins in the brain of the Yakut ground squirrel (Spermophilus undulatus) at different stages of the hibernation cycle. NEUROCHEM J+ 2016. [DOI: 10.1134/s1819712416020082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
50
|
Kwon KJ, Park JH, Jo I, Song KH, Han JS, Park SH, Han SH, Cho DH. Disruption of neuronal nitric oxide synthase dimerization contributes to the development of Alzheimer's disease: Involvement of cyclin-dependent kinase 5-mediated phosphorylation of neuronal nitric oxide synthase at Ser(293). Neurochem Int 2016; 99:52-61. [PMID: 27296112 DOI: 10.1016/j.neuint.2016.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/27/2016] [Accepted: 06/09/2016] [Indexed: 01/09/2023]
Abstract
Although previous studies have suggested that neuronal nitric oxide synthase (nNOS)-derived NO has neuroprotective effects on the development of Alzheimer's disease (AD), the underlying molecular mechanisms are not fully elucidated. Here, we investigated whether and how disruption of nNOS dimerization contributes to the development of AD. No differences in synaptic number or expression of synaptic markers, including synaptophysin and postsynaptic density 95, were found in the cortex of 5 × FAD mice, which possess 5 familial AD mutations, at 6 months of age compared with control littermates. nNOS dimerization was disrupted in the 5 × FAD cortex, accompanied by an increase in reactive oxygen species (ROS) production. The subcellular distribution of cyclin-dependent kinase 5 (CDK5) shifted more diffusely toward a cytosolic compartment, but there was no change in total expression. Furthermore, the levels of p25, a CDK5 activator, increased significantly and it colocalized with nNOS in the 5 × FAD cortex. In silico analysis revealed that a new nNOS-specific GSP (glycine-serine-proline) motif was well-conserved across species at nNOS-Ser(293), which is located ahead of the N-terminal hook. This motif was not present in the closely related isoform, endothelial NOS. Motif scan analysis also predicted that CDK5 can phosphorylate nNOS-Ser(293) with a high likelihood. An in vitro phosphorylation assay clearly showed that CDK5/p25 does indeed phosphorylate nNOS-Ser(293). Finally, nNOS-S293D mutant, a phosphomimetic form of nNOS-Ser(293), and nNOS-S293A mutant, a neutral form of nNOS-Ser(293), significantly decreased nNOS dimerization and NO production. Taken together, our results demonstrate that nNOS dimers are disrupted in the 5 × FAD cortex, and nNOS-Ser(293), a potential site of CDK5 phosphorylation, may be involved in the decrease in nNOS dimerization and NO production, and the development of AD.
Collapse
Affiliation(s)
- Kyoung Ja Kwon
- Department of Neurology, Konkuk University Medical Center and Department of Neuroscience, Center for Geriatric Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, South Korea
| | - Jung-Hyun Park
- Department of Molecular Medicine, Ewha Womans University Medical School, 911-1, Mok-6-dong, Yangchun-gu, Seoul 158-710, South Korea
| | - Inho Jo
- Department of Molecular Medicine, Ewha Womans University Medical School, 911-1, Mok-6-dong, Yangchun-gu, Seoul 158-710, South Korea
| | - Kee-Ho Song
- Department of Internal Medicine, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 143-729, South Korea
| | - Jung-Soo Han
- Department of Biological Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, South Korea
| | - Seung Hwa Park
- Department of Neurology, Konkuk University Medical Center and Department of Neuroscience, Center for Geriatric Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, South Korea
| | - Seol-Heui Han
- Department of Neurology, Konkuk University Medical Center and Department of Neuroscience, Center for Geriatric Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, South Korea.
| | - Du-Hyong Cho
- Department of Pharmacology, School of Medicine, Eulji University, 77 Gyeryong-ro 771 Beon-gil, Jung-gu, Daejeon 301-746, South Korea.
| |
Collapse
|