1
|
Petran EM, Periferakis A, Troumpata L, Periferakis AT, Scheau AE, Badarau IA, Periferakis K, Caruntu A, Savulescu-Fiedler I, Sima RM, Calina D, Constantin C, Neagu M, Caruntu C, Scheau C. Capsaicin: Emerging Pharmacological and Therapeutic Insights. Curr Issues Mol Biol 2024; 46:7895-7943. [PMID: 39194685 DOI: 10.3390/cimb46080468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Capsaicin, the most prominent pungent compound of chilli peppers, has been used in traditional medicine systems for centuries; it already has a number of established clinical and industrial applications. Capsaicin is known to act through the TRPV1 receptor, which exists in various tissues; capsaicin is hepatically metabolised, having a half-life correlated with the method of application. Research on various applications of capsaicin in different formulations is still ongoing. Thus, local capsaicin applications have a pronounced anti-inflammatory effect, while systemic applications have a multitude of different effects because their increased lipophilic character ensures their augmented bioavailability. Furthermore, various teams have documented capsaicin's anti-cancer effects, proven both in vivo and in vitro designs. A notable constraint in the therapeutic effects of capsaicin is its increased toxicity, especially in sensitive tissues. Regarding the traditional applications of capsaicin, apart from all the effects recorded as medicinal effects, the application of capsaicin in acupuncture points has been demonstrated to be effective and the combination of acupuncture and capsaicin warrants further research. Finally, capsaicin has demonstrated antimicrobial effects, which can supplement its anti-inflammatory and anti-carcinogenic actions.
Collapse
Affiliation(s)
- Elena Madalina Petran
- Department of Biochemistry, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Toxicology, Grigore Alexandrescu Emergency Children's Hospital, 011743 Bucharest, Romania
| | - Argyrios Periferakis
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Lamprini Troumpata
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Aristodemos-Theodoros Periferakis
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs (P.O.E.P), 17236 Athens, Greece
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, The "Carol Davila" Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, "Titu Maiorescu" University, 031593 Bucharest, Romania
| | - Ilinca Savulescu-Fiedler
- Department of Internal Medicine, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Romina-Marina Sima
- Department of Obstetrics and Gynecology, The "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- The "Bucur" Maternity, "Saint John" Hospital, 040294 Bucharest, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Carolina Constantin
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | - Monica Neagu
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 76201 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, "Prof. N.C. Paulescu" National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, "Foisor" Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| |
Collapse
|
2
|
Nolden AA, Lenart G, Spielman AI, Hayes JE. Inducible desensitization to capsaicin with repeated low-dose exposure in human volunteers. Physiol Behav 2024; 275:114447. [PMID: 38135109 PMCID: PMC10842799 DOI: 10.1016/j.physbeh.2023.114447] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023]
Abstract
Responses to capsaicin are reduced following repeated exposure, a phenomenon known as capsaicin desensitization. Heavy consumers of chilies consistently report reduced oral burn relative to infrequent consumers, presumably due to chronic desensitization. However, the mechanism(s) underlying capsaicin desensitization remain poorly understood. We hypothesized that reduced response to capsaicin due to repeated oral exposure may result from a change in the expression of the capsaicin receptor (TRPV1) gene. To test this, we conducted two longitudinal desensitization studies in healthy human volunteers. In Study 1, 51 adults completed a 17-day capsaicin desensitization protocol. The study consisted of three in-person visits where they were asked to sample stimuli, including 3, 6, and 9 ppm capsaicin, and rate intensity on a general labeled magnitude scale (gLMS). Between days 3 & 17, participants rinsed at home with 6 ppm capsaicin (n = 31) or a control (n = 20) solution (20 uM sucrose octaccetate; SOA) twice a day. Before and after the oral exposure protocol, a clinician collected fungiform papillae. Participants randomized to the capsaicin rinse showed a statistically significant reduction in oral burn ratings that was not observed in controls, indicating repeated low-dose exposure can systematically induce desensitization. TRPV1 expression was not associated with reported capsaicin burn, and there was no evidence of a decrease in TRPV1 expression following capsaicin exposure. In Study 2, participants (n = 45) rinsed with 6 ppm capsaicin in a similar protocol, rating capsaicin, vanillyl butyl ether (VBE), cinnamaldehyde, ethanol, menthol, and sucrose on days 1, 3, & 17. Burn from capsaicin, VBE, cinnamaldehyde, and ethanol all showed a statistically significant change - capsaicin, VBE and cinnamaldehyde burn all dropped ∼20 %, and a larger reduction was seen for ethanol - while menthol cooling and sucrose sweetness did not change. Collectively, this suggests reductions in oral burn following chronic capsaicin exposure generalizes to other stimuli (i.e., cross desensitization) and this cannot be explained by a change in TRPV1 mRNA expression. More work is needed to elucidate the underlying mechanism for capsaicin desensitization in the oral cavity.
Collapse
Affiliation(s)
- Alissa A Nolden
- Department of Food Science, University of Massachusetts, Amherst, MA, USA,; Sensory Evaluation Center, The Pennsylvania State University, University Park, Pennsylvania, USA; Department of Food Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Gabrielle Lenart
- Sensory Evaluation Center, The Pennsylvania State University, University Park, Pennsylvania, USA; Department of Food Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Andrew I Spielman
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA
| | - John E Hayes
- Sensory Evaluation Center, The Pennsylvania State University, University Park, Pennsylvania, USA; Department of Food Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
3
|
Kanda Y, Mukaiyama M, Yamasaki Y, Usui T, Nagumo Y. Capsaicin indirectly regulates TRPA1 via the arachidonic acid cascade, resulting in TJ opening. Biosci Biotechnol Biochem 2023; 88:44-52. [PMID: 37838472 DOI: 10.1093/bbb/zbad145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/08/2023] [Indexed: 10/16/2023]
Abstract
Capsaicin induces the reversible opening of tight junctions (TJs) and enhances the delivery of hydrophilic macromolecules through a paracellular route. We previously revealed that TRPA1 is involved in the capsaicin-induced Ca2+ influx and TJ permeability increase, although there are no reports that capsaicin directly activates TRPA1. In this study, we investigated the upstream factors of TRPA1 using RNA-seq analysis, and found that the cyclooxygenase 2 (COX2) gene was upregulated by capsaicin. Cyclooxygenase 2 converts arachidonic acid (AA), a metabolite by phospholipase A2 (PLA2), to prostaglandins. Prostaglandin E2 (PGE2) production was stimulated by capsaicin, and capsaicin-induced Ca2+ influx was effectively inhibited by PLA2 and COX2 inhibitors. The AA-induced TJ permeability increase was inhibited by a TRPA1 antagonist, but the capsaicin- and AA-induced TJ permeability increases were hardly inhibited by a COX2 inhibitor. These results suggest that capsaicin-induced PLA2 activation and AA production are the important steps for the TJ permeability increase.
Collapse
Affiliation(s)
- Yusuke Kanda
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Minagi Mukaiyama
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yohei Yamasaki
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takeo Usui
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoko Nagumo
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
4
|
Oz M, Lorke DE, Howarth FC. Transient receptor potential vanilloid 1 (TRPV1)-independent actions of capsaicin on cellular excitability and ion transport. Med Res Rev 2023. [PMID: 36916676 DOI: 10.1002/med.21945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 01/17/2023] [Accepted: 02/26/2023] [Indexed: 03/15/2023]
Abstract
Capsaicin is a naturally occurring alkaloid derived from chili pepper that is responsible for its hot pungent taste. Capsaicin is known to exert multiple pharmacological actions, including analgesia, anticancer, anti-inflammatory, antiobesity, and antioxidant effects. The transient receptor potential vanilloid subfamily member 1 (TRPV1) is the main receptor mediating the majority of the capsaicin effects. However, numerous studies suggest that the TRPV1 receptor is not the only target for capsaicin. An increasing number of studies indicates that capsaicin, at low to mid µM ranges, not only indirectly through TRPV1-mediated Ca2+ increases, but also directly modulates the functions of voltage-gated Na+ , K+ , and Ca2+ channels, as well as ligand-gated ion channels and other ion transporters and enzymes involved in cellular excitability. These TRPV1-independent effects are mediated by alterations of the biophysical properties of the lipid membrane and subsequent modulation of the functional properties of ion channels and by direct binding of capsaicin to the channels. The present study, for the first time, systematically categorizes this diverse range of non-TRPV1 targets and discusses cellular and molecular mechanisms mediating TRPV1-independent effects of capsaicin in excitable, as well as nonexcitable cells.
Collapse
Affiliation(s)
- Murat Oz
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat, Kuwait
| | - Dietrich E Lorke
- Department of Anatomy and Cellular Biology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates.,Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Frank C Howarth
- Department of Physiology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| |
Collapse
|
5
|
Meza RC, Ancatén-González C, Chiu CQ, Chávez AE. Transient Receptor Potential Vanilloid 1 Function at Central Synapses in Health and Disease. Front Cell Neurosci 2022; 16:864828. [PMID: 35518644 PMCID: PMC9062234 DOI: 10.3389/fncel.2022.864828] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/29/2022] [Indexed: 12/11/2022] Open
Abstract
The transient receptor potential vanilloid 1 (TRPV1), a ligand-gated nonselective cation channel, is well known for mediating heat and pain sensation in the periphery. Increasing evidence suggests that TRPV1 is also expressed at various central synapses, where it plays a role in different types of activity-dependent synaptic changes. Although its precise localizations remain a matter of debate, TRPV1 has been shown to modulate both neurotransmitter release at presynaptic terminals and synaptic efficacy in postsynaptic compartments. In addition to being required in these forms of synaptic plasticity, TRPV1 can also modify the inducibility of other types of plasticity. Here, we highlight current evidence of the potential roles for TRPV1 in regulating synaptic function in various brain regions, with an emphasis on principal mechanisms underlying TRPV1-mediated synaptic plasticity and metaplasticity. Finally, we discuss the putative contributions of TRPV1 in diverse brain disorders in order to expedite the development of next-generation therapeutic treatments.
Collapse
Affiliation(s)
- Rodrigo C Meza
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Carlos Ancatén-González
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile.,Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Chiayu Q Chiu
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Andrés E Chávez
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
6
|
Fischer MJM, Ciotu CI, Szallasi A. The Mysteries of Capsaicin-Sensitive Afferents. Front Physiol 2020; 11:554195. [PMID: 33391007 PMCID: PMC7772409 DOI: 10.3389/fphys.2020.554195] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022] Open
Abstract
A fundamental subdivision of nociceptive sensory neurons is named after their unique sensitivity to capsaicin, the pungent ingredient in hot chili peppers: these are the capsaicin-sensitive afferents. The initial excitation by capsaicin of these neurons manifested as burning pain sensation is followed by a lasting refractory state, traditionally referred to as "capsaicin desensitization," during which the previously excited neurons are unresponsive not only to capsaicin but a variety of unrelated stimuli including noxious heat. The long sought-after capsaicin receptor, now known as TRPV1 (transient receptor potential cation channel, subfamily V member 1), was cloned more than two decades ago. The substantial reduction of the inflammatory phenotype of Trpv1 knockout mice has spurred extensive efforts in the pharmaceutical industry to develop small molecule TRPV1 antagonists. However, adverse effects, most importantly hyperthermia and burn injuries, have so far prevented any compounds from progressing beyond Phase 2. There is increasing evidence that these limitations can be at least partially overcome by approaches outside of the mainstream pharmaceutical development, providing novel therapeutic options through TRPV1. Although ablation of the whole TRPV1-expressing nerve population by high dose capsaicin, or more selectively by intersectional genetics, has allowed researchers to investigate the functions of capsaicin-sensitive afferents in health and disease, several "mysteries" remain unsolved to date, including the molecular underpinnings of "capsaicin desensitization," and the exact role these nerves play in thermoregulation and heat sensation. This review tries to shed some light on these capsaicin mechanisms.
Collapse
Affiliation(s)
- Michael J. M. Fischer
- Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Cosmin I. Ciotu
- Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Arpad Szallasi
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
7
|
Braga Ferreira LG, Faria JV, dos Santos JPS, Faria RX. Capsaicin: TRPV1-independent mechanisms and novel therapeutic possibilities. Eur J Pharmacol 2020; 887:173356. [DOI: 10.1016/j.ejphar.2020.173356] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/03/2020] [Accepted: 07/08/2020] [Indexed: 02/08/2023]
|
8
|
Pasierski M, Szulczyk B. Capsaicin inhibits sodium currents and epileptiform activity in prefrontal cortex pyramidal neurons. Neurochem Int 2020; 135:104709. [PMID: 32105721 DOI: 10.1016/j.neuint.2020.104709] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/31/2020] [Accepted: 02/20/2020] [Indexed: 11/19/2022]
Abstract
Capsaicin, a compound found in chili peppers, causes burning sensations by acting on the peripheral sensory system. However, it has also been reported to exert substantial effects on central neurons. The aim of this patch-clamp study was to test the antiepileptic potential of capsaicin in prefrontal cortical pyramidal neurons. Capsaicin at a concentration of 60 μM inhibited neuronal excitability. Moreover, later spikes in response to 50-s-long current steps were much smaller in amplitude in the presence of 60 μM capsaicin than in control solution. The tested compound did not influence the membrane potential. Voltage-clamp recordings showed that capsaicin markedly enhanced the use-dependent block of sodium channels (sodium currents were evoked at frequencies of 0,5 Hz and 10 Hz). The presence of the compound shifted the steady-state inactivation curve of sodium channels towards hyperpolarization, which suggests greater inactivation of sodium channels at rest in the presence of capsaicin. Moreover, capsaicin inhibited epileptiform events evoked in three different proepileptic solutions. Capsaicin abolished interictal-like events lasting less than 1 s recorded in zero magnesium solution with an increased potassium ion concentration. The drug also abolished long ictal events evoked in zero magnesium solution containing 4-AP. Moreover, ictal events recorded in zero magnesium solution containing picrotoxin were substantially shortened in the presence of capsaicin. We suggest that capsaicin exerts an antiepileptic effect. The important mechanism behind this phenomenon seems to be the inhibition of sodium channels, which is an effect of many antiepileptic drugs.
Collapse
Affiliation(s)
- Michał Pasierski
- Department of Pharmacodynamics, The Medical University of Warsaw, Warsaw, Banacha 1B, 02-097, Poland
| | - Bartłomiej Szulczyk
- Department of Pharmacodynamics, The Medical University of Warsaw, Warsaw, Banacha 1B, 02-097, Poland.
| |
Collapse
|
9
|
Capsaicin-Induced Impairment of Functional Network Dynamics in Mouse Hippocampus via a TrpV1 Receptor-Independent Pathway: Putative Involvement of Na +/K +-ATPase. Mol Neurobiol 2019; 57:1170-1185. [PMID: 31701438 PMCID: PMC7031213 DOI: 10.1007/s12035-019-01779-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/09/2019] [Indexed: 12/19/2022]
Abstract
The vanilloid compound capsaicin (Cp) is best known to bind to and activate the transient receptor potential vanilloid receptor-1 (TrpV1). A growing number of studies use capsaicin as a tool to study the role of TrpV1 in the central nervous system (CNS). Although most of capsaicin’s CNS effects have been reported to be mediated by TrpV1 activation, evidence exists that capsaicin can also trigger functional changes in hippocampal activity independently of TrpV1. Recently, we have reported that capsaicin induces impairment in hippocampal gamma oscillations via a TrpV1-independent pathway. Here, we dissect the underlying mechanisms of capsaicin-induced alterations to functional network dynamics. We found that capsaicin induces a reduction in action potential (AP) firing rate and a subsequent loss of synchronicity in pyramidal cell (PC) spiking activity in hippocampus. Moreover, capsaicin induces alterations in PC spike-timing since increased first-spike latency was observed after capsaicin treatment. First-spike latency can be regulated by the voltage-dependent potassium current D (ID) or Na+/K+-ATPase. Selective inhibition of ID via low 4-AP concentration and Na+/K+-ATPase using its blocker ouabain, we found that capsaicin effects on AP spike timing were completely inhibited by ouabain but not with 4-AP. In conclusion, our study shows that capsaicin in a TrpV1-independent manner and possibly involving Na+/K+-ATPase activity can impair cognition-relevant functional network dynamics such as gamma oscillations and provides important data regarding the use of capsaicin as a tool to study TrpV1 function in the CNS.
Collapse
|
10
|
Bujak JK, Kosmala D, Szopa IM, Majchrzak K, Bednarczyk P. Inflammation, Cancer and Immunity-Implication of TRPV1 Channel. Front Oncol 2019; 9:1087. [PMID: 31681615 PMCID: PMC6805766 DOI: 10.3389/fonc.2019.01087] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/02/2019] [Indexed: 12/22/2022] Open
Abstract
Process of inflammation and complex interactions between immune and cancer cells within tumor microenvironment are known to drive and shape the outcome of the neoplastic disease. Recent studies increasingly show that ion channels can be used as potential targets to modulate immune response and to treat inflammatory disorders and cancer. The action of both innate and adaptive immune cells is tightly regulated by ionic signals provided by a network of distinct ion channels. TRPV1 channel, known as a capsaicin receptor, was recently documented to be expressed on the cells of the immune system but also aberrantly expressed in the several tumor types. It is activated by heat, protons, proinflammatory cytokines, and associated with pain and inflammation. TRPV1 channel is not only involved in calcium signaling fundamental for many cellular processes but also takes part in cell-environment crosstalk influencing cell behavior. Furthermore, in several studies, activation of TRPV1 by capsaicin was associated with anti-cancer effects. Therefore, TRPV1 provides a potential link between the process of inflammation, cancer and immunity, and offers new treatment possibilities. Nevertheless, in many cases, results regarding TRPV1 are contradictory and need further refinement. In this review we present the summary of the data related to the role of TRPV1 channel in the process of inflammation, cancer and immunity, limitations of the studies, and directions for future research.
Collapse
Affiliation(s)
- Joanna Katarzyna Bujak
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Daria Kosmala
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Iwona Monika Szopa
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Kinga Majchrzak
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Piotr Bednarczyk
- Department of Biophysics, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
11
|
Oral gavage of capsaicin causes TRPV1-dependent acute hypothermia and TRPV1-independent long-lasting increase of locomotor activity in the mouse. Physiol Behav 2019; 206:213-224. [DOI: 10.1016/j.physbeh.2019.04.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/20/2019] [Accepted: 04/17/2019] [Indexed: 12/18/2022]
|
12
|
Thakre PP, Bellingham MC. Capsaicin causes robust reduction in glycinergic transmission to rat hypoglossal motor neurons via a TRPV1-independent mechanism. J Neurophysiol 2019; 121:1535-1542. [PMID: 30785813 DOI: 10.1152/jn.00059.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The effect of capsaicin on glycinergic synaptic transmission to juvenile rat hypoglossal motor neurons in acute brainstem slices was evaluated in the presence of TTX. Capsaicin caused a robust decrease in miniature IPSC frequency, amplitude, and half-width, showing that this effect is independent of action potential generation. In the presence of capsazepine, a classic TRPV1 antagonist, capsaicin was still able to reduce spontaneous inhibitory postsynaptic current (IPSC) amplitude and frequency. We further investigated whether the effect of capsaicin on glycinergic transmission to hypoglossal motor neurons is pre- or postsynaptic in nature by recording pairs of evoked IPSCs. Interestingly, capsaicin also reduced evoked IPSC amplitude without affecting paired-pulse ratio, indicating a postsynaptic mechanism of action. Significant reduction was also observed in evoked IPSC half-width, rise time, and decay tau. We also show that capsaicin does not have any effect on either transient (It) or sustained (Is) potassium currents. Finally, we also show that the hyperpolarization-activated cationic current (Ih) also remains unchanged after capsaicin application. NEW & NOTEWORTHY Capsaicin reduces the amplitude of quantal and evoked glycinergic inhibitory neurotransmission to brainstem motor neurons without altering activity-dependent transmitter release. This effect of capsaicin is not due to activation of TRPV1 receptors, as it is not blocked by capsazepine, a TRPV1 receptor antagonist. Capsaicin does not alter voltage-dependent potassium current or the hyperpolarization-activated cationic current in brainstem motor neurons.
Collapse
Affiliation(s)
- Prajwal P Thakre
- Faculty of Medicine, School of Biomedical Sciences, University of Queensland , Brisbane, Queensland , Australia
| | - Mark C Bellingham
- Faculty of Medicine, School of Biomedical Sciences, University of Queensland , Brisbane, Queensland , Australia
| |
Collapse
|
13
|
Leijon SCM, Neves AF, Breza JM, Simon SA, Chaudhari N, Roper SD. Oral thermosensing by murine trigeminal neurons: modulation by capsaicin, menthol and mustard oil. J Physiol 2019; 597:2045-2061. [PMID: 30656684 DOI: 10.1113/jp277385] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/14/2019] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Orosensory thermal trigeminal afferent neurons respond to cool, warm, and nociceptive hot temperatures with the majority activated in the cool range. Many of these thermosensitive trigeminal orosensory afferent neurons also respond to capsaicin, menthol, and/or mustard oil (allyl isothiocyanate) at concentrations found in foods and spices. There is significant but incomplete overlap between afferent trigeminal neurons that respond to oral thermal stimulation and to the above chemesthetic compounds. Capsaicin sensitizes warm trigeminal thermoreceptors and orosensory nociceptors; menthol attenuates cool thermoresponses. ABSTRACT When consumed with foods, mint, mustard, and chili peppers generate pronounced oral thermosensations. Here we recorded responses in mouse trigeminal ganglion neurons to investigate interactions between thermal sensing and the active ingredients of these plants - menthol, allyl isothiocyanate (AITC), and capsaicin, respectively - at concentrations found in foods and commercial hygiene products. We carried out in vivo confocal calcium imaging of trigeminal ganglia in which neurons express GCaMP3 or GCAMP6s and recorded their responses to oral stimulation with thermal and the above chemesthetic stimuli. In the V3 (oral sensory) region of the ganglion, thermoreceptive neurons accounted for ∼10% of imaged neurons. We categorized them into three distinct classes: cool-responsive and warm-responsive thermosensors, and nociceptors (responsive only to temperatures ≥43-45 °C). Menthol, AITC, and capsaicin also elicited robust calcium responses that differed markedly in their latencies and durations. Most of the neurons that responded to these chemesthetic stimuli were also thermosensitive. Capsaicin and AITC increased the numbers of warm-responding neurons and shifted the nociceptor threshold to lower temperatures. Menthol attenuated the responses in all classes of thermoreceptors. Our data show that while individual neurons may respond to a narrow temperature range (or even bimodally), taken collectively, the population is able to report on graded changes of temperature. Our findings also substantiate an explanation for the thermal sensations experienced when one consumes pungent spices or mint.
Collapse
Affiliation(s)
- Sara C M Leijon
- Department of Physiology & Biophysics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Amanda F Neves
- Department of Physiology & Biophysics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Joseph M Breza
- Department of Psychology, Program in Neuroscience, 341J Science Complex, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Sidney A Simon
- Department of Neurobiology, Duke University, Durham, NC, USA
| | - Nirupa Chaudhari
- Department of Physiology & Biophysics, Miller School of Medicine, University of Miami, Miami, FL, USA.,Department of Otolaryngology, Miller School of Medicine, University of Miami, and Program in Neuroscience, University of Miami, Miami, FL, USA
| | - Stephen D Roper
- Department of Physiology & Biophysics, Miller School of Medicine, University of Miami, Miami, FL, USA.,Department of Otolaryngology, Miller School of Medicine, University of Miami, and Program in Neuroscience, University of Miami, Miami, FL, USA
| |
Collapse
|
14
|
Balleza-Tapia H, Crux S, Andrade-Talavera Y, Dolz-Gaiton P, Papadia D, Chen G, Johansson J, Fisahn A. TrpV1 receptor activation rescues neuronal function and network gamma oscillations from Aβ-induced impairment in mouse hippocampus in vitro. eLife 2018; 7:37703. [PMID: 30417826 PMCID: PMC6281315 DOI: 10.7554/elife.37703] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 11/08/2018] [Indexed: 12/24/2022] Open
Abstract
Amyloid-β peptide (Aβ) forms plaques in Alzheimer’s disease (AD) and is responsible for early cognitive deficits in AD patients. Advancing cognitive decline is accompanied by progressive impairment of cognition-relevant EEG patterns such as gamma oscillations. The endocannabinoid anandamide, a TrpV1-receptor agonist, reverses hippocampal damage and memory impairment in rodents and protects neurons from Aβ-induced cytotoxic effects. Here, we investigate a restorative role of TrpV1-receptor activation against Aβ-induced degradation of hippocampal neuron function and gamma oscillations. We found that the TrpV1-receptor agonist capsaicin rescues Aβ-induced degradation of hippocampal gamma oscillations by reversing both the desynchronization of AP firing in CA3 pyramidal cells and the shift in excitatory/inhibitory current balance. This rescue effect is TrpV1-receptor-dependent since it was absent in TrpV1 knockout mice or in the presence of the TrpV1-receptor antagonist capsazepine. Our findings provide novel insight into the network mechanisms underlying cognitive decline in AD and suggest TrpV1 activation as a novel therapeutic target.
Collapse
Affiliation(s)
- Hugo Balleza-Tapia
- Neuronal Oscillations Laboratory, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Neurogeriatrics Division, Karolinska Institutet, Stockholm, Sweden
| | - Sophie Crux
- Neuronal Oscillations Laboratory, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Neurogeriatrics Division, Karolinska Institutet, Stockholm, Sweden.,German Center for Neurodegenerative Diseases, Munich, Germany
| | - Yuniesky Andrade-Talavera
- Neuronal Oscillations Laboratory, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Neurogeriatrics Division, Karolinska Institutet, Stockholm, Sweden
| | - Pablo Dolz-Gaiton
- Neuronal Oscillations Laboratory, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Neurogeriatrics Division, Karolinska Institutet, Stockholm, Sweden
| | - Daniela Papadia
- Neuronal Oscillations Laboratory, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Neurogeriatrics Division, Karolinska Institutet, Stockholm, Sweden
| | - Gefei Chen
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Neurogeriatrics Division, Karolinska Institutet, Stockholm, Sweden
| | - Jan Johansson
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Neurogeriatrics Division, Karolinska Institutet, Stockholm, Sweden
| | - André Fisahn
- Neuronal Oscillations Laboratory, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Neurogeriatrics Division, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Kunde DA, Yingchoncharoen J, Jurković S, Geraghty DP. TRPV1 mediates capsaicin-stimulated metabolic activity but not cell death or inhibition of interleukin-1β release in human THP-1 monocytes. Toxicol Appl Pharmacol 2018; 360:9-17. [PMID: 30244119 DOI: 10.1016/j.taap.2018.09.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/03/2018] [Accepted: 09/18/2018] [Indexed: 01/25/2023]
Abstract
Human monocytes and dendritic cells express transient receptor potential vanilloid 1 (TRPV1) which may play a role in mediating the inflammatory, immune and cancer surveillance responses of these cells. The aim of the present study was to investigate TRPV1 expression and function in THP-1 monocytic cells. RT-PCR and Western blot were used to detect TRPV1. The metabolic activity and viability of THP-1 cells following exposure to vanilloids was assessed using resorufin production from rezazurin. Cytokine release was measured using ELISA. TRPV1 was expressed in cultured THP-1 monocytic cells and naïve monocytes. Lower concentrations (<250 μM) of capsaicin, but not other putative TRPV1 agonists, were shown to stimulate cell metabolic activity, whereas at concentrations >250 μM, all agonists decreased metabolic activity. Capsaicin-stimulated THP-1 metabolic activity was blocked by the TRPV1 antagonist, 5-iodo-resiniferatoxin (5'-IRTX), whereas the decline in resorufin production by THP-1 cells at higher capsaicin concentrations (due to cell death), was not affected by 5'-IRTX. Finally, capsaicin (≤125 μM) significantly increased lipopolysaccharide-stimulated IL-6 and TNF-α release from THP-1 cells, whereas phytohaemagglutinin-stimulated IL-1β, TNF-α, MCP-1 and IL-6 release were concentration-dependently inhibited by capsaicin. Modulation of IL-1β release was not TRPV1 mediated. Overall, these results show that functional TRPV1 channels are present in naïve monocytes and THP-1 cells, and when activated, increase cell metabolic activity. In addition, capsaicin modifies cytokine release from THP-1 cells and induces cell death, most likely by a mechanism that is independent of TRPV1 activation.
Collapse
Affiliation(s)
- Dale A Kunde
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | | | - Saša Jurković
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Dominic P Geraghty
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia.
| |
Collapse
|
16
|
Assessment of the TRPM8 inhibitor AMTB in breast cancer cells and its identification as an inhibitor of voltage gated sodium channels. Life Sci 2018; 198:128-135. [DOI: 10.1016/j.lfs.2018.02.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/11/2018] [Accepted: 02/23/2018] [Indexed: 12/11/2022]
|
17
|
Ye S, Yang R, Xiong Q, Yang Y, Zhou L, Gong Y, Li C, Ding Z, Ye G, Xiong Z. Acute stress enhances learning and memory by activating acid-sensing ion channels in rats. Biochem Biophys Res Commun 2018; 498:1078-1084. [PMID: 29555470 DOI: 10.1016/j.bbrc.2018.03.122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 03/15/2018] [Indexed: 12/31/2022]
Abstract
Acute stress has been shown to enhance learning and memory ability, predominantly through the action of corticosteroid stress hormones. However, the valuable targets for promoting learning and memory induced by acute stress and the underlying molecular mechanisms remain unclear. Acid-sensing ion channels (ASICs) play an important role in central neuronal systems and involves in depression, synaptic plasticity and learning and memory. In the current study, we used a combination of electrophysiological and behavioral approaches in an effort to explore the effects of acute stress on ASICs. We found that corticosterone (CORT) induced by acute stress caused a potentiation of ASICs current via glucocorticoid receptors (GRs) not mineralocorticoid receptors (MRs). Meanwhile, CORT did not produce an increase of ASICs current by pretreated with GF109203X, an antagonist of protein kinase C (PKC), whereas CORT did result in a markedly enhancement of ASICs current by bryostatin 1, an agonist of PKC, suggesting that potentiation of ASICs function may be depended on PKC activating. More importantly, an antagonist of ASICs, amiloride (10 μM) reduced the performance of learning and memory induced by acute stress, which is further suggesting that ASICs as the key components involves in cognitive processes induced by acute stress. These results indicate that acute stress causes the enhancement of ASICs function by activating PKC signaling pathway, which leads to potentiated learning and memory.
Collapse
Affiliation(s)
- Shunjie Ye
- Department of Physiology, Medical College, Jianghan University, Wuhan 430056, China; 2013 Grade Student of Traditional Chinese Medicine, Medical College, Jianghan University, Wuhan 430056, China
| | - Rong Yang
- Department of Physiology, Medical College, Jianghan University, Wuhan 430056, China
| | - Qiuju Xiong
- Department of Pain Management, Wuhan Pu-Ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430033, China
| | - Youhua Yang
- Department of Physiology, Medical College, Jianghan University, Wuhan 430056, China
| | - Lianying Zhou
- Department of Physiology, Medical College, Jianghan University, Wuhan 430056, China
| | - Yeli Gong
- Department of Physiology, Medical College, Jianghan University, Wuhan 430056, China
| | - Changlei Li
- Department of Physiology, Medical College, Jianghan University, Wuhan 430056, China
| | - Zhenhan Ding
- Department of Pharmacy, HuiZhou First Hospital, Guangdong, 516003, China
| | - Guohai Ye
- 2013 Grade Student of Traditional Chinese Medicine, Medical College, Jianghan University, Wuhan 430056, China
| | - Zhe Xiong
- Department of Physiology, Medical College, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
18
|
Thakre PP, Bellingham MC. Capsaicin Enhances Glutamatergic Synaptic Transmission to Neonatal Rat Hypoglossal Motor Neurons via a TRPV1-Independent Mechanism. Front Cell Neurosci 2017; 11:383. [PMID: 29259542 PMCID: PMC5723349 DOI: 10.3389/fncel.2017.00383] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/17/2017] [Indexed: 01/02/2023] Open
Abstract
We investigated whether capsaicin modulated synaptic transmission to hypoglossal motor neurons (HMNs) by acting on transient receptor potential vanilloid type 1 (TRPV1) receptors. Using whole-cell patch clamp recording from neonatal rat HMNs, we found that capsaicin increased spontaneous excitatory post-synaptic current (sEPSC) frequency and amplitude. Interestingly, the only effect of capsaicin on spontaneous inhibitory post-synaptic currents (sIPSCs) was a significant decrease in sIPSC amplitude without altering frequency, indicating a post-synaptic mechanism of action. The frequency of miniature excitatory post-synaptic currents (mEPSCs), recorded in the presence of tetrodotoxin (TTX), was also increased by capsaicin, but capsaicin did not alter mEPSC amplitude, consistent with a pre-synaptic mechanism of action. A negative shift in membrane current (Iholding) was elicited by capsaicin under both recording conditions. The effect of capsaicin on excitatory synaptic transmission remained unchanged in the presence of the TRPV1 antagonists, capsazepine or SB366791, suggesting that capsaicin acts to modulate EPSCs via a mechanism which does not require TRPV1 activation. Capsaicin, however, did not alter evoked excitatory post-synaptic currents (eEPSCs) or the paired-pulse ratio (PPR) of eEPSCs. Repetitive action potential (AP) firing in HMNs was also unaltered by capsaicin, indicating that capsaicin does not change HMN intrinsic excitability. We have demonstrated that capsaicin modulates glutamatergic excitatory, as well as glycinergic inhibitory, synaptic transmission in HMNs by differing pre- and post-synaptic mechanisms. These results expand our understanding regarding the extent to which capsaicin can modulate synaptic transmission to central neurons.
Collapse
Affiliation(s)
- Prajwal P Thakre
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Mark C Bellingham
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
19
|
Ren J, Ding X, Greer JJ. Mechanistic Studies of Capsaicin-Induced Apnea in Rodents. Am J Respir Cell Mol Biol 2017; 56:252-260. [PMID: 27710012 DOI: 10.1165/rcmb.2016-0228oc] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Inhalation of capsaicin-based sprays can cause central respiratory depression and lethal apneas. There are contradictory reports regarding the sites of capsaicin action. Furthermore, an understanding of the neurochemical mechanisms underlying capsaicin-induced apneas and the development of pharmacological interventions is lacking. The main objectives of this study were to perform a systematic study of the mechanisms of action of capsaicin-induced apneas and to provide insights relevant to pharmacological intervention. In vitro and in vivo rat and transient receptor potential vanilloid superfamily member 1 (TRPV1)-null mouse models were used to measure respiratory parameters and seizure-like activity in the presence of capsaicin and compounds that modulate glutamatergic neurotransmission. Administration of capsaicin to in vitro and in vivo rat and wild-type mouse models induced dose-dependent apneas and the production of seizure-like activity. No significant changes were observed in TRPV1-null mice or rat medullary slice preparations. The capsaicin-induced effects were inhibited by the TRPV1 antagonist capsazepine, amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor antagonists CNQX, NBQX, perampanel, and riluzole, a drug that inhibits glutamate release and increases glutamate uptake. The capsaicin-induced effects on breathing and seizure-like activity were accentuated by positive allosteric modulators of the AMPA receptors, CX717 and cyclothiazide. To summarize, capsaicin-induced apneas and seizure-like behaviors are mediated via TRPV1 activation acting at lung afferents, spinal cord-ascending tracts, and medullary structures (including nucleus tractus solitarius). AMPA receptor-mediated conductances play an important role in capsaicin-induced apneas and seizure-like activity. A pharmaceutical strategy targeted at reducing AMPA receptor-mediated glutamatergic signaling may reduce capsaicin-induced deleterious effects.
Collapse
Affiliation(s)
- Jun Ren
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Xiuqing Ding
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - John J Greer
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
20
|
Aréchiga-Figueroa IA, Morán-Zendejas R, Delgado-Ramírez M, Rodríguez-Menchaca AA. Phytochemicals genistein and capsaicin modulate Kv2.1 channel gating. Pharmacol Rep 2017; 69:1145-1153. [PMID: 29128793 DOI: 10.1016/j.pharep.2017.05.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 05/11/2017] [Accepted: 05/29/2017] [Indexed: 11/25/2022]
Abstract
BACKGROUND Phytochemicals are a large group of plant-derived compounds that have a broad range of pharmacological effects. Some of these effects are derived from their action on transport proteins, including ion channels. The present study investigates the effects of the phytochemicals genistein and capsaicin on voltage-gated potassium Kv2.1 channels. METHODS The whole-cell patch clamp technique was used to explore the regulation of Kv2.1 channels expressed in HEK293 cells by genistein and capsaicin. RESULTS Both phytochemicals had a profound effect on the gating properties of Kv2.1 channels; the voltage dependence of activation and inactivation was shifted to hyperpolarized potentials, the closed-state inactivation was accelerated, and the recovery from inactivation was delayed. Moreover, genistein and capsaicin inhibited Kv2.1 currents in a concentration dependent manner. CONCLUSION This study effectively demonstrated the inhibitory effects of genistein and capsaicin on Kv2.1 channels. As Kv2.1 channels play a prominent role in glucose-stimulated insulin secretion, our findings contribute to our understanding of the putative mechanism by which these phytochemicals exert their reported hypoglycemic effects.
Collapse
Affiliation(s)
| | - Rita Morán-Zendejas
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Mayra Delgado-Ramírez
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Aldo A Rodríguez-Menchaca
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.
| |
Collapse
|
21
|
Huang M, Cheng G, Tan H, Qin R, Zou Y, Wang Y, Zhang Y. Capsaicin protects cortical neurons against ischemia/reperfusion injury via down-regulating NMDA receptors. Exp Neurol 2017; 295:66-76. [PMID: 28479337 DOI: 10.1016/j.expneurol.2017.05.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/13/2017] [Accepted: 05/03/2017] [Indexed: 12/20/2022]
Abstract
Capsaicin, the ingredient responsible for the pungent taste of hot chili peppers, is widely used in the study and management of pain. Recently, its neuroprotective effect has been described in multiple studies. Herein, we investigated the underlying mechanisms for the neuroprotective effect of capsaicin. Direct injection of capsaicin (1 or 3nmol) into the peri-infarct area reduced the infarct volume and improved neurological behavioral scoring and motor coordination function in the middle cerebral artery occlusion (MCAO)/reperfusion model in rats. The time window of the protective effect of capsaicin was within 1h after reperfusion, when excitotoxicity is the main reason of cell death. In cultured cortical neurons, administration of capsaicin attenuated glutamate-induced excitotoxic injury. With respect to the mechanisms of the neuroprotective effect of capsaicin, reduced calcium influx after glutamate stimulation was observed following capsaicin pretreatment in cortical neurons. Trpv1 knock-out abolished the inhibitory effect of capsaicin on glutamate-induced calcium influx and subsequent neuronal death. Reduced expression of GluN1 and GluN2B, subunits of NMDA receptor, was examined after capsaicin treatment in cortical neurons. In summary, our studies reveal that the neuroprotective effect of capsaicin in cortical neurons is TRPV1-dependent and down-regulation of the expression and function of NMDA receptors contributes to the protection afforded by capsaicin.
Collapse
Affiliation(s)
- Ming Huang
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University Health Science Center, Beijing 100191, China
| | - Gen Cheng
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University Health Science Center, Beijing 100191, China
| | - Han Tan
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University Health Science Center, Beijing 100191, China
| | - Rui Qin
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University Health Science Center, Beijing 100191, China
| | - Yimin Zou
- Neurobiology Section, Biological Sciences Division, University of California, La Jolla, San Diego, CA 92093, USA
| | - Yun Wang
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University Health Science Center, Beijing 100191, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China.
| | - Ying Zhang
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
22
|
Omari SA, Adams MJ, Geraghty DP. TRPV1 Channels in Immune Cells and Hematological Malignancies. ADVANCES IN PHARMACOLOGY 2017; 79:173-198. [DOI: 10.1016/bs.apha.2017.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
23
|
Fernandes ES, Cerqueira ARA, Soares AG, Costa SKP. Capsaicin and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 929:91-125. [PMID: 27771922 DOI: 10.1007/978-3-319-41342-6_5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A significant number of experimental and clinical studies published in peer-reviewed journals have demonstrated promising pharmacological properties of capsaicin in relieving signs and symptoms of non-communicable diseases (chronic diseases). This chapter provides an overview made from basic and clinical research studies of the potential therapeutic effects of capsaicin, loaded in different application forms, such as solution and cream, on chronic diseases (e.g. arthritis, chronic pain, functional gastrointestinal disorders and cancer). In addition to the anti-inflammatory and analgesic properties of capsaicin largely recognized via, mainly, interaction with the TRPV1, the effects of capsaicin on different cell signalling pathways will be further discussed here. The analgesic, anti-inflammatory or apoptotic effects of capsaicin show promising results in arthritis, neuropathic pain, gastrointestinal disorders or cancer, since evidence demonstrates that the oral or local application of capsaicin reduce inflammation and pain in rheumatoid arthritis, promotes gastric protection against ulcer and induces apoptosis of the tumour cells. Sadly, these results have been paralleled by conflicting studies, which indicate that high concentrations of capsaicin are likely to evoke deleterious effects, thus suggesting that capsaicin activates different pathways at different concentrations in both human and rodent tissues. Thus, to establish effective capsaicin doses for chronic conditions, which can be benefited from capsaicin therapeutic effects, is a real challenge that must be pursued.
Collapse
Affiliation(s)
- E S Fernandes
- Programa de Pós-Graduação, Universidade Ceuma, São Luís-MA, Brazil.,Vascular Biology Section, Cardiovascular Division, King's College London, London, UK
| | - A R A Cerqueira
- Department of Pharmacology, Institute of Biomedical Sciences (ICB), University of São Paulo (USP), Av. Prof. Lineu Prestes, 1524 - Room 326, Butantan, São Paulo, 05508-900, Sao Paulo, Brazil
| | - A G Soares
- Department of Pharmacology, Institute of Biomedical Sciences (ICB), University of São Paulo (USP), Av. Prof. Lineu Prestes, 1524 - Room 326, Butantan, São Paulo, 05508-900, Sao Paulo, Brazil
| | - Soraia K P Costa
- Department of Pharmacology, Institute of Biomedical Sciences (ICB), University of São Paulo (USP), Av. Prof. Lineu Prestes, 1524 - Room 326, Butantan, São Paulo, 05508-900, Sao Paulo, Brazil.
| |
Collapse
|
24
|
Miyake T, Shirakawa H, Nakagawa T, Kaneko S. Activation of mitochondrial transient receptor potential vanilloid 1 channel contributes to microglial migration. Glia 2015; 63:1870-82. [PMID: 26010461 DOI: 10.1002/glia.22854] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 04/17/2015] [Indexed: 12/28/2022]
Abstract
Microglia, the resident immune cells in the brain, survey the environment of the healthy brain. Microglial migration is essential for many physiological and pathophysiological processes. Although microglia express some members of the transient receptor potential (TRP) channel family, there is little knowledge regarding the physiological roles of TRP channels in microglia. Here, we explored the role of TRP vanilloid 1 (TRPV1), a channel opened by capsaicin, heat, protons, and endovanilloids, in microglia. We found that application of capsaicin induced concentration-dependent migration in microglia derived from wild-type mice but not in those derived from TRPV1 knockout (TRPV1-KO) mice. Capsaicin-induced microglial migration was significantly inhibited by co-application of the TRPV1 blocker SB366791 and the Ca(2+) chelator BAPTA-AM. Using RT-PCR and immunocytochemistry, we validated that TRPV1 was expressed in microglia. Electrophysiological recording, intracellular Ca(2+) imaging, and immunocytochemistry indicated that TRPV1 was localized primarily in intracellular organelles. Treatment with capsaicin induced an increase in intramitochondrial Ca(2+) concentrations and mitochondrial depolarization. Furthermore, microglia derived from TRPV1-KO mice showed delayed Ca(2+) efflux compared with microglia derived from wild-type mice. Capsaicin-induced microglial migration was inhibited by membrane-permeable antioxidants and MAPK inhibitors, suggesting that mitochondrial TRPV1 activation induced Ca(2+) -dependent production of ROS followed by MAPK activation, which correlated with an augmented migration of microglia. Moreover, a mixture of three endovanilloids augmented microglial migration via TRPV1 activation. Together, these results indicate that mitochondrial TRPV1 plays an important role in inducing microglial migration. Activation of TRPV1 triggers an increase in intramitochondrial Ca(2+) concentration and following depolarization of mitochondria, which results in mtROS production, MAPK activation, and enhancement of chemotactic activity in microglia.
Collapse
Affiliation(s)
- Takahito Miyake
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hisashi Shirakawa
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Takayuki Nakagawa
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.,Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
25
|
|