1
|
Constable S, Ott CM, Lemire AL, White K, Xun Y, Lim A, Lippincott-Schwartz J, Mukhopadhyay S. Permanent cilia loss during cerebellar granule cell neurogenesis involves withdrawal of cilia maintenance and centriole capping. Proc Natl Acad Sci U S A 2024; 121:e2408083121. [PMID: 39705308 DOI: 10.1073/pnas.2408083121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 11/09/2024] [Indexed: 12/22/2024] Open
Abstract
Brain neurons utilize the primary cilium as a privileged compartment to detect and respond to extracellular ligands such as Sonic hedgehog (SHH). However, cilia in cerebellar granule cell (GC) neurons disassemble during differentiation through ultrastructurally unique intermediates, a process we refer to as cilia deconstruction. In addition, mature neurons do not reciliate despite having docked centrioles. Here, we identify molecular changes that accompany cilia deconstruction and centriole docking in GC neurons. We used single cell transcriptomic and immunocytological analyses to compare the transcript levels and subcellular localization of proteins between progenitor, differentiating, and mature GCs. Differentiating GCs lacked transcripts for key activators of premitotic cilia resorption, indicating that cilia disassembly in differentiating cells is distinct from premitotic cilia resorption. Instead, during differentiation, transcripts of many genes required for cilia maintenance-specifically those encoding components of intraflagellar transport, pericentrosomal material, and centriolar satellites-decreased. The abundance of several corresponding proteins in and around cilia and centrosomes also decreased. These changes coincided with downregulation of SHH signaling prior to differentiation, even in a mutant with excessive SHH activation. Finally, mother centrioles in maturing granule neurons recruited the cap complex protein, CEP97. These data suggest that a global, developmentally programmed decrease in cilium maintenance in differentiating GCs mediates cilia deconstruction, while capping of docked mother centrioles prevents cilia regrowth and dysregulated SHH signaling. Our study provides mechanistic insights expanding our understanding of permanent cilia loss in multiple tissue-specific contexts.
Collapse
Affiliation(s)
- Sandii Constable
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Carolyn M Ott
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| | - Andrew L Lemire
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| | - Kevin White
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Yu Xun
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Amin Lim
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | | | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
2
|
Ott CM, Constable S, Nguyen TM, White K, Lee WCA, Lippincott-Schwartz J, Mukhopadhyay S. Permanent deconstruction of intracellular primary cilia in differentiating granule cell neurons. J Cell Biol 2024; 223:e202404038. [PMID: 39137043 PMCID: PMC11320830 DOI: 10.1083/jcb.202404038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/03/2024] [Accepted: 06/26/2024] [Indexed: 08/15/2024] Open
Abstract
Primary cilia on granule cell neuron progenitors in the developing cerebellum detect sonic hedgehog to facilitate proliferation. Following differentiation, cerebellar granule cells become the most abundant neuronal cell type in the brain. While granule cell cilia are essential during early developmental stages, they become infrequent upon maturation. Here, we provide nanoscopic resolution of cilia in situ using large-scale electron microscopy volumes and immunostaining of mouse cerebella. In many granule cells, we found intracellular cilia, concealed from the external environment. Cilia were disassembled in differentiating granule cell neurons-in a process we call cilia deconstruction-distinct from premitotic cilia resorption in proliferating progenitors. In differentiating granule cells, cilia deconstruction involved unique disassembly intermediates, and, as maturation progressed, mother centriolar docking at the plasma membrane. Unlike ciliated neurons in other brain regions, our results show the deconstruction of concealed cilia in differentiating granule cells, which might prevent mitogenic hedgehog responsiveness. Ciliary deconstruction could be paradigmatic of cilia removal during differentiation in other tissues.
Collapse
Affiliation(s)
- Carolyn M Ott
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Sandii Constable
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tri M Nguyen
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Kevin White
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wei-Chung Allen Lee
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
3
|
Lin IH, Li YR, Chang CH, Cheng YW, Wang YT, Tsai YS, Lin PY, Kao CH, Su TY, Hsu CS, Tung CY, Hsu PH, Ayrault O, Chung BC, Tsai JW, Wang WJ. Regulation of primary cilia disassembly through HUWE1-mediated TTBK2 degradation plays a crucial role in cerebellar development and medulloblastoma growth. Cell Death Differ 2024; 31:1349-1361. [PMID: 38879724 PMCID: PMC11445238 DOI: 10.1038/s41418-024-01325-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 10/03/2024] Open
Abstract
Development of the cerebellum requires precise regulation of granule neuron progenitor (GNP) proliferation. Although it is known that primary cilia are necessary to support GNP proliferation, the exact molecular mechanism governing primary cilia dynamics within GNPs remains elusive. Here, we establish the pivotal roles for the centrosomal kinase TTBK2 (Tau tubulin kinase-2) and the E3 ubiquitin ligase HUWE1 in GNP proliferation. We show that TTBK2 is highly expressed in proliferating GNPs under Sonic Hedgehog (SHH) signaling, coinciding with active GNP proliferation and the presence of primary cilia. TTBK2 stabilizes primary cilia by inhibiting their disassembly, thereby promoting GNP proliferation in response to SHH. Mechanistically, we identify HUWE1 as a novel centrosomal E3 ligase that facilitates primary cilia disassembly by targeting TTBK2 degradation. Disassembly of primary cilia serves as a trigger for GNP differentiation, allowing their migration from the external granule layer (EGL) of the cerebellum to the internal granule layer (IGL) for subsequent maturation. Moreover, we have established a link between TTBK2 and SHH-type medulloblastoma (SHH-MB), a tumor characterized by uncontrolled GNP proliferation. TTBK2 depletion inhibits SHH-MB proliferation, indicating that TTBK2 may be a potential therapeutic target for this cancer type. In summary, our findings reveal the mechanism governing cerebellar development and highlight a potential anti-cancer strategy for SHH-MB.
Collapse
Affiliation(s)
- I-Hsuan Lin
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Yue-Ru Li
- Institute of Brain Science, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Chia-Hsiang Chang
- Institute of Brain Science, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Yu-Wen Cheng
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Yu-Ting Wang
- Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan
- Department of Life Sciences, National Central University, Taoyuan, 300, Taiwan
| | - Yu-Shuen Tsai
- Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Pei-Yi Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan
- Department of Life Sciences, National Central University, Taoyuan, 300, Taiwan
| | - Chien-Han Kao
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Ting-Yu Su
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Chih-Sin Hsu
- Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Chien-Yi Tung
- Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Pang-Hung Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 202, Taiwan
| | - Olivier Ayrault
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR, INSERM U, Orsay, France
| | - Bon-Chu Chung
- Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan
- Graduate Institute of Biomedical Sciences, Neuroscience and Brain Disease Center, China Medical University, Taichung, 404, Taiwan
| | - Jin-Wu Tsai
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan.
- Institute of Brain Science, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
- Advanced Therapeutics Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| | - Won-Jing Wang
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan.
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
- Advanced Therapeutics Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| |
Collapse
|
4
|
Ott CM, Constable S, Nguyen TM, White K, Lee WCA, Lippincott-Schwartz J, Mukhopadhyay S. Permanent deconstruction of intracellular primary cilia in differentiating granule cell neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.07.565988. [PMID: 38106104 PMCID: PMC10723395 DOI: 10.1101/2023.12.07.565988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Primary cilia on granule cell neuron progenitors in the developing cerebellum detect sonic hedgehog to facilitate proliferation. Following differentiation, cerebellar granule cells become the most abundant neuronal cell type in the brain. While essential during early developmental stages, the fate of granule cell cilia is unknown. Here, we provide nanoscopic resolution of ciliary dynamics in situ by studying developmental changes in granule cell cilia using large-scale electron microscopy volumes and immunostaining of mouse cerebella. We found that many granule cell primary cilia were intracellular and concealed from the external environment. Cilia were disassembed in differentiating granule cell neurons in a process we call cilia deconstruction that was distinct from pre-mitotic cilia resorption in proliferating progenitors. In differentiating granule cells, ciliary loss involved unique disassembly intermediates, and, as maturation progressed, mother centriolar docking at the plasma membrane. Cilia did not reform from the docked centrioles, rather, in adult mice granule cell neurons remained unciliated. Many neurons in other brain regions require cilia to regulate function and connectivity. In contrast, our results show that granule cell progenitors had concealed cilia that underwent deconstruction potentially to prevent mitogenic hedgehog responsiveness. The ciliary deconstruction mechanism we describe could be paradigmatic of cilia removal during differentiation in other tissues.
Collapse
Affiliation(s)
- Carolyn M. Ott
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Sandii Constable
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tri M. Nguyen
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Current affiliation, Zetta AI LLC, USA
| | - Kevin White
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wei-Chung Allen Lee
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
5
|
Lee B, Beuhler L, Lee HY. The Primary Ciliary Deficits in Cerebellar Bergmann Glia of the Mouse Model of Fragile X Syndrome. CEREBELLUM (LONDON, ENGLAND) 2022; 21:801-813. [PMID: 35438410 PMCID: PMC10857775 DOI: 10.1007/s12311-022-01382-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/07/2022] [Indexed: 12/14/2022]
Abstract
Primary cilia are non-motile cilia that function as antennae for cells to sense signals. Deficits of primary cilia cause ciliopathies, leading to the pathogenesis of various developmental disorders; however, the contribution of primary cilia to neurodevelopmental disorders is largely unknown. Fragile X syndrome (FXS) is a genetically inherited disorder and is the most common known cause of autism spectrum disorders. FXS is caused by the silencing of the fragile X mental retardation 1 (FMR1) gene, which encodes for the fragile X mental retardation protein (FMRP). Here, we discovered a reduction in the number of primary cilia and the Sonic hedgehog (Shh) signaling in cerebellar Bergmann glia of Fmr1 KO mice. We further found reduced granule neuron precursor (GNP) proliferation and thickness of the external germinal layer (EGL) in Fmr1 KO mice, implicating that primary ciliary deficits in Bergmann glia may contribute to cerebellar developmental phenotypes in FXS, as Shh signaling through primary cilia in Bergmann glia is known to mediate proper GNP proliferation in the EGL. Taken together, our study demonstrates that FMRP loss leads to primary ciliary deficits in cerebellar Bergmann glia which may contribute to cerebellar deficits in FXS.
Collapse
Affiliation(s)
- Bumwhee Lee
- The Department of Cellular and Integrative Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Laura Beuhler
- The Department of Cellular and Integrative Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Hye Young Lee
- The Department of Cellular and Integrative Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
6
|
Massimi M, Di Pietro C, La Sala G, Matteoni R. Mouse Mutants of Gpr37 and Gpr37l1 Receptor Genes: Disease Modeling Applications. Int J Mol Sci 2022; 23:ijms23084288. [PMID: 35457105 PMCID: PMC9025225 DOI: 10.3390/ijms23084288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 02/05/2023] Open
Abstract
The vertebrate G protein–coupled receptor 37 and G protein–coupled receptor 37-like 1 (GPR37 and GPR37L1) proteins have amino acid sequence homology to endothelin and bombesin-specific receptors. The prosaposin glycoprotein, its derived peptides, and analogues have been reported to interact with and activate both putative receptors. The GPR37 and GPR37L1 genes are highly expressed in human and rodent brains. GPR37 transcripts are most abundant in oligodendrocytes and in the neurons of the substantia nigra and hippocampus, while the GPR37L1 gene is markedly expressed in cerebellar Bergmann glia astrocytes. The human GPR37 protein is a substrate of parkin, and its insoluble form accumulates in brain samples from patients of inherited juvenile Parkinson’s disease. Several Gpr37 and Gpr37l1 mouse mutant strains have been produced and applied to extensive in vivo and ex vivo analyses of respective receptor functions and involvement in brain and other organ pathologies. The genotypic and phenotypic characteristics of the different mouse strains so far published are reported and discussed, and their current and proposed applications to human disease modeling are highlighted.
Collapse
|
7
|
Chang CH, Chen TY, Tang TK. Using in vivo cerebellar electroporation to study neuronal cell proliferation and differentiation in a Joubert syndrome mouse model. Methods Cell Biol 2022; 175:235-249. [PMID: 36967143 DOI: 10.1016/bs.mcb.2022.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Joubert syndrome (JS) is an autosomal recessive ciliopathy that mainly affects the morphogenesis of the cerebellum and brain stem. To date, mutations in at least 39 genes have been identified in JS; all these gene-encoding proteins are involved in the biogenesis of the primary cilium and centrioles. Recent studies using the mouse model carrying deleted or mutated JS-related genes exhibited cerebellar hypoplasia with a reduction in neurogenesis; however, investigating specific neuronal behaviors during their development in vivo remains challenging. Here, we describe an in vivo cerebellar electroporation technique that can be used to deliver plasmids carrying GFP and/or shRNAs into the major cerebellar cell type, granule neurons, from their progenitor state to their maturation in a spatiotemporal-specific manner. By combining this method with cerebellar immunostaining and EdU incorporation, these approaches enable the investigation of the cell-autonomous effect of JS-related genes in granule neuron progenitors, including the pathogenesis of ectopic neurons and the defects in neuronal differentiation. This approach provides information toward understanding the multifaceted roles of JS-related genes during cerebellar development in vivo.
Collapse
Affiliation(s)
| | - Ting-Yu Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Tang K Tang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
8
|
Consalez GG. The First 50 Years of Postnatal Neurogenesis in the Cerebellum: a Long Journey Across Phenomena, Mechanisms, and Human Disease. THE CEREBELLUM 2021; 21:9-18. [PMID: 34704190 DOI: 10.1007/s12311-021-01315-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The discovery by Altman and coworkers of adult-born microneurons in the olfactory bulb and dentate gyrus has triggered a long stream of studies and many attempts to harness adult neurogenesis, promote regeneration after injury, and contrast cognitive decline in the elderly. Likewise, the discovery of postnatal neurogenesis in the cerebellum has provided the framework for many subsequent molecular studies, including investigations of developmental processes and the assessment of GC progenitor (GCP) clonal expansion in the context of human disease. Here, I will briefly discuss some of the discoveries made in the field of cerebellar development over the years building upon the findings of Altman and his colleagues, touching upon signaling pathways that regulate granule cell neurogenesis and their involvement in developmental and neoplastic disorders of the cerebellum.
Collapse
Affiliation(s)
- G Giacomo Consalez
- Division of Neuroscience, San Raffaele Scientific Institute, and San Raffaele University, Dibit1 Bldg., Via Olgettina 58, 20132, Milan, Italy.
| |
Collapse
|
9
|
Transcriptome programs involved in the development and structure of the cerebellum. Cell Mol Life Sci 2021; 78:6431-6451. [PMID: 34406416 PMCID: PMC8558292 DOI: 10.1007/s00018-021-03911-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/02/2021] [Indexed: 12/23/2022]
Abstract
In the past two decades, mounting evidence has modified the classical view of the cerebellum as a brain region specifically involved in the modulation of motor functions. Indeed, clinical studies and engineered mouse models have highlighted cerebellar circuits implicated in cognitive functions and behavior. Furthermore, it is now clear that insults occurring in specific time windows of cerebellar development can affect cognitive performance later in life and are associated with neurological syndromes, such as Autism Spectrum Disorder. Despite its almost homogenous cytoarchitecture, how cerebellar circuits form and function is not completely elucidated yet. Notably, the apparently simple neuronal organization of the cerebellum, in which Purkinje cells represent the only output, hides an elevated functional diversity even within the same neuronal population. Such complexity is the result of the integration of intrinsic morphogenetic programs and extracellular cues from the surrounding environment, which impact on the regulation of the transcriptome of cerebellar neurons. In this review, we briefly summarize key features of the development and structure of the cerebellum before focusing on the pathways involved in the acquisition of the cerebellar neuron identity. We focus on gene expression and mRNA processing programs, including mRNA methylation, trafficking and splicing, that are set in motion during cerebellar development and participate to its physiology. These programs are likely to add new layers of complexity and versatility that are fundamental for the adaptability of cerebellar neurons.
Collapse
|
10
|
Decoding the Roles of Astrocytes and Hedgehog Signaling in Medulloblastoma. ACTA ACUST UNITED AC 2021; 28:3058-3070. [PMID: 34436033 PMCID: PMC8395412 DOI: 10.3390/curroncol28040267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/01/2021] [Accepted: 08/04/2021] [Indexed: 01/09/2023]
Abstract
The molecular evolution of medulloblastoma is more complex than previously imagined, as emerging evidence suggests that multiple interactions between the tumor cells and components of the tumor microenvironment (TME) are important for tumor promotion and progression. The identification of several molecular networks within the TME, which interact with tumoral cells, has provided new clues to understand the tumorigenic roles of many TME components as well as potential therapeutic targets. In this review, we discuss the most recent studies regarding the roles of astrocytes in supporting sonic hedgehog (SHH) subgroup medulloblastoma (MB) and provide an overview of MB progression through SHH expression and signal transduction mechanisms into the complex tumor microenvironment. In addition, we highlight the associations between tumor and stromal cells as possible prognostic markers that could be targeted with new therapeutic strategies.
Collapse
|
11
|
Nguyen TT, Dammer EB, Owino SA, Giddens MM, Madaras NS, Duong DM, Seyfried NT, Hall RA. Quantitative Proteomics Reveal an Altered Pattern of Protein Expression in Brain Tissue from Mice Lacking GPR37 and GPR37L1. J Proteome Res 2021; 19:744-755. [PMID: 31903766 DOI: 10.1021/acs.jproteome.9b00622] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
GPR37 and GPR37L1 are glia-enriched G protein-coupled receptors that have been implicated in several neurological and neurodegenerative diseases. To gain insight into the potential molecular mechanisms by which GPR37 and GPR37L1 regulate cellular physiology, proteomic analyses of whole mouse brain tissue from wild-type (WT) versus GPR37/GPR37L1 double knockout (DKO) mice were performed in order to identify proteins regulated by the absence versus presence of these receptors (data are available via ProteomeXchange with identifier PXD015202). These analyses revealed a number of proteins that were significantly increased or decreased by the absence of GPR37 and GPR37L1. One of the most decreased proteins in the DKO versus WT brain tissue was S100A5, a calcium-binding protein, and the reduction of S100A5 expression in KO brain tissue was validated via Western blot. Coexpression of S100A5 with either GPR37 or GPR37L1 in HEK293T cells did not result in any change in S100A5 expression but did robustly increase secretion of S100A5. To dissect the mechanism by which S100A5 secretion was enhanced, cells coexpressing S100A5 with the receptors were treated with different pharmacological reagents. These studies revealed that calcium is essential for the secretion of S100A5 downstream of GPR37 and GPR37L1 signaling, as treatment with BAPTA-AM, an intracellular Ca2+ chelator, reduced S100A5 secretion from transfected HEK293T cells. Collectively, these findings provide a panoramic view of proteomic changes resulting from loss of GPR37 and GPR37L1 and also impart mechanistic insight into the regulation of S100A5 by these receptors, thereby shedding light on the functions of GPR37 and GPR37L1 in brain tissue.
Collapse
Affiliation(s)
- TrangKimberly Thu Nguyen
- Department of Pharmacology and Chemical Biology , Emory University School of Medicine , Atlanta 30322 , Georgia , United States
| | - Eric B Dammer
- Department of Biochemistry , Emory University School of Medicine , Atlanta 30345 , Georgia , United States
| | - Sharon A Owino
- Department of Pharmacology and Chemical Biology , Emory University School of Medicine , Atlanta 30322 , Georgia , United States
| | - Michelle M Giddens
- Department of Pharmacology and Chemical Biology , Emory University School of Medicine , Atlanta 30322 , Georgia , United States
| | - Nora S Madaras
- Department of Pharmacology and Chemical Biology , Emory University School of Medicine , Atlanta 30322 , Georgia , United States
| | - Duc M Duong
- Department of Biochemistry , Emory University School of Medicine , Atlanta 30345 , Georgia , United States
| | - Nicholas T Seyfried
- Department of Biochemistry , Emory University School of Medicine , Atlanta 30345 , Georgia , United States
| | - Randy A Hall
- Department of Pharmacology and Chemical Biology , Emory University School of Medicine , Atlanta 30322 , Georgia , United States
| |
Collapse
|
12
|
Diaz J, Gérard X, Emerit MB, Areias J, Geny D, Dégardin J, Simonutti M, Guerquin MJ, Collin T, Viollet C, Billard JM, Métin C, Hubert L, Larti F, Kahrizi K, Jobling R, Agolini E, Shaheen R, Zigler A, Rouiller-Fabre V, Rozet JM, Picaud S, Novelli A, Alameer S, Najmabadi H, Cohn R, Munnich A, Barth M, Lugli L, Alkuraya FS, Blaser S, Gashlan M, Besmond C, Darmon M, Masson J. YIF1B mutations cause a post-natal neurodevelopmental syndrome associated with Golgi and primary cilium alterations. Brain 2021; 143:2911-2928. [PMID: 33103737 DOI: 10.1093/brain/awaa235] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/29/2020] [Accepted: 06/13/2020] [Indexed: 12/30/2022] Open
Abstract
Human post-natal neurodevelopmental delay is often associated with cerebral alterations that can lead, by themselves or associated with peripheral deficits, to premature death. Here, we report the clinical features of 10 patients from six independent families with mutations in the autosomal YIF1B gene encoding a ubiquitous protein involved in anterograde traffic from the endoplasmic reticulum to the cell membrane, and in Golgi apparatus morphology. The patients displayed global developmental delay, motor delay, visual deficits with brain MRI evidence of ventricle enlargement, myelination alterations and cerebellar atrophy. A similar profile was observed in the Yif1b knockout (KO) mouse model developed to identify the cellular alterations involved in the clinical defects. In the CNS, mice lacking Yif1b displayed neuronal reduction, altered myelination of the motor cortex, cerebellar atrophy, enlargement of the ventricles, and subcellular alterations of endoplasmic reticulum and Golgi apparatus compartments. Remarkably, although YIF1B was not detected in primary cilia, biallelic YIF1B mutations caused primary cilia abnormalities in skin fibroblasts from both patients and Yif1b-KO mice, and in ciliary architectural components in the Yif1b-KO brain. Consequently, our findings identify YIF1B as an essential gene in early post-natal development in human, and provide a new genetic target that should be tested in patients developing a neurodevelopmental delay during the first year of life. Thus, our work is the first description of a functional deficit linking Golgipathies and ciliopathies, diseases so far associated exclusively to mutations in genes coding for proteins expressed within the primary cilium or related ultrastructures. We therefore propose that these pathologies should be considered as belonging to a larger class of neurodevelopmental diseases depending on proteins involved in the trafficking of proteins towards specific cell membrane compartments.
Collapse
Affiliation(s)
- Jorge Diaz
- INSERM UMR894, Center for Psychiatry and Neuroscience, Paris F-75014, Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France
| | - Xavier Gérard
- INSERM UMR-S1163 Imagine Institute for Genetic Diseases, Paris Descartes-Sorbonne Paris Cité University, France
| | - Michel-Boris Emerit
- INSERM UMR894, Center for Psychiatry and Neuroscience, Paris F-75014, Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France
| | - Julie Areias
- INSERM UMR894, Center for Psychiatry and Neuroscience, Paris F-75014, Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France
| | - David Geny
- INSERM UMR894, Center for Psychiatry and Neuroscience, Paris F-75014, Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France
| | - Julie Dégardin
- INSERM UMR-S968, Institut de la vision, Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris F-75012, Université Pierre et Marie Curie, France
| | - Manuel Simonutti
- INSERM UMR-S968, Institut de la vision, Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris F-75012, Université Pierre et Marie Curie, France
| | | | - Thibault Collin
- Saint Pères Paris Institute for the Neurosciences CNRS - UMR 8003 Université de Paris, Paris 75006, France
| | - Cécile Viollet
- INSERM UMR894, Center for Psychiatry and Neuroscience, Paris F-75014, Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France
| | - Jean-Marie Billard
- INSERM UMR894, Center for Psychiatry and Neuroscience, Paris F-75014, Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France
| | - Christine Métin
- INSERM, UMR-S1270, Institut du Fer à Moulin, Sorbonne Université, Paris F-75005, France
| | - Laurence Hubert
- INSERM UMR-S1163 Imagine Institute for Genetic Diseases, Paris Descartes-Sorbonne Paris Cité University, France
| | - Farzaneh Larti
- University of Social Welfare and Rehabilitation Sciences, Genetics Research Center, Tehran 19834, Iran
| | - Kimia Kahrizi
- University of Social Welfare and Rehabilitation Sciences, Genetics Research Center, Tehran 19834, Iran
| | - Rebekah Jobling
- The Hospital for Sick Children, Molecular Genetics, Toronto, Canada
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, 00146 Rome, Italy
| | - Ranad Shaheen
- King Faisal Specialist Hospital and Research Center, Developmental Genetics Unit, Riyadh 11211, Saudi Arabia
| | | | | | - Jean-Michel Rozet
- INSERM UMR-S1163 Imagine Institute for Genetic Diseases, Paris Descartes-Sorbonne Paris Cité University, France
| | - Serge Picaud
- INSERM UMR-S968, Institut de la vision, Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris F-75012, Université Pierre et Marie Curie, France
| | - Antonio Novelli
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, 00146 Rome, Italy
| | - Seham Alameer
- Department of Pediatrics, King Khaled National Guard Hospital, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Hossein Najmabadi
- University of Social Welfare and Rehabilitation Sciences, Genetics Research Center, Tehran 19834, Iran
| | - Ronald Cohn
- The Hospital for Sick Children, Molecular Genetics, Toronto, Canada
| | - Arnold Munnich
- INSERM UMR-S1163 Imagine Institute for Genetic Diseases, Paris Descartes-Sorbonne Paris Cité University, France
| | | | - Licia Lugli
- Division of Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, 41125 Modena, Italy
| | - Fowzan S Alkuraya
- King Faisal Specialist Hospital and Research Center, Developmental Genetics Unit, Riyadh 11211, Saudi Arabia
| | - Susan Blaser
- Division of Neuroradiology, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Maha Gashlan
- King Faisal Specialist Hospital and Research Center, Developmental Genetics Unit, Riyadh 11211, Saudi Arabia
| | - Claude Besmond
- INSERM UMR-S1163 Imagine Institute for Genetic Diseases, Paris Descartes-Sorbonne Paris Cité University, France
| | - Michèle Darmon
- INSERM UMR894, Center for Psychiatry and Neuroscience, Paris F-75014, Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France.,INSERM, UMR-S1270, Institut du Fer à Moulin, Sorbonne Université, Paris F-75005, France
| | - Justine Masson
- INSERM UMR894, Center for Psychiatry and Neuroscience, Paris F-75014, Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France.,INSERM, UMR-S1270, Institut du Fer à Moulin, Sorbonne Université, Paris F-75005, France
| |
Collapse
|
13
|
Consalez GG, Goldowitz D, Casoni F, Hawkes R. Origins, Development, and Compartmentation of the Granule Cells of the Cerebellum. Front Neural Circuits 2021; 14:611841. [PMID: 33519389 PMCID: PMC7843939 DOI: 10.3389/fncir.2020.611841] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/17/2020] [Indexed: 12/21/2022] Open
Abstract
Granule cells (GCs) are the most numerous cell type in the cerebellum and indeed, in the brain: at least 99% of all cerebellar neurons are granule cells. In this review article, we first consider the formation of the upper rhombic lip, from which all granule cell precursors arise, and the way by which the upper rhombic lip generates the external granular layer, a secondary germinal epithelium that serves to amplify the upper rhombic lip precursors. Next, we review the mechanisms by which postmitotic granule cells are generated in the external granular layer and migrate radially to settle in the granular layer. In addition, we review the evidence that far from being a homogeneous population, granule cells come in multiple phenotypes with distinct topographical distributions and consider ways in which the heterogeneity of granule cells might arise during development.
Collapse
Affiliation(s)
- G Giacomo Consalez
- Division of Neuroscience, San Raffaele Scientific Institute, San Raffaele University, Milan, Italy
| | - Daniel Goldowitz
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Filippo Casoni
- Division of Neuroscience, San Raffaele Scientific Institute, San Raffaele University, Milan, Italy
| | - Richard Hawkes
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
14
|
Hill SA, Fu M, Garcia ADR. Sonic hedgehog signaling in astrocytes. Cell Mol Life Sci 2021; 78:1393-1403. [PMID: 33079226 PMCID: PMC7904711 DOI: 10.1007/s00018-020-03668-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/02/2020] [Accepted: 10/05/2020] [Indexed: 01/12/2023]
Abstract
Astrocytes are complex cells that perform a broad array of essential functions in the healthy and injured nervous system. The recognition that these cells are integral components of various processes, including synapse formation, modulation of synaptic activity, and response to injury, underscores the need to identify the molecular signaling programs orchestrating these diverse functional properties. Emerging studies have identified the Sonic hedgehog (Shh) signaling pathway as an essential regulator of the molecular identity and functional properties of astrocytes. Well established as a powerful regulator of diverse neurodevelopmental processes in the embryonic nervous system, its functional significance in astrocytes is only beginning to be revealed. Notably, Shh signaling is active only in discrete subpopulations of astrocytes distributed throughout the brain, a feature that has potential to yield novel insights into functional specialization of astrocytes. Here, we discuss Shh signaling and emerging data that point to essential roles for this pleiotropic signaling pathway in regulating various functional properties of astrocytes in the healthy and injured brain.
Collapse
Affiliation(s)
- Steven A Hill
- Department of Biology, Drexel University, Philadelphia, PA, 19104, USA
| | - Marissa Fu
- Department of Biology, Drexel University, Philadelphia, PA, 19104, USA
| | - A Denise R Garcia
- Department of Biology, Drexel University, Philadelphia, PA, 19104, USA.
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA.
| |
Collapse
|
15
|
La Sala G, Di Pietro C, Matteoni R, Bolasco G, Marazziti D, Tocchini-Valentini GP. Gpr37l1/prosaposin receptor regulates Ptch1 trafficking, Shh production, and cell proliferation in cerebellar primary astrocytes. J Neurosci Res 2020; 99:1064-1083. [PMID: 33350496 DOI: 10.1002/jnr.24775] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 11/30/2020] [Indexed: 02/24/2024]
Abstract
Mammalian cerebellar astrocytes critically regulate the differentiation and maturation of neuronal Purkinje cells and granule precursors. The G protein-coupled receptor 37-like 1 (Gpr37l1) is expressed by Bergmann astrocytes and interacts with patched 1 (Ptch1) at peri-ciliary membranes. Cerebellar primary astrocyte cultures from wild-type and Gpr37l1 null mutant mouse pups were established and studied. Primary cilia were produced by cultures of both genotypes, as well as Ptch1 and smoothened (Smo) components of the sonic hedgehog (Shh) mitogenic pathway. Compared to wild-type cells, Gpr37l1-/- astrocytes displayed striking increases in proliferative activity, Ptch1 protein expression and internalization, intracellular cholesterol content, ciliary localization of Smo, as well as a marked production of active Shh. Similar effects were reproduced by treating wild-type astrocytes with a putative prosaptide ligand of Gpr37l1. These findings indicate that Gpr37l1-Ptch1 interactions specifically regulate Ptch1 internalization and trafficking, with consequent stimulation of Shh production and activation of proliferative signaling.
Collapse
Affiliation(s)
- Gina La Sala
- Institute of Biochemistry and Cell Biology, Italian National Research Council (CNR), Monterotondo Scalo, Rome, Italy
| | - Chiara Di Pietro
- Institute of Biochemistry and Cell Biology, Italian National Research Council (CNR), Monterotondo Scalo, Rome, Italy
| | - Rafaele Matteoni
- Institute of Biochemistry and Cell Biology, Italian National Research Council (CNR), Monterotondo Scalo, Rome, Italy
| | - Giulia Bolasco
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Monterotondo Scalo, Rome, Italy
| | - Daniela Marazziti
- Institute of Biochemistry and Cell Biology, Italian National Research Council (CNR), Monterotondo Scalo, Rome, Italy
| | - Glauco P Tocchini-Valentini
- Institute of Biochemistry and Cell Biology, Italian National Research Council (CNR), Monterotondo Scalo, Rome, Italy
| |
Collapse
|
16
|
Jeng KS, Chang CF, Lin SS. Sonic Hedgehog Signaling in Organogenesis, Tumors, and Tumor Microenvironments. Int J Mol Sci 2020; 21:ijms21030758. [PMID: 31979397 PMCID: PMC7037908 DOI: 10.3390/ijms21030758] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023] Open
Abstract
During mammalian embryonic development, primary cilia transduce and regulate several signaling pathways. Among the various pathways, Sonic hedgehog (SHH) is one of the most significant. SHH signaling remains quiescent in adult mammalian tissues. However, in multiple adult tissues, it becomes active during differentiation, proliferation, and maintenance. Moreover, aberrant activation of SHH signaling occurs in cancers of the skin, brain, liver, gallbladder, pancreas, stomach, colon, breast, lung, prostate, and hematological malignancies. Recent studies have shown that the tumor microenvironment or stroma could affect tumor development and metastasis. One hypothesis has been proposed, claiming that the pancreatic epithelia secretes SHH that is essential in establishing and regulating the pancreatic tumor microenvironment in promoting cancer progression. The SHH signaling pathway is also activated in the cancer stem cells (CSC) of several neoplasms. The self-renewal of CSC is regulated by the SHH/Smoothened receptor (SMO)/Glioma-associated oncogene homolog I (GLI) signaling pathway. Combined use of SHH signaling inhibitors and chemotherapy/radiation therapy/immunotherapy is therefore key in targeting CSCs.
Collapse
|
17
|
Liu Y, Wang M, Marcora EM, Zhang B, Goate AM. Promoter DNA hypermethylation - Implications for Alzheimer's disease. Neurosci Lett 2019; 711:134403. [PMID: 31351091 PMCID: PMC6759378 DOI: 10.1016/j.neulet.2019.134403] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 07/12/2019] [Accepted: 07/23/2019] [Indexed: 12/31/2022]
Abstract
Recent methylome-wide association studies (MWAS) in humans have solidified the concept that aberrant DNA methylation is associated with Alzheimer's disease (AD). We summarize these findings to improve the understanding of mechanisms governing DNA methylation pertinent to transcriptional regulation, with an emphasis of AD-associated promoter DNA hypermethylation, which establishes an epigenetic barrier for transcriptional activation. By considering brain cell type specific expression profiles that have been published only for non-demented individuals, we detail functional activities of selected neuron, microglia, and astrocyte-enriched genes (AGAP2, DUSP6 and GPR37L1, respectively), which are DNA hypermethylated at promoters in AD. We highlight future directions in MWAS including experimental confirmation, functional relevance to AD, cell type-specific temporal characterization, and mechanism investigation.
Collapse
Affiliation(s)
- Yiyuan Liu
- Department of Neuroscience and Department of Genetics and Genomic Sciences, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA.
| | - Edoardo M Marcora
- Department of Neuroscience and Department of Genetics and Genomic Sciences, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
| | - Alison M Goate
- Department of Neuroscience and Department of Genetics and Genomic Sciences, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
| |
Collapse
|
18
|
Atoh1 Controls Primary Cilia Formation to Allow for SHH-Triggered Granule Neuron Progenitor Proliferation. Dev Cell 2019; 48:184-199.e5. [PMID: 30695697 DOI: 10.1016/j.devcel.2018.12.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 10/11/2018] [Accepted: 12/19/2018] [Indexed: 11/23/2022]
Abstract
During cerebellar development, granule neuron progenitors (GNPs) proliferate by transducing Sonic Hedgehog (SHH) signaling via the primary cilium. Precise regulation of ciliogenesis, thus, ensures proper GNP pool expansion. Here, we report that Atoh1, a transcription factor required for GNPs formation, controls the presence of primary cilia, maintaining GNPs responsiveness to SHH. Loss of primary cilia abolishes the ability of Atoh1 to keep GNPs in a proliferative state. Mechanistically, Atoh1 promotes ciliogenesis by transcriptionally regulating Cep131, which facilitates centriolar satellite (CS) clustering to the basal body. Importantly, ectopic expression of Cep131 counteracts the effects of Atoh1 loss in GNPs by restoring proper localization of CS and ciliogenesis. This Atoh1-CS-primary cilium-SHH pro-proliferative pathway is also conserved in SHH-type medulloblastoma, a pediatric brain tumor arising from the GNPs. Together, our data reveal how Atoh1 modulates the primary cilium to regulate GNPs development.
Collapse
|
19
|
Lucarelli M, Di Pietro C, La Sala G, Fiorenza MT, Marazziti D, Canterini S. Anomalies in Dopamine Transporter Expression and Primary Cilium Distribution in the Dorsal Striatum of a Mouse Model of Niemann-Pick C1 Disease. Front Cell Neurosci 2019; 13:226. [PMID: 31178699 PMCID: PMC6544041 DOI: 10.3389/fncel.2019.00226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/06/2019] [Indexed: 12/15/2022] Open
Abstract
The Niemann-Pick type C1 (NPC1) is a rare genetic disease characterized by the accumulation of endocytosed cholesterol and other lipids in the endosome/lysosome compartments. In the brain, the accumulation/mislocalization of unesterified cholesterol, gangliosides and sphingolipids is responsible for the appearance of neuropathological hallmarks, and progressive neurological decline in patients. The imbalance of unesterified cholesterol and other lipids, including GM2 and GM3 gangliosides, alters a number of signaling mechanisms impacting on the overall homeostasis of neurons. In particular, lipid depletion experiments have shown that lipid rafts regulate the cell surface expression of dopamine transporter (DAT) and modulate its activity. Dysregulated dopamine transporter's function results in imbalanced dopamine levels at synapses and severely affects dopamine-induced locomotor responses and dopamine receptor-mediated synaptic signaling. Recent studies begin to correlate dopaminergic stimulation with the length and function of the primary cilium, a non-motile organelle that coordinates numerous signaling pathways. In particular, the absence of dopaminergic D2 receptor stimulation induces the elongation of dorso-striatal neuron's primary cilia. This study has used a mouse model of the NPC1 disease to correlate cholesterol dyshomeostasis with dorso-striatal anomalies in terms of DAT expression and primary cilium (PC) length and morphology. We found that juvenile Npc1nmf164 mice display a reduction of dorso-striatal DAT expression, with associated alterations of PC number, length-frequency distribution, and tortuosity.
Collapse
Affiliation(s)
- Micaela Lucarelli
- Division of Neuroscience, Department of Psychology, Center for Research in Neurobiology 'Daniel Bovet', Sapienza University of Rome, Rome, Italy.,PhD Program in Behavioral Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Chiara Di Pietro
- Institute of Cell Biology and Neurobiology, Italian National Research Council, Rome, Italy
| | - Gina La Sala
- Institute of Cell Biology and Neurobiology, Italian National Research Council, Rome, Italy
| | - Maria Teresa Fiorenza
- Division of Neuroscience, Department of Psychology, Center for Research in Neurobiology 'Daniel Bovet', Sapienza University of Rome, Rome, Italy
| | - Daniela Marazziti
- Institute of Cell Biology and Neurobiology, Italian National Research Council, Rome, Italy
| | - Sonia Canterini
- Division of Neuroscience, Department of Psychology, Center for Research in Neurobiology 'Daniel Bovet', Sapienza University of Rome, Rome, Italy
| |
Collapse
|
20
|
Di Pietro C, La Sala G, Matteoni R, Marazziti D, Tocchini-Valentini GP. Genetic ablation of Gpr37l1 delays tumor occurrence in Ptch1 +/- mouse models of medulloblastoma. Exp Neurol 2018; 312:33-42. [PMID: 30452905 DOI: 10.1016/j.expneurol.2018.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/06/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023]
Abstract
The G-protein coupled receptor 37-like 1 (Gpr37l1) is specifically expressed in most astrocytic glial cells, including cerebellar Bergmann astrocytes and interacts with patched 1 (Ptch1), a co-receptor of the sonic hedgehog (Shh)-smoothened (Smo) signaling complex. Gpr37l1 null mutant mice exhibit precocious post-natal cerebellar development, with altered Shh-Smo mitogenic cascade and premature down-regulation of granule cell precursor (GCP) proliferation. Gpr37l1 expression is downregulated in medulloblastoma (MB) and upregulated in glioma and glioblastoma tumors. Shh-associated MBs originate postnatally, from dysregulated hyperproliferation of GCPs in developing cerebellum's external granular layer (EGL), as shown in heterozygous Ptch1+/- knock-out mouse strains that model human MB occurrence and progression. This study investigates cerebellar MB phenotypes in newly produced Gpr37l1, Ptch1 double mutant mice. Natural history analysis shows that Gpr37l1 genetic ablation, in Ptch1+/- model animals, results in marked deferment of post-natal tumor occurrence and decreased incidence of more aggressive tumor types. It is also associated with the delayed and diminished presence of more severe types of hyperplastic lesions in Ptch1+/- mice. Consistently, during early post-natal development Gpr37l1-/-;Ptch1+/- pups exhibit reduction in cerebellar GCP proliferation and EGL thickness and a precocious, sustained expression of wingless-type MMTV integration site member 3 (Wnt3), a specific inhibitor of Shh-induced neuronal mitogenesis, in comparison with Ptch1+/- heterozygous single mutants. These findings highlight the specific involvement of Gpr37l1 in modulating postnatal cerebellar Shh-Ptch1-Smo mitogenic signaling in both normal and pathological conditions. The novel Gpr37l1-/-;Ptch1+/- mouse models may thus be instrumental in the detailed characterization of the initial phases of Shh-associated MB insurgence and development.
Collapse
Affiliation(s)
- Chiara Di Pietro
- Institute of Cell Biology and Neurobiology, Italian National Research Council (CNR), I-00015, Monterotondo Scalo, Rome, Italy
| | - Gina La Sala
- Institute of Cell Biology and Neurobiology, Italian National Research Council (CNR), I-00015, Monterotondo Scalo, Rome, Italy
| | - Rafaele Matteoni
- Institute of Cell Biology and Neurobiology, Italian National Research Council (CNR), I-00015, Monterotondo Scalo, Rome, Italy
| | - Daniela Marazziti
- Institute of Cell Biology and Neurobiology, Italian National Research Council (CNR), I-00015, Monterotondo Scalo, Rome, Italy.
| | - Glauco P Tocchini-Valentini
- Institute of Cell Biology and Neurobiology, Italian National Research Council (CNR), I-00015, Monterotondo Scalo, Rome, Italy
| |
Collapse
|
21
|
Sterpka A, Chen X. Neuronal and astrocytic primary cilia in the mature brain. Pharmacol Res 2018; 137:114-121. [PMID: 30291873 PMCID: PMC6410375 DOI: 10.1016/j.phrs.2018.10.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 12/17/2022]
Abstract
Primary cilia are tiny microtubule-based signaling devices that regulate a variety of physiological functions, including metabolism and cell division. Defects in primary cilia lead to a myriad of diseases in humans such as obesity and cancers. In the mature brain, both neurons and astrocytes contain a single primary cilium. Although neuronal primary cilia are not directly involved in synaptic communication, their pathophysiological impacts on obesity and mental disorders are well recognized. In contrast, research on astrocytic primary cilia lags far behind. Currently, little is known about their functions and molecular pathways in the mature brain. Unlike neurons, postnatal astrocytes retain the capacity of cell division and can become reactive and proliferate in response to various brain insults such as epilepsy, ischemia, traumatic brain injury, and neurodegenerative β-amyloid plaques. Since primary cilia derive from the mother centrioles, astrocyte proliferation must occur in coordination with the dismantling and ciliogenesis of astrocyte cilia. In this regard, the functions, signal pathways, and structural dynamics of neuronal and astrocytic primary cilia are fundamentally different. Here we discuss and compare the current understanding of neuronal and astrocytic primary cilia.
Collapse
Affiliation(s)
- Ashley Sterpka
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, United States
| | - Xuanmao Chen
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, United States.
| |
Collapse
|
22
|
Phencyclidine-induced dysregulation of primary cilia in the rodent brain. Brain Res 2017; 1674:62-69. [PMID: 28842124 DOI: 10.1016/j.brainres.2017.08.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 11/22/2022]
Abstract
Significant roles of the primary cilia in the central nervous system have been reported in neural generation and cognitive functions. However, little is known about the possible pathological changes in brain primary cilia in neuropsychiatric disorders. To obtain an insight into the relationship between cilial dysregulation and schizophrenia, we presently investigated the effects of psychotomimetics, phencyclidine, MK-801 (dizocilpine), and methamphetamine, on morphological and molecular indices in the rodent brain. Using an immunohistochemical technique, we found that a subcutaneous injection of phencyclidine, an NMDA type glutamate receptor (NMDAR) antagonist, caused a reduction in the long axis length of a primary cilium in the CA1 region of the hippocampus without affecting that in the dentate gyrus and medial prefrontal cortex of rats and mice. The region-selective modulation of primary cilia was mimicked by another NMDAR antagonist, MK-801, but not by the indirect dopamine agonist methamphetamine. Furthermore, systemic administration of phencyclidine, but not methamphetamine, down-regulated mRNA expression of primary cilium morphology-related genes, including kif3a, 5-HTR6, RPGRIP1L, and TMEM67, and of genes composing the cilial Wnt/β-catenin signaling pathway, β-catenin, syn2 and Bcl-2, in the hippocampus, but not in the cerebral cortex of rats. These findings suggest that NMDAR hypofunction-induced dysregulation of CA1 primary cilia could be involved in the pathophysiology of dopamine transmission-independent symptoms of schizophrenia.
Collapse
|