1
|
Darwish MH, El-Tamawy MS, Ismail ME, Moustafa EBS, Khalifa HA. Effect of vestibular training on cognitive functions in people with multiple sclerosis: A randomized controlled trial. Mult Scler Relat Disord 2025; 93:106239. [PMID: 39709700 DOI: 10.1016/j.msard.2024.106239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/31/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND Cognitive dysfunction is prevalent but inadequately treated in people with multiple sclerosis (PwMS). Central vestibular functions are associated with multiple cognitive domains in PwMS, even when controlling for disability status. To our knowledge, the effectiveness of vestibular training on cognition in PwMS has never been explored. The study's purpose was to determine the effect of vestibular training on PwMS's cognitive functions. METHODS Forty PwMS with relapsing-remitting MS, primarily fatigued, were randomly divided into two equal groups. The control group (GI) was treated with aerobic endurance exercises using stationary bicycle training. The study group (GII) was treated with aerobic endurance exercises as GI in addition to a designed vestibular training program. Outcome measures of cognition were assessed pre- and post-treatment using the Arabic version of Brief International Cognitive Assessment for MS (BICAMS-A) and serum Brain-derived neurotrophic factor (BDNF). RESULTS Post-treatment, there was a significant increase of oral Symbol Digit Modalities Test (SDMT), California Verbal Learning Test II (CVLT-II), revised Brief Visuospatial retention Test (BVRT-R) of BICAMS-A and serum BDNF in both study and control groups. There was a significant increase in CVLT-II, BVRT-R of BICAMS-A and serum BDNF in the study group compared to the control group (P < 0.05). CONCLUSION Vestibular training is an effective and innovative approach for improving cognitive functions in PwMS. TRIAL REGISTRATION PACTR202311670782148.
Collapse
Affiliation(s)
- Moshera H Darwish
- Department of Physical Therapy for Neurology and Neurosurgery, Faculty for Physical Therapy, Cairo University, 12612, Egypt
| | | | - Manar E Ismail
- Department of Physical Therapy for Neurology and Neurosurgery, Faculty for Physical Therapy, Cairo University, 12612, Egypt.
| | - Engy BadrEldin S Moustafa
- Department of Physical Therapy for Neurology and Neurosurgery, Faculty for Physical Therapy, Cairo University, 12612, Egypt
| | - Heba A Khalifa
- Department of Physical Therapy for Neurology and Neurosurgery, Faculty for Physical Therapy, Cairo University, 12612, Egypt; Department of Physical Therapy and Health Rehabilitation, College of Applied Medical Sciences, Jouf University, Al-Qurayyat, Saudi Arabia
| |
Collapse
|
2
|
Brivio P, Gallo MT, Audano M, Galassi G, Gruca P, Lason M, Litwa E, Fumagalli F, Papp M, Mitro N, Calabrese F. Exposure to an acute stress impaired the metabolic plasticity of resilient rats by enhancing fatty acid β-oxidation in the ventral hippocampus. Transl Psychiatry 2024; 14:366. [PMID: 39256372 PMCID: PMC11387825 DOI: 10.1038/s41398-024-03080-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
The concept of resilience has changed over time and nowadays it refers to the positive adaptation to life adversities, rather than to the absence of a pathological response normally occurring in susceptible people. Based on our previous data showing that the exposure to the chronic mild stress (CMS) paradigm differently affected bioenergetics in the ventral hippocampus of vulnerable and resilient animals, here we investigated whether resilience is a stable trait or if the energetic strategy set in motion to sustain resilience unveils a vulnerability feature in a more dynamic situation. To this aim, vulnerable and resilient rats after 6 weeks of CMS were subjected to a further acute, unfamiliar restraint stress (ARS) and metabolomic studies were conducted in the ventral hippocampus. We observed that exposure to a single novel challenge negatively affects the fuel utilization of resilient animals. Indeed, while they increase glycolysis to sustain the non-hedonic phenotype when exposed to CMS, they shift to fatty acid β-oxidation after ARS, as vulnerable animals following CMS, suggesting that the energy strategy that guarantees resilience is fragile and can be negatively modified by a different environmental condition. These results suggest that strengthening resilience to foster individuals to bounce back from stressful life events may represent a strategy to decrease vulnerability or prevent the risk of relapsing to a pathological state.
Collapse
Affiliation(s)
- Paola Brivio
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Maria Teresa Gallo
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Matteo Audano
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Gaia Galassi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Piotr Gruca
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Magdalena Lason
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Ewa Litwa
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Mariusz Papp
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
3
|
Gallo MT, Dolci B, Fumagalli F, Brivio P, Calabrese F. Prenatal Fluoxetine Exposure Influences Glucocorticoid Receptor-Mediated Activity in the Prefrontal Cortex of Adolescent Rats Exposed to Acute Stress. ACS Chem Neurosci 2024; 15:1560-1569. [PMID: 38507566 DOI: 10.1021/acschemneuro.3c00856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Any deviation from the programmed processes of brain development may modify its formation and functions, thereby precipitating pathological conditions, which often become manifest in adulthood. Exposure to a challenge during crucial periods of vulnerability, such as adolescence, may reveal molecular changes preceding behavioral outcomes. Based on a previous study showing that prenatal fluoxetine (FLX) leads to the development of an anhedonic-like behavior in adult rats, we aimed to assess whether the same treatment regimen (i.e., fluoxetine during gestation; 15 mg/kg/day) influences the ability to respond to acute restraint stress (ARS) during adolescence. We subjected the rats to a battery of behavioral tests evaluating the development of various phenotypes (cognitive deficit, anhedonia, and anxiety). Furthermore, we carried out molecular analyses in the plasma and prefrontal cortex, a brain region involved in stress response, and whose functions are commonly altered in neuropsychiatric conditions. Our findings confirm that prenatal manipulation did not affect behavior in adolescent rats but impaired the capability to respond properly to ARS. Indeed, we observed changes in several molecular key players of the hypothalamic pituitary adrenal axis, particularly influencing genomic effects mediated by the glucocorticoid receptor. This study highlights that prenatal FLX exposure influences the ability of adolescent male rats to respond to an acute challenge, thereby altering the functionality of the hypothalamic-pituitary-adrenal axis, and indicates that the prenatal manipulation may prime the response to challenging events during this critical period of life.
Collapse
Affiliation(s)
- Maria Teresa Gallo
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan 20133, Italy
| | - Beatrice Dolci
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan 20133, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan 20133, Italy
| | - Paola Brivio
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan 20133, Italy
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan 20133, Italy
| |
Collapse
|
4
|
Luppi AI, Girn M, Rosas FE, Timmermann C, Roseman L, Erritzoe D, Nutt DJ, Stamatakis EA, Spreng RN, Xing L, Huttner WB, Carhart-Harris RL. A role for the serotonin 2A receptor in the expansion and functioning of human transmodal cortex. Brain 2024; 147:56-80. [PMID: 37703310 DOI: 10.1093/brain/awad311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023] Open
Abstract
Integrating independent but converging lines of research on brain function and neurodevelopment across scales, this article proposes that serotonin 2A receptor (5-HT2AR) signalling is an evolutionary and developmental driver and potent modulator of the macroscale functional organization of the human cerebral cortex. A wealth of evidence indicates that the anatomical and functional organization of the cortex follows a unimodal-to-transmodal gradient. Situated at the apex of this processing hierarchy-where it plays a central role in the integrative processes underpinning complex, human-defining cognition-the transmodal cortex has disproportionately expanded across human development and evolution. Notably, the adult human transmodal cortex is especially rich in 5-HT2AR expression and recent evidence suggests that, during early brain development, 5-HT2AR signalling on neural progenitor cells stimulates their proliferation-a critical process for evolutionarily-relevant cortical expansion. Drawing on multimodal neuroimaging and cross-species investigations, we argue that, by contributing to the expansion of the human cortex and being prevalent at the apex of its hierarchy in the adult brain, 5-HT2AR signalling plays a major role in both human cortical expansion and functioning. Owing to its unique excitatory and downstream cellular effects, neuronal 5-HT2AR agonism promotes neuroplasticity, learning and cognitive and psychological flexibility in a context-(hyper)sensitive manner with therapeutic potential. Overall, we delineate a dual role of 5-HT2ARs in enabling both the expansion and modulation of the human transmodal cortex.
Collapse
Affiliation(s)
- Andrea I Luppi
- Department of Clinical Neurosciences and Division of Anaesthesia, University of Cambridge, Cambridge, CB2 0QQ, UK
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, CB2 1SB, UK
- The Alan Turing Institute, London, NW1 2DB, UK
| | - Manesh Girn
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, H3A 2B4, Canada
- Psychedelics Division-Neuroscape, Department of Neurology, University of California SanFrancisco, San Francisco, CA 94158, USA
| | - Fernando E Rosas
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
- Data Science Institute, Imperial College London, London, SW7 2AZ, UK
- Centre for Complexity Science, Imperial College London, London, SW7 2AZ, UK
| | - Christopher Timmermann
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Leor Roseman
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - David Erritzoe
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - David J Nutt
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Emmanuel A Stamatakis
- Department of Clinical Neurosciences and Division of Anaesthesia, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - R Nathan Spreng
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, H3A 2B4, Canada
| | - Lei Xing
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | - Robin L Carhart-Harris
- Psychedelics Division-Neuroscape, Department of Neurology, University of California SanFrancisco, San Francisco, CA 94158, USA
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
5
|
Gallo MT, Brivio P, Dolci B, Fumagalli F, Calabrese F. Perinatal serotonergic manipulation shapes anhedonic and cognitive behaviors in a sex- and age-dependent manner: Identification of related biological functions at central and peripheral level. Brain Behav Immun 2023; 114:118-130. [PMID: 37595877 DOI: 10.1016/j.bbi.2023.08.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023] Open
Abstract
Poor knowledge about psychiatric disorders often results in similar diagnoses for patients with different symptoms, thus limiting the effectiveness of the available medications. As suggested by several lines of evidence, to improve these shortcomings, it is essential to identify biomarkers associated with specific symptoms and to stratify patients into more homogeneous populations taking a further step toward personalized medicine. Here, we aimed to associate specific behavioral phenotypes with specific molecular alterations by employing an animal model based on the pharmacological manipulation of the serotonergic system, which mimics a condition of vulnerability to develop psychiatric disorders. In particular, we treated female and male rats with fluoxetine (FLX 15 mg/kg dissolved in drinking water) during prenatal or early postnatal life, and we evaluated different pathological-like phenotypes (cognitive deficit, anhedonia, and anxiety) by exposing the rats to a battery of behavioral tests during adolescence and adulthood. In addition, we carried out molecular analyses on specific brain areas and in the blood. Our results showed that perinatal FLX administration determined age- and sex-dependent effects, with males being more sensitive to prenatal manipulation and manifesting anhedonic-like behavior and females to early postnatal exposure, exhibiting cognitive deficits and a less anxious phenotype. Furthermore, we identified, peripherally and centrally, biological functions altered by perinatal serotonin modulation regardless of the timing of exposure and sex, and other pathways specific for the pathological-like phenotypes. The results presented here provide new insights into potential biomarkers associated with specific behavioral phenotypes that may be useful for broadening knowledge about psychiatric conditions.
Collapse
Affiliation(s)
- Maria Teresa Gallo
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi di Milano, Milan, Italy
| | - Paola Brivio
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi di Milano, Milan, Italy.
| | - Beatrice Dolci
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi di Milano, Milan, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi di Milano, Milan, Italy
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi di Milano, Milan, Italy
| |
Collapse
|
6
|
Brivio P, Gallo MT, Gruca P, Lason M, Litwa E, Fumagalli F, Papp M, Calabrese F. Chronic N-Acetyl-Cysteine Treatment Enhances the Expression of the Immediate Early Gene Nr4a1 in Response to an Acute Challenge in Male Rats: Comparison with the Antidepressant Venlafaxine. Int J Mol Sci 2023; 24:ijms24087321. [PMID: 37108481 PMCID: PMC10139155 DOI: 10.3390/ijms24087321] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Despite several antidepressant treatments being available in clinics, they are not effective in all patients. In recent years, N-acetylcysteine (NAC) has been explored as adjunctive therapy for many psychiatric disorders, including depression, for its antioxidant properties. Given the promising efficacy of this compound for the treatment of such pathologies, it is fundamental to investigate, at the preclinical level, the ability of the drug to act in the modulation of neuroplastic mechanisms in basal conditions and during challenging events in order to highlight the potential features of the drug useful for clinical efficacy. To this aim, adult male Wistar rats were treated with the antidepressant venlafaxine (VLX) (10 mg/kg) or NAC (300 mg/kg) for 21 days and then subjected to 1 h of acute restraint stress (ARS). We found that NAC enhanced the expression of several immediate early genes, markers of neuronal plasticity in the ventral and dorsal hippocampus, prefrontal cortex and amygdala, and in particular it mediated the acute-stress-induced upregulation of Nr4a1 expression more than VLX. These data suggested the ability of NAC to induce coping strategies to face external challenges, highlighting its potential for the improvement of neuroplastic mechanisms for the promotion of resilience, in particular via the modulation of Nr4a1.
Collapse
Affiliation(s)
- Paola Brivio
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, 20133 Milan, Italy
| | - Maria Teresa Gallo
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, 20133 Milan, Italy
| | - Piotr Gruca
- Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Magdalena Lason
- Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Ewa Litwa
- Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, 20133 Milan, Italy
| | - Mariusz Papp
- Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
7
|
Carhart-Harris RL, Chandaria S, Erritzoe DE, Gazzaley A, Girn M, Kettner H, Mediano PAM, Nutt DJ, Rosas FE, Roseman L, Timmermann C, Weiss B, Zeifman RJ, Friston KJ. Canalization and plasticity in psychopathology. Neuropharmacology 2023; 226:109398. [PMID: 36584883 DOI: 10.1016/j.neuropharm.2022.109398] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/01/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
This theoretical article revives a classical bridging construct, canalization, to describe a new model of a general factor of psychopathology. To achieve this, we have distinguished between two types of plasticity, an early one that we call 'TEMP' for 'Temperature or Entropy Mediated Plasticity', and another, we call 'canalization', which is close to Hebbian plasticity. These two forms of plasticity can be most easily distinguished by their relationship to 'precision' or inverse variance; TEMP relates to increased model variance or decreased precision, whereas the opposite is true for canalization. TEMP also subsumes increased learning rate, (Ising) temperature and entropy. Dictionary definitions of 'plasticity' describe it as the property of being easily shaped or molded; TEMP is the better match for this. Importantly, we propose that 'pathological' phenotypes develop via mechanisms of canalization or increased model precision, as a defensive response to adversity and associated distress or dysphoria. Our model states that canalization entrenches in psychopathology, narrowing the phenotypic state-space as the agent develops expertise in their pathology. We suggest that TEMP - combined with gently guiding psychological support - can counter canalization. We address questions of whether and when canalization is adaptive versus maladaptive, furnish our model with references to basic and human neuroscience, and offer concrete experiments and measures to test its main hypotheses and implications. This article is part of the Special Issue on "National Institutes of Health Psilocybin Research Speaker Series".
Collapse
Affiliation(s)
- R L Carhart-Harris
- Psychedelics Division - Neuroscape, Department of Neurology, University of California, San Francisco, USA; Centre for Psychedelic Research, Imperial College London, UK.
| | - S Chandaria
- Centre for Psychedelic Research, Imperial College London, UK; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, UK; Institute of Philosophy, School of Advanced Study, University of London, UK
| | - D E Erritzoe
- Centre for Psychedelic Research, Imperial College London, UK; CNWL-Imperial Psychopharmacology and Psychedelic Research Clinic (CIPPRS), UK
| | - A Gazzaley
- Psychedelics Division - Neuroscape, Department of Neurology, University of California, San Francisco, USA
| | - M Girn
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - H Kettner
- Psychedelics Division - Neuroscape, Department of Neurology, University of California, San Francisco, USA; Centre for Psychedelic Research, Imperial College London, UK
| | - P A M Mediano
- Department of Computing, Imperial College London, London, UK; Department of Psychology, University of Cambridge, UK
| | - D J Nutt
- Centre for Psychedelic Research, Imperial College London, UK
| | - F E Rosas
- Centre for Psychedelic Research, Imperial College London, UK; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, UK; Department of Informatics, University of Sussex, UK; Centre for Complexity Science, Imperial College London, UK
| | - L Roseman
- Centre for Psychedelic Research, Imperial College London, UK; CNWL-Imperial Psychopharmacology and Psychedelic Research Clinic (CIPPRS), UK
| | - C Timmermann
- Centre for Psychedelic Research, Imperial College London, UK; CNWL-Imperial Psychopharmacology and Psychedelic Research Clinic (CIPPRS), UK
| | - B Weiss
- Centre for Psychedelic Research, Imperial College London, UK; CNWL-Imperial Psychopharmacology and Psychedelic Research Clinic (CIPPRS), UK
| | - R J Zeifman
- Centre for Psychedelic Research, Imperial College London, UK; NYU Langone Center for Psychedelic Medicine, NYU Grossman School of Medicine, USA
| | - K J Friston
- Wellcome Centre for Human Neuroimaging, University College London, UK
| |
Collapse
|
8
|
Liu T, Dai Y, Xu M, Chen Y, Xia T, Zhao X. Mild acute stress prevents the memory impairment induced by long-term isoflurane anesthesia. Transl Neurosci 2022; 13:421-429. [PMID: 36518560 PMCID: PMC9719393 DOI: 10.1515/tnsci-2022-0261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 12/05/2022] Open
Abstract
Objectives Long-term isoflurane anesthesia exposure could result in postoperative cognitive dysfunction (POCD). Preoperative stress is also reported to be a risk factor of POCD. However, it is unknown whether acute stress could impair memory after long-term isoflurane anesthesia. Methods In this study, we categorized the mice with acute stress into mild (30 min restraint stress), moderate (60 min restraint stress), and severe (120 min restraint stress) stress groups and then we used Open-Field Test (OFT) to detect whether different scales of acute restraint stress successfully induced acute stress in mice. The memory performance of mice was measured using contextual and cued memory test, and the brain-derived neurotrophic factor protein levels of hippocampus was detected by Western blot. Results We verified that mild stress has pro-cognitive effect, but severe stress has amnestic effect. Moreover, we found that mild and moderate other than severe acute stress could partially attenuate the memory impairment induced by long-term isoflurane anesthesia. Conclusion Mild and moderate acute stress could partially attenuate the memory impairment induced by long-term isoflurane anesthesia.
Collapse
Affiliation(s)
- Tiantian Liu
- Medical School of Nanjing University, Nanjing, China,Department of Anesthesiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yutong Dai
- Medical School of Nanjing University, Nanjing, China,Department of Anesthesiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Minhui Xu
- Medical School of Nanjing University, Nanjing, China
| | - Ying Chen
- Medical School of Nanjing University, Nanjing, China,Department of Anesthesiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Tianjiao Xia
- Medical School of Nanjing University, Nanjing, China
| | - Xin Zhao
- Department of Anesthesiology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
9
|
Hokenson RE, Alam YH, Short AK, Jung S, Jang C, Baram TZ. Sex-dependent effects of multiple acute concurrent stresses on memory: a role for hippocampal estrogens. Front Behav Neurosci 2022; 16:984494. [PMID: 36160685 PMCID: PMC9492881 DOI: 10.3389/fnbeh.2022.984494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022] Open
Abstract
Memory disruption commonly follows chronic stress, whereas acute stressors are generally benign. However, acute traumas such as mass shootings or natural disasters—lasting minutes to hours and consisting of simultaneous physical, social, and emotional stresses—are increasingly recognized as significant risk factors for memory problems and PTSD. Our prior work has revealed that these complex stresses (concurrent multiple acute stresses: MAS) disrupt hippocampus-dependent memory in male rodents. In females, the impacts of MAS are estrous cycle-dependent: MAS impairs memory during early proestrus (high estrogens phase), whereas the memory of female mice stressed during estrus (low estrogens phase) is protected. Female memory impairments limited to high estrogens phases suggest that higher levels of estrogens are necessary for MAS to disrupt memory, supported by evidence that males have higher hippocampal estradiol than estrous females. To test the role of estrogens in stress-induced memory deficits, we blocked estrogen production using aromatase inhibitors. A week of blockade protected male and female mice from MAS-induced memory disturbances, suggesting that high levels of estrogens are required for stress-provoked memory impairments in both males and females. To directly quantify 17β-estradiol in murine hippocampus we employed both ELISA and mass spectrometry and identified significant confounders in both procedures. Taken together, the cross-cycle and aromatase studies in males and females support the role for high hippocampal estrogens in mediating the effect of complex acute stress on memory. Future studies focus on the receptors involved, the longevity of these effects, and their relation to PTSD-like behaviors in experimental models.
Collapse
Affiliation(s)
- Rachael E. Hokenson
- Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA, United States
- *Correspondence: Rachael E. Hokenson
| | - Yasmine H. Alam
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, United States
| | - Annabel K. Short
- Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA, United States
- Department of Pediatrics, University of California, Irvine, Irvine, CA =, United States
| | - Sunhee Jung
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, United States
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, United States
| | - Tallie Z. Baram
- Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA, United States
- Department of Pediatrics, University of California, Irvine, Irvine, CA =, United States
- Department of Neurology, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
10
|
Brivio P, Gallo MT, Gruca P, Lason M, Litwa E, Fumagalli F, Papp M, Calabrese F. Resilience to chronic mild stress-induced anhedonia preserves the ability of the ventral hippocampus to respond to an acute challenge. Eur Arch Psychiatry Clin Neurosci 2022:10.1007/s00406-022-01470-0. [PMID: 36018382 PMCID: PMC10359391 DOI: 10.1007/s00406-022-01470-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 08/02/2022] [Indexed: 11/03/2022]
Abstract
Stress is a major precipitating factor for psychiatric disorders and its effects may depend on its duration and intensity. Of note, there are differences in individual susceptibility to stress, with some subjects displaying vulnerability and others showing resistance. Furthermore, the ability to react to stressful-life events can alter the response to a subsequent new stressor. Hence, we investigated whether the vulnerability and resilience to the chronic mild stress (CMS) paradigm, in terms of the hedonic phenotype, are paralleled by a different response when facing a novel acute challenge. Specifically, rats submitted to CMS were stratified based on their sucrose intake into vulnerable (anhedonic rats showing reduce intake of sucrose) and resilient (rats not showing the anhedonic-like behavior) subgroups and then further exposed to an acute restraint stress (ARS). Then, neuronal activation was investigated by measuring the gene expression of early immediate (IEG) genes such as Arc and Cfos and early response (ERG) genes, such as Gadd45β, Sgk1, Dusp1, and Nr4a1, in brain regions that play a crucial role in the stress response. We found that resilient rats preserve the ability to increase ERG expression following the ARS selectively in the ventral hippocampus. Conversely, such ability is lost in vulnerable rats. Interestingly, the recovery from the anhedonic phenotype observed in vulnerable rats after 3 weeks of rest from the CMS procedure also parallels the restoration of the ability to adequately respond to the challenge. In conclusion, these findings support the role of the ventral subregion of the hippocampus in the management of both chronic and acute stress response and point to this brain subregion as a critical target for a potential therapeutic strategy aimed at promoting stress resilience.
Collapse
Affiliation(s)
- Paola Brivio
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Maria Teresa Gallo
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Piotr Gruca
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Magdalena Lason
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Ewa Litwa
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Mariusz Papp
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy.
| |
Collapse
|
11
|
Mottarlini F, Fumagalli M, Castillo-Díaz F, Piazza S, Targa G, Sangiovanni E, Pacchetti B, Sodergren MH, Dell’Agli M, Fumagalli F, Caffino L. Single and Repeated Exposure to Cannabidiol Differently Modulate BDNF Expression and Signaling in the Cortico-Striatal Brain Network. Biomedicines 2022; 10:biomedicines10081853. [PMID: 36009400 PMCID: PMC9405391 DOI: 10.3390/biomedicines10081853] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Cannabidiol (CBD) is a phytocannabinoid contained in the Cannabis sativa plant, devoid of psychotomimetic effects but with a broad-spectrum pharmacological activity. Because of its pharmacological profile and its ability to counteract the psychoactive Δ9-tetrahydrocannabinol (Δ9THC), CBD may be a potential treatment for several psychiatric and neurodegenerative disorders. In this study, we performed a dose−response evaluation of CBD modulatory effects on BDNF, a neurotrophin subserving pleiotropic effects on the brain, focusing on the cortico-striatal pathway for its unique role in the brain trafficking of BDNF. Male adult rats were exposed to single and repeated CBD treatments at different dosing regimen (5, 15, and 30 mg/kg), to investigate the rapid modulation of the neurotrophin (1 h after the single treatment) as well as a potential drug-free time point (24 h after the repeated treatment). We show here, for the first time, that CBD can be found in the rat brain and, specifically, in the medial prefrontal cortex (mPFC) following single or repeated exposure. In fact, we found that CBD is present in the mPFC of rats treated either acutely or repeatedly with the phytocannabinoid, with a clear dose−response profile. From a molecular standpoint, we found that single, but not repeated, CBD exposure upregulates BDNF in the mPFC, while the repeated exposure increased BDNF only in the striatum, with a slight decrease in the mPFC. Together, these data reveal a CBD dose-dependent and anatomically specific modulation of BDNF, which may be functionally relevant and may represent an added value for CBD as a supplement.
Collapse
Affiliation(s)
- Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (F.M.); (M.F.); (F.C.-D.); (S.P.); (G.T.); (E.S.); (M.D.); (L.C.)
| | - Marco Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (F.M.); (M.F.); (F.C.-D.); (S.P.); (G.T.); (E.S.); (M.D.); (L.C.)
| | - Fernando Castillo-Díaz
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (F.M.); (M.F.); (F.C.-D.); (S.P.); (G.T.); (E.S.); (M.D.); (L.C.)
| | - Stefano Piazza
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (F.M.); (M.F.); (F.C.-D.); (S.P.); (G.T.); (E.S.); (M.D.); (L.C.)
| | - Giorgia Targa
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (F.M.); (M.F.); (F.C.-D.); (S.P.); (G.T.); (E.S.); (M.D.); (L.C.)
| | - Enrico Sangiovanni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (F.M.); (M.F.); (F.C.-D.); (S.P.); (G.T.); (E.S.); (M.D.); (L.C.)
| | | | - Mikael H. Sodergren
- Curaleaf International, London EC2A 2EW, UK; (B.P.); (M.H.S.)
- Medical Cannabis Research Group, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
| | - Mario Dell’Agli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (F.M.); (M.F.); (F.C.-D.); (S.P.); (G.T.); (E.S.); (M.D.); (L.C.)
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (F.M.); (M.F.); (F.C.-D.); (S.P.); (G.T.); (E.S.); (M.D.); (L.C.)
- Correspondence: ; Tel.: +39-02-503-18298
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (F.M.); (M.F.); (F.C.-D.); (S.P.); (G.T.); (E.S.); (M.D.); (L.C.)
| |
Collapse
|
12
|
Shi F, Xu Y, Zhang S, Fu Z, Yu Q, Zhang S, Sun M, Zhao X, Feng X. Decabromodiphenyl ethane affects embryonic development by interfering with nuclear F-actin in zygotes and leads to cognitive and social disorders in offspring mice. FASEB J 2022; 36:e22445. [PMID: 35816173 DOI: 10.1096/fj.202200586r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/07/2022] [Accepted: 06/27/2022] [Indexed: 12/12/2022]
Abstract
Decabromodiphenyl ethane (DBDPE) is a novel retardant. DBDPE is used in various flammable consumer products such as electronics, building materials, textiles, and children's toys. The presence of DBDPE in humans makes it extremely urgent to assess the health effects of DBDPE exposure. Here, we used female mice as an animal model to investigate the effects of DBDPE on embryonic development and offspring health. The results showed that 50 μg/kg bw/day of DBDPE exposure did not affect spindle rotation in oocytes after fertilization, but led to a decrease of pronuclei (PN) in zygotes. Further investigation found that DBDPE interferes with the self-assembly of F-actin in PN, resulting in PN reduction, DNA damage, and reduced expression of zygotic genome activating genes, and finally leading to abnormal embryonic development. More importantly, we found that maternal DBDPE exposure did not affect the growth and development of the first generation of offspring (F1) mice, but resulted in behavioral defects in F1 mice. Female F1 mice from DBDPE-exposed mothers exhibited increased motor activity and deficits in social behavior. Both female and male F1 mice from DBDPE-exposed mothers exhibited cognitive memory impairment. These results suggest that DBDPE has developmental toxicity on embryos and has a cross-generational interference effect. It is suggested that people should pay attention to the reproductive toxicity of DBDPE. In addition, it also provides a reference for studying the origin of neurological diseases and indicates that adult diseases caused by environmental pollutants may have begun in the embryonic stage.
Collapse
Affiliation(s)
- Feifei Shi
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, China
| | - Yixin Xu
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, China
| | - Shuhui Zhang
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, China
| | - Zhenhua Fu
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin, China
| | - Qian Yu
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, China
| | - Shaozhi Zhang
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, China
| | - Mingzhu Sun
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin, China
| | - Xin Zhao
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin, China
| | - Xizeng Feng
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, China
| |
Collapse
|
13
|
Sbrini G, Hanswijk SI, Brivio P, Middelman A, Bader M, Fumagalli F, Alenina N, Homberg JR, Calabrese F. Peripheral Serotonin Deficiency Affects Anxiety-like Behavior and the Molecular Response to an Acute Challenge in Rats. Int J Mol Sci 2022; 23:ijms23094941. [PMID: 35563331 PMCID: PMC9105435 DOI: 10.3390/ijms23094941] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
Serotonin is synthetized through the action of tryptophan hydroxylase (TPH) enzymes. While the TPH2 isoform is responsible for the production of serotonin in the brain, TPH1 is expressed in peripheral organs. Interestingly, despite its peripheral localization, alterations of the gene coding for TPH1 have been related to stress sensitivity and an increased susceptibility for psychiatric pathologies. On these bases, we took advantage of newly generated TPH1-/- rats, and we evaluated the impact of the lack of peripheral serotonin on the behavior and expression of brain plasticity-related genes under basal conditions and in response to stress. At a behavioral level, TPH1-/- rats displayed reduced anxiety-like behavior. Moreover, we found that neuronal activation, quantified by the expression of Bdnf and the immediate early gene Arc and transcription of glucocorticoid responsive genes after 1 h of acute restraint stress, was blunted in TPH1-/- rats in comparison to TPH1+/+ animals. Overall, we provided evidence for the influence of peripheral serotonin levels in modulating brain functions under basal and dynamic situations.
Collapse
Affiliation(s)
- Giulia Sbrini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (G.S.); (P.B.); (F.F.)
| | - Sabrina I. Hanswijk
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (A.M.); (J.R.H.)
| | - Paola Brivio
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (G.S.); (P.B.); (F.F.)
| | - Anthonieke Middelman
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (A.M.); (J.R.H.)
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine (MDC), 13125 Berlin, Germany; (M.B.); (N.A.)
- Charite-University Medicine, 10117 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10115 Berlin, Germany
- Institute for Biology, University of Lübeck, 23562 Lubeck, Germany
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (G.S.); (P.B.); (F.F.)
| | - Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine (MDC), 13125 Berlin, Germany; (M.B.); (N.A.)
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10115 Berlin, Germany
| | - Judith R. Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (A.M.); (J.R.H.)
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (G.S.); (P.B.); (F.F.)
- Correspondence: ; Tel.: +39-02-50318277
| |
Collapse
|
14
|
Parois SP, Van Der Zande LE, Knol EF, Kemp B, Rodenburg TB, Bolhuis JE. Effects of a Multi-Suckling System Combined With Enriched Housing Post-Weaning on Response and Cognitive Resilience to Isolation. Front Vet Sci 2022; 9:868149. [PMID: 35478601 PMCID: PMC9035994 DOI: 10.3389/fvets.2022.868149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/10/2022] [Indexed: 11/29/2022] Open
Abstract
Improving welfare is still a critical issue in pig husbandry. Upgrades of the housing environment seem to be a promising solution to optimise resilience as a whole, and therefore improve animal welfare. The objective of this study was to evaluate the effect of an alternative housing system to enhance cognitive resilience and also to promote the pigs' welfare. A total of 96 piglets from two contrasted housing systems [alternative housing system (AHS) vs. conventional system (CONV)] was used. The major upgrades of the alternative system were multi-litter housing during lactation, delayed weaning, extra space allowance, and environmental enrichment from birth onwards. To estimate welfare, weight, and feed intake (as a general indicator of performances), the tear staining area (as a chronic stress indicator), behavioural postures, heart rate traits, and saliva cortisol concentration were measured over a 21 h-isolation. To assess cognitive resilience, the pigs were subjected to a maze with a social reward both before and after the isolation challenge and indicators of cognitive abilities were followed. The AHS pigs showed lower cortisol levels and tear staining area before the challenge, demonstrating overall better welfare due to the alternative housing conditions. During the challenge, AHS pigs had a lower heart rate, higher heart rate variability, and higher vagal activity than the CONV pigs, which might indicate a reduced sensitivity to the stressor. AHS pigs appeared to have a better long-term memory tested in a maze. Providing social and environmental enrichments, that fit the satisfaction of the essential needs of the pigs better, appears to be beneficial for pig welfare as a whole. Its effects on cognitive resilience still need to be proven.
Collapse
Affiliation(s)
- Severine P. Parois
- Adaptation Physiology Group, Wageningen University & Research, Wageningen, Netherlands
- Epidemiology Health and Welfare Research Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Ploufragan, France
- *Correspondence: Severine P. Parois
| | | | | | - Bas Kemp
- Adaptation Physiology Group, Wageningen University & Research, Wageningen, Netherlands
| | - T. Bas Rodenburg
- Adaptation Physiology Group, Wageningen University & Research, Wageningen, Netherlands
- Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - J. Elizabeth Bolhuis
- Adaptation Physiology Group, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
15
|
Neuroprotective Effect of Chrysophanol as a PI3K/AKT/mTOR Signaling Inhibitor in an Experimental Model of Autologous Blood-induced Intracerebral Hemorrhage. Curr Med Sci 2022; 42:249-266. [PMID: 35079960 DOI: 10.1007/s11596-022-2496-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/29/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Intracerebral hemorrhage (ICH) refers to predominant, sporadic, and non-traumatic bleeding in the brain parenchyma. The PI3K/AKT/mTOR signaling pathway is an important signal transduction pathway regulated by enzyme-linked receptors and has many biological functions in mammals. It plays a key role in neuronal metabolism, gene expression regulation, and tissue homeostasis in the healthy and diseased brain. METHODS In the present study, the role of the PI3K/AKT/mTOR pathway inhibitor chrysophanol (CPH) (10 mg/kg and 20 mg/kg, orally) in the improvement of ICH-associated neurological defects in rats was investigated. Autologous blood (20 µL/5 min/unilateral/intracerebroventricular) mimics ICH-like defects involving cellular and molecular dysfunction and neurotransmitter imbalance. The current study also included various behavioral assessments to examine cognition, memory, and motor and neuromuscular coordination. The protein expression levels of PI3K, AKT, and mTOR as well as myelin basic protein and apoptotic markers, such as Bax, Bcl-2, and caspase-3, were examined using ELISA kits. Furthermore, the levels of various neuroinflammatory cytokines and oxidative stress markers were assessed. Additionally, the neurological severity score, brain water content, gross brain pathology, and hematoma size were used to indicate neurological function and brain edema. RESULTS CPH was found to be neuroprotective by restoring neurobehavioral alterations and significantly reducing the elevated PI3K, AKT, and mTOR protein levels, and modulating the apoptotic markers such as Bax, Bcl-2, and caspase-3 in rat brain homogenate. CPH substantially reduced the inflammatory cytokines like interleukin (IL)-1β, IL-6, and tumor necrosis factor-α. CPH administration restored the neurotransmitters GABA, glutamate, acetylcholine, dopamine, and various oxidative stress markers. CONCLUSION Our results show that CPH may be a promising therapeutic approach for overcoming neuronal damage caused by the overexpression of the PI3K/AKT/mTOR signaling pathway in ICH-induced neurological dysfunctions in rats.
Collapse
|
16
|
Metabolomic signature and mitochondrial dynamics outline the difference between vulnerability and resilience to chronic stress. Transl Psychiatry 2022; 12:87. [PMID: 35228511 PMCID: PMC8885712 DOI: 10.1038/s41398-022-01856-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/14/2022] Open
Abstract
Stress is the foremost environmental factor involved in the pathophysiology of major depressive disorder (MDD). However, individual differences among people are critical as some people exhibit vulnerability while other are resilient to repeated exposure to stress. Among the others, a recent theory postulates that alterations of energy metabolism might contribute to the development of psychopathologies. Here we show that the bioenergetic status in the ventral hippocampus (vHip), a brain subregion tightly involved in the regulation of MDD, defined the development of vulnerability or resilience following two weeks of chronic mild stress. Among the different metabolomic signatures observed, the glycolysis and tricarboxylic acid cycle may be specifically involved in defining vulnerability, revealing a previously unappreciated mechanism of sensitivity to stress. These findings point to mitochondrial morphology and recycling as critical in the ability to cope with stress. We show that vulnerable rats favor mitochondrial fusion to counteract the overproduction of reactive oxidative species whereas resilient rats activate fission to guarantee metabolic efficiency. Our results indicate that the modulation of the energetic metabolite profile in vHip under chronic stress exposure may represent a mechanism to explain the difference between vulnerable and resilient rats, unraveling novel and promising targets for specific therapeutic interventions.
Collapse
|
17
|
Wang B, Yang X, Lu J, Ntim M, Xia M, Kundu S, Jiang R, Chen D, Wang Y, Yang JY, Li S. Two-hour acute restraint stress facilitates escape behavior and learning outcomes through the activation of the Cdk5/GR P S211 pathway in male mice. Exp Neurol 2022; 354:114023. [PMID: 35218707 DOI: 10.1016/j.expneurol.2022.114023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/03/2022] [Accepted: 02/20/2022] [Indexed: 11/18/2022]
Abstract
Acute stress exerts pleiotropic actions on learning behaviors. The induced negative effects are sometimes adopted to measure the efficacy of particular drugs. Until now, there are no detailed experimental data on the time-gradient effects of acute stress. Here, we developed the time gradient acute restraint stress (ARS) model to precisely assess the roles of different restrain times on inducing acute stress. Time gradient ARS facilitates escape behaviors and learning outcomes, peaking at 2 h-ARS and then declining to baseline at 3.5 h-ARS as confirmed by time gradient post-stress data. Furthermore, time gradient ARS activates glucocorticoid receptor (GR) phosphorylation site at Serine211 (P S221) as an inverted V-shaped pattern peaking at 2 h-ARS, whereas that of the GR phosphorylation site at Serine226 (P S226) from 2 h-ARS to 3.5 h-ARS. The 2 h-ARS but not 3.5 h-ARS enhances synaptic plasticity and genes transcription associated with learning and memory in the hippocampus of male mice. The Cdk5 inhibitor, roscovitine, blocks this facilitation effect by intervening in GR phosphorylation at Serine211 in the 2 h-ARS mice. Altogether, these findings show that the time gradient ARS selectively activates GR phospho-isoforms and differentially influences the behaviors along with maintaining a relationship between 2 h-ARS and Cdk5/GR P S211-mediated transcriptional activity.
Collapse
Affiliation(s)
- Bin Wang
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning, China
| | - Xuewei Yang
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning, China
| | - Jincheng Lu
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning, China
| | - Michael Ntim
- Department of Physiology, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Min Xia
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning, China
| | - Supratik Kundu
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning, China
| | - Rong Jiang
- Department of Physiology, Binzhou Medical University, Yantai Campus, 346 Guanhai Road, Laishan District, Yantai, Shandong, China
| | - Defang Chen
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning, China
| | - Ying Wang
- Department of Cardiology, Institute of Heart and Vessel Diseases of Dalian Medical University, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jin-Yi Yang
- Department of Urology, Affiliated Dalian Friendship Hospital of Dalian Medical University, Dalian, China.
| | - Shao Li
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
18
|
Jadaun KS, Mehan S, Sharma A, Siddiqui EM, Kumar S, Alsuhaymi N. Neuroprotective Effect of Chrysophanol as a PI3K/AKT/mTOR Signaling Inhibitor in an Experimental Model of Autologous Blood-induced Intracerebral Hemorrhage. Curr Med Sci 2022:10.1007/s11596-022-2522-7. [PMID: 35099677 DOI: 10.1007/s11596-022-2522-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/29/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Intracerebral hemorrhage (ICH) refers to predominant, sporadic, and non-traumatic bleeding in the brain parenchyma. The PI3K/AKT/mTOR signaling pathway is an important signal transduction pathway regulated by enzyme-linked receptors and has many biological functions in mammals. It plays a key role in neuronal metabolism, gene expression regulation, and tissue homeostasis in the healthy and diseased brain. METHODS In the present study, the role of the PI3K/AKT/mTOR pathway inhibitor chrysophanol (CPH) (10 mg/kg and 20 mg/kg, orally) in the improvement of ICH-associated neurological defects in rats was investigated. Autologous blood (20 µL/5 min/unilateral/intracerebroventricular) mimics ICH-like defects involving cellular and molecular dysfunction and neurotransmitter imbalance. The current study also included various behavioral assessments to examine cognition, memory, and motor and neuromuscular coordination. The protein expression levels of PI3K, AKT, and mTOR as well as myelin basic protein and apoptotic markers, such as Bax, Bcl-2, and caspase-3, were examined using ELISA kits. Furthermore, the levels of various neuroinflammatory cytokines and oxidative stress markers were assessed. Additionally, the neurological severity score, brain water content, gross brain pathology, and hematoma size were used to indicate neurological function and brain edema. RESULTS CPH was found to be neuroprotective by restoring neurobehavioral alterations and significantly reducing the elevated PI3K, AKT, and mTOR protein levels, and modulating the apoptotic markers such as Bax, Bcl-2, and caspase-3 in rat brain homogenate. CPH substantially reduced the inflammatory cytokines like interleukin (IL)-1β, IL-6, and tumor necrosis factor-α. CPH administration restored the neurotransmitters GABA, glutamate, acetylcholine, dopamine, and various oxidative stress markers. CONCLUSION Our results show that CPH may be a promising therapeutic approach for overcoming neuronal damage caused by the overexpression of the PI3K/AKT/mTOR signaling pathway in ICH-induced neurological dysfunctions in rats.
Collapse
Affiliation(s)
- Kuldeep Singh Jadaun
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| | - Aarti Sharma
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Ehraz Mehmood Siddiqui
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Sumit Kumar
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Naif Alsuhaymi
- Department of Emergency Medical Services, Faculty of Health Sciences - AlQunfudah, Umm Al-Qura University, Mekkah, Saudi Arabia
| |
Collapse
|
19
|
Spero V, Paladini MS, Brivio P, Riva MA, Calabrese F, Molteni R. Altered responsiveness of the antioxidant system in chronically stressed animals: modulation by chronic lurasidone treatment. Psychopharmacology (Berl) 2022; 239:2547-2557. [PMID: 35459959 PMCID: PMC9294027 DOI: 10.1007/s00213-022-06140-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/04/2022] [Indexed: 11/29/2022]
Abstract
RATIONALE Although the occurrence of stressful events is very common during life, their impact may be different depending on the experience severity and duration. Specifically, acute challenges may trigger adaptive responses and even improve the individual's performance. However, such a physiological positive coping can only take place if the underlying molecular mechanisms are properly functioning. Indeed, if these systems are compromised by genetic factors or previous adverse conditions, the response set in motion by an acute challenge may be maladaptive and even cause the insurgence or the relapse of stress-related psychiatric disorders. OBJECTIVES On these bases, we evaluated in the rat brain the role of the antioxidant component of the redox machinery on the acute stress responsiveness and its modulation by potential detrimental or beneficial events. METHODS The expression of several antioxidant enzymes was assessed in different brain areas of adult male rats exposed to acute stress 3 weeks after a chronic immobilization paradigm with or without a concomitant treatment with the antipsychotic lurasidone. RESULTS The acute challenge was able to trigger a marked antioxidant response that, despite the washout period, was impaired by the previous adverse experience and restored by lurasidone in an anatomical-specific manner. CONCLUSIONS We found that a working antioxidant machinery takes part in acute stress response and may be differentially affected by other experiences. Given the essential role of stress responsiveness in almost every life process, the identification of the underlying mechanisms and their potential pharmacological modulation add further translational value to our data.
Collapse
Affiliation(s)
- Vittoria Spero
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy
| | - Maria Serena Paladini
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy ,Present Address: Department of Physical Therapy and Rehabilitation Science; Brain and Spinal Injury Center, University of California at San Francisco, San Francisco, CA USA
| | - Paola Brivio
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy.
| | - Raffaella Molteni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy
| |
Collapse
|
20
|
Brivio P, Buoso E, Masi M, Gallo MT, Gruca P, Lason M, Litwa E, Papp M, Fumagalli F, Racchi M, Corsini E, Calabrese F. The coupling of RACK1 with the beta isoform of the glucocorticoid receptor promotes resilience to chronic stress exposure. Neurobiol Stress 2021; 15:100372. [PMID: 34401408 PMCID: PMC8350424 DOI: 10.1016/j.ynstr.2021.100372] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/19/2021] [Accepted: 07/25/2021] [Indexed: 11/30/2022] Open
Abstract
Several intracellular pathways that contribute to the adaptation or maladaptation to environmental challenges mediate the vulnerability and resilience to chronic stress. The activity of the hypothalamic-pituitary-adrenal (HPA) axis is fundamental for the proper maintenance of brain processes, and it is related to the functionality of the isoform alfa and beta of the glucocorticoid receptor (Gr), the primary regulator of HPA axis. Among the downstream effectors of the axis, the scaffolding protein RACK1 covers an important role in regulating synaptic activity and mediates the transcription of the neurotrophin Bdnf. Hence, by employing the chronic mild stress (CMS) paradigm, we studied the role of the Grβ-RACK1-Bdnf signaling in the different susceptibility to chronic stress exposure. We found that resilience to two weeks of CMS is paralleled by the activation of this pathway in the ventral hippocampus, the hippocampal subregion involved in the modulation of stress response. Moreover, the results we obtained in vitro by exposing SH-SY5Y cells to cortisol support the data we found in vivo. The results obtained add novel critical information about the link among Gr, RACK1 and Bdnf and the resilience to chronic stress, suggesting novel targets for the treatment of stress-related disorders, including depression.
Collapse
Affiliation(s)
- Paola Brivio
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Erica Buoso
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Pavia, Italy
| | - Mirco Masi
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Pavia, Italy
- Scuola Universitaria Superiore IUSS, Pavia, Italy
| | - Maria Teresa Gallo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Piotr Gruca
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Magdalena Lason
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Ewa Litwa
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Mariusz Papp
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Marco Racchi
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Pavia, Italy
| | - Emanuela Corsini
- Dipartimento di Scienze e Politiche Ambientali, Università Degli Studi di Milano, Milan, Italy
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
21
|
Wooden JI, Spinetta MJ, Nguyen T, O'Leary CI, Leasure JL. A Sensitive Homecage-Based Novel Object Recognition Task for Rodents. Front Behav Neurosci 2021; 15:680042. [PMID: 34177480 PMCID: PMC8232937 DOI: 10.3389/fnbeh.2021.680042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/14/2021] [Indexed: 11/25/2022] Open
Abstract
The recognition of novel objects is a common cognitive test for rodents, but current paradigms have limitations, such as low sensitivity, possible odor confounds and stress due to being performed outside of the homecage. We have developed a paradigm that takes place in the homecage and utilizes four stimuli per trial, to increase sensitivity. Odor confounds are eliminated because stimuli consist of inexpensive, machined wooden beads purchased in bulk, so each experimental animal has its own set of stimuli. This paradigm consists of three steps. In Step 1, the sampling phase, animals freely explore familiar objects (FO). Novel Objects (NO1 and NO2) are soiled with bedding from the homecage, to acquire odor cues identical to those of the FO. Steps 2 and 3 are test phases. Herein we report results of this paradigm from neurologically intact adult rats and mice of both sexes. Identical procedures were used for both species, except that the stimuli used for the mice were smaller. As expected in Step 2 (NO1 test phase), male and female rats and mice explored NO1 significantly more than FO. In Step 3 (NO2 test phase), rats of both sexes demonstrated a preference for NO2, while this was seen only in female mice. These results indicate robust novelty recognition during Steps 2 and 3 in rats. In mice, this was reliably seen only in Step 2, indicating that Step 3 was difficult for them under the given parameters. This paradigm provides flexibility in that length of the sampling phase, and the delay between test and sampling phases can be adjusted, to tailor task difficulty to the model being tested. In sum, this novel object recognition test is simple to perform, requires no expensive supplies or equipment, is conducted in the homecage (reducing stress), eliminates odor confounds, utilizes 4 stimuli to increase sensitivity, can be performed in both rats and mice, and is highly flexible, as sampling phase and the delay between steps can be adjusted to tailor task difficulty. Collectively, these results indicate that this paradigm can be used to quantify novel object recognition across sex and species.
Collapse
Affiliation(s)
- Jessica I Wooden
- Department of Psychology, University of Houston, Houston, TX, United States
| | - Michael J Spinetta
- Department of Psychology, Seattle University, Seattle, WA, United States
| | - Teresa Nguyen
- Department of Psychology, University of Houston, Houston, TX, United States
| | - Charles I O'Leary
- Department of Psychology, Seattle University, Seattle, WA, United States
| | - J Leigh Leasure
- Department of Psychology, University of Houston, Houston, TX, United States.,Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| |
Collapse
|
22
|
Stress Modifies the Expression of Glucocorticoid-Responsive Genes by Acting at Epigenetic Levels in the Rat Prefrontal Cortex: Modulatory Activity of Lurasidone. Int J Mol Sci 2021; 22:ijms22126197. [PMID: 34201279 PMCID: PMC8228132 DOI: 10.3390/ijms22126197] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 01/09/2023] Open
Abstract
Epigenetics is one of the mechanisms by which environmental factors can alter brain function and may contribute to central nervous system disorders. Alterations of DNA methylation and miRNA expression can induce long-lasting changes in neurobiological processes. Hence, we investigated the effect of chronic stress, by employing the chronic mild stress (CMS) and the chronic restraint stress protocol, in adult male rats, on the glucocorticoid receptor (GR) function. We focused on DNA methylation specifically in the proximity of the glucocorticoid responsive element (GRE) of the GR responsive genes Gadd45β, Sgk1, and Gilz and on selected miRNA targeting these genes. Moreover, we assessed the role of the antipsychotic lurasidone in modulating these alterations. Chronic stress downregulated Gadd45β and Gilz gene expression and lurasidone normalized the Gadd45β modification. At the epigenetic level, CMS induced hypermethylation of the GRE of Gadd45β gene, an effect prevented by lurasidone treatment. These stress-induced alterations were still present even after a period of rest from stress, indicating the enduring nature of such changes. However, the contribution of miRNA to the alterations in gene expression was moderate in our experimental conditions. Our results demonstrated that chronic stress mainly affects Gadd45β expression and methylation, effects that are prolonged over time, suggesting that stress leads to changes in DNA methylation that last also after the cessation of stress procedure, and that lurasidone is a modifier of such mechanisms.
Collapse
|
23
|
Hokenson RE, Short AK, Chen Y, Pham AL, Adams ET, Bolton JL, Swarup V, Gall CM, Baram TZ. Unexpected Role of Physiological Estrogen in Acute Stress-Induced Memory Deficits. J Neurosci 2021; 41:648-662. [PMID: 33262247 PMCID: PMC7842761 DOI: 10.1523/jneurosci.2146-20.2020] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 11/22/2022] Open
Abstract
Stress may promote emotional and cognitive disturbances, which differ by sex. Adverse outcomes, including memory disturbances, are typically observed following chronic stress, but are now being recognized also after short events, including mass shootings, assault, or natural disasters, events that consist of concurrent multiple acute stresses (MAS). Prior work has established profound and enduring effects of MAS on memory in males. Here we examined the effects of MAS on female mice and probed the role of hormonal fluctuations during the estrous cycle on MAS-induced memory problems and the underlying brain network and cellular mechanisms. Female mice were impacted by MAS in an estrous cycle-dependent manner: MAS impaired hippocampus-dependent spatial memory in early-proestrous mice, characterized by high levels of estradiol, whereas memory of mice stressed during estrus (low estradiol) was spared. As spatial memory requires an intact dorsal hippocampal CA1, we examined synaptic integrity in mice stressed at different cycle phases and found a congruence of dendritic spine density and spatial memory deficits, with reduced spine density only in mice stressed during high estradiol cycle phases. Assessing MAS-induced activation of brain networks interconnected with hippocampus, we identified differential estrous cycle-dependent activation of memory- and stress-related regions, including the amygdala. Network analyses of the cross-correlation of fos expression among these regions uncovered functional connectivity that differentiated impaired mice from those not impaired by MAS. In conclusion, the estrous cycle modulates the impact of MAS on spatial memory, and fluctuating physiological levels of sex hormones may contribute to this effect.SIGNIFICANCE STATEMENT: Effects of stress on brain functions, including memory, are profound and sex-dependent. Acute stressors occurring simultaneously result in spatial memory impairments in males, but effects on females are unknown. Here we identified estrous cycle-dependent effects of such stresses on memory in females. Surprisingly, females with higher physiological estradiol experienced stress-induced memory impairment and a loss of underlying synapses. Memory- and stress-responsive brain regions interconnected with hippocampus were differentially activated across high and low estradiol mice, and predicted memory impairment. Thus, at functional, network, and cellular levels, physiological estradiol influences the effects of stress on memory in females, providing insight into mechanisms of prominent sex differences in stress-related memory disorders, such as post-traumatic stress disorder.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Christine M Gall
- Departments of Anatomy and Neurobiology
- Neurobiology and Behavior
| | - Tallie Z Baram
- Departments of Anatomy and Neurobiology
- Pediatrics
- Neurology, University of California-Irvine, Irvine, California 92697
| |
Collapse
|
24
|
Sbrini G, Brivio P, Bosch K, Homberg JR, Calabrese F. Enrichment Environment Positively Influences Depression- and Anxiety-Like Behavior in Serotonin Transporter Knockout Rats through the Modulation of Neuroplasticity, Spine, and GABAergic Markers. Genes (Basel) 2020; 11:genes11111248. [PMID: 33114023 PMCID: PMC7690660 DOI: 10.3390/genes11111248] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
The serotonin transporter (5-HTT in humans, SERT in rodents) is the main regulator of serotonergic transmission in the brain. The short allelic variant of the 5-HTT gene is in humans associated with psychopathologies and may enhance the vulnerability to develop depression after exposure to stressful events. Interestingly, the short allele also increases the sensitivity to a positive environment, which may buffer the vulnerability to depression. Since this polymorphism does not exist in rodents, male SERT knockout (SERT−/−) rats were tested to explore the molecular mechanisms based on this increased predisposition. This article investigates the influences of a positive manipulation, namely, enriched environment (EE), on the depressive-like behavior observed in SERT−/− rats. We found that one month of EE exposure normalized the anhedonic and anxious-like phenotype characteristics of this animal model. Moreover, we observed that EE exposure also restored the molecular alterations in the prefrontal cortex by positively modulating the expression of the neurotrophin Bdnf, and of spines and gamma-aminobutyric acid (GABA)ergic markers. Overall, our data confirm the depression-like phenotype of SERT−/− rats and highlight the ability of EE to restore behavioral and molecular alterations, thus promoting the opportunity to use EE as a supporting non-pharmacological approach to treat mood disorders.
Collapse
Affiliation(s)
- Giulia Sbrini
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, 20133 Milan, Italy; (G.S.); (P.B.)
| | - Paola Brivio
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, 20133 Milan, Italy; (G.S.); (P.B.)
| | - Kari Bosch
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (K.B.); (J.R.H.)
| | - Judith Regina Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (K.B.); (J.R.H.)
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, 20133 Milan, Italy; (G.S.); (P.B.)
- Correspondence: ; Tel.: +02-50318277
| |
Collapse
|
25
|
Brivio P, Sbrini G, Corsini G, Paladini MS, Racagni G, Molteni R, Calabrese F. Chronic Restraint Stress Inhibits the Response to a Second Hit in Adult Male Rats: A Role for BDNF Signaling. Int J Mol Sci 2020; 21:ijms21176261. [PMID: 32872446 PMCID: PMC7503736 DOI: 10.3390/ijms21176261] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/18/2022] Open
Abstract
Depression is a recurrent disorder, with about 50% of patients experiencing relapse. Exposure to stressful events may have an adverse impact on the long-term course of the disorder and may alter the response to a subsequent stressor. Indeed, not all the systems impaired by stress may normalize during symptoms remission, facilitating the relapse to the pathology. Hence, we investigated the long-lasting effects of chronic restraint stress (CRS) and its influence on the modifications induced by the exposure to a second hit on brain-derived neurotrophic factor (BDNF) signaling in the prefrontal cortex (PFC). We exposed adult male Sprague Dawley rats to 4 weeks of CRS, we left them undisturbed for the subsequent 3 weeks, and then we exposed animals to one hour of acute restraint stress (ARS). We found that CRS influenced the release of corticosterone induced by ARS and inhibited the ability of ARS to activate mature BDNF, its receptor Tropomyosin receptor kinase B (TRKB), and their associated intracellular cascades: the TRKB-PI3K-AKT), the MEK-MAPK/ERK, and the Phospholipase C γ (PLCγ) pathways, positively modulated by ARS in non-stressed animals. These results suggest that CRS induces protracted and detrimental consequences that interfere with the ability of PFC to cope with a challenging situation.
Collapse
Affiliation(s)
- Paola Brivio
- Department of Pharmacological and Biomolecular Sciences, Università deglI Studi di Milano, 20133 Milan, Italy; (P.B.); (G.S.); (G.C.); (G.R.)
| | - Giulia Sbrini
- Department of Pharmacological and Biomolecular Sciences, Università deglI Studi di Milano, 20133 Milan, Italy; (P.B.); (G.S.); (G.C.); (G.R.)
| | - Giulia Corsini
- Department of Pharmacological and Biomolecular Sciences, Università deglI Studi di Milano, 20133 Milan, Italy; (P.B.); (G.S.); (G.C.); (G.R.)
| | - Maria Serena Paladini
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20133 Milan, Italy; (M.S.P.); (R.M.)
| | - Giorgio Racagni
- Department of Pharmacological and Biomolecular Sciences, Università deglI Studi di Milano, 20133 Milan, Italy; (P.B.); (G.S.); (G.C.); (G.R.)
| | - Raffaella Molteni
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20133 Milan, Italy; (M.S.P.); (R.M.)
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences, Università deglI Studi di Milano, 20133 Milan, Italy; (P.B.); (G.S.); (G.C.); (G.R.)
- Correspondence:
| |
Collapse
|
26
|
Hokenson RE, Oijala M, Short AK, Bolton JL, Chen Y, Molet J, Maras PM, Baram TZ, Lur G. Multiple Simultaneous Acute Stresses in Mice: Single or Repeated Induction. Bio Protoc 2020; 10:e3699. [PMID: 33659365 PMCID: PMC7842319 DOI: 10.21769/bioprotoc.3699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 11/02/2022] Open
Abstract
Stress is crucial to the survival of an organism, but excessive stress can lead to psychological disorders including depression, anxiety, substance abuse, and suicidality. The prevailing notion is that chronic stress promotes adverse outcomes on brain and body health, whereas acute stressors are generally benign. Notably, acute events such mass shootings or natural disasters are now emerging as significant sources of cognitive and emotional problems including post-traumatic stress disorder (PTSD). These events are characterized by the simultaneous occurrence of physical, emotional, and social stresses, which last minutes to hours. Hence, there is a need to model such multiple concurrent acute stresses (MAS) to uncover the mechanisms by which they lead to profound adverse outcomes. The MAS paradigm described here involves simultaneously exposing a rodent to several different stressors including restraint, crowding, and jostling alongside peers in a brightly lit and very noisy environment. Moreover, the MAS paradigm can be used once or imposed repeatedly to emulate complex, repeated modern life stresses, advancing our mechanistic understanding of consequent mental and cognitive impairments.
Collapse
Affiliation(s)
- Rachael E Hokenson
- Department of Anatomy and Neurobiology, University of California-Irvine, Irvine, CA, USA
| | - Mikko Oijala
- Department of Neurobiology and Behavior, University of California-Irvine, Irvine, CA, USA
| | - Annabel K Short
- Department of Pediatrics, University of California-Irvine, Irvine, CA, USA
| | - Jessica L Bolton
- Department of Pediatrics, University of California-Irvine, Irvine, CA, USA
| | - Yuncai Chen
- Department of Pediatrics, University of California-Irvine, Irvine, CA, USA
| | - Jenny Molet
- Department of Pediatrics, University of California-Irvine, Irvine, CA, USA
| | - Pamela M Maras
- Department of Pediatrics, University of California-Irvine, Irvine, CA, USA
| | - Tallie Z Baram
- Department of Anatomy and Neurobiology, University of California-Irvine, Irvine, CA, USA.,Department of Pediatrics, University of California-Irvine, Irvine, CA, USA.,Department of Neurology, University of California-Irvine, Irvine, CA, USA
| | - Gyorgy Lur
- Department of Neurobiology and Behavior, University of California-Irvine, Irvine, CA, USA
| |
Collapse
|
27
|
Sbrini G, Brivio P, Peeva PM, Todiras M, Bader M, Alenina N, Calabrese F. The Absence of Serotonin in the Brain Alters Acute Stress Responsiveness by Interfering With the Genomic Function of the Glucocorticoid Receptors. Front Cell Neurosci 2020; 14:128. [PMID: 32547368 PMCID: PMC7278285 DOI: 10.3389/fncel.2020.00128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/17/2020] [Indexed: 12/29/2022] Open
Abstract
Alterations in serotonergic transmission have been related to a major predisposition to develop psychiatric pathologies, such as depression. We took advantage of tryptophan hydroxylase (TPH) 2 deficient rats, characterized by a complete absence of serotonin in the brain, to evaluate whether a vulnerable genotype may influence the reaction to an acute stressor. In this context, we investigated if the glucocorticoid receptor (GR) genomic pathway activation was altered by the lack of serotonin in the central nervous system. Moreover, we analyzed the transcription pattern of the clock genes that can be affected by acute stressors. Adult wild type (TPH2+/+) and TPH2-deficient (TPH2-/-) male rats were sacrificed after exposure to one single session of acute restraint stress. Protein and gene expression analyses were conducted in the prefrontal cortex (PFC). The acute stress enhanced the translocation of GRs in the nucleus of TPH2+/+ animals. This effect was blunted in TPH2-/- rats, suggesting an impairment of the GR genomic mechanism. This alteration was mirrored in the expression of GR-responsive genes: acute stress led to the up-regulation of GR-target gene expression in TPH2+/+, but not in TPH2-/- animals. Finally, clock genes were differently modulated in the two genotypes after the acute restraint stress. Overall our findings suggest that the absence of serotonin within the brain interferes with the ability of the HPA axis to correctly modulate the response to acute stress, by altering the nuclear mechanisms of the GR and modulation of clock genes expression.
Collapse
Affiliation(s)
- Giulia Sbrini
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Paola Brivio
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Polina Mineva Peeva
- Cardiovascular and Metabolic Diseases, Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Mihail Todiras
- Cardiovascular and Metabolic Diseases, Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Michael Bader
- Cardiovascular and Metabolic Diseases, Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany.,Charite-University Medicine, Berlin, Germany
| | - Natalia Alenina
- Cardiovascular and Metabolic Diseases, Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany.,Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy
| |
Collapse
|