1
|
Pecci V, Troisi F, Aiello A, De Martino S, Carlino A, Fiorentino V, Ripoli C, Rotili D, Pierconti F, Martini M, Porru M, Pinto F, Mai A, Bassi PF, Grassi C, Gaetano C, Pontecorvi A, Strigari L, Farsetti A, Nanni S. Targeting of H19/cell adhesion molecules circuitry by GSK-J4 epidrug inhibits metastatic progression in prostate cancer. Cancer Cell Int 2024; 24:56. [PMID: 38317193 PMCID: PMC10845766 DOI: 10.1186/s12935-024-03231-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND About 30% of Prostate cancer (PCa) patients progress to metastatic PCa that remains largely incurable. This evidence underlines the need for the development of innovative therapies. In this direction, the potential research focus might be on long non-coding RNAs (lncRNAs) like H19, which serve critical biological functions and show significant dysregulation in cancer. Previously, we showed a transcriptional down-regulation of H19 under combined pro-tumoral estrogen and hypoxia treatment in PCa cells that, in turn, induced both E-cadherin and β4 integrin expression. H19, indeed, acts as transcriptional repressor of cell adhesion molecules affecting the PCa metastatic properties. Here, we investigated the role of H19/cell adhesion molecules circuitry on in vivo PCa experimental tumor growth and metastatic dissemination models. METHODS H19 was silenced in luciferase-positive PC-3 and 22Rv1 cells and in vitro effect was evaluated by gene expression, proliferation and invasion assays before and after treatment with the histone lysine demethylase inhibitor, GSK-J4. In vivo tumor growth and metastasis dissemination, in the presence or absence of GSK-J4, were analyzed in two models of human tumor in immunodeficient mice by in vivo bioluminescent imaging and immunohistochemistry (IHC) on explanted tissues. Organotypic Slice Cultures (OSCs) from fresh PCa-explant were used as ex vivo model to test GSK-J4 effects. RESULTS H19 silencing in both PC-3 and 22Rv1 cells increased: i) E-cadherin and β4 integrin expression as well as proliferation and invasion, ii) in vivo tumor growth, and iii) metastasis formation at bone, lung, and liver. Of note, treatment with GSK-J4 reduced lesions. In parallel, GSK-J4 efficiently induced cell death in PCa-derived OSCs. CONCLUSIONS Our findings underscore the potential of the H19/cell adhesion molecules circuitry as a targeted approach in PCa treatment. Modulating this interaction has proven effective in inhibiting tumor growth and metastasis, presenting a logical foundation for targeted therapy.
Collapse
Affiliation(s)
- Valeria Pecci
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo F. Vito 1, Rome, 00168, Italy
| | - Fabiola Troisi
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo F. Vito 1, Rome, 00168, Italy
| | | | - Sara De Martino
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo F. Vito 1, Rome, 00168, Italy
- National Research Council (CNR)-IASI, Rome, Italy
| | - Angela Carlino
- Fondazione "Policlinico Universitario A. Gemelli IRCCS", Rome, Italy
| | - Vincenzo Fiorentino
- Fondazione "Policlinico Universitario A. Gemelli IRCCS", Rome, Italy
- Department of Woman, Child and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Cristian Ripoli
- Fondazione "Policlinico Universitario A. Gemelli IRCCS", Rome, Italy
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Dante Rotili
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Rome, Italy
| | - Francesco Pierconti
- Fondazione "Policlinico Universitario A. Gemelli IRCCS", Rome, Italy
- Department of Woman, Child and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maurizio Martini
- Fondazione "Policlinico Universitario A. Gemelli IRCCS", Rome, Italy
- Department of Woman, Child and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Manuela Porru
- Translational Oncology Research Unit, IRCCS- Regina Elena National Cancer Institute, Rome, Italy
| | - Francesco Pinto
- Fondazione "Policlinico Universitario A. Gemelli IRCCS", Rome, Italy
| | - Antonello Mai
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Rome, Italy
| | - Pier Francesco Bassi
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo F. Vito 1, Rome, 00168, Italy
- Fondazione "Policlinico Universitario A. Gemelli IRCCS", Rome, Italy
| | - Claudio Grassi
- Fondazione "Policlinico Universitario A. Gemelli IRCCS", Rome, Italy
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Carlo Gaetano
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Alfredo Pontecorvi
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo F. Vito 1, Rome, 00168, Italy
- Fondazione "Policlinico Universitario A. Gemelli IRCCS", Rome, Italy
| | - Lidia Strigari
- Department of Medical Physics, S. Orsola, Malpighi University Hospital, Bologna, Italy
| | | | - Simona Nanni
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo F. Vito 1, Rome, 00168, Italy.
- Fondazione "Policlinico Universitario A. Gemelli IRCCS", Rome, Italy.
| |
Collapse
|
2
|
Fang Y, Cai J, Ren M, Zhong T, Wang D, Zhang K. Inhalable Bottlebrush Polymer Bioconjugates as Vectors for Efficient Pulmonary Delivery of Oligonucleotides. ACS NANO 2024; 18:592-599. [PMID: 38147573 PMCID: PMC10786149 DOI: 10.1021/acsnano.3c08660] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
Antisense oligonucleotides hold therapeutic promise for various lung disorders, but their efficacy is limited by suboptimal delivery. To address this challenge, we explored the use of inhaled bottlebrush polymer-DNA conjugates, named pacDNA, as a delivery strategy. Inhaled pacDNA exhibits superior mucus penetration, achieving a uniform and sustained lung distribution in mice. Targeting the 5' splice site of an aberrant enhanced green fluorescence protein (EGFP) pre-mRNA in EGFP-654 mice, inhaled pacDNA more efficiently corrects splicing than a B-peptide conjugate and restores EGFP expression in the lung. Additionally, in an orthotopic NCI-H358 non-small-cell lung tumor mouse model, inhaled pacDNA targeting wild-type KRAS mRNA effectively suppresses KRAS expression and inhibits lung tumor growth, requiring a substantially lower dosage compared to intravenously injected pacDNA. These findings demonstrate the potential of bottlebrush polymer-DNA conjugates as a promising agent for enhanced oligonucleotide therapy in the lung and advancing the treatment landscape for lung disorders.
Collapse
Affiliation(s)
- Yang Fang
- Department of Chemistry and Chemical
Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Jiansong Cai
- Department of Chemistry and Chemical
Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Mengqi Ren
- Department of Chemistry and Chemical
Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Tongtong Zhong
- Department of Chemistry and Chemical
Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Dali Wang
- Department of Chemistry and Chemical
Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Ke Zhang
- Department of Chemistry and Chemical
Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
3
|
Kaemmer CA, Umesalma S, Maharjan CK, Moose DL, Narla G, Mott SL, Zamba GKD, Breheny P, Darbro BW, Bellizzi AM, Henry MD, Quelle DE. Development and comparison of novel bioluminescent mouse models of pancreatic neuroendocrine neoplasm metastasis. Sci Rep 2021; 11:10252. [PMID: 33986468 PMCID: PMC8119958 DOI: 10.1038/s41598-021-89866-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic neuroendocrine neoplasms (pNENs) are slow growing cancers of increasing incidence that lack effective treatments once they become metastatic. Unfortunately, nearly half of pNEN patients present with metastatic liver tumors at diagnosis and current therapies fail to improve overall survival. Pre-clinical models of pNEN metastasis are needed to advance our understanding of the mechanisms driving the metastatic process and for the development of novel, targeted therapeutic interventions. To model metastatic dissemination of tumor cells, human pNEN cell lines (BON1 and Qgp1) stably expressing firefly luciferase (luc) were generated and introduced into NSG immunodeficient mice by intracardiac (IC) or intravenous (IV) injection. The efficiency, kinetics and distribution of tumor growth was evaluated weekly by non-invasive bioluminescent imaging (BLI). Tumors formed in all animals in both the IC and IV models. Bioluminescent Qgp1.luc cells preferentially metastasized to the liver regardless of delivery route, mimicking the predominant site of pNEN metastasis in patients. By comparison, BON1.luc cells most commonly formed lung tumors following either IV or IC administration and colonized a wider variety of tissues than Qgp1.luc cells. These models provide a unique platform for testing candidate metastasis genes and anti-metastatic therapies for pNENs.
Collapse
Affiliation(s)
- Courtney A Kaemmer
- Department of Neuroscience and Pharmacology, University of Iowa, 2-570 Bowen Science Building, 51 Newton Road, Iowa City, IA, 52242, USA
| | - Shaikamjad Umesalma
- Department of Neuroscience and Pharmacology, University of Iowa, 2-570 Bowen Science Building, 51 Newton Road, Iowa City, IA, 52242, USA
| | - Chandra K Maharjan
- Department of Neuroscience and Pharmacology, University of Iowa, 2-570 Bowen Science Building, 51 Newton Road, Iowa City, IA, 52242, USA
| | - Devon L Moose
- Cancer Biology Graduate Program, University of Iowa, Iowa City, IA, USA
| | - Goutham Narla
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Sarah L Mott
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Gideon K D Zamba
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA.,Department of Biostatistics, University of Iowa, Iowa City, IA, USA
| | - Patrick Breheny
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA.,Department of Biostatistics, University of Iowa, Iowa City, IA, USA
| | - Benjamin W Darbro
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA.,Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Andrew M Bellizzi
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA.,Department of Pathology, University of Iowa, Iowa City, IA, USA
| | - Michael D Henry
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA.,Department of Pathology, University of Iowa, Iowa City, IA, USA.,Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.,Department of Urology, University of Iowa, Iowa City, IA, USA
| | - Dawn E Quelle
- Department of Neuroscience and Pharmacology, University of Iowa, 2-570 Bowen Science Building, 51 Newton Road, Iowa City, IA, 52242, USA. .,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA. .,Department of Pathology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
4
|
Moose DL, Krog BL, Kim TH, Zhao L, Williams-Perez S, Burke G, Rhodes L, Vanneste M, Breheny P, Milhem M, Stipp CS, Rowat AC, Henry MD. Cancer Cells Resist Mechanical Destruction in Circulation via RhoA/Actomyosin-Dependent Mechano-Adaptation. Cell Rep 2020; 30:3864-3874.e6. [PMID: 32187555 PMCID: PMC7219793 DOI: 10.1016/j.celrep.2020.02.080] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/31/2020] [Accepted: 02/20/2020] [Indexed: 12/27/2022] Open
Abstract
During metastasis, cancer cells are exposed to potentially destructive hemodynamic forces including fluid shear stress (FSS) while en route to distant sites. However, prior work indicates that cancer cells are more resistant to brief pulses of high-level FSS in vitro relative to non-transformed epithelial cells. Herein, we identify a mechano-adaptive mechanism of FSS resistance in cancer cells. Our findings demonstrate that cancer cells activate RhoA in response to FSS, which protects them from FSS-induced plasma membrane damage. We show that cancer cells freshly isolated from mouse and human tumors are resistant to FSS, that formin and myosin II activity protects circulating tumor cells (CTCs) from destruction, and that short-term inhibition of myosin II delays metastasis in mouse models. Collectively, our data indicate that viable CTCs actively resist destruction by hemodynamic forces and are likely to be more mechanically robust than is commonly thought.
Collapse
Affiliation(s)
- Devon L Moose
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Cancer Biology Program, Biomedical Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Benjamin L Krog
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Tae-Hyung Kim
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lei Zhao
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | - Gretchen Burke
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Lillian Rhodes
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Marion Vanneste
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Patrick Breheny
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | - Mohammed Milhem
- Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA; Division of Hematology and Oncology, Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Christopher S Stipp
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA; Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Amy C Rowat
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael D Henry
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Cancer Biology Program, Biomedical Sciences, University of Iowa, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA; Departments of Pathology, Urology and Radiation Oncology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
5
|
Abstract
More than 80% of patients with advanced prostate cancer (PCa) experience bone metastasis, which negatively impacts overall survival and patient quality of life. Various mouse models have been used to study the mechanisms of bone metastasis over the years; however, there is currently no model that fully recapitulates what happens in humans because bone metastasis rarely occurs in spontaneous PCa mouse models. Nevertheless, animal models of bone metastasis using several different tumor inoculation routes have been developed to help study bone metastatic progression, which occurs particularly in late-stage PCa patients. This chapter describes the protocols commonly used to develop models of bone metastatic cancer in mice using different percutaneous injection methods (Intracardiac and Intraosseous). These models are useful for understanding the molecular mechanisms of bone metastatic progression, including tumor tissue tropism and tumor growth within the bone marrow microenvironment. Better understanding of the mechanisms involved in these processes will clearly lead to the development of new therapeutic strategies for PCa patients with bone metastases.
Collapse
|
6
|
Rice MA, Hsu EC, Aslan M, Ghoochani A, Su A, Stoyanova T. Loss of Notch1 Activity Inhibits Prostate Cancer Growth and Metastasis and Sensitizes Prostate Cancer Cells to Antiandrogen Therapies. Mol Cancer Ther 2019; 18:1230-1242. [PMID: 31028097 DOI: 10.1158/1535-7163.mct-18-0804] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/29/2018] [Accepted: 04/24/2019] [Indexed: 02/07/2023]
Abstract
Prostate cancer remains among the leading causes of cancer-related deaths in men. Patients with aggressive disease typically undergo hormone deprivation therapy. Although treatment is initially very successful, these men commonly progress to lethal, castration-resistant prostate cancer (CRPC) in 2 to 3 years. Standard therapies for CRPC include second-generation antiandrogens, which prolong patient lifespan by only several months. It is imperative to advance our understanding of the mechanisms leading to resistance to identify new therapies for aggressive prostate cancer. This study identifies Notch1 as a therapeutic target in prostate cancer. Loss of NOTCH1 in aggressive prostate cancer cells decreases proliferation, invasion, and tumorsphere formation. Therapeutic inhibition of Notch1 activity with gamma secretase inhibitors RO4929097 or DAPT in prostate cancer cells further results in decreased proliferative abilities. Loss of NOTCH1 and treatment of immunocompromised mice bearing prostate cancer xenografts with RO4929097 display significantly impaired tumor growth. Loss of NOTCH1 additionally decreased metastatic potential of prostate cancer cells in invasion assays in vitro as well as in vivo experiments. Moreover, treatment with gamma secretase inhibitors or NOTCH1 gene deletion synergized with antiandrogen therapies, enzalutamide or abiraterone, to decrease the growth of prostate cancer cells. Combination of gamma secretase inhibitors with abiraterone significantly inhibited cell migration and invasion, while combination with enzalutamide reversed enzalutamide-induced migration and invasion. These collective findings suggest loss of NOTCH1 delays growth of CRPC and inhibits metastasis, and inhibition of Notch1 activation in conjunction with second-generation antiandrogen therapies could delay growth and progression of prostate cancer.
Collapse
Affiliation(s)
- Meghan A Rice
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, California
| | - En-Chi Hsu
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, California
| | - Merve Aslan
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, California
| | - Ali Ghoochani
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, California
| | - Austin Su
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, California
| | - Tanya Stoyanova
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, California.
| |
Collapse
|
7
|
Paudyal P, Xie Q, Vaddi PK, Henry MD, Chen S. Inhibiting G protein βγ signaling blocks prostate cancer progression and enhances the efficacy of paclitaxel. Oncotarget 2018; 8:36067-36081. [PMID: 28415604 PMCID: PMC5482639 DOI: 10.18632/oncotarget.16428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 03/11/2017] [Indexed: 01/29/2023] Open
Abstract
Aberrant activation of G protein-coupled receptors (GPCRs) is implicated in prostate cancer progression, but targeting them has been challenging because multiple GPCRs are involved in cancer progression. In this study, we tested the effect of blocking signaling via a hub through which multiple GPCRs converge — the G-protein Gβγ subunits. Inhibiting Gβγ signaling in several castration-resistant prostate cancer cell lines (i.e. PC3, DU145 and 22Rv1), impaired cell growth and migration in vitro, and halted tumor growth and metastasis in nude mice. The blockade of Gβγ signaling also diminished prostate cancer stem cell-like activities, by reducing tumorsphere formation in vitro and tumor formation in a limiting dilution assay in nude mice. Furthermore, Gβγ blockade enhanced the sensitivity of prostate cancer cells to paclitaxel treatment, both in vitro and in vivo. Together, our results identify a novel function of Gβγ in regulating prostate cancer stem-cell-like activities, and demonstrate that targeting Gβγ signaling is an effective approach in blocking prostate cancer progression and augmenting response to chemotherapy.
Collapse
Affiliation(s)
- Prakash Paudyal
- The Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Qing Xie
- The Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Prasanna Kuma Vaddi
- The Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Michael D Henry
- The Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.,The Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.,The Department of Urology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.,The Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Songhai Chen
- The Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.,The Holden Comprehensive Cancer Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.,The Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
8
|
Wang Y, Huang N, Li H, Liu S, Chen X, Yu S, Wu N, Bian XW, Shen HY, Li C, Xiao L. Promoting oligodendroglial-oriented differentiation of glioma stem cell: a repurposing of quetiapine for the treatment of malignant glioma. Oncotarget 2018; 8:37511-37524. [PMID: 28415586 PMCID: PMC5514926 DOI: 10.18632/oncotarget.16400] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/01/2017] [Indexed: 12/15/2022] Open
Abstract
As a major contributor of chemotherapy resistance and malignant recurrence, glioma stem cells (GSCs) have been proposed as a target for the treatment of gliomas. To evaluate the therapeutic potential of quetiapine (QUE), an atypical antipsychotic, for the treatment of malignant glioma, we established mouse models with GSCs-initiated orthotopic xenograft gliomas and subcutaneous xenograft tumors, using GSCs purified from glioblastoma cell line GL261. We investigated antitumor effects of QUE on xenograft gliomas and its underlying mechanisms on GSCs. Our data demonstrated that (i) QUE monotherapy can effectively suppress GSCs-initiated tumor growth; (ii) QUE has synergistic effects with temozolomide (TMZ) on glioma suppression, and importantly, QUE can effectively suppress TMZ-resistant (or -escaped) tumors generated from GSCs; (iii) mechanistically, the anti-glioma effect of QUE was due to its actions of promoting the differentiation of GSCs into oligodendrocyte (OL)-like cells and its inhibitory effect on the Wnt/β-catenin signaling pathway. Together, our findings suggest an effective approach for anti-gliomagenic treatment via targeting OL-oriented differentiation of GSCs. This also opens a door for repurposing QUE, an FDA approved drug, for the treatment of malignant glioma.
Collapse
Affiliation(s)
- Yun Wang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Nanxin Huang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Hongli Li
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Shubao Liu
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Xianjun Chen
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Shichang Yu
- Department of Pathology, Southwest Hospital, Chongqing 400038, China
| | - Nan Wu
- Department of Neurosurgery, Southwest Hospital, Chongqing 400038, China
| | - Xiu-Wu Bian
- Department of Pathology, Southwest Hospital, Chongqing 400038, China
| | - Hai-Ying Shen
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR 97232, USA
| | - Chengren Li
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Lan Xiao
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
9
|
Qiu XY, Hu DX, Chen WQ, Chen RQ, Qian SR, Li CY, Li YJ, Xiong XX, Liu D, Pan F, Yu SB, Chen XQ. PD-L1 confers glioblastoma multiforme malignancy via Ras binding and Ras/Erk/EMT activation. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1754-1769. [PMID: 29510196 DOI: 10.1016/j.bbadis.2018.03.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/08/2018] [Accepted: 03/01/2018] [Indexed: 12/12/2022]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor due to the lack of effective therapeutic drugs. Cancer therapy targeting programmed cell death protein 1 (PD-1) or programmed death ligand-1 (PD-L1) is of revolutionary. However, the role of intrinsic PD-L1, which determines immune-therapy outcomes, remains largely unclear. Here we demonstrated an oncogenic role of PD-L1 via binding and activating Ras in GBM cells. RNA-sequencing transcriptome data revealed that PD-L1 significantly altered gene expression enriched in cell growth/migration/invasion pathways in human GBM cells. PD-L1 overexpression and knockout or knockdown demonstrated that PD-L1 promoted GBM cell proliferation and migration in vitro and in vivo. Mechanistically, PD-L1 prominently activated epithelial mesenchymal transition (EMT) process in a MEK/Erk- but not PI3K/Akt-dependent manner. Further, we identified intracellular interactions of PD-L1 and H-Ras, which led to Ras/Erk/EMT activation. Finally, we demonstrated that PD-L1 overexpression promoted while knockdown abolished GBM development and invasion in orthotopic GBM models of rodents. Taken together, we found that intracellular PD-L1 confers GBM cell malignancy and aggressiveness via binding Ras and activating the downstream Erk-EMT signaling. Thus, these results shed important insights in improving efficacy of immune therapy for GBM as well as other malignant tumors.
Collapse
Affiliation(s)
- Xin Yao Qiu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Institute of Brain Research, Key Laboratory of Neurological Diseases, Ministry of Education, Hubei Provincial Key Laboratory of Neurological Diseases, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dian Xing Hu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Institute of Brain Research, Key Laboratory of Neurological Diseases, Ministry of Education, Hubei Provincial Key Laboratory of Neurological Diseases, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wen-Qiang Chen
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Ruo Qiao Chen
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shi Rui Qian
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chun Yang Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Institute of Brain Research, Key Laboratory of Neurological Diseases, Ministry of Education, Hubei Provincial Key Laboratory of Neurological Diseases, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuan Jun Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Institute of Brain Research, Key Laboratory of Neurological Diseases, Ministry of Education, Hubei Provincial Key Laboratory of Neurological Diseases, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xin Xin Xiong
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Institute of Brain Research, Key Laboratory of Neurological Diseases, Ministry of Education, Hubei Provincial Key Laboratory of Neurological Diseases, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Di Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Feng Pan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shang Bin Yu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Institute of Brain Research, Key Laboratory of Neurological Diseases, Ministry of Education, Hubei Provincial Key Laboratory of Neurological Diseases, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiao Qian Chen
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Institute of Brain Research, Key Laboratory of Neurological Diseases, Ministry of Education, Hubei Provincial Key Laboratory of Neurological Diseases, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
10
|
Shahriari K, Shen F, Worrede-Mahdi A, Liu Q, Gong Y, Garcia FU, Fatatis A. Cooperation among heterogeneous prostate cancer cells in the bone metastatic niche. Oncogene 2017; 36:2846-2856. [PMID: 27991924 PMCID: PMC5436952 DOI: 10.1038/onc.2016.436] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/20/2016] [Accepted: 10/03/2016] [Indexed: 02/07/2023]
Abstract
The growth of disseminated tumor cells into metastatic lesions depends on the establishment of a favorable microenvironment in the stroma of the target organs. Here we show that mice treated with anakinra, an antagonist of the interleukin (IL)-1β receptor (IL-1R), or harboring a targeted deletion of IL-1R are significantly less prone to develop bone tumors when inoculated in the arterial circulation with human prostate cancer (PCa) cells expressing IL-1β. Interestingly, human mesenchymal stem cells exposed in vitro to medium conditioned by IL-1β-expressing cancer cells responded by upregulating S100A4, a marker of cancer-associated fibroblasts (CAFs), and this effect was blocked by anakinra. Analogously, the stroma adjacent to skeletal metastases generated in mice by IL-1β-expressing cancer cells showed a dramatic increase in S100A4, COX-2 and the alteration of 30 tumor-related genes as measured by Nanostring analysis. These effects were not observed in the stroma associated with the rare and much smaller metastases generated by the same cells in IL-1R knockout animals, confirming that tumor-secreted IL-1β generates skeletal CAFs and conditions the surrounding bone microenvironment. In skeletal lesions from patients with metastatic PCa, histological and molecular analyses revealed that IL-1β is highly expressed in cancer cells in which the androgen receptor (AR) is not detected (AR-), whereas this cytokine is uniformly absent in the AR-positive (AR+) metastatic cells. The stroma conditioned by IL-1β-expressing cancer cells served as a supportive niche also for coexisting IL-1β-lacking cancer cells, which are otherwise unable to generate tumors after independently seeding the skeleton of mice. This niche is established very early following tumor seeding and hints to a role of IL-1β in promoting early colonization of PCa at the skeletal level.
Collapse
Affiliation(s)
- K Shahriari
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - F Shen
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - A Worrede-Mahdi
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Q Liu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Y Gong
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - F U Garcia
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
- Cancer Treatment Centers of America, Eastern Regional Medical Center, Philadelphia, PA, USA
| | - A Fatatis
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
- Program in Prostate Cancer, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
11
|
Singh A, Xu J, Mattheolabakis G, Amiji M. EGFR-targeted gelatin nanoparticles for systemic administration of gemcitabine in an orthotopic pancreatic cancer model. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 12:589-600. [PMID: 26656632 DOI: 10.1016/j.nano.2015.11.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/16/2015] [Accepted: 11/19/2015] [Indexed: 01/05/2023]
Abstract
UNLABELLED In this study, we have formulated redox-responsive epidermal growth factor receptor (EGFR)-targeted type B gelatin nanoparticles as a targeted vector for systemic delivery of gemcitabine therapy in pancreatic cancer. The gelatin nanoparticles were formed by ethanol-induced desolvation process to encapsulate the bound drug. The surface of the nanoparticles was decorated either with poly(ethylene glycol) (PEG) chains to impart enhanced circulation time or with EGFR targeting peptide to confer target specificity. Our in vitro studies in Panc-1 human pancreatic ductal adenocarcinoma cells confirm that gemcitabine encapsulated in EGFR-targeted gelatin nanoparticles, released through disulfide bond cleavage, had a significantly improved cytotoxic profile. Further, the in vivo anticancer activity was evaluated in an orthotopic pancreatic adenocarcinoma tumor bearing SCID beige mice, which confirmed that EGFR-targeted gelatin nanoparticles could efficiently deliver gemcitabine to the tumor leading to higher therapeutic benefit as compared to the drug in solution. FROM THE CLINICAL EDITOR The treatment of pancreatic cancer remains unsatisfactory, with an average 5-year survival of less than 5%. New treatment modalities are thus urgently needed. In this study, the authors presented their formulation of redox-responsive epidermal growth factor receptor (EGFR)-targeted type B gelatin nanoparticles as a carrier for gemcitabine. In-vitro and in-vivo experiments showed encouraging results. It is hoped that the findings would provide a novel and alternative drug delivery platform for the future.
Collapse
Affiliation(s)
- Amit Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, USA
| | - Jing Xu
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, USA
| | - George Mattheolabakis
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, USA
| | - Mansoor Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, USA.
| |
Collapse
|
12
|
Venant H, Rahmaniyan M, Jones EE, Lu P, Lilly MB, Garrett-Mayer E, Drake RR, Kraveka JM, Smith CD, Voelkel-Johnson C. The Sphingosine Kinase 2 Inhibitor ABC294640 Reduces the Growth of Prostate Cancer Cells and Results in Accumulation of Dihydroceramides In Vitro and In Vivo. Mol Cancer Ther 2015; 14:2744-52. [PMID: 26494858 DOI: 10.1158/1535-7163.mct-15-0279] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 10/06/2015] [Indexed: 02/05/2023]
Abstract
Despite recent advances in the development of novel therapies against castration-resistant prostate cancer, the advanced form of the disease remains a major treatment challenge. Aberrant sphingolipid signaling through sphingosine kinases and their product, sphingosine-1-phosphate, can promote proliferation, drug resistance, angiogenesis, and inflammation. The sphingosine kinase 2 inhibitor ABC294640 is undergoing clinical testing in cancer patients, and in this study we investigated the effects this first-in-class inhibitor in castration-resistant prostate cancer. In vitro, ABC294640 decreased prostate cancer cell viability as well as the expression of c-Myc and the androgen receptor, while lysosomal acidification increased. ABC294640 also induced a greater than 3-fold increase in dihydroceramides that inversely correlated with inhibition of dihydroceramide desaturase (DEGS) activity. Expression of sphingosine kinase 2 was dispensable for the ABC294640-mediated increase in dihydroceramides. In vivo, ABC294640 diminished the growth rate of TRAMP-C2 xenografts in syngeneic hosts and elevated dihydroceramides within tumors as visualized by MALDI imaging mass spectroscopy. The plasma of ABC294640-treated mice contained significantly higher levels of C16- and C24:1-ceramides (but not dihydro-C16-ceramide) compared with vehicle-treated mice. In summary, our results suggest that ABC294640 may reduce the proliferative capacity of castration-resistant prostate cancer cells through inhibition of both sphingosine kinase 2 and dihydroceramide desaturase, thereby providing a foundation for future exploration of this small-molecule inhibitor for the treatment of advanced disease.
Collapse
Affiliation(s)
- Heather Venant
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Mehrdad Rahmaniyan
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - E Ellen Jones
- Department of Pharmacology, Medical University of South Carolina, Charleston, South Carolina
| | - Ping Lu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Michael B Lilly
- Department of Hematology and Oncology, Medical University of South Carolina, Charleston, South Carolina
| | - Elizabeth Garrett-Mayer
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Richard R Drake
- Department of Pharmacology, Medical University of South Carolina, Charleston, South Carolina
| | - Jacqueline M Kraveka
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | | | - Christina Voelkel-Johnson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
13
|
Taylor SL, Mason SKG, Glinton SL, Cobbold M, Dehghani H. Accounting for filter bandwidth improves the quantitative accuracy of bioluminescence tomography. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:096001. [PMID: 26325264 PMCID: PMC5996822 DOI: 10.1117/1.jbo.20.9.096001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 07/20/2015] [Indexed: 05/25/2023]
Abstract
Bioluminescence imaging is a noninvasive technique whereby surface weighted images of luminescent probes within animals are used to characterize cell count and function. Traditionally, data are collected over the entire emission spectrum of the source using no filters and are used to evaluate cell count/function over the entire spectrum. Alternatively, multispectral data over several wavelengths can be incorporated to perform tomographic reconstruction of source location and intensity. However, bandpass filters used for multispectral data acquisition have a specific bandwidth, which is ignored in the reconstruction. In this work, ignoring the bandwidth is shown to introduce a dependence of the recovered source intensity on the bandwidth of the filters. A method of accounting for the bandwidth of filters used during multispectral data acquisition is presented and its efficacy in increasing the quantitative accuracy of bioluminescence tomography is demonstrated through simulation and experiment. It is demonstrated that while using filters with a large bandwidth can dramatically decrease the data acquisition time, if not accounted for, errors of up to 200% in quantitative accuracy are introduced in two-dimensional planar imaging, even after normalization. For tomographic imaging, the use of this method to account for filter bandwidth dramatically improves the quantitative accuracy.
Collapse
Affiliation(s)
- Shelley L. Taylor
- University of Birmingham, PSIBS Doctoral Training Centre, Edgbaston, Birmingham B15 2TT, United Kingdom
- University of Birmingham, School of Computer Science, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Suzannah K. G. Mason
- University of Birmingham, PSIBS Doctoral Training Centre, Edgbaston, Birmingham B15 2TT, United Kingdom
- University of Birmingham, School of Computer Science, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Sophie L. Glinton
- University of Birmingham, PSIBS Doctoral Training Centre, Edgbaston, Birmingham B15 2TT, United Kingdom
- University of Birmingham, School of Computer Science, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Mark Cobbold
- University of Birmingham, College of Medical and Dental Sciences, School of Immunity and Infection, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Hamid Dehghani
- University of Birmingham, PSIBS Doctoral Training Centre, Edgbaston, Birmingham B15 2TT, United Kingdom
- University of Birmingham, School of Computer Science, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
14
|
Sung SY, Wu IH, Chuang PH, Petros JA, Wu HC, Zeng HJ, Huang WC, Chung LWK, Hsieh CL. Targeting L1 cell adhesion molecule expression using liposome-encapsulated siRNA suppresses prostate cancer bone metastasis and growth. Oncotarget 2015; 5:9911-29. [PMID: 25294816 PMCID: PMC4259447 DOI: 10.18632/oncotarget.2478] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The L1 cell adhesion molecule (L1CAM) has been implicated in tumor progression of many types of cancers, but its role in prostate cancer and its application in targeted gene therapy have not been investigated. Herein, we demonstrated that the L1CAM was expressed in androgen-insensitive and highly metastatic human prostate cancer cell lines. The correlation between L1CAM expression and prostate cancer metastasis was also validated in serum samples of prostate cancer patients. Knockdown of L1CAM expression in prostate cancer cells by RNA interference significantly decreased their aggressive behaviors, including colony formation, migration and invasion in vitro, and tumor formation in a metastatic murine model. These anti-malignant phenotypes of L1CAM-knockdown cancer cells were accompanied by G0/G1 cell cycle arrest and suppression of matrix metalloproteinase (MMP)-2 and MMP-9 expression and nuclear factor NF-κB activation. In vivo targeting of L1CAM expression using liposome-encapsulated L1CAM siRNAs effectively inhibited prostate cancer growth in mouse bone, which was associated with decreased L1CAM expression and cell proliferation by tumor cells. These results provide the first evidence for L1CAM being a major contributor to prostate cancer metastasis and translational application of siRNA-based L1CAM-targeted therapy.
Collapse
Affiliation(s)
- Shian-Ying Sung
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan. Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan. These authors contributed equally to this work
| | - I-Hui Wu
- Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan. These authors contributed equally to this work
| | - Pei-Hsin Chuang
- Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan. These authors contributed equally to this work
| | - John A Petros
- Department of Urology, Emory University, Atlanta, GA, USA. Department of Urology, Atlanta VA Medical Center, Decatur GA, USA
| | - Hsi-Chin Wu
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Hong-Jie Zeng
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wei-Chien Huang
- Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan
| | - Leland W K Chung
- Department of Urology, Emory University, Atlanta, GA, USA. Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Chia-Ling Hsieh
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan. Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan. Department of Urology, Emory University, Atlanta, GA, USA. Department of Biotechnology, Asia University, Wufeng, Taichung, Taiwan
| |
Collapse
|
15
|
Wu JB, Shi C, Chu GCY, Xu Q, Zhang Y, Li Q, Yu JS, Zhau HE, Chung LWK. Near-infrared fluorescence heptamethine carbocyanine dyes mediate imaging and targeted drug delivery for human brain tumor. Biomaterials 2015. [PMID: 26197410 DOI: 10.1016/j.biomaterials.2015.07.028] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Brain tumors and brain metastases are among the deadliest malignancies of all human cancers, largely due to the cellular blood-brain and blood-tumor barriers that limit the delivery of imaging and therapeutic agents from the systemic circulation to tumors. Thus, improved strategies for brain tumor visualization and targeted treatment are critically needed. Here we identified and synthesized a group of near-infrared fluorescence (NIRF) heptamethine carbocyanine dyes and derivative NIRF dye-drug conjugates for effective imaging and therapeutic targeting of brain tumors of either primary or metastatic origin in mice, which is mechanistically mediated by tumor hypoxia and organic anion-transporting polypeptide genes. We also demonstrate that these dyes, when conjugated to chemotherapeutic agents such as gemcitabine, significantly restricted the growth of both intracranial glioma xenografts and prostate tumor brain metastases and prolonged survival in mice. These results show promise in the application of NIRF dyes as novel theranostic agents for the detection and treatment of brain tumors.
Collapse
Affiliation(s)
- Jason Boyang Wu
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Changhong Shi
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Laboratory Animal Center, the Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Gina Chia-Yi Chu
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Qijin Xu
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yi Zhang
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Qinlong Li
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - John S Yu
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Haiyen E Zhau
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Leland W K Chung
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
16
|
Reilly JE, Neighbors JD, Tong H, Henry MD, Hohl RJ. Targeting geranylgeranylation reduces adrenal gland tumor burden in a murine model of prostate cancer metastasis. Clin Exp Metastasis 2015; 32:555-66. [PMID: 26070429 DOI: 10.1007/s10585-015-9727-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 06/01/2015] [Indexed: 10/23/2022]
Abstract
The isoprenoid biosynthetic pathway (IBP) is critical for providing substrates for the post-translational modification of proteins key in regulating malignant cell properties, including proliferation, invasion, and migration. Inhibitors of the IBP, including statins and nitrogenous bisphosphonates, are used clinically for the treatment of hypercholesterolemia and bone disease respectively. The statins work predominantly in the liver, while the nitrogenous bisphosphonates are highly sequestered to bone. Inhibition of the entire IBP is limited by organ specificity and side effects resulting from depletion of all isoprenoids. We have developed a novel compound, disodium [(6Z,11E,15E)-9-[bis(sodiooxy)phosphoryl]-17-hydroxy-2,6,12,16-tetramethyheptadeca-2,6,11,15-tetraen-9-yl]phosphonate (GGOHBP), which selectively targets geranylgeranyl diphosphate synthase, reducing post-translational protein geranylgeranylation. Intracardiac injection of luciferase-expressing human-derived 22Rv1 PCa cells into SCID mice resulted in tumor development in bone (100 %), adrenal glands (72 %), mesentery (22 %), liver (17 %), and the thoracic cavity (6 %). Three weeks after tumor inoculation, daily subcutaneous (SQ) injections of 1.5 mg/kg GGOHBP or the vehicle were given for one month. Dissected tumors revealed a reduction in adrenal gland tumors corresponding to a 54 % (P < 0.005) reduction in total adrenal gland tumor weight of the treated mice as compared to vehicle-treated controls. Western blot analysis of the harvested tissues showed a reduction in Rap1A geranylgeranylation in adrenal glands and mesenteric tumors of the treated mice while non-tumorous tissues and control mice showed no Rap1A alteration. Our findings detail a novel bisphosphonate compound capable of preferentially altering the IBP in tumor-burdened adrenal glands of a murine model of PCa metastasis.
Collapse
Affiliation(s)
- Jacqueline E Reilly
- Department of Pharmacology, University of Iowa, Iowa City, IA, 55242-1294, USA
| | | | | | | | | |
Collapse
|
17
|
Li K, Pang J, Cheng H, Liu WP, Di JM, Xiao HJ, Luo Y, Zhang H, Huang WT, Chen MK, Li LY, Shao CK, Feng YH, Gao X. Manipulation of prostate cancer metastasis by locus-specific modification of the CRMP4 promoter region using chimeric TALE DNA methyltransferase and demethylase. Oncotarget 2015; 6:10030-44. [PMID: 25888628 PMCID: PMC4496338 DOI: 10.18632/oncotarget.3192] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 01/25/2015] [Indexed: 01/08/2023] Open
Abstract
Prostate cancer is the most commonly diagnosed non-cutaneous cancer and one of the leading causes of cancer death for North American men. Whereas localized prostate cancer can be cured, there is currently no cure for metastatic prostate cancer. Here we report a novel approach that utilizes designed chimeric transcription activator-like effectors (dTALEs) to control prostate cancer metastasis. Transfection of dTALEs of DNA methyltransferase or demethylase induced artificial, yet active locus-specific CpG and subsequent histone modifications. These manipulations markedly altered expression of endogenous CRMP4, a metastasis suppressor gene. Remarkably, locus-specific CpG demethylation of the CRMP4 promoter in metastatic PC3 cells abolished metastasis, whereas locus-specific CpG methylation of the promoter in non-metastatic 22Rv1 cells induced metastasis. CRMP4-mediated metastasis suppression was found to require activation of Akt/Rac1 signaling and down-regulation of MMP-9 expression. This proof-of-concept study with dTALEs for locus-specific epigenomic manipulation validates the selected CpG methylation of CRMP4 gene as an independent biomarker for diagnosis and prognosis of prostate cancer metastasis and opens up a novel avenue for mechanistic research on cancer biology.
Collapse
Affiliation(s)
- Ke Li
- Department of Urology, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Jun Pang
- Department of Urology, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Huaiyan Cheng
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda MD20814, USA
| | - Wei-Peng Liu
- Department of Urology, the First Affiliated Hospital of Nan Chang University, Nanchang 330006, China
| | - Jin-Ming Di
- Department of Urology, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Heng-Jun Xiao
- Department of Urology, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Yun Luo
- Department of Urology, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Hao Zhang
- Department of Urology, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Wen-Tao Huang
- Department of Urology, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Ming-Kun Chen
- Department of Urology, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Liao-Yuan Li
- Department of Urology, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Chun-Kui Shao
- Department of Pathology, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Ying-Hong Feng
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda MD20814, USA
| | - Xin Gao
- Department of Urology, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| |
Collapse
|
18
|
Hou R, Wang YW, Liang HF, Zhang ZG, Liu ZM, Zhang BH, Zhang BX, Chen XP. Animal and cellular models of hepatocellular carcinoma bone metastasis: establishment and characterisation. J Cancer Res Clin Oncol 2015; 141:1931-43. [PMID: 25820528 DOI: 10.1007/s00432-015-1958-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 03/17/2015] [Indexed: 01/24/2023]
Abstract
BACKGROUND An increasingly high occurrence of bone metastases in hepatocellular carcinoma (HCC) patients highlights the importance of fundamental research on HCC bone metastasis, which has been limited in its success due to the lack of a model system. PURPOSE Establishment of animal and cellular models of HCC bone metastasis and discovery of HCC bone metastasis-related genes. METHODS Luciferase-transfected HCC cell lines HCCLM3, MHCC97H, and SMMC-7721 were used to inoculate nude mice intracardially. Formation of bone metastases was examined by bioluminescence imaging, SPECT, and pathology study. Metastatic cells in bone were isolated and subcultured. Differences between bone metastatic cells and their parental cells were studied by in vitro/in vivo assays. RESULTS Mouse model of HCC bone metastasis was successfully established. Injected tumour cells formed metastases in the skull, the spine, the hind limbs, and the sternum, causing osteolytic lesions via act of MMP-1 and recruitment of osteoclasts. Four bone metastatic cell lines were extracted from HCCLM3-inoculated mice and were demonstrated to exhibit a much stronger ability to form bone metastases as well as other phenotypes, including enhanced in vitro migration/invasion and colony formation. Moreover, the expression of PTHrP, MMP-1, and CTGF was significantly elevated in bone metastatic cells compared to parental HCC cells. CONCLUSION The nude mouse model and bone metastatic cell lines together provide an effective simulation of HCC bone metastasis. This model system will become powerful tool with which to explore the mechanisms and therapies of HCC bone metastasis. Additionally, PTHrP, MMP-1, and CTGF are candidate genes related to HCC bone metastasis.
Collapse
Affiliation(s)
- Rui Hou
- Department of Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Yu-Wei Wang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Hui-Fang Liang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Zhan-Guo Zhang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Zhi-Min Liu
- Department of Surgery, Sixth Subsidiary Sun Yat-sen University Hospital, Guangzhou, China
| | - Bin-Hao Zhang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Bi-Xiang Zhang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| | - Xiao-Ping Chen
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
19
|
Vidal SJ, Rodriguez-Bravo V, Quinn SA, Rodriguez-Barrueco R, Lujambio A, Williams E, Sun X, de la Iglesia-Vicente J, Lee A, Readhead B, Chen X, Galsky M, Esteve B, Petrylak DP, Dudley JT, Rabadan R, Silva JM, Hoshida Y, Lowe SW, Cordon-Cardo C, Domingo-Domenech J. A targetable GATA2-IGF2 axis confers aggressiveness in lethal prostate cancer. Cancer Cell 2015; 27:223-39. [PMID: 25670080 PMCID: PMC4356948 DOI: 10.1016/j.ccell.2014.11.013] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/07/2014] [Accepted: 11/13/2014] [Indexed: 01/11/2023]
Abstract
Elucidating the determinants of aggressiveness in lethal prostate cancer may stimulate therapeutic strategies that improve clinical outcomes. We used experimental models and clinical databases to identify GATA2 as a regulator of chemotherapy resistance and tumorigenicity in this context. Mechanistically, direct upregulation of the growth hormone IGF2 emerged as a mediator of the aggressive properties regulated by GATA2. IGF2 in turn activated IGF1R and INSR as well as a downstream polykinase program. The characterization of this axis prompted a combination strategy whereby dual IGF1R/INSR inhibition restored the efficacy of chemotherapy and improved survival in preclinical models. These studies reveal a GATA2-IGF2 aggressiveness axis in lethal prostate cancer and identify a therapeutic opportunity in this challenging disease.
Collapse
Affiliation(s)
- Samuel J Vidal
- College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - S Aidan Quinn
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA 10032, USA
| | | | - Amaia Lujambio
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Estrelania Williams
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xiaochen Sun
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Albert Lee
- Department of Biomedical Informatics, Center for Computational Biology and Bioinformatics, Columbia University, New York, NY 10031, USA
| | - Ben Readhead
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xintong Chen
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Matthew Galsky
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Berta Esteve
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daniel P Petrylak
- Yale Comprehensive Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Joel T Dudley
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Raul Rabadan
- Department of Biomedical Informatics, Center for Computational Biology and Bioinformatics, Columbia University, New York, NY 10031, USA
| | - Jose M Silva
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yujin Hoshida
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Carlos Cordon-Cardo
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Josep Domingo-Domenech
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
20
|
Tsai CH, Lin LT, Wang CY, Chiu YW, Chou YT, Chiu SJ, Wang HE, Liu RS, Wu CY, Chan PC, Yang MH, Chiou SH, Liao MJ, Lee YJ. Over-expression of cofilin-1 suppressed growth and invasion of cancer cells is associated with up-regulation of let-7 microRNA. Biochim Biophys Acta Mol Basis Dis 2015; 1852:851-61. [PMID: 25597880 DOI: 10.1016/j.bbadis.2015.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 01/09/2015] [Accepted: 01/11/2015] [Indexed: 12/25/2022]
Abstract
Cofilin-1, a non-muscle isoform of actin regulatory protein that belongs to the actin-depolymerizing factor (ADF)/cofilin family is known to affect cancer development. Previously, we found that over-expression of cofilin-1 suppressed the growth and invasion of human non-small cell lung cancer (NSCLC) cells in vitro. In this study, we further investigated whether over-expression of cofilin-1 can suppress tumor growth in vivo, and performed a microRNA array analysis to better understand whether specific microRNA would be involved in this event. The results showed that over-expression of cofilin-1 suppressed NSCLC tumor growth using the xenograft tumor model with the non-invasive reporter gene imaging modalities. Additionally, cell motility and invasion were significantly suppressed by over-expressed cofilin-1, and down-regulation of matrix metalloproteinase (MMPs) -1 and -3 was concomitantly detected. According to the microRNA array analysis, the let-7 family, particularly let-7b and let-7e, were apparently up-regulated among 248 microRNAs that were affected after over-expression of cofilin-1 up to 7 days. Knockdown of let-7b or let-7e using chemical locked nucleic acid (LNA) could recover the growth rate and the invasion of cofilin-1 over-expressing cells. Next, the expression of c-myc, LIN28 and Twist-1 proteins known to regulate let-7 were analyzed in cofilin-1 over-expressing cells, and Twist-1 was significantly suppressed under this condition. Up-regulation of let-7 microRNA by over-expressed cofilin-1 could be eliminated by co-transfected Twist-1 cDNA. Taken together, current data suggest that let-7 microRNA would be involved in over-expression of cofilin-1 mediated tumor suppression in vitro and in vivo.
Collapse
Affiliation(s)
- Cheng-Han Tsai
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Liang-Ting Lin
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Yih Wang
- Radiotherapy, Department of Medical Imaging, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Yu-Wen Chiu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Yen-Ting Chou
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Shu-Jun Chiu
- Department of Life Sciences, Tzu Chi University, Hualien, Taiwan
| | - Hsin-Ell Wang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Ren-Shyan Liu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan; Department of Nuclear Medicine, National PET/Cyclotron Center, Taipei Veterans General Hospital, Taipei, Taiwan; Molecular and Genetic Imaging Core, Medical School, National Yang-Ming University, Taipei, Taiwan
| | - Chun-Yi Wu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Pei-Chia Chan
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan; Biophotonics & Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei, Taiwan
| | - Muh-Hwa Yang
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Hwa Chiou
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Man-Jyun Liao
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Jang Lee
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan; Biophotonics & Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
21
|
Targeted inhibition of prostate cancer metastases with an RNA aptamer to prostate-specific membrane antigen. Mol Ther 2014; 22:1910-22. [PMID: 24954476 PMCID: PMC4429728 DOI: 10.1038/mt.2014.117] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/16/2014] [Indexed: 01/01/2023] Open
Abstract
Cell-targeted therapies (smart drugs), which selectively control cancer cell progression with limited toxicity to normal cells, have been developed to effectively treat some cancers. However, many cancers such as metastatic prostate cancer (PC) have yet to be treated with current smart drug technology. Here, we describe the thorough preclinical characterization of an RNA aptamer (A9g) that functions as a smart drug for PC by inhibiting the enzymatic activity of prostate-specific membrane antigen (PSMA). Treatment of PC cells with A9g results in reduced cell migration/invasion in culture and metastatic disease in vivo. Importantly, A9g is safe in vivo and is not immunogenic in human cells. Pharmacokinetic and biodistribution studies in mice confirm target specificity and absence of non-specific on/off-target effects. In conclusion, these studies provide new and important insights into the role of PSMA in driving carcinogenesis and demonstrate critical endpoints for the translation of a novel RNA smart drug for advanced stage PC.
Collapse
|
22
|
Garcia M, Velez R, Romagosa C, Majem B, Pedrola N, Olivan M, Rigau M, Guiu M, Gomis RR, Morote J, Reventós J, Doll A. Cyclooxygenase-2 inhibitor suppresses tumour progression of prostate cancer bone metastases in nude mice. BJU Int 2014; 113:E164-77. [DOI: 10.1111/bju.12503] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Marta Garcia
- Research Unit in Biomedicine and Translational and Pediatric Oncology; Research Institute Vall d'Hebron University Hospital (VHIR); Barcelona Spain
- Universitat Autònoma de Barcelona; Barcelona Spain
| | - Roberto Velez
- Universitat Autònoma de Barcelona; Barcelona Spain
- Orthopaedic Surgery and Traumatology Department; Vall d'Hebron University Hospital; Barcelona Spain
| | - Cleofé Romagosa
- Universitat Autònoma de Barcelona; Barcelona Spain
- Department of Pathology; Vall d'Hebron University Hospital; Barcelona Spain
| | - Blanca Majem
- Research Unit in Biomedicine and Translational and Pediatric Oncology; Research Institute Vall d'Hebron University Hospital (VHIR); Barcelona Spain
- Universitat Autònoma de Barcelona; Barcelona Spain
| | - Núria Pedrola
- Research Unit in Biomedicine and Translational and Pediatric Oncology; Research Institute Vall d'Hebron University Hospital (VHIR); Barcelona Spain
- Universitat Autònoma de Barcelona; Barcelona Spain
| | - Mireia Olivan
- Research Unit in Biomedicine and Translational and Pediatric Oncology; Research Institute Vall d'Hebron University Hospital (VHIR); Barcelona Spain
- Orthopaedic Surgery and Traumatology Department; Vall d'Hebron University Hospital; Barcelona Spain
| | - Marina Rigau
- Research Unit in Biomedicine and Translational and Pediatric Oncology; Research Institute Vall d'Hebron University Hospital (VHIR); Barcelona Spain
- Universitat Autònoma de Barcelona; Barcelona Spain
| | - Marc Guiu
- Oncology Programme; Institute for Research in Biomedicine (IRB-Barcelona); Barcelona Spain
| | - Roger R. Gomis
- Oncology Programme; Institute for Research in Biomedicine (IRB-Barcelona); Barcelona Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA); Barcelona Spain
| | - Juan Morote
- Universitat Autònoma de Barcelona; Barcelona Spain
- Department of Urology; Vall d'Hebron University Hospital; Barcelona Spain
| | - Jaume Reventós
- Research Unit in Biomedicine and Translational and Pediatric Oncology; Research Institute Vall d'Hebron University Hospital (VHIR); Barcelona Spain
- Universitat Autònoma de Barcelona; Barcelona Spain
- Department of Basic Science; International University of Catalonia; Barcelona Spain
| | - Andreas Doll
- Research Unit in Biomedicine and Translational and Pediatric Oncology; Research Institute Vall d'Hebron University Hospital (VHIR); Barcelona Spain
- Department of Basic Science; International University of Catalonia; Barcelona Spain
| |
Collapse
|
23
|
Metastatic castration-resistant prostate cancer reveals intrapatient similarity and interpatient heterogeneity of therapeutic kinase targets. Proc Natl Acad Sci U S A 2013; 110:E4762-9. [PMID: 24248375 DOI: 10.1073/pnas.1319948110] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In prostate cancer, multiple metastases from the same patient share similar copy number, mutational status, erythroblast transformation specific (ETS) rearrangements, and methylation patterns supporting their clonal origins. Whether actionable targets such as tyrosine kinases are also similarly expressed and activated in anatomically distinct metastatic lesions of the same patient is not known. We evaluated active kinases using phosphotyrosine peptide enrichment and quantitative mass spectrometry to identify druggable targets in metastatic castration-resistant prostate cancer obtained at rapid autopsy. We identified distinct phosphopeptide patterns in metastatic tissues compared with treatment-naive primary prostate tissue and prostate cancer cell line-derived xenografts. Evaluation of metastatic castration-resistant prostate cancer samples for tyrosine phosphorylation and upstream kinase targets revealed SRC, epidermal growth factor receptor (EGFR), rearranged during transfection (RET), anaplastic lymphoma kinase (ALK), and MAPK1/3 and other activities while exhibiting intrapatient similarity and interpatient heterogeneity. Phosphoproteomic analyses and identification of kinase activation states in metastatic castration-resistant prostate cancer patients have allowed for the prioritization of kinases for further clinical evaluation.
Collapse
|
24
|
Bi X, Sterling JA, Merkel AR, Perrien DS, Nyman JS, Mahadevan-Jansen A. Prostate cancer metastases alter bone mineral and matrix composition independent of effects on bone architecture in mice--a quantitative study using microCT and Raman spectroscopy. Bone 2013; 56:454-60. [PMID: 23867219 PMCID: PMC3799839 DOI: 10.1016/j.bone.2013.07.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 02/22/2013] [Accepted: 07/04/2013] [Indexed: 11/25/2022]
Abstract
Prostate cancer is the most common primary tumor and the second leading cause of cancer-related deaths in men in the United States. Prostate cancer bone metastases are characterized by abnormal bone remodeling processes and result in a variety of skeletal morbidities. Prevention of skeletal complications is a crucial element in prostate cancer management. This study investigated prostate cancer-induced alterations in the molecular composition and morphological structure of metastasis-bearing bones in a mouse model of prostate cancer using Raman spectroscopy and micro-computed tomography (microCT). LNCaP C4-2B prostate cancer cells were injected into the right tibiae of 5-week old male SCID mice. Upon sacrifice at 8weeks post tumor inoculation, two out of the ten tumor-bearing tibiae showed only osteoblastic lesions in the radiographs, 4 osteolytic lesions only and 4 mixed with osteoblastic and osteolytic lesions. Carbonate substitution was significantly increased while there was a marked reduction in the level of collagen mineralization, mineral crystallinity, and carbonate:matrix ratio in the cortex of the intact tumor-bearing tibiae compared to contralateral controls. MicroCT analysis revealed a significant reduction in bone volume/total volume, trabecular number and trabecular thickness, as well as significant increase in bone surface/volume ratio in tibiae with osteolytic lesions, suggesting active bone remodeling and bone loss. None of the changes in bone compositional properties were correlated with lesion area from radiographs or the changes in bone architecture from microCT. This study indicates that LNCaP C4-2B prostate cancer metastases alter bone tissue composition independent of changes in architecture, and altered bone quality may be an important contributor to fracture risk in these patients. Raman spectroscopy may provide a new avenue of investigation into interactions between tumor and bone microenvironment.
Collapse
Affiliation(s)
- Xiaohong Bi
- Department of Biomedical Engineering, Vanderbilt University, VU Station B#351631, 2301 Vanderbilt Place, Nashville, TN 37235, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Zhou B, Gibson-Corley KN, Herndon ME, Sun Y, Gustafson-Wagner E, Teoh-Fitzgerald M, Domann FE, Henry MD, Stipp CS. Integrin α3β1 can function to promote spontaneous metastasis and lung colonization of invasive breast carcinoma. Mol Cancer Res 2013; 12:143-154. [PMID: 24002891 DOI: 10.1158/1541-7786.mcr-13-0184] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
UNLABELLED Significant evidence implicates α3β1 integrin in promoting breast cancer tumorigenesis and metastasis-associated cell behaviors in vitro and in vivo. However, the extent to which α3β1 is actually required for breast cancer metastasis remains to be determined. We used RNA interference to silence α3 integrin expression by approximately 70% in 4T1 murine mammary carcinoma cells, a model of aggressive, metastatic breast cancer. Loss of α3 integrin reduced adhesion, spreading, and proliferation on laminin isoforms, and modestly reduced the growth of orthotopically implanted cells. However, spontaneous metastasis to lung was strikingly curtailed. Experimental lung colonization after tail vein injection revealed a similar loss of metastatic capacity for the α3-silenced (α3si) cells, suggesting that critical, α3-dependent events at the metastatic site could account for much of α3β1's contribution to metastasis in this model. Reexpressing α3 in the α3si cells reversed the loss of metastatic capacity, and silencing another target, the small GTPase RhoC, had no effect, supporting the specificity of the effect of silencing α3. Parental, α3si, and α3-rescued cells, all secreted abundant laminin α5 (LAMA5), an α3β1 integrin ligand, suggesting that loss of α3 integrin might disrupt an autocrine loop that could function to sustain metastatic growth. Analysis of human breast cancer cases revealed reduced survival in cases where α3 integrin and LAMA5 are both overexpressed. IMPLICATIONS α3 integrin or downstream effectors may be potential therapeutic targets in disseminated breast cancers, especially when laminin α5 or other α3 integrin ligands are also over-expressed.
Collapse
Affiliation(s)
- Bo Zhou
- Department of Biology, University of Iowa, Iowa City, IA, 52242 USA
| | | | - Mary E Herndon
- Department of Biology, University of Iowa, Iowa City, IA, 52242 USA
| | - Yihan Sun
- Department of Biology, University of Iowa, Iowa City, IA, 52242 USA
| | | | - Melissa Teoh-Fitzgerald
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242 USA
| | - Frederick E Domann
- Department of Pathology, University of Iowa, Iowa City, IA, 52242 USA.,Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242 USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242 USA
| | - Michael D Henry
- Department of Pathology, University of Iowa, Iowa City, IA, 52242 USA.,Department of Molecular Physiology & Biophysics, University of Iowa, Iowa City, IA, 52242 USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242 USA
| | - Christopher S Stipp
- Department of Biology, University of Iowa, Iowa City, IA, 52242 USA.,Department of Molecular Physiology & Biophysics, University of Iowa, Iowa City, IA, 52242 USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242 USA
| |
Collapse
|
26
|
Lu X, An H, Jin R, Zou M, Guo Y, Su PF, Liu D, Shyr Y, Yarbrough WG. PPM1A is a RelA phosphatase with tumor suppressor-like activity. Oncogene 2013; 33:2918-27. [PMID: 23812431 DOI: 10.1038/onc.2013.246] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 05/06/2013] [Accepted: 05/20/2013] [Indexed: 12/28/2022]
Abstract
Nuclear factor-κB (NF-κB) signaling contributes to human disease processes, notably inflammatory diseases and cancer. NF-κB has a role in tumorigenesis and tumor growth, as well as promotion of metastases. Mechanisms responsible for abnormal NF-κB activation are not fully elucidated; however, RelA phosphorylation, particularly at serine residues S536 and S276, is critical for RelA function. Kinases that phosphorylate RelA promote oncogenic behaviors, suggesting that phosphatases targeting RelA could have tumor-inhibiting activities; however, few RelA phosphatases have been identified. Here, we identified tumor inhibitory and RelA phosphatase activities of the protein phosphatase 2C (PP2C) phosphatase family member, PPM1A. We show that PPM1A directly dephosphorylated RelA at residues S536 and S276 and selectively inhibited NF-κB transcriptional activity, resulting in decreased expression of monocyte chemotactic protein-1/chemokine (C-C motif) ligand 2 and interleukin-6, cytokines implicated in cancer metastasis. PPM1A depletion enhanced NF-κB-dependent cell invasion, whereas PPM1A expression inhibited invasion. Analyses of human expression data revealed that metastatic prostate cancer deposits had lower PPM1A expression compared with primary tumors without distant metastases. A hematogenous metastasis mouse model revealed that PPM1A expression inhibited bony metastases of prostate cancer cells after vascular injection. In summary, our findings suggest that PPM1A is a RelA phosphatase that regulates NF-κB activity and that PPM1A has tumor suppressor-like activity. Our analyses also suggest that PPM1A inhibits prostate cancer metastases and as neither gene deletions nor inactivating mutations of PPM1A have been described, increasing PPM1A activity in tumors represents a potential therapeutic strategy to inhibit NF-κB signaling or bony metastases in human cancer.
Collapse
Affiliation(s)
- X Lu
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | - H An
- 1] Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA [2] Division of Surgical Sciences, Vanderbilt University, Nashville, TN, USA
| | - R Jin
- 1] Vanderbilt Prostate Cancer Center, Vanderbilt University, Nashville, TN, USA [2] Department of Urology, Vanderbilt University, Nashville, TN, USA
| | - M Zou
- Division of Otolaryngology, Department of Surgery, Yale University, New Haven, CT, USA
| | - Y Guo
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | - P-F Su
- Department of Biostatistics, Vanderbilt University, Nashville, TN, USA
| | - D Liu
- Division of Otolaryngology, Department of Surgery, Yale University, New Haven, CT, USA
| | - Y Shyr
- Department of Biostatistics, Vanderbilt University, Nashville, TN, USA
| | - W G Yarbrough
- 1] Division of Otolaryngology, Department of Surgery, Yale University, New Haven, CT, USA [2] Department of Pathology, Yale University, New Haven, CT, USA [3] Yale Cancer Center, New Haven, CT, USA
| |
Collapse
|
27
|
Epigenetic reprogramming governs EcSOD expression during human mammary epithelial cell differentiation, tumorigenesis and metastasis. Oncogene 2013; 33:358-68. [PMID: 23318435 DOI: 10.1038/onc.2012.582] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 10/09/2012] [Accepted: 10/26/2012] [Indexed: 12/24/2022]
Abstract
Expression of the antioxidant enzyme EcSOD in normal human mammary epithelial cells was not recognized until recently. Although expression of EcSOD was not detectable in non-malignant human mammary epithelial cells (HMEC) cultured in conventional two-dimensional (2D) culture conditions, EcSOD protein expression was observed in normal human breast tissues, suggesting that the 2D-cultured condition induces a repressive status of EcSOD gene expression in HMEC. With the use of laminin-enriched extracellular matrix (lrECM), we were able to detect expression of EcSOD when HMEC formed polarized acinar structures in a 3D-culture condition. Repression of the EcSOD-gene expression was again seen when the HMEC acini were sub-cultured as a monolayer, implying that lrECM-induced acinar morphogenesis is essential in EcSOD-gene activation. We have further shown the involvement of DNA methylation in regulating EcSOD expression in HMEC under these cell culture conditions. EcSOD mRNA expression was strongly induced in the 2D-cultured HMEC after treatment with a DNA methyltransferase inhibitor. In addition, epigenetic analyses showed a decrease in the degree of CpG methylation in the EcSOD promoter in the 3D versus 2D-cultured HMEC. More importantly, >80% of clinical mammary adenocarcinoma samples showed significantly decreased EcSOD mRNA and protein expression levels compared with normal mammary tissues and there is an inverse correlation between the expression levels of EcSOD and the clinical stages of breast cancer. Combined bisulfite restriction analysis analysis of some of the tumors also revealed an association of DNA methylation with the loss of EcSOD expression in vivo. Furthermore, overexpression of EcSOD inhibited breast cancer metastasis in both the experimental lung metastasis model and the syngeneic mouse model. This study suggests that epigenetic silencing of EcSOD may contribute to mammary tumorigenesis and that restoring the extracellular superoxide scavenging activity could be an effective strategy for breast cancer treatment.
Collapse
|
28
|
Integrin α3β1 regulates tumor cell responses to stromal cells and can function to suppress prostate cancer metastatic colonization. Clin Exp Metastasis 2012; 30:541-52. [PMID: 23224938 DOI: 10.1007/s10585-012-9558-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 11/24/2012] [Indexed: 10/27/2022]
Abstract
Integrin α3β1 promotes tumor cell adhesion, migration, and invasion on laminin isoforms, and several clinical studies have indicated a correlation between increased tumoral α3β1 integrin expression and tumor progression, metastasis, and poor patient outcomes. However, several other clinical and experimental studies have suggested that α3β1 can possess anti-metastatic activity in certain settings. To help define the range of α3β1 functions in tumor cells in vivo, we used RNAi to silence the α3 integrin subunit in an aggressive, in vivo-passaged subline of PC-3 prostate carcinoma cells. Loss of α3 integrin impaired adhesion and proliferation on the α3β1 integrin ligand, laminin-332 in vitro. Despite these deficits in vitro, the α3-silenced cells were significantly more aggressive in a lung colonization model in vivo, with a substantially increased rate of tumor growth that significantly reduced survival. In contrast, silencing the related α6 integrin subunit delayed metastatic growth in vivo. The increased colonization of α3-silenced tumor cells in vivo was recapitulated in 3D collagen co-cultures with lung fibroblasts or pre-osteoblast-like cells, where α3-silenced cells showed dramatically enhanced growth. The increased response of α3-silenced tumor cells to stromal cells in co-culture could be reproduced by fibroblast conditioned medium, which contains one or more heparin-binding factors that selectively favor the growth of α3-silenced cells. Our new data suggest a scenario in which α3β1 regulates tumor-host interactions within the metastatic tumor microenvironment to limit growth, providing some of the first direct evidence that specific loss of α3 function in tumor cells can have pro-metastatic consequences in vivo.
Collapse
|
29
|
Barnes JM, Nauseef JT, Henry MD. Resistance to fluid shear stress is a conserved biophysical property of malignant cells. PLoS One 2012; 7:e50973. [PMID: 23226552 PMCID: PMC3513308 DOI: 10.1371/journal.pone.0050973] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 10/29/2012] [Indexed: 01/27/2023] Open
Abstract
During metastasis, cancer cells enter the circulation in order to gain access to distant tissues, but how this fluid microenvironment influences cancer cell biology is poorly understood. A longstanding view is that circulating cancer cells derived from solid tissues may be susceptible to damage from hemodynamic shear forces, contributing to metastatic inefficiency. Here we report that compared to non-transformed epithelial cells, transformed cells are remarkably resistant to fluid shear stress (FSS) in a microfluidic protocol, exhibiting a biphasic decrease in viability when subjected to a series of millisecond pulses of high FSS. We show that magnitude of FSS resistance is influenced by several oncogenes, is an adaptive and transient response triggered by plasma membrane damage and requires extracellular calcium and actin cytoskeletal dynamics. This novel property of malignant cancer cells may facilitate hematogenous metastasis and indicates, contrary to expectations, that cancer cells are quite resistant to destruction by hemodynamic shear forces.
Collapse
Affiliation(s)
- J. Matthew Barnes
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine and The Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa, United States of America
| | - Jones T. Nauseef
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine and The Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa, United States of America
- Medical Scientist Training Program, Roy J. and Lucille A. Carver College of Medicine and The Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa, United States of America
| | - Michael D. Henry
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine and The Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa, United States of America
- Medical Scientist Training Program, Roy J. and Lucille A. Carver College of Medicine and The Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa, United States of America
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine and The Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
30
|
The IGR-CaP1 xenograft model recapitulates mixed osteolytic/blastic bone lesions observed in metastatic prostate cancer. Neoplasia 2012; 14:376-87. [PMID: 22745584 DOI: 10.1593/neo.12308] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/18/2012] [Accepted: 04/18/2012] [Indexed: 12/19/2022] Open
Abstract
Bone metastases have a devastating impact on quality of life and bone pain in patients with prostate cancer and decrease survival. Animal models are important tools in investigating the pathogenesis of the disease and in developing treatment strategies for bone metastases, but few animal models recapitulate spontaneous clinical bone metastatic spread. In the present study, IGR-CaP1, a new cell line derived from primary prostate cancer, was stably transduced with a luciferase-expressing viral vector to monitor tumor growth in mice using bioluminescence imaging. The IGR-CaP1 tumors grew when subcutaneously injected or when orthotopically implanted, reconstituted the prostate adenocarcinoma with glandular acini-like structures, and could disseminate to the liver and lung. Bone lesions were detected using bioluminescence imaging after direct intratibial or intracardiac injections. Anatomic bone structure assessed using high-resolution computed tomographic scans showed both lytic and osteoblastic lesions. Technetium Tc 99m methylene diphosphonate micro single-photon emission computed tomography confirmed the mixed nature of the lesions and the intensive bone remodeling. We also identified an expression signature for responsiveness of IGR-CaP1 cells to the bone microenvironment, namely expression of CXCR4, MMP-9, Runx2, osteopontin, osteoprotegerin, ADAMTS14, FGFBP2, and HBB. The IGR-CaP1 cell line is a unique model derived from a primary tumor, which can reconstitute human prostate adenocarcinoma in animals and generate experimental bone metastases, providing a novel means for understanding the mechanisms of bone metastasis progression and allowing preclinical testing of new therapies.
Collapse
|
31
|
Fritton K, Ren PG, Gibon E, Rao AJ, Ma T, Biswal S, Gambhir SS, Goodman SB. Exogenous MC3T3 preosteoblasts migrate systemically and mitigate the adverse effects of wear particles. Tissue Eng Part A 2012; 18:2559-67. [PMID: 22741555 DOI: 10.1089/ten.tea.2012.0086] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Understanding how relevant cell types respond to wear particles will reveal new avenues for treating osteolysis following joint replacements. In this study, we investigate the effects of ultrahigh molecular weight polyethylene (UHMWPE) particles on preosteoblast migration and function. We infused UHMWPE particles or saline into the left femur of mice and injected luciferase-expressing preosteoblasts (MC3T3 cells) into each left ventricle. Bioluminescence imaging (BLI) confirmed systemic administration of MC3T3 cells. BLI throughout the 28-day experiment showed greater MC3T3 migration to the site of particle infusion than to the site of saline infusion, with significant differences on days 0, 4, and 6 (p≤0.055). Immunostaining revealed a greater number of osteoblasts and osteoclasts in the particle-infused femora, indicating greater bone turnover. The bone mineralization of the particle-infused femora increased significantly when compared to saline-infused femora (an increase of 146.4±27.9 vs. 12.8±8.7 mg/mL, p=0.008). These results show that infused preosteoblasts can migrate to the site of wear particles. Additionally, as the migrated cells were associated with increased bone mineralization in spite of the presence of particles, increasing osteoblast recruitment is a potential strategy for combating bone loss due to increased osteoclast/macrophage number and decreased osteoblast function.
Collapse
Affiliation(s)
- Kate Fritton
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
James BR, Tomanek-Chalkley A, Askeland EJ, Kucaba T, Griffith TS, Norian LA. Diet-induced obesity alters dendritic cell function in the presence and absence of tumor growth. THE JOURNAL OF IMMUNOLOGY 2012; 189:1311-21. [PMID: 22745381 DOI: 10.4049/jimmunol.1100587] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Obesity is a mounting health concern in the United States and is associated with an increased risk for developing several cancers, including renal cell carcinoma (RCC). Despite this, little is known regarding the impact of obesity on antitumor immunity. Because dendritic cells (DC) are critical regulators of antitumor immunity, we examined the combined effects of obesity and tumor outgrowth on DC function. Using a diet-induced obesity (DIO) model, DC function was evaluated in mice bearing orthotopic RCC and in tumor-free controls. Tumor-free DIO mice had profoundly altered serum cytokine and chemokine profiles, with upregulation of 15 proteins, including IL-1α, IL-17, and LIF. Tumor-free DIO mice had elevated percentages of conventional splenic DC that were impaired in their ability to stimulate naive T cell expansion, although they were phenotypically similar to normal weight (NW) controls. In DIO mice, intrarenal RCC tumor challenge in the absence of therapy led to increased local infiltration by T cell-suppressive DC and accelerated early tumor outgrowth. Following administration of a DC-dependent immunotherapy, established RCC tumors regressed in normal weight mice. The same immunotherapy was ineffective in DIO mice and was characterized by an accumulation of regulatory DC in tumor-bearing kidneys, decreased local infiltration by IFN-γ-producing CD8 T cells, and progressive tumor outgrowth. Our results suggest that the presence of obesity as a comorbidity can impair the efficacy of DC-dependent antitumor immunotherapies.
Collapse
Affiliation(s)
- Britnie R James
- Microbiology, Immunology, and Cancer Biology Program, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
33
|
Norian LA, Kresowik TP, Rosevear HM, James BR, Rosean TR, Lightfoot AJ, Kucaba TA, Schwarz C, Weydert CJ, Henry MD, Griffith TS. Eradication of metastatic renal cell carcinoma after adenovirus-encoded TNF-related apoptosis-inducing ligand (TRAIL)/CpG immunotherapy. PLoS One 2012; 7:e31085. [PMID: 22312440 PMCID: PMC3270031 DOI: 10.1371/journal.pone.0031085] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 01/02/2012] [Indexed: 12/31/2022] Open
Abstract
Despite evidence that antitumor immunity can be protective against renal cell carcinoma (RCC), few patients respond objectively to immunotherapy and the disease is fatal once metastases develop. We asked to what extent combinatorial immunotherapy with Adenovirus-encoded murine TNF-related apoptosis-inducing ligand (Ad5mTRAIL) plus CpG oligonucleotide, given at the primary tumor site, would prove efficacious against metastatic murine RCC. To quantitate primary renal and metastatic tumor growth in mice, we developed a luciferase-expressing Renca cell line, and monitored tumor burdens via bioluminescent imaging. Orthotopic tumor challenge gave rise to aggressive primary tumors and lung metastases that were detectable by day 7. Intra-renal administration of Ad5mTRAIL+CpG on day 7 led to an influx of effector phenotype CD4 and CD8 T cells into the kidney by day 12 and regression of established primary renal tumors. Intra-renal immunotherapy also led to systemic immune responses characterized by splenomegaly, elevated serum IgG levels, increased CD4 and CD8 T cell infiltration into the lungs, and elimination of metastatic lung tumors. Tumor regression was primarily dependent upon CD8 T cells and resulted in prolonged survival of treated mice. Thus, local administration of Ad5mTRAIL+CpG at the primary tumor site can initiate CD8-dependent systemic immunity that is sufficient to cause regression of metastatic lung tumors. A similar approach may prove beneficial for patients with metastatic RCC.
Collapse
Affiliation(s)
- Lyse A. Norian
- Department of Urology, The University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Timothy P. Kresowik
- Department of Urology, The University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Henry M. Rosevear
- Department of Urology, The University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Britnie R. James
- Microbiology, Immunology, and Cancer Biology Program, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Timothy R. Rosean
- Interdisciplinary Graduate Program in Immunology, The University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Andrew J. Lightfoot
- Department of Urology, The University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Tamara A. Kucaba
- Department of Urology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Christopher Schwarz
- Department of Urology, The University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Christine J. Weydert
- Department of Physiology, The University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America,
| | - Michael D. Henry
- Department of Physiology, The University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America,
| | - Thomas S. Griffith
- Microbiology, Immunology, and Cancer Biology Program, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Urology, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
34
|
Experimental models for the development of new medical treatments in prostate cancer. Eur J Cancer 2011; 47 Suppl 3:S200-14. [DOI: 10.1016/s0959-8049(11)70166-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Muniz VP, Barnes JM, Paliwal S, Zhang X, Tang X, Chen S, Zamba KD, Cullen JJ, Meyerholz DK, Meyers S, Davis JN, Grossman SR, Henry MD, Quelle DE. The ARF tumor suppressor inhibits tumor cell colonization independent of p53 in a novel mouse model of pancreatic ductal adenocarcinoma metastasis. Mol Cancer Res 2011; 9:867-77. [PMID: 21636682 DOI: 10.1158/1541-7786.mcr-10-0475] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an incurable, highly metastatic disease that is largely resistant to existing treatments. A better understanding of the genetic basis of PDAC metastasis should facilitate development of improved therapies. To that end, we developed a novel mouse xenograft model of PDAC metastasis to expedite testing of candidate genes associated with the disease. Human PDAC cell lines BxPC-3, MiaPaCa-2, and Panc-1 stably expressing luciferase were generated and introduced by intracardiac injections into immunodeficient mice to model hematogenous dissemination of cancer cells. Tumor development was monitored by bioluminescence imaging. Bioluminescent MiaPaCa-2 cells most effectively recapitulated PDAC tumor development and metastatic distribution in vivo. Tumors formed in nearly 90% of mice and in multiple tissues, including normal sites of PDAC metastasis. Effects of p14ARF, a known suppressor of PDAC, were tested to validate the model. In vitro, p14ARF acted through a CtBP2-dependent, p53-independent pathway to inhibit MiaPaCa-2-invasive phenotypes, which correlated with reduced tumor cell colonization in vivo. These findings establish a new bioluminescent mouse tumor model for rapidly assessing the biological significance of suspected PDAC metastasis genes. This system may also provide a valuable platform for testing innovative therapies.
Collapse
Affiliation(s)
- Viviane Palhares Muniz
- Molecular and Cellular Biology Graduate Program, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Svensson RU, Haverkamp JM, Thedens DR, Cohen MB, Ratliff TL, Henry MD. Slow disease progression in a C57BL/6 pten-deficient mouse model of prostate cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:502-12. [PMID: 21703427 DOI: 10.1016/j.ajpath.2011.03.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 03/04/2011] [Accepted: 03/31/2011] [Indexed: 12/17/2022]
Abstract
Prostate-specific deletion of Pten in mice has been reported to recapitulate histological progression of human prostate cancer. To improve on this model, we introduced the conditional ROSA26 luciferase reporter allele to monitor prostate cancer progression via bioluminescence imaging and extensively backcrossed mice onto the albino C57BL/6 genetic background to address variability in tumor kinetics and to enhance imaging sensitivity. Bioluminescence signal increased rapidly in Pten(p-/-) mice from 3 to 11 weeks, but was much slower from 11 to 52 weeks. Changes in bioluminescence signal were correlated with epithelial proliferation. Magnetic resonance imaging revealed progressive increases in prostate volume, which were attributed to excessive fluid retention in the anterior prostate and to expansion of the stroma. Development of invasive prostate cancer in 52-week-old Pten(p-/-) mice was rare, indicating that disease progression was slowed relative to that in previous reports. Tumors in these mice exhibited a spontaneous inflammatory phenotype and were rapidly infiltrated by myeloid-derived suppressor cells. Although Pten(p-/-) tumors responded to androgen withdrawal, they failed to exhibit relapsed growth for up to 1 year. Taken together, these data identify a mild prostate cancer phenotype in C57BL/6 prostate-specific Pten-deficient mice, reflecting effects of the C57BL/6 genetic background on cancer progression. This model provides a platform for noninvasive assessment of how genetic and environmental risk factors may affect disease progression.
Collapse
Affiliation(s)
- Robert U Svensson
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, 6-510 Bowen Science Bldg., University of Iowa, Iowa City, IA 52240, USA
| | | | | | | | | | | |
Collapse
|
37
|
Tang X, Sun Z, Runne C, Madsen J, Domann F, Henry M, Lin F, Chen S. A critical role of Gbetagamma in tumorigenesis and metastasis of breast cancer. J Biol Chem 2011; 286:13244-54. [PMID: 21349837 DOI: 10.1074/jbc.m110.206615] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A growing body of evidence indicates that G protein-coupled receptors (GPCRs) are involved in breast tumor progression and that targeting GPCRs may be a novel adjuvant strategy in cancer treatment. However, due to the redundant role of multiple GPCRs in tumor development, it may be necessary to target a common signaling component downstream of these receptors to achieve maximum efficacy. GPCRs transmit signals through heterotrimeric G proteins composed of Gα and Gβγ subunits. Here we evaluated the role of Gβγ in breast tumor growth and metastasis both in vitro and in vivo. Our data show that blocking Gβγ signaling with Gα(t) or small molecule inhibitors blocked serum-induced breast tumor cell proliferation as well as tumor cell migration induced by various GPCRs in vitro. Moreover, induced expression of Gα(t) in MDA-MB-231 cells inhibited primary tumor formation and retarded growth of existing breast tumors in nude mice. Blocking Gβγ signaling also dramatically reduced the incidence of spontaneous lung metastasis from primary tumors and decreased tumor formation in the experimental lung metastasis model. Additional studies indicate that Gβγ signaling may also play a role in the generation of a tumor microenvironment permissive for tumor progression, because the inhibition of Gβγ signaling attenuated leukocyte infiltration and angiogenesis in primary breast tumors. Taken together, our data demonstrate a critical role of Gβγ signaling in promoting breast tumor growth and metastasis and suggest that targeting Gβγ may represent a novel therapeutic approach for breast cancer.
Collapse
Affiliation(s)
- Xiaoyun Tang
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Tiffen JC, Bailey CG, Ng C, Rasko JEJ, Holst J. Luciferase expression and bioluminescence does not affect tumor cell growth in vitro or in vivo. Mol Cancer 2010; 9:299. [PMID: 21092230 PMCID: PMC3002927 DOI: 10.1186/1476-4598-9-299] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 11/22/2010] [Indexed: 11/10/2022] Open
Abstract
Live animal imaging is becoming an increasingly common technique for accurate and quantitative assessment of tumor burden over time. Bioluminescence imaging systems rely on a bioluminescent signal from tumor cells, typically generated from expression of the firefly luciferase gene. However, previous reports have suggested that either a high level of luciferase or the resultant light reaction produced upon addition of D-luciferin substrate can have a negative influence on tumor cell growth. To address this issue, we designed an expression vector that allows simultaneous fluorescence and luminescence imaging. Using fluorescence activated cell sorting (FACS), we generated clonal cell populations from a human breast cancer (MCF-7) and a mouse melanoma (B16-F10) cell line that stably expressed different levels of luciferase. We then compared the growth capabilities of these clones in vitro by MTT proliferation assay and in vivo by bioluminescence imaging of tumor growth in live mice. Surprisingly, we found that neither the amount of luciferase nor biophotonic activity was sufficient to inhibit tumor cell growth, in vitro or in vivo. These results suggest that luciferase toxicity is not a necessary consideration when designing bioluminescence experiments, and therefore our approach can be used to rapidly generate high levels of luciferase expression for sensitive imaging experiments.
Collapse
Affiliation(s)
- Jessamy C Tiffen
- Gene and Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown NSW 2050, Australia
| | | | | | | | | |
Collapse
|
39
|
Drake JM, Barnes JM, Madsen JM, Domann FE, Stipp CS, Henry MD. ZEB1 coordinately regulates laminin-332 and {beta}4 integrin expression altering the invasive phenotype of prostate cancer cells. J Biol Chem 2010; 285:33940-8. [PMID: 20729552 PMCID: PMC2962494 DOI: 10.1074/jbc.m110.136044] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Metastasis involves the invasion of cancer cells across both the extracellular matrix and cellular barriers, and an evolving theme is that epithelial-to-mesenchymal transition (EMT) may mediate invasive cellular behavior. Previously, we isolated and analyzed a subpopulation of PC-3 prostate cancer cells, TEM4-18, and found that these cells both invaded an endothelial barrier more efficiently and exhibited enhanced metastatic colonization in vivo. Transendothelial migration of these cells depended on expression of ZEB1, a known regulator of EMT. Surprisingly, these cells were much less invasive than parental PC-3 cells in assays that involve matrix barriers. Here, we report that TEM4-18 cells express significantly reduced levels of two subunits of laminin-332 (β3 and γ2) and that exogenous laminin-332, or co-culture with laminin-332-expressing cells, rescues the in vitro invasion phenotype in these cells. Stable knockdown of ZEB1 in prostate cancer cells up-regulated LAMC2 and ITGB4 mRNA and protein and resulted in a concomitant increase in Transwell migration. Using chromatin immunoprecipitation (ChIP), we show that ZEB1 directly interacts with the promoters of LAMC2 and ITGB4. These results provide a novel molecular basis for reduced laminin-332 observed in clinical prostate cancer specimens and demonstrate a context-dependent role for EMT in invasive cellular behavior.
Collapse
Affiliation(s)
| | | | - Joshua M. Madsen
- Radiation Oncology, Roy J. and Lucille A. Carver College of Medicine
| | - Frederick E. Domann
- Radiation Oncology, Roy J. and Lucille A. Carver College of Medicine
- the Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52242
| | - Christopher S. Stipp
- the Department of Biology, and
- the Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52242
| | - Michael D. Henry
- From the Departments of Molecular Physiology and Biophysics
- Pathology, and
- the Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52242
- To whom correspondence should be addressed: The University of Iowa, 6-510 Bowen Science Bldg., Iowa City, IA 52242. Tel.: 319-335-7886; Fax: 319-335-7330; E-mail:
| |
Collapse
|
40
|
Roh M, Abdulkadir SA. Targeting the endothelin receptor in prostate cancer bone metastasis: Back to the mouse? Cancer Biol Ther 2010; 9:615-7. [PMID: 20150768 DOI: 10.4161/cbt.9.8.11309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Meejeon Roh
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | |
Collapse
|
41
|
Rettig GR, Rice KG. Quantitative in vivo imaging of non-viral-mediated gene expression and RNAi-mediated knockdown. Methods Mol Biol 2010; 574:155-71. [PMID: 19685307 DOI: 10.1007/978-1-60327-321-3_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
Abstract
Bioluminescent imaging (BLI) coupled with hydrodynamic (HD) dosing of luciferase-expressing plasmid DNA (pDNA) has proven to be a powerful method for quantitatively benchmarking non-viral gene expression in the liver. The expression of luciferase or knockdown of luciferase by RNA interference (RNAi) in the liver is quantifiable over five-orders of magnitude in living mice. The photon emission data derived from BLI can be converted to the absolute amount of luciferase expression by comparison with a standard curve developed using luciferase as a primary standard. Quantitative BLI is also applicable to luciferase expression in other tissues, such as skeletal muscle, following intramuscular (IM) dosing and electroporation (EP) of pDNA. The primary advantages of using quantitative BLI in mouse liver and muscle are the sensitivity of the assay, the speed and ease of making measurements, the precision and linearity of the dose-response curves, and the ability to conduct serial sampling of gene expression over many days or months while eliminating the need to euthanize animals.
Collapse
Affiliation(s)
- Garrett R Rettig
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | | |
Collapse
|
42
|
Sugahara KN, Teesalu T, Karmali PP, Kotamraju VR, Agemy L, Girard OM, Hanahan D, Mattrey RF, Ruoslahti E. Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell 2009; 16:510-20. [PMID: 19962669 PMCID: PMC2791543 DOI: 10.1016/j.ccr.2009.10.013] [Citation(s) in RCA: 844] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 09/22/2009] [Accepted: 10/07/2009] [Indexed: 01/13/2023]
Abstract
Poor penetration of drugs into tumors is a major obstacle in tumor treatment. We describe a strategy for peptide-mediated delivery of compounds deep into the tumor parenchyma that uses a tumor-homing peptide, iRGD (CRGDK/RGPD/EC). Intravenously injected compounds coupled to iRGD bound to tumor vessels and spread into the extravascular tumor parenchyma, whereas conventional RGD peptides only delivered the cargo to the blood vessels. iRGD homes to tumors through a three-step process: the RGD motif mediates binding to alphav integrins on tumor endothelium and a proteolytic cleavage then exposes a binding motif for neuropilin-1, which mediates penetration into tissue and cells. Conjugation to iRGD significantly improved the sensitivity of tumor-imaging agents and enhanced the activity of an antitumor drug.
Collapse
Affiliation(s)
- Kazuki N. Sugahara
- Vascular Mapping Center, Burnham Institute for Medical Research at UCSB, Biology II Bldg., University of California, Santa Barbara, CA 93106-9610
| | - Tambet Teesalu
- Vascular Mapping Center, Burnham Institute for Medical Research at UCSB, Biology II Bldg., University of California, Santa Barbara, CA 93106-9610
| | - Priya Prakash Karmali
- Cancer Research Center, Burnham Institute for Medical Research, 10901 N. Torrey Pines Rd., La Jolla, CA 92037
| | - Venkata Ramana Kotamraju
- Vascular Mapping Center, Burnham Institute for Medical Research at UCSB, Biology II Bldg., University of California, Santa Barbara, CA 93106-9610
| | - Lilach Agemy
- Vascular Mapping Center, Burnham Institute for Medical Research at UCSB, Biology II Bldg., University of California, Santa Barbara, CA 93106-9610
| | - Olivier M. Girard
- Department of Radiology, University of California, San Diego, 408 Dickinson Street, San Diego, CA 92103-8226
| | - Douglas Hanahan
- Department of Biochemistry and Biophysics, Diabetes and Comprehensive Cancer Centers, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, U.S.A
| | - Robert F. Mattrey
- Department of Radiology, University of California, San Diego, 408 Dickinson Street, San Diego, CA 92103-8226
| | - Erkki Ruoslahti
- Vascular Mapping Center, Burnham Institute for Medical Research at UCSB, Biology II Bldg., University of California, Santa Barbara, CA 93106-9610
- Cancer Research Center, Burnham Institute for Medical Research, 10901 N. Torrey Pines Rd., La Jolla, CA 92037
| |
Collapse
|
43
|
Teicher BA. Human tumor xenografts and mouse models of human tumors: re-discovering the models. Expert Opin Drug Discov 2009; 4:1295-305. [DOI: 10.1517/17460440903380430] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
44
|
Dassie JP, Liu XY, Thomas GS, Whitaker RM, Thiel KW, Stockdale KR, Meyerholz DK, McCaffrey AP, McNamara JO, Giangrande PH. Systemic administration of optimized aptamer-siRNA chimeras promotes regression of PSMA-expressing tumors. Nat Biotechnol 2009; 27:839-49. [PMID: 19701187 PMCID: PMC2791695 DOI: 10.1038/nbt.1560] [Citation(s) in RCA: 432] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 07/31/2009] [Indexed: 01/23/2023]
Abstract
Prostate cancer cells expressing prostate-specific membrane antigen (PSMA) have been targeted with RNA aptamer-small interfering (si)RNA chimeras, but therapeutic efficacy in vivo was demonstrated only with intratumoral injection. Clinical translation of this approach will require chimeras that are effective when administered systemically and are amenable to chemical synthesis. To these ends, we enhanced the silencing activity and specificity of aptamer-siRNA chimeras by incorporating modifications that enable more efficient processing of the siRNA by the cellular machinery. These included adding 2-nucleotide 3'-overhangs and optimizing the thermodynamic profile and structure of the duplex to favor processing of the siRNA guide strand. We also truncated the aptamer portion of the chimeras to facilitate large-scale chemical synthesis. The optimized chimeras resulted in pronounced regression of PSMA-expressing tumors in athymic mice after systemic administration. Anti-tumor activity was further enhanced by appending a polyethylene glycol moiety, which increased the chimeras' circulating half-life.
Collapse
Affiliation(s)
- Justin P Dassie
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Weydert CJ, Esser AK, Mejia RA, Drake JM, Barnes JM, Henry MD. Endothelin-1 inhibits prostate cancer growth in vivo through vasoconstriction of tumor-feeding arterioles. Cancer Biol Ther 2009; 8:720-9. [PMID: 19242129 DOI: 10.4161/cbt.8.8.7922] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The vasoactive peptide endothelin-1 (ET-1) has been implicated in promoting the progression of prostate and other cancers though its precise mechanism(s)-of-action remain unclear. To better define the role of ET-1 in prostate cancer progression, we generated prostate cancer cell lines (PC-3 and 22Rv1) that express elevated levels of ET-1. As anticipated, increased ET-1 lead to modest autocrine growth stimulation of PC-3 cells in monolayer culture and increased colony formation in soft agar by both cell lines. Unexpectedly, however, metastatic colonization of 22Rv1 cells expressing elevated levels of ET-1 was reduced, as was the size of subcutaneous tumors produced by both 22Rv1- and PC-3 cells. Based on these data, we hypothesized that high levels of ET-1 may negatively impact the tumor microenvironment. We found that increased ET-1 expression did not consistently inhibit angiogenesis, indicating that this was not the cause of poor tumor growth. As an alternative explanation, we examined whether elevated ET-1 results in local vasoconstriction and thus reduces the blood supply available to the tumor. Consistent with this hypothesis, treatment of mice bearing PC-3 xenografts with a vasodilator increased tumor perfusion and partially restored tumor growth. Moreover, analysis of tumor vascular casts indicated vasoconstriction of tumor-feeding arterioles. Taken together, our data suggest that the local concentration of the ET-1 peptide is critical for determining a balance between its previously unrecognized tumor growth-suppressing activity (vasoconstriction) and known growth-promoting (mitogenesis, survival and angiogenesis) activities. These findings may have implications for the modification of current prostate cancer therapies involving ET-1.
Collapse
Affiliation(s)
- Christine J Weydert
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
46
|
Dragulescu-Andrasi A, Liang G, Rao J. In vivo bioluminescence imaging of furin activity in breast cancer cells using bioluminogenic substrates. Bioconjug Chem 2009; 20:1660-6. [PMID: 19642690 DOI: 10.1021/bc9002508] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Furin, a proprotein convertases family endoprotease, processes numerous physiological substrates and is overexpressed in cancer and inflammatory conditions. Noninvasive imaging of furin activity will offer a valuable tool to probe furin function over the course of tumor growth and migration in the same animals in real time and directly assess the inhibition efficacy of drugs in vivo. Here, we report successful bioluminescence imaging of furin activity in xenografted MBA-MB-468 breast cancer tumors in mice with bioluminogenic probes. The probes are conjugates of furin substrate, a consensus amino acid motif R-X-K/R-R (X, any amino acid), with the firefly luciferase substrate D-aminoluciferin. In the presence of the luciferase reporter, the probes are unable to produce bioluminescent emission without furin activation. Blocking experiments with a furin inhibitor and control experiments with a scrambled probe showed that the bioluminescence emission in the presence of firefly luciferase is furin-dependent and specific. After furin activation, a 30-fold increase in the bioluminescent emission was observed in vitro, and on average, a 7-8-fold contrast between the probe and control was seen in the same tumor xenografts in mice. Direct imaging of furin activity may facilitate the study of furin function in tumorigenicity and the discovery of new drugs for furin-targeted cancer therapy.
Collapse
Affiliation(s)
- Anca Dragulescu-Andrasi
- Department of Radiology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | |
Collapse
|
47
|
Bailey CL, Kelly P, Casey PJ. Activation of Rap1 promotes prostate cancer metastasis. Cancer Res 2009; 69:4962-8. [PMID: 19470770 DOI: 10.1158/0008-5472.can-08-4269] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Elucidating the mechanisms of prostate cancer (CaP) survival and metastasis are critical to the discovery of novel therapeutic targets. The monomeric G protein Rap1 has been implicated in cancer tumorigenesis. Rap1 signals to pathways involved in cell adhesion, migration, and survival, suggesting Rap1 may promote several processes associated with cancer cell metastasis. Examination of CaP cell lines revealed cells with a high metastatic ability exhibited increased Rap1 activity and reduced expression of the negative regulator Rap1GAP. Rap1 can be further stimulated in these cells by stromal-derived factor (SDF-1), an agonist known to regulate tumor cell metastasis and tropism to bone. Activation of Rap1 increased CaP cell migration and invasion, and inhibition of Rap1A activity via RNAi-mediated knockdown or ectopic expression of Rap1GAP markedly impaired CaP cell migration and invasion. Additional studies implicate integrins alpha4, beta3, and alphavbeta3 in the mechanism of Rap1-mediated CaP migration and invasion. Extending the effect of Rap1 activity in CaP metastasis in vivo, introduction of activated Rap1 into CaP cells dramatically enhanced the rate and incidence of CaP metastasis in a xenograft mouse model. These studies provide compelling evidence to support a role for aberrant Rap1 activation in CaP progression, and suggest that targeting Rap1 signaling could provide a means to control metastatic progression of this cancer.
Collapse
Affiliation(s)
- Candice L Bailey
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710-3813, USA
| | | | | |
Collapse
|
48
|
The lysyl oxidase inhibitor, beta-aminopropionitrile, diminishes the metastatic colonization potential of circulating breast cancer cells. PLoS One 2009; 4:e5620. [PMID: 19440335 PMCID: PMC2680032 DOI: 10.1371/journal.pone.0005620] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 04/14/2009] [Indexed: 12/27/2022] Open
Abstract
Lysyl oxidase (LOX), an extracellular matrix remodeling enzyme, appears to have a role in promoting breast cancer cell motility and invasiveness. In addition, increased LOX expression has been correlated with decreases in both metastases-free, and overall survival in breast cancer patients. With this background, we studied the ability of β-aminopropionitrile (BAPN), an irreversible inhibitor of LOX, to regulate the metastatic colonization potential of the human breast cancer cell line, MDA-MB-231. BAPN was administered daily to mice starting either 1 day prior, on the same day as, or 7 days after intracardiac injection of luciferase expressing MDA-MB-231-Luc2 cells. Development of metastases was monitored by in vivo bioluminescence imaging, and tumor-induced osteolysis was assessed by micro-computed tomography (μCT). We found that BAPN administration was able to reduce the frequency of metastases. Thus, when BAPN treatment was initiated the day before, or on the same day as the intra-cardiac injection of tumor cells, the number of metastases was decreased by 44%, and 27%, and whole-body photon emission rates (reflective of total tumor burden) were diminished by 78%, and 45%, respectively. In contrast, BAPN had no effect on the growth of established metastases. Our findings suggest that LOX activity is required during extravasation and/or initial tissue colonization by circulating MDA-MB-231 cells, lending support to the idea that LOX inhibition might be useful in metastasis prevention.
Collapse
|
49
|
Drake JM, Strohbehn G, Bair TB, Moreland JG, Henry MD. ZEB1 enhances transendothelial migration and represses the epithelial phenotype of prostate cancer cells. Mol Biol Cell 2009; 20:2207-17. [PMID: 19225155 DOI: 10.1091/mbc.e08-10-1076] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Metastatic colonization involves cancer cell lodgment or adherence in the microvasculature and subsequent migration of those cells across the endothelium into a secondary organ site. To study this process further, we analyzed transendothelial migration of human PC-3 prostate cancer cells in vitro. We isolated a subpopulation of cells, TEM4-18, that crossed an endothelial barrier more efficiently, but surprisingly, were less invasive than parental PC-3 cells in other contexts in vitro. Importantly, TEM4-18 cells were more aggressive than PC-3 cells in a murine metastatic colonization model. Microarray and FACS analysis of these cells showed that the expression of many genes previously associated with leukocyte trafficking and cancer cell extravasation were either unchanged or down-regulated. Instead, TEM4-18 cells exhibited characteristic molecular markers of an epithelial-to-mesenchymal transition (EMT), including frank loss of E-cadherin expression and up-regulation of the E-cadherin repressor ZEB1. Silencing ZEB1 in TEM4-18 cells resulted in increased E-cadherin and reduced transendothelial migration. TEM4-18 cells also express N-cadherin, which was found to be necessary, but not sufficient for increased transendothelial migration. Our results extend the role of EMT in metastasis to transendothelial migration and implicate ZEB1 and N-cadherin in this process in prostate cancer cells.
Collapse
Affiliation(s)
- Justin M Drake
- Department of Molecular Physiology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, 52242, USA
| | | | | | | | | |
Collapse
|
50
|
Narla G, DiFeo A, Fernandez Y, Dhanasekaran S, Huang F, Sangodkar J, Hod E, Leake D, Friedman SL, Hall SJ, Chinnaiyan AM, Gerald WL, Rubin MA, Martignetti JA. KLF6-SV1 overexpression accelerates human and mouse prostate cancer progression and metastasis. J Clin Invest 2008; 118:2711-21. [PMID: 18596922 DOI: 10.1172/jci34780] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 04/23/2008] [Indexed: 11/17/2022] Open
Abstract
Metastatic prostate cancer (PCa) is one of the leading causes of death from cancer in men. The molecular mechanisms underlying the transition from localized tumor to hormone-refractory metastatic PCa remain largely unknown, and their identification is key for predicting prognosis and targeted therapy. Here we demonstrated that increased expression of a splice variant of the Kruppel-like factor 6 (KLF6) tumor suppressor gene, known as KLF6-SV1, in tumors from men after prostatectomy predicted markedly poorer survival and disease recurrence profiles. Analysis of tumor samples revealed that KLF6-SV1 levels were specifically upregulated in hormone-refractory metastatic PCa. In 2 complementary mouse models of metastatic PCa, KLF6-SV1-overexpressing PCa cells were shown by in vivo and ex vivo bioluminescent imaging to metastasize more rapidly and to disseminate to lymph nodes, bone, and brain more often. Interestingly, while KLF6-SV1 overexpression increased metastasis, it did not affect localized tumor growth. KLF6-SV1 inhibition using RNAi induced spontaneous apoptosis in cultured PCa cell lines and suppressed tumor growth in mice. Together, these findings demonstrate that KLF6-SV1 expression levels in PCa tumors at the time of diagnosis can predict the metastatic behavior of the tumor; thus, KLF-SV1 may represent a novel therapeutic target.
Collapse
Affiliation(s)
- Goutham Narla
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|